CN100464208C - A single-beam magneto-optical trap system - Google Patents
A single-beam magneto-optical trap system Download PDFInfo
- Publication number
- CN100464208C CN100464208C CNB2006101245590A CN200610124559A CN100464208C CN 100464208 C CN100464208 C CN 100464208C CN B2006101245590 A CNB2006101245590 A CN B2006101245590A CN 200610124559 A CN200610124559 A CN 200610124559A CN 100464208 C CN100464208 C CN 100464208C
- Authority
- CN
- China
- Prior art keywords
- laser beam
- quarter
- wave plate
- vacuum
- total reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种单光束磁光阱系统,它包括四块相同的全反射棱镜、一对反亥姆霍兹线圈、半导体激光器、单面镀反射镜的四分之一波片、真空导管、囚禁激光分束,真空泵与一真空导管相连,离子泵与另一真空导管相连,上述真空导管都与金属气室相连,全反射棱镜置于金属气室的中央位置,半导体激光器输出囚禁激光束,囚禁激光束经过全反射棱镜分成囚禁激光分束,反亥姆霍兹线圈与金属气室相连,并放置在囚禁激光束传播方向上,单面镀反射镜的四分之一波片放置在金属气室的下方,在水平方向上处于金属气室的中央位置,让囚禁激光分束从单面镀反射镜的四分之一波片的中心射入。本发明结构简单,体积小,光路易调节,实用性强,操作方便,稳定可靠。
The invention discloses a single-beam magneto-optical trap system, which includes four identical total reflection prisms, a pair of anti-Helmholtz coils, a semiconductor laser, a quarter-wave plate of a single-sided coated reflection mirror, and a vacuum conduit , Confined laser beam splitting, the vacuum pump is connected to a vacuum conduit, the ion pump is connected to another vacuum conduit, the above-mentioned vacuum conduits are connected to the metal gas chamber, the total reflection prism is placed in the center of the metal gas chamber, and the semiconductor laser outputs the trapped laser beam , the confinement laser beam is split into confinement laser beams by a total reflection prism, the anti-Helmholtz coil is connected with the metal air chamber, and placed in the propagation direction of the confinement laser beam, and the quarter-wave plate of the single-sided plated reflector is placed on The lower part of the metal gas chamber is located in the center of the metal gas chamber in the horizontal direction, allowing the trapped laser split beam to enter from the center of the quarter-wave plate of the single-sided coated mirror. The invention has the advantages of simple structure, small volume, easy adjustment of light, strong practicability, convenient operation, stability and reliability.
Description
技术领域 technical field
本发明涉及一种磁光阱系统,尤其涉及一种单光束磁光阱系统,适用于利用冷原子的基本特性来实现测量,定标,以及对冷原子源本身就有需求的诸多科学领域,同时也适用于利用冷原子的特性,研制的有关可以商品化和产业化的产品,如实用的原子钟等。The present invention relates to a magneto-optical trap system, in particular to a single-beam magneto-optic trap system, which is applicable to many scientific fields that use the basic characteristics of cold atoms to realize measurement and calibration, and have demands for cold atom sources. At the same time, it is also applicable to products that can be commercialized and industrialized by utilizing the characteristics of cold atoms, such as practical atomic clocks.
