CN100479250C - 燃料处理方法和系统 - Google Patents

燃料处理方法和系统 Download PDF

Info

Publication number
CN100479250C
CN100479250C CNB2005100765112A CN200510076511A CN100479250C CN 100479250 C CN100479250 C CN 100479250C CN B2005100765112 A CNB2005100765112 A CN B2005100765112A CN 200510076511 A CN200510076511 A CN 200510076511A CN 100479250 C CN100479250 C CN 100479250C
Authority
CN
China
Prior art keywords
fuel cell
solid oxide
oxide fuel
cell stack
methanator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100765112A
Other languages
English (en)
Other versions
CN1707839A (zh
Inventor
J·B·汉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN1707839A publication Critical patent/CN1707839A/zh
Application granted granted Critical
Publication of CN100479250C publication Critical patent/CN100479250C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种用于固体氧化物燃料电池组的燃料处理方法,包含步骤:(a)给甲烷化反应器提供包含甲醇和/或二甲醚的进料流,该反应器中装有用于甲醇和/或二甲醚的甲烷化作用的催化材料;(b)在甲烷化反应器中绝热条件下处理该进料流,生成包含甲烷的流出物燃料;(c)将包含甲烷的流出物燃料送至固体燃料电池组的阳极,该电池组包含至少一个固体氧化物燃料电池;(d)给该固体氧化物燃料电池组的阴极提供含氧气体;以及(e)在该固体氧化物燃料电池中将包含甲烷的燃料与含氧气体转化为电。

