CN100448771C - 一种预测微结构力学特性的方法 - Google Patents

一种预测微结构力学特性的方法 Download PDF

Info

Publication number
CN100448771C
CN100448771C CNB2005101173403A CN200510117340A CN100448771C CN 100448771 C CN100448771 C CN 100448771C CN B2005101173403 A CNB2005101173403 A CN B2005101173403A CN 200510117340 A CN200510117340 A CN 200510117340A CN 100448771 C CN100448771 C CN 100448771C
Authority
CN
China
Prior art keywords
detection architecture
voltage
spacing
width
eff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101173403A
Other languages
English (en)
Other versions
CN1785794A (zh
Inventor
贺学锋
张大成
方竞
熊春阳
李婷
杨芳
田大宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CNB2005101173403A priority Critical patent/CN100448771C/zh
Publication of CN1785794A publication Critical patent/CN1785794A/zh
Application granted granted Critical
Publication of CN100448771C publication Critical patent/CN100448771C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

本发明涉及一种预测微结构力学特性的方法,其包括以下步骤:(1)制作出一系列版图尺寸不同的检测结构;(2)根据实验得到的这些检测结构的力学特性;(3)由检测结构的版图尺寸和力学特性,反算出修正参数;(4)根据所设计的MEMS结构的版图尺寸,选用相应的版图尺寸的结构所对应的材料修正参数,预测MEMS结构的力学特性。当需要预测采用ICP刻蚀释放的体硅梁的刚度时,可以采用折梁支承的平行板电容器作为检测结构,通过测量其侧向吸合电压得到不同版图宽度和不同间距的体硅梁的修正弯曲刚度或修正弹性模量,用于预测不同版图尺寸的体硅梁的刚度。验证实验表明,对于宽梁、窄梁和中等宽度的体硅梁,本发明提出的新方法都可以准确预测其刚度。