背景技术 Background technique
磁光阱,也叫塞曼位移光阱。是利用磁场和激光的散射力组合而成的一种势阱。1987年,Bell实验室与MIT合作,实现了第一个囚禁钠原子的磁光阱。其基本原理为:三对相向且对与对之间互相垂直的激光束,交汇于装有待囚禁样品的真空气室的中心。每对激光束分别是由偏振方向相反的圆偏振光组成。气室外有一对反亥姆霍兹线圈,产生大小与坐标位置有关的非均匀磁场,坐标中心处,磁场为零。在磁场的作用下,真空气室中的待囚禁原子的能级就会发生塞曼分裂现象,能级分裂程度与坐标位置有关。激光频率调谐到略低于原子的跃迁频率。根据选择定则和多普勒效应,囚禁激光就可以对真空气室中的待囚禁原子在三维方向上产生线性恢复力,从而使原子得到的囚禁。1996年Seoul National University物理系成功实现了利用一个金字塔漏斗状的反射镜来囚禁原子。不久他们又和日本的Interdisciplinary GraduateSchool合作实现了利用一个圆锥面漏斗状的反射镜来囚禁原子。这两种方式皆为单光束方式。传统六束光囚禁原子与单束光囚禁原子相比,具有结构复杂,装置体积大,光路不易调节等缺点。Magneto-optical traps are also called Zeeman-shifted optical traps. It is a potential well formed by the combination of magnetic field and laser scattering force. In 1987, Bell Laboratories cooperated with MIT to realize the first magneto-optical trap for trapping sodium atoms. The basic principle is: three pairs of laser beams facing each other and perpendicular to each other meet at the center of the vacuum chamber containing the sample to be imprisoned. Each pair of laser beams is composed of circularly polarized light with opposite polarization directions. There is a pair of anti-Helmholtz coils outside the gas chamber, which generate a non-uniform magnetic field whose size is related to the coordinate position. At the coordinate center, the magnetic field is zero. Under the action of the magnetic field, the energy level of the atoms to be trapped in the vacuum chamber will undergo Zeeman splitting phenomenon, and the degree of energy level splitting is related to the coordinate position. The laser frequency is tuned to be just below the transition frequency of the atoms. According to the selection rule and the Doppler effect, the trapping laser can produce a linear restoring force on the atoms to be trapped in the vacuum chamber in the three-dimensional direction, so that the atoms can be perfectly trapped. In 1996, the Department of Physics of Seoul National University successfully realized the use of a pyramid funnel-shaped mirror to trap atoms. Soon they cooperated with Japan's Interdisciplinary Graduate School to realize the use of a conical funnel-shaped mirror to trap atoms. Both of these methods are single-beam methods. Compared with the single-beam light-trapping atom, the traditional six-beam light-trapping atom has disadvantages such as complex structure, large device volume, and difficult adjustment of the optical path.
发明内容 Contents of the invention
本发明的的目的是在于提供一种单光束磁光阱系统,该系统结构简单,体积小,光路易调节,实用性强,操作方便,稳定可靠。The purpose of the present invention is to provide a single-beam magneto-optical trap system, which has a simple structure, small volume, easy adjustment of optical Louis, strong practicability, convenient operation, stable and reliable.
本发明采有以下技术方案:一种单光束磁光阱系统,它包括四块相同的全反射棱镜、一对反亥姆霍兹线圈、半导体激光器、单面镀反射膜的四分之一波片、真空导管、囚禁激光分束,其特征在于:真空泵与一真空导管相连,离子泵与另一真空导管相连,上述真空导管都与金属气室相连,四块相同的全反射棱镜置于金属气室的中央位置,半导体激光器输出囚禁激光束,囚禁激光束经过四块相同的全反射棱镜分成囚禁激光分束,一对反亥姆霍兹线圈与金属气室相连,一对反亥姆霍兹线圈放置在囚禁激光束传播方向上,单面镀反射镜的四分之一波片放置在金属气室的竖直方向的下方,在水平方向上处于金属气室的中央位置,让囚禁激光分束从单面镀反射镜的四分之一波片的中心垂直射入。开始时,人们实现第一个磁光阱时,是利用六束激光,所以光路的调节和磁场的调节就很不方便,而且整个磁光阱的装置较大,所以利用磁光阱来开发产品以及进行相关的科学实验就很不方便。后来,人们考虑到利用一些轴对称的反射镜(如:金字塔型,圆锥面型),仅利用一束激光就可以可以实现磁光阱,这种方法因只需要一束激光,因此光路调节就很简单,磁场中心也很容易和光场中心调节重合,整个磁光阱的装置大大简化。但是,以前轴对称的反射镜,通常都是在玻璃表面或金属表面镀膜来实现的。而整个反射镜是要放置在整个真空气室中的,真空气室中充满了待囚禁原子蒸汽,时间一长,这种蒸汽会对反射膜产生腐蚀,而使反射膜变的不规则,从而影响磁光阱的稳定和质量。