Description

燃料处理方法和系统
本发明涉及一种处理包含含氧碳氢化合物的燃料的方法,所述燃料用于固体氧化物燃料电池。具体而言,本发明涉及对作为固体氧化物燃料电池燃料的甲醇和/或二甲醚的处理方法以及用于实施该燃料处理方法的系统。
发明背景
将甲醇和二甲醚(DME)用作固体氧化物燃料电池(SOFC)的燃料是公知的。它们是用在SOFC中的令人感兴趣的燃料,这些SOFC与热电设备相结合,例如那些要作为船用装置的辅助电力单元的设备。这类设备中的燃料处理步骤很可能非常简单,最终仅是将甲醇或DME蒸发并注入SOFC的阳极室。
然而,这种方法会产生大量问题和缺点:
Saunders,G.J.等(Formulating liquid hydrocarbon fuels for SOFCs,第23-26页,Journal of Power Sources第131卷第1-2期第1-367页(2004年5月14日)提到以最活泼的Ni金属陶瓷为阳极材料,在SOFC的阳极室内的普遍条件下,于甲醇易于形成碳。Saunders等的研究结果表明只有两种液体,甲醇和甲酸可以直接加到镍金属陶瓷阳极上而无严重的碳阻塞。尽管那样,也有少量的碳沉积,可以通过向燃料中添加少量空气或水来防止该碳沉积。
SOFC设备中碳的形成可以通过下列可逆反应进行:
Figure C20051007651100042
反应[2]称作Boudouard反应。按照反应[3]和[4],甲醇和二甲醚都能分解成CO:
Figure C20051007651100043
Figure C20051007651100044
由于CO极具活性,因此知道不发生反应[2]的温度及气体组成范围很重要。如Nielsen,J.R.所做的进一步描述(Catalytic SteamReforming,Springer Verlag,Berlin 1984),对此可用“平衡气体原理”进行研究,假设甲烷化作用/蒸汽重整(反应[5])及变换反应(反应[6])都处于平衡状态。
Figure C20051007651100051
Figure C20051007651100052
Sasaki,K.and Teraoka,Y.(Equilibria in Fuel Cell Gases,SolidOxide Fuel Cell VIII(SOFC VIII)会议卷第1225-1239页2003-07)已经研究了避免碳的形成所需的水量。
DME在SOFCs中的直接使用也已经被以下人士的文章报导,Dokiya,M.等(Partial Oxidation Reforming of Dry Diesel Oil,Dimethyl-Ether and Methane using SOFC,Solid Oxide Fuel CellsVIII(SOFC VIII)会议卷第1260-1265页,2003-07,The ElectrochemicalSociety);和Tatemi,A.等(Power Generating Property of DirectDimethyl Ether SOFC using LaGaO3基Perovskite Electrolyte,SolidOxide Fuel Cells VIII(SOFC VIII)会议卷第1266-1275页,2003-07,TheElectrochemical Society)。一个缺点是所得开路电压明显低于用氢作为SOFC燃料所得的开路电压。然而,提到在所述的短期实验中仅观察到少量碳。没有提到用于将DME预热至超过600℃的阳极操作温度的手段。
据我们所知,在工业生产设备中,这种预热必须在进/出热交换器中进行,费用最有效以及最便利是采用钢制。如果将干甲醇或DME用作SOFC的进料,这种热交换器易于形成碳并且金属易于粉化。
当蒸汽重整这些燃料时,相对于使用甲烷,使用甲醇或DME的另一个缺点是涉及反应热。甲烷的蒸汽重整在反应式5中给出,甲醇和DME的重整反应分别在反应式7和8中给出:
Figure C20051007651100053
Figure C20051007651100054
Figure C20051007651100055
由于重整过程的吸热性质,燃料在阳极室内的重整(内重整)有助于冷却电池组。然而,甲醇和DME重整反应所吸收的热量远远少于甲烷蒸汽重整,因此由甲醇或DME对电池组提供的冷却效率较低。
本发明的燃料处理方法描述了一种方法布局,通过将甲醇或DME绝热转化为甲烷、CO、CO2和水的混合物来克服上述所有问题。
本发明的一个目的提供一种燃料处理方法,用于固体氧化物燃料电池,经该方法在甲醇或DME在固体氧化物燃料电池中转化之前将其绝热转化为甲烷、CO、CO2和水的混合物。
发明概述
本发明因此提供一种用于固体氧化物燃料电池组的燃料处理方法,包含步骤:
(a)给甲烷化反应器提供包含甲醇和/或二甲醚的进料流,该反应器中装有用于甲醇和/或二甲醚的甲烷化作用的催化材料;
(b)在甲烷化反应器中绝热条件下处理该进料流,生成包含甲烷的流出物燃料;
(c)将包含甲烷的流出物燃料送至固体燃料电池组的阳极,该电池组包含至少一个固体氧化物燃料电池;
(d)给该固体氧化物燃料电池组的阴极提供含氧气体;
(e)在该固体氧化物燃料电池中将包含甲烷的燃料与含氧气体转化为电。
本发明还提供一种用于该燃料处理方法中的燃料处理系统,包含甲烷化反应器,该反应器含有用于甲醇和/或二甲醚甲烷化作用的催化材料;以及包含至少一个固体燃料电池的固体氧化物燃料电池组,该固体氧化物燃料电池组与甲烷化反应器串连并置于其下游。
附图简述
图1是基于甲烷的传统燃料处理系统的示意图。
图2是基于甲醇的燃料处理系统的示意图。
图3是基于甲醇的对比燃料处理体系的示意图。
发明详述
本发明的燃料处理方法中,甲醇和/或DME被绝热转化为甲烷、一氧化碳、二氧化碳和水的混合物。以这种方式,流向甲烷化反应器的进料流所含甲醇或DME中所含的部分化学能被转化,使甲烷化反应器全面升温。这免除了对热交换器的需要,这种热交换器通常需要用于将SOFC燃料加热到阳极入口所需的温度。此外,甲醇和/或二甲醚被转化成甲烷,与可能由进料形成的一氧化碳相比,甲烷极不易于积碳。