The present invention has the following technical solutions: a single-beam magneto-optical trap system, which includes four identical total reflection prisms, a pair of anti-Helmholtz coils, semiconductor lasers, and a quarter-wave reflective film coated on one side sheet, vacuum conduit, and captive laser beam splitting, characterized in that: the vacuum pump is connected with a vacuum conduit, the ion pump is connected with another vacuum conduit, the above-mentioned vacuum conduits are all connected with a metal gas chamber, and four identical total reflection prisms are placed in a metal chamber. In the central position of the gas chamber, the semiconductor laser outputs the trapped laser beam, which is divided into the trapped laser beam by four identical total reflection prisms, a pair of anti-Helmholtz coils are connected with the metal gas chamber, and a pair of anti-Helmholtz coils are connected to the metal gas chamber. The magnetic coil is placed in the propagation direction of the trapped laser beam, and the quarter-wave plate of the single-sided plated mirror is placed below the vertical direction of the metal gas chamber, and in the center of the metal gas chamber in the horizontal direction, so that the trapped laser beam The split beam is incident vertically from the center of the quarter-wave plate of the single-sided mirror. At the beginning, when people realized the first magneto-optical trap, they used six laser beams, so it was very inconvenient to adjust the optical path and magnetic field, and the entire magneto-optical trap device was relatively large, so the magneto-optical trap was used to develop products And it is very inconvenient to carry out related scientific experiments. Later, people considered using some axisymmetric reflectors (such as: pyramid type, conical surface type), and only one beam of laser light can be used to realize the magneto-optical trap. This method only needs one beam of laser light, so the optical path adjustment is simple. Very simple, the center of the magnetic field is also easy to adjust to coincide with the center of the optical field, and the device of the entire magneto-optical trap is greatly simplified. However, the previous axisymmetric mirrors are usually realized by coating the glass surface or metal surface. The entire reflector is to be placed in the entire vacuum chamber, which is filled with steam of atoms to be imprisoned. Over time, this vapor will corrode the reflective film, making the reflective film irregular, thus Affect the stability and quality of magneto-optical trap.
1、本发明应用全反射棱镜而非镀膜的反射镜来反射激光束,使整个系统的真空可以持久较高,从而提高了冷原子团的稳定程度。全反射棱镜的原理,是利用光从光密到光疏介质时,可以发生全反射现象这一点来实现对光的反射,因此全反射棱镜就不需要镀膜。因此就避免了待囚禁原子对反射膜的腐蚀从而影响磁光阱的稳定。1. The present invention uses a total reflection prism instead of a coated mirror to reflect the laser beam, so that the vacuum of the entire system can be kept high, thereby improving the stability of the cold atomic group. The principle of the total reflection prism is to realize the reflection of light by using the phenomenon of total reflection when the light goes from light dense to light sparse medium, so the total reflection prism does not need coating. Therefore, it is avoided that the atoms to be trapped corrode the reflective film and affect the stability of the magneto-optical trap.
2、四分之一波片的其中一面镀反射膜的独特设计,减少了光路上的光学界面,简化了系统。以前,人们通常是先让光经过一个单面镀反射镜的四分之一波片,再经过一个反射镜反射,而在单面镀反射镜的四分之一波片的底面镀反射膜的方法,就省掉了一个反射镜,简化了系统,而且减少了光路上的光学界面,使光路的调节变得简单,同时也增加了光路本身的稳定性。2. The unique design of one side of the quarter-wave plate coated with reflective film reduces the optical interface on the optical path and simplifies the system. In the past, people usually let the light pass through the quarter-wave plate of a single-sided mirror, and then reflect it by a mirror, and coat the bottom of the quarter-wave plate of the single-sided mirror with a reflective film. The method saves a reflector, simplifies the system, and reduces the optical interface on the optical path, making the adjustment of the optical path simple, and also increases the stability of the optical path itself.
3、真空气室采用金属气室。这与玻璃气室相比,整个磁光阱系统抗干扰性会增加。而且在抽真空时,气室不容易被损坏。这样会大大增加磁光阱的实用性。3. The vacuum chamber adopts metal air chamber. Compared with the glass air chamber, the anti-interference ability of the whole magneto-optical trap system will be increased. And when vacuuming, the air chamber is not easy to be damaged. This will greatly increase the practicability of the magneto-optical trap.
本发明与现有技术相比,具有以下优点和效果:结构简单,体积小,所需要激光器及光学元件少,光路易调节,真空维持较容易,实用性强,操作方便,稳定可靠。Compared with the prior art, the present invention has the following advantages and effects: simple structure, small volume, less lasers and optical elements required, easy adjustment of light, easy vacuum maintenance, strong practicability, convenient operation, stable and reliable.
附图说明 Description of drawings
图1为一种单光束磁光阱系统结构示意图。Fig. 1 is a schematic diagram of the structure of a single-beam magneto-optical trap system.
其中:1a、1b—全反射棱镜,2—囚禁激光束,3a、3b—反亥姆霍兹线圈,4—金属气室,5—单面镀反射镜的四分之一玻片,6—半导体激光器,7—离子泵,8—真空泵,9—样品泡,10a、10b—真空导管,11a、11b、12—囚禁激光分束,13a、13b—线圈中电流方向Among them: 1a, 1b—total reflection prism, 2—trapped laser beam, 3a, 3b—anti-Helmholtz coil, 4—metal gas chamber, 5—one-quarter glass slide of single-sided mirror, 6— Semiconductor laser, 7—ion pump, 8—vacuum pump, 9—sample bubble, 10a, 10b—vacuum tube, 11a, 11b, 12—trapped laser beam splitter, 13a, 13b—current direction in coil
具体实施方式 Detailed ways
下面结合附图对本发明作进一步详细说明:Below in conjunction with accompanying drawing, the present invention is described in further detail:
1、真空泵(8)与一真空导管(10a)相连。真空泵(8)包括分子泵和机械泵,以及连接真空系统所用的波纹管。离子泵(7)与另一真空导管(10b)相连。离子泵(7)为小型溅射离子泵。上述真空导管(10a)和真空导管(10b)都与金属气室(4)相连,且所连接的窗口是彼此相对的窗口。真空泵(8),即分子泵和机械泵是起到对整个装置系统进行真空预抽的作用,预抽之后,就可以关掉分子泵和机械泵,开启离子泵(7),使整个装置系统的真空得以维持。1. The vacuum pump (8) is connected with a vacuum conduit (10a). The vacuum pump (8) includes a molecular pump and a mechanical pump, as well as bellows used for connecting the vacuum system. The ion pump (7) is connected with another vacuum conduit (10b). The ion pump (7) is a small sputtering ion pump. Both the vacuum conduit (10a) and the vacuum conduit (10b) are connected to the metal air chamber (4), and the connected windows are windows facing each other. The vacuum pump (8), that is, the molecular pump and the mechanical pump are used to pre-pump the entire device system. After the pre-pumping, the molecular pump and the mechanical pump can be turned off, and the ion pump (7) can be turned on to make the entire device system vacuum is maintained.
2、所述一真空导管(10a)与样品泡(9)相连,真空导管(10a)与金属气室(4)相连。样品泡(9)为一个玻璃小泡,小泡内装有待囚禁样品,作为样品源,样品泡中的样品会以蒸汽的方式,慢慢地进入到金属气室(4)中。2. The vacuum conduit (10a) is connected to the sample bubble (9), and the vacuum conduit (10a) is connected to the metal gas chamber (4). The sample bubble (9) is a glass vesicle, and the vesicle is equipped with a sample to be imprisoned. As a sample source, the sample in the sample bubble will slowly enter the metal gas chamber (4) in the form of steam.