甲烷化反应中氧和碳之比(O/C比)非常重要,因为这个比例给碳沉积提供了可能性指示。甲醇和DME经反应[3]和[4]分解成一氧化碳,而一氧化碳又经Boudouard反应[2]分解成碳。O/C比对甲醇为1,而对DME为0.5,这些比例的变化取决于温度,并且一定程度上取决于所用催化剂的类型。在特定温度下,O/C比通常有最小值,在该最小值以上能避免碳的形成。在本发明的燃料处理系统中,通过在工艺中提供过量氧来提高O/C比。该工艺通过将氧从阴极空气经燃料电池电解质运送到阳极废气来进行。该阳极废气经喷射器和甲烷化反应器再循环回阳极入口。也可以通过将大量的水加入系统来提高O/C比。
同时,不必在SOFC中加入过量阴极空气来除去转化为甲烷化反应器中潜热的化学能,从而提高了系统的整体电效率。
图1是基于甲烷的传统燃料处理系统的示意图。将天然气形式的甲烷在热交换器E1中预热,然后在加氢脱硫单元中经氧化锌在400℃脱硫,其后在预重整器中将存在于天然气中的高级烃预重整。这免除了这些高级烃在升高的温度下经脱氢形成不饱和化合物的风险。当加热至所需的电池组进口温度时,这些不饱和化合物(主要是烯烃)易于形成碳。用鼓风机部分循环阳极气体来提供预重整所需的水(和CO2),该循环气体热交换器E2内经历中间冷却。
预重整器的流出物包含甲烷,并且在热交换器E2中用循环阳极废气经热交换将其预热至阳极组的入口温度,然后将流出物送往阳极。甲烷的重整在阳极室中按照反应式[5]进行,并且由于该反应是吸热的,电池组内发生冷却。
将压缩空气传送到阴极。用过量阴极空气使电池组保持绝热,该阴极空气在热交换器E3中用阴极废气经热交换预热。阴极空气也为电池组提供冷却。
不循环回重整器的阳极废气与阴极废气最终在催化燃烧器中燃烧。来自催化燃烧器的废气中的废热,为在热交换器E1中预热天然气的起始期间水在热交换器E6中转化为蒸汽提供热量;并为空间加热或其它目的提供热量。
除了SOFC组本身以及某种程度上的热阳极循环鼓风机之外,已知所有这些列出的组件都用于天然气燃料处理过程中。
在具有此性质的传统工艺中,用甲醇或DME代替天然气将减少可从甲醇或DME的吸热重整反应(内重整)获得的电池组冷却量。因此,为降低电池组温度,需要用已经提供的量之外的阴极空气来进一步冷却。随之,将需要相当大的热交换器E3。空气压缩步骤中损失的电能也将增加。
图2是基于甲醇的燃料处理系统的示意图,图示本发明的一种实施方式。各种处理步骤同样可用于基于DME的燃料处理系统。用泵P1将甲醇压缩,然后用催化燃烧器废气中的废热将其在热交换器E1中蒸发。离开热交换器E1的气态甲醇充当喷射器X1的原动力,之后将它传送到甲烷化反应器R1。甲烷化反应器R1可以具有例如300℃的进口温度和例如540℃的出口温度。将来自固体氧化物燃料电池阳极的包含H2、H2O、CO、CO2和CH4的废气经喷射器X1部分循环回甲烷化反应器R1。甲烷化反应器R1装有对甲醇的分解和甲烷化有活性的催化剂。甲醇和DME的甲烷化反应如下:
Figure C20051007651100082
Figure C20051007651100083
Figure C20051007651100084
在甲烷化反应器中,将甲醇转化成CH4、H2、H2O、CO和CO2的混合物;并且将甲烷化反应器R1的流出物传送到SOFC组的阳极。阳极入口温度至少为400℃,优选至少500℃。
将压缩空气传送到阴极。用过量压缩阴极空气使电池组保持绝热,该阴极空气在热交换器E3中用阴极废气经热交换预热至通常约650℃的温度。
将剩余的未循环回喷射器X1的阳极废气传送到催化燃烧器,在此将它与阴极废气一起燃烧。以通常约700℃的出口温度操作该催化燃烧器。来自催化燃烧器的废气中的废热为甲醇在热交换器E1中的蒸发提供热量。
在本发明的一个实施方式中,将20%的阳极废气循环回喷射器X1,而将80%传送至催化燃烧器。20%的阳极废气循环有助于提高整体电效率;同时由于较高的质量流量,在阳极室内提供更好的流量分布。此外,也提高了至甲烷化反应器的入口处的O/C比。
在本发明的另一个实施方式中,无阳极废气循环。在此情形下,不需要喷射器X1,并且干甲醇随后在甲烷化反应器R1中与具有极少量晶体的Ni催化剂、或者与钌或其它贵金属基甲烷化催化剂反应。
可用于甲烷化反应器中的催化剂是本领域中公知对甲烷或DME的分解和甲烷化都有活性的常规催化剂,例如镍或含贵金属催化剂。一种适宜的含贵金属催化剂例如是含钌催化剂。
在本发明的另一个实施方式中,将一种对甲醇的分解和甲醇重整有活性的催化剂装入甲烷化反应器中对甲醇甲烷化有活性的催化剂的上游。
图3是燃料处理对比系统的示意图,从图2所示的过程中省去了甲烷化反应器而保留阳极废气循环。在这种布局中,需要在热交换器E2中预热进入阳极的入口气体,因为不然进入阳极的入口气体的温度就会变得过低。当该燃料处理系统以阳极废气循环量仅为20%操作时,该循环量对应与图2中所示本发明燃料处理系统相似的O/C比,热交换器E2易于积碳。
对图1-3的燃料处理系统中的热交换器E1和E2的效率和负荷以及空气压缩机E3的功进行对比。主要结果汇总于表1中。
表1
  传统系统(图1)   本发明系统(图2)   省略了甲烷化步骤的系统(图3)
  电效率(%)   55.5   51.6   50.6
  总效率(%)   83.6   84.6   82.1
  进料流率(Nm<sup>3</sup>/h-kg/h)   40.8   87.6   89.3
  E1(kW)   9.8   31.6   29.9
  E2(kW)   23.4   -   30.8
  E3(kW)   557.0   568.2   692.8
  空气压缩机(kW)   29.6   24.5   29.9
在于燃料电池组中进一步处理之前,将甲醇或DME转化为甲烷有若干优点。随碳的形成而带来各种问题的可能性减小。不需要用于将气体加热到进入阳极入口处所需温度的热交换器(E2)。提高了电效率并降低了组合热交换器的负荷及空气压缩机的功。
在图1所示的传统系统中需要投资与预重整器相同大小的甲醇甲烷化反应器。然而,高效催化剂可使所需反应器的体积减小,这也是因为甲醇不含硫,而硫对催化剂是剧毒物。
当将DME用作该燃料处理方法的进料时获得类似的优点。由于DME通常在压力(5.9barg环境条件)下传送,因此它是液体燃料,可以省去图2和3中所示的燃料泵P1。与使用甲醇相比,这是一个优点。