3、金属气室(4)是用一个六个窗口的标准立方腔来实现的。如附图1所示金属气室(4)在水平方向上有四个窗口,其中的一个水平窗口与一真空导管(10a)相连,一真空导管(10a)与真空泵(8)和样品泡(9)相连,和这个水平窗口相对的另一个水平方向上的窗口与另一真空导管(10b)相连,真空导管(10b)与离子泵(7)相连。金属气室(4)在竖直方向上有两个窗口,上方一个,下方一个,它们分别与反亥姆霍兹线圈(3a,3b)相连,其中上方的窗口与反亥姆霍兹线圈(3a)相连,下方的窗口与反亥姆霍兹线圈(3b)相连。上方的窗口还和囚禁激光(2)相连。金属气室(4)在水平方向上有四个窗口,其中的一个水平窗口与一真空导管(10a)相连,和这个水平窗口相对的另一个水平方向上的窗口与另一真空导管(10b)相连,剩余的一对水平方向上的窗口作为探测窗口,用来探测冷原子团,也可用来加探测光束,对冷原子团的性质进行相关探测。四块相同的全反射棱镜(1a,1b)要求每块全反射棱镜的两条直角边分别处于水平和竖直方向上,且这四块全反射棱镜的水平方向的直角面,处于同一个平面,且在这个水平面上是均匀分布。四块相同的全反射棱镜(1a,1b)置于金属气室(4)的中央位置,当囚禁激光束(2)从金属气室(4)的窗口射入时,经过四块相同的全反射棱镜(1a,1b),分成了囚禁激光分束(11a、11b、12),这就为磁光阱的实现提供了必备的激光束。3, the metal air chamber (4) is realized with a standard cubic cavity of six windows. As shown in accompanying
4、一对反亥姆霍兹线圈(3a,3b)与金属气室(4)相连,一对反亥姆霍兹线圈(3a,3b)放置在囚禁激光束(2)传播方向的一窗口上。它是用漆包线绕制,安装在金属气室(4)的一对透光窗面上,通以大小相等、方向相反的电流。选择合适的安匝比,使线圈对在金属气室(4)的中心附近沿着线圈轴向产生15Gauss/cm左右的磁场梯度。4. A pair of anti-Helmholtz coils (3a, 3b) are connected to the metal air chamber (4), and a pair of anti-Helmholtz coils (3a, 3b) are placed in a window in the propagation direction of the trapped laser beam (2) superior. It is wound with an enameled wire, installed on a pair of light-transmitting window surfaces of the metal air chamber (4), and passed with electric currents of equal magnitude and opposite directions. A proper ampere-turn ratio is selected so that the coil pair generates a magnetic field gradient of about 15 Gauss/cm along the coil axis near the center of the metal air chamber (4).
5、半导体激光器(6)输出囚禁激光束(2)。半导体激光器(6)代表两台激光器:一台功率较大,一般选用TOPTICA公司的DL100型激光器或其他性能相当的激光器,输出激光功率在60mW以上,波长调谐在780.24nm,线形偏振,用来提供冷却原子、组成磁光阱的囚禁光;一台功率较小,一般选用TOPTICA公司的DL100型激光器或其他性能相当的激光器,输出功率在10mw以上,波长调谐在780.24nm,线性偏振,用来提供再泵浦光源。5. The semiconductor laser (6) outputs the trapped laser beam (2). The semiconductor laser (6) represents two lasers: one has a higher power, generally chooses the DL100 laser of TOPTICA Company or other lasers with comparable performance, the output laser power is above 60mW, the wavelength is tuned at 780.24nm, and linear polarization is used to provide The trapped light that cools the atoms and forms the magneto-optical trap; one with low power, generally chooses the DL100 laser of TOPTICA Company or other lasers with comparable performance, the output power is above 10mw, the wavelength is tuned at 780.24nm, and linear polarization is used to provide Repump the light source.
6、囚禁激光束(2)从半导体激光器(6)产生后,导体激光器(6)出来的囚禁激光束(2)是种线性偏振光,经过单面镀反射镜的四分之一波片变为圆偏振光。再经过透镜组的扩束准直,使光束的直径达到大约35mm左右,然后沿金属气室(4)竖直方向上的上方窗口的中心,垂直射入到金属气室(4)中。6. After the imprisoned laser beam (2) is produced from the semiconductor laser (6), the imprisoned laser beam (2) from the conductor laser (6) is a kind of linearly polarized light, which is transformed by a quarter-wave plate of a single-sided coated reflector. for circularly polarized light. Then through the beam expansion and collimation of the lens group, the diameter of the light beam reaches about 35mm, and then vertically injects into the metal gas chamber (4) along the center of the upper window in the vertical direction of the metal gas chamber (4).
7、单面镀反射镜的四分之一波片(5)所适用光的波长为780nm,且背光面镀有反射膜。囚禁激光分束(12)传播方向垂直于单面镀反射镜的四分之一波片(5),从单面镀反射镜的四分之一波片(5)的中心射入。单面镀反射镜的四分之一波片(5)所起的作用就是让囚禁激光分束(12)达到所需要圆偏振方向,并且反射囚禁激光分束(12)。单面镀反射镜的四分之一波片(5)放置在与金属气室(4)的竖直方向的下方,在水平方向上是处于金属气室(4)的中央位置,波片的受光面处于水平方向,且朝上。波片的背光面处于水平方向,且朝下。7. The wavelength of the light applied to the quarter-wave plate (5) of the single-sided coated reflector is 780nm, and the backlight surface is coated with a reflective film. The propagation direction of the trapped laser split beam (12) is perpendicular to the quarter-wave plate (5) of the single-sided coated reflector, and is incident from the center of the quarter-wave plate (5) of the single-sided coated reflector. The function of the quarter-wave plate (5) of the single-sided coated reflector is to make the trapped laser beam split (12) reach the required circular polarization direction, and reflect the trapped laser split beam (12). The quarter-wave plate (5) of the single-sided plated reflector is placed below the vertical direction of the metal gas chamber (4), and is in the central position of the metal gas chamber (4) in the horizontal direction. The light-receiving surface is in the horizontal direction and faces upward. The backlit side of the wave plate is horizontal and facing downwards.
8、当整个系统各个组件装配好后,真空泵(8)对金属气室(4)进行预抽后,关掉真空泵(8),开启离子泵(7),在一对反亥姆霍兹线圈(3a,3b)中通以合适的电流,开启半导体激光器(6),调整好光路和磁场之间相对位置,就可以形成比较稳定的磁光阱。其中箭头(13a,13b)分别代表两个线圈中的电流的方向;8. After the components of the whole system are assembled, after the vacuum pump (8) pre-pumps the metal air chamber (4), turn off the vacuum pump (8) and turn on the ion pump (7). In (3a, 3b), a suitable current is passed to turn on the semiconductor laser (6), and the relative position between the optical path and the magnetic field is adjusted to form a relatively stable magneto-optical trap. Wherein the arrows (13a, 13b) respectively represent the directions of the currents in the two coils;
以上技术方案可实现一种结构简单、稳定度高、小型化的磁光阱,具有广阔的应用前景。The above technical scheme can realize a magneto-optical trap with simple structure, high stability and miniaturization, and has broad application prospects.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101245590A CN100464208C (en) | 2006-09-19 | 2006-09-19 | A single-beam magneto-optical trap system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101245590A CN100464208C (en) | 2006-09-19 | 2006-09-19 | A single-beam magneto-optical trap system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1928615A CN1928615A (en) | 2007-03-14 |
CN100464208C true CN100464208C (en) | 2009-02-25 |
Family
ID=37858658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101245590A Expired - Fee Related CN100464208C (en) | 2006-09-19 | 2006-09-19 | A single-beam magneto-optical trap system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100464208C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101657062B (en) * | 2009-09-01 | 2012-02-15 | 中国科学院上海光学精密机械研究所 | Folding double-beam magneto-optical trap system |
CN106308796A (en) * | 2016-10-12 | 2017-01-11 | 重庆师范大学 | Magnetic induction imaging device based on laser atomic magnetometer |
CN106644067B (en) * | 2016-12-26 | 2018-07-03 | 深圳市华星光电技术有限公司 | Light trapping fixing device |