Claims (9)

1.一种在固体氧化物燃料电池组中处理燃料产生电的方法,包含步骤:
(a)给甲烷化反应器提供包含甲醇和/或二甲醚的进料流,该反应器中装有用于甲醇和/或二甲醚的分解和甲烷化作用的催化材料;
(b)在甲烷化反应器中绝热条件下处理该进料流,生成包含甲烷的流出物燃料;
(c)将包含甲烷的流出物燃料送至固体氧化物燃料电池组的阳极,该电池组包含至少一个固体氧化物燃料电池;
(d)给该固体氧化物燃料电池组的阴极提供含氧气体;以及
(e)在该固体氧化物燃料电池组中将包含甲烷的燃料与含氧气体转化为电。
2.根据权利要求1的方法,其中将包含甲醇的进料流在供到甲烷化反应器之前汽化。
3.根据权利要求1或2的方法,其中将固体氧化物燃料电池组的阳极处产生的废气部分循环至位于甲烷化反应器上游的喷射器。
4.根据权利要求3的方法,其中将20%的阳极废气循环至喷射器。
5.根据权利要求1的方法,其中催化材料包含对甲醇和/或二甲醚的分解具有活性的催化剂。
6.根据权利要求1或5的方法,其中催化材料是含有镍或钌或其它贵金属的催化剂。
7.用于根据权利要求1的方法处理燃料以产生电的系统,包含:甲烷化反应器,该反应器含有用于甲醇和/或二甲醚分解和甲烷化作用的催化材料;以及包含至少一个固体氧化物燃料电池的固体氧化物燃料电池组,该固体氧化物燃料电池组与甲烷化反应器串连并置于其下游。
8.根据权利要求7的系统,包含与甲烷化反应器串连并位于其上游的喷射器。
9.根据权利要求8的系统,包含循环装置,用于将固体氧化物燃料电池组阳极处产生的废气传送到喷射器。
CNB2005100765112A 2004-06-04 2005-06-06 燃料处理方法和系统 Expired - Fee Related CN100479250C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200400879 2004-06-04
DKPA200400879 2004-06-04

Publications (2)

Publication Number Publication Date
CN1707839A CN1707839A (zh) 2005-12-14
CN100479250C true CN100479250C (zh) 2009-04-15

Family

ID=34979866

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100765112A Expired - Fee Related CN100479250C (zh) 2004-06-04 2005-06-06 燃料处理方法和系统

Country Status (10)