US11467330B1 (en) | 2018-10-23 | 2022-10-11 | Government Of The United States As Represented By The Secretary Of The Air Force | One beam mirror magneto-optical trap chamber |
CN114973233A (en) * | 2022-04-21 | 2022-08-30 | 江苏大学 | Tea tender shoot detection method based on feature fusion graph neural network |
CN114895544B (en) * | 2022-05-30 | 2024-03-22 | 中国科学院国家授时中心 | Ultra-compact optical lattice Zhong Zhenkong physical device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5338930A (en) * | 1990-06-01 | 1994-08-16 | Research Corporation Technologies | Frequency standard using an atomic fountain of optically trapped atoms |
CN1805650A (en) * | 2005-01-13 | 2006-07-19 | 清华大学 | Atomic beam generating method and device for atomic chip |
-
2006
- 2006-09-19 CN CNB2006101245590A patent/CN100464208C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5338930A (en) * | 1990-06-01 | 1994-08-16 | Research Corporation Technologies | Frequency standard using an atomic fountain of optically trapped atoms |
CN1805650A (en) * | 2005-01-13 | 2006-07-19 | 清华大学 | Atomic beam generating method and device for atomic chip |
Non-Patent Citations (4)
Title |
---|
A pyramidal magneto-optical trap as a source of slow atoms. J.J.Arlt,et al.OPTICS COMMUNICATIONS,Vol.157 . 1998 * |
Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 江开军,李可,王谨,詹明生.物理学报,第55卷第1期. 2006 * |
冷原子束或超冷原子束的产生及其应用. 邓联忠,印建平.量子电子学报,第22卷第1期. 2005 * |
用于腔量子电动力学研究的铯原子双磁光阱. 闫树斌,耿涛,张天才,王军民.中国激光,第33卷第2期. 2006 * |
Also Published As
Publication number | Publication date |
---|---|
CN1928615A (en) | 2007-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100464208C (en) | A single-beam magneto-optical trap system | |
CN101657062B (en) | Folding double-beam magneto-optical trap system | |
Blake et al. | The Berkeley tunable far infrared laser spectrometers | |
CN101592843B (en) | Dual magneto-optical trap system | |
US8816783B2 (en) | Device for an atomic clock | |
US9874446B2 (en) | Physical unit of chip-scale NMR gyroscope | |
CN110473649B (en) | Asymmetric two-dimensional magneto-optical trap method and device for preparing ultra-long cold atom cloud | |
EP2350564A2 (en) | Small optics cell for miniature nuclear magnetic resonance gyroscope | |
CN114114884B (en) | Coherent population trapped cold atomic clock based on grating chip and its application method | |
CN200950173Y (en) | A single-beam magneto-optical trap device | |
Rus et al. | Demonstration of amplification of a polarized soft-x-ray laser beam in a neonlike germanium plasma | |
CN111863306A (en) | Speed-adjustable large beam cold atom source | |
CN113126210A (en) | Unilateral fiber outlet optical isolator | |
CN212659318U (en) | Speed-adjustable large beam cold atom source | |
CN106782739B (en) | Light path system and high flux cold atom line two-dimensional magnetic optical trap system | |
CN216206402U (en) | Compact atomic interferometer integrates device | |
CN109061889A (en) | A kind of sunken prisoner's device of optics cold atom | |
CN114895544B (en) | Ultra-compact optical lattice Zhong Zhenkong physical device | |
CN209803572U (en) | Optomechanical setup of a novel two-dimensional magneto-optical trap | |
Sahelgozin | Design and construction of a transportable quantum gravimeter and realization of an atom-chip magnetic trap | |
CN2757187Y (en) | Coherent layout number confinement cold atom clock | |
CN109884872B (en) | Optomechanical device of two-dimensional magneto-optical trap | |
CN112600058A (en) | Based on Rb87Modulation transfer spectrum frequency stabilization light path structure | |
CN117438128A (en) | A lightweight hollow-core optical fiber cold atom guidance system and method | |
CN113984048B (en) | A compact atom interferometer integrated device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090225 Termination date: 20110919 |