Country Link
US (1) US7641994B2 (zh)
EP (1) EP1603181B1 (zh)
JP (1) JP4231907B2 (zh)
KR (1) KR101239118B1 (zh)
CN (1) CN100479250C (zh)
AT (1) ATE463851T1 (zh)
CA (1) CA2508980C (zh)
DE (1) DE602005020389D1 (zh)
DK (1) DK1603181T3 (zh)
ES (1) ES2341776T3 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768207B1 (en) * 2005-09-27 2010-08-18 Haldor Topsoe A/S Method for generating electricity using a solid oxide fuel cell stack and ethanol
US8123826B2 (en) * 2006-11-08 2012-02-28 Saudi Arabian Oil Company Process for the conversion of oil-based liquid fuels to a fuel mixture suitable for use in solid oxide fuel cell applications
KR100907396B1 (ko) 2007-09-07 2009-07-10 삼성에스디아이 주식회사 연료 카트리지, 이를 구비하는 직접 메탄올형 연료전지 및연료 카트리지를 이용하는 직접 메탄올형 연료전지의 퍼징방법
FI122455B (fi) * 2007-10-03 2012-01-31 Waertsilae Finland Oy Polttokennolaitteisto
FR2949020B1 (fr) * 2009-08-06 2012-01-13 Franco Cell Dispositif de production d'electricite et de chaleur, incluant une pile a combustible admettant au moins du methane comme combustible
DE102013226327A1 (de) 2013-12-17 2015-06-18 Thyssenkrupp Marine Systems Gmbh Gaskreislauf für ein Festoxidbrennstoffzellen-System und Festoxidbrennstoffzellen-System
JP6455383B2 (ja) * 2014-10-01 2019-01-23 株式会社デンソー 燃料電池装置
CA2995318C (en) * 2015-08-10 2020-05-19 Nissan Motor Co., Ltd. Solid oxide fuel cell system utilizing exothermic methanation reaction in addition to endothermic reforming reaction
WO2018004993A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Reduction of greenhouse gas emission
WO2018004992A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Conversion of methane to dimethyl ether
WO2018004994A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Fluidized bed membrane reactor
US10693158B2 (en) * 2017-10-26 2020-06-23 Lg Electronics, Inc. Methods of operating fuel cell systems with in-block reforming

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR205595A1 (es) * 1974-11-06 1976-05-14 Haldor Topsoe As Procedimiento para preparar gases rico en metano
DK143162C (da) * 1978-12-12 1981-12-14 Topsoee H A S Fremgangsmaade og anlaeg til fremstilling af en metanrig gas
DE3725941A1 (de) * 1987-08-05 1989-02-16 Hoechst Ag Ester von arylperfluoralkylcarbinolen, verfahren zur herstellung dieser verbindungen und der zugrundeliegenden arylbisperfluoralkylcarbinole
GB9403198D0 (en) 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack
AUPR324201A0 (en) * 2001-02-21 2001-03-15 Ceramic Fuel Cells Limited Fuel cell system
DE10143656B4 (de) 2001-09-05 2005-10-13 Mahlendorf, Falko, Dr. rer.nat. Verfahren zur Erzeugung von Energie in einem Brennstoffzellen-Gesamtsystem mit Crackreaktor und Brennstoffzelle sowie Vorrichtung zur Durchführung des Verfahrens
CA2471587A1 (en) 2002-01-25 2003-07-31 Questair Technologies Inc. High temperature fuel cell power plant
JP3994825B2 (ja) * 2002-08-28 2007-10-24 ダイキン工業株式会社 燃料電池発電システム
JP2004119356A (ja) * 2002-09-30 2004-04-15 Toto Ltd 固体酸化物形燃料電池用燃料改質装置

Also Published As

Publication number Publication date
ES2341776T3 (es) 2010-06-28
US7641994B2 (en) 2010-01-05
DK1603181T3 (da) 2010-05-31
DE602005020389D1 (zh) 2010-05-20
CA2508980A1 (en) 2005-12-04
JP2005347267A (ja) 2005-12-15
KR101239118B1 (ko) 2013-03-06
JP4231907B2 (ja) 2009-03-04
US20050271912A1 (en) 2005-12-08
KR20060048153A (ko) 2006-05-18
ATE463851T1 (de) 2010-04-15
CN1707839A (zh) 2005-12-14
EP1603181A3 (en) 2006-08-02
EP1603181B1 (en) 2010-04-07
CA2508980C (en) 2013-05-14
EP1603181A2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
CN100479250C (zh) 燃料处理方法和系统
CN101154741B (zh) 燃料处理方法和系统
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
JP4340315B2 (ja) 燃料電池パワープラント及び燃料電池パワープラントを作動させる方法
US6551732B1 (en) Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode
JP2005516351A (ja) 燃料の脱硫方法
US6805721B2 (en) Fuel processor thermal management system
JP4065235B2 (ja) 燃料電池改質器用の水蒸気転移装置
CN105720285A (zh) 一种封闭式燃料电池氢源系统
EP1808926B1 (en) Fuel Cell System
US7122269B1 (en) Hydronium-oxyanion energy cell
US8202638B2 (en) Fuel processing method and system
KR102355412B1 (ko) 연료전지 시스템 및 이를 구비한 선박
JPH05275101A (ja) 固体高分子電解質型燃料電池システム
Yildiz et al. Fuel cells
Betts et al. Discussion and Analysis of Flue Gas Utilization in a Phosphoric Acid Fuel Cell Engine During Idle Operation
JP2003272690A (ja) 燃料電池システム
KR20170080943A (ko) 선박

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090415

Termination date: 20150606

EXPY Termination of patent right or utility model