Description

一种预测微结构力学特性的方法
技术领域
本发明涉及微电子机械系统(MEMS)领域,特别是关于一种在MEMS结构设计中预测微结构力学特性的方法。
背景技术
MEMS(微机电系统)作为跨学科的先进制造技术,对改善人们的生活质量,提高生活水平以及增强国力起到了重要的作用。八十年代末,加州大学伯克利分校与其它大学和公司一起合作开发了优化的牺牲层工艺,随后ADI、SANDIA等公司也开发了一些标准MEMS工艺,众多的MEMS研究人员利用这些工艺设计了大量的MEMS结构。开发一个优化的、成品率高、稳定性好的工艺流程是一项耗时和艰巨的任务,与集成电路的加工技术一样,采用基本相同的标准化MEMS工艺来开发许多原理与结构都不尽相同的MEMS结构是可能的。根据这些标准工艺的设计规则,设计人员即使不太熟悉MEMS工艺,也可以快速地设计出自己的器件,并且能够快速地加工出来,大大降低了MEMS设计人员的门坎和缩短了器件开发的时间,提高了专业化分工。标准工艺也是进一步对工艺进行优化的基础,比如进行少量扩展就可以得到适合于特殊器件的优化工艺。因此MEMS工艺的标准化是MEMS走向产业化的必由之路。
目前,国内外的设计人员所使用的预测器件力学特性的方法都是基于连续介质力学的理论,根据微结构的真实几何尺寸和真实材料特性来预测器件的力学特性。但由于制版误差、曝光误差、厚度误差和刻蚀误差等,加工出的微结构的真实尺寸与版图尺寸是不一致的。一般说来,结构越小,加工的几何相对偏差越大,而目前尚没有可以准确预测这种差异的方法,设计人员往往直接采用版图尺寸或凭经验稍加修改作为结构的几何尺寸。对于版图尺寸与真实尺寸有较大相对偏差的小器件,即使知道材料的真实力学特性,采用这种设计方法设计的MEMS器件的真实力学特性往往与设计值相差也很大,为了得到期望的器件性能,往往需要经过多次流片,多次实验,不断对器件进行修改,才能得到具有期望特性的器件,这大大增加了MEMS器件的开发时间和费用,不利于MEMS行业的产业化。
MEMS器件的弹性部分大多由梁和膜组成,因此如果能够根据版图尺寸准确计算梁和膜的刚度,则在设计时就可以准确预测微结构的刚度。
发明内容
本发明的目的是利用硅MEMS工艺具有重复性好,绝对误差小和相对误差大的特点,针对标准工艺,提出了一种不用预测微结构真实尺寸,便可以准确预测结构力学特性的方法。
为实现上述目的,本发明采取以下技术方案:(1)制作出一系列版图尺寸不同的检测结构;(2)根据实验得到的这些检测结构的力学特性;(3)由检测结构的版图尺寸和力学特性,反算出修正参数,并制成图表;(4)根据所设计的MEMS结构的版图尺寸,选用图表中相应的版图尺寸结构所对应的修正参数,预测MEMS结构的力学特性。
这里以北大微电子所开发的键合深刻蚀释放工艺制作的体硅梁的刚度特征为例,来详细说明本发明的所提出的MEMS力学特性预测的新方法。
在同一个硅片上,由于Lag效应(Lag效应是指宽槽的刻蚀速度比窄槽快),宽度不同的槽的刻透时间是不一样的,刻透窄槽需要更多的时间,只要这些需要刻透的长窄槽刻透了,硅片上其它需要刻开的结构就已经被刻透了。因此只要观察需要刻透的长窄槽的刻蚀情况,就知道硅片是否还需要继续进行ICP(电感耦合等离子体)刻蚀。同时,如果两个硅片有相近的需要刻透的长窄槽,则它们需要的刻蚀量是相近的,刻透相应长窄槽时,两个硅片上具有相似周边环境的相似结构的过刻量是相近的。
ICP刻蚀的Footing效应是指硅结构刻透后,在硅/二氧化硅的界面处,硅结构的底部和侧面将被快速地过刻。由于一个硅片上需要刻透的长槽宽度不全相同,在宽槽刻透而窄槽还需要继续刻透时,宽槽两侧的硅结构的底部和侧面就会被过刻。对于键合深刻蚀释放工艺,可以通过对一系列版图间距和宽度不同的梁,当梁的长度足够大,以至于其端部效应(包括刻蚀和约束的端部效应)可以忽略时,通过实验可以确定出与相应的版图间距和版图宽度对应的梁的弯曲刚度。由于与直接采用版图宽度和真实的材料参数计算出的弯曲刚度不同,这里将这个根据实验得到的弯曲刚度称为修正弯曲刚度。假设制作出的梁的宽度与版图宽度一致,进一步可以根据修正弯曲刚度得到材料的修正弹性模量。当某个需要刻透的长窄槽刻透后,根据对一系列版图间距和宽度不同的梁进行测量,就可以得出随着梁的间距和版图宽度的变化,修正弯曲刚度和修正弹性模量的相应变化。这些修正参数可以用于预测位于具有相同需要刻透的长窄槽的硅片上的相应版图间距和版图宽度的梁的刚度。
为了提取不同版图宽度和间距的体硅梁的修正弹性模量和修正弯曲刚度,可以采用悬臂梁、两端固支梁或折梁支承的平行板电容器作为检测结构,根据侧向吸合电压得到这些修正参数。
本发明具有以下优点:1、实验设备简单,只需要在一般的微电子工艺间都具有的探针台、光学显微镜、CCD、视频监视器和直流电源即可。2、由于采用静电吸合的方法来提取修正参数,而静电吸合是一种典型的失稳现象,非常明显,因此对吸合电压的测量很准确。3、实验易于操作,整个实验只需要一个人即可完成。4、由于不需要先预测结构的真实尺寸,因此本发明提出的预测体硅梁刚度的新方法便于使用。5、ICP刻蚀的加工误差主要来源于Lag效应和Footing效应,这两大效应主要由结构之间的间距决定,而在提取和选取修正参数时,这个间距已经考虑被作为一个主要因素进去了,因此采用上面的修正参数来预测体硅梁结构的刚度应该具有很高的精度。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是正面光刻形成光刻胶图形示意图
图2是KOH腐蚀后浅台阶示意图
图3是玻璃浅槽和溅射金属示意图
图4是采用剥离法在玻璃上制作电极
图5是硅/玻璃键合示意图
图6是KOH腐蚀减薄硅片示意图
图7是双面光刻结构释放示意图
图8是采用键合深刻蚀释放工艺制作的一个结构的示意图
图9是折梁支承的平行板电容器检测结构俯视示意图
图10是实验设备连接示意图
图11是不同间距情况下的修正弹性模量随版图宽度的变化
图12是实例一的提取修正参数的检测结构与验证结构
图13是实例二的提取修正参数的检测结构与验证结构
图14是实例三的提取修正参数的检测结构与验证结构
具体实施方式
下面以北大微电子所的键合深刻蚀释放工艺为例,说明本发明的微结构力学特性预测的方法和相应的修正参数的检测。这套工艺的流程包括以下步骤:
1、在双面抛光的、中等掺杂的、电阻率为2~4Ω·cm的(100)硅片1上热氧化淀积SiO2300nm,腐蚀背面SiO2
2、正面光刻,形成光刻胶2图形(如图1所示);
3、BHF刻蚀SiO2,KOH腐蚀浅台阶,去除SiO2(如图2所示);
4、清洗玻璃片3,光刻、BHF腐蚀玻璃120纳米,形成浅槽;
5、溅射电极金属Ti/Pt/Au160纳米(如图3所示);
6、采用剥离法在玻璃上形成金属电极4(如图4所示);
7、硅片1、玻璃3键合对准,硅/玻璃静电键合(如图5所示);
8、硅片KOH腐蚀减薄(如图6所示);
9、在硅片上溅射300nm的铝;
10、划片;
11、双面光刻(如图7所示);
12、以铝为掩膜5,采用ICP刻蚀释放结构,得到高深宽比的微结构。
如图8所示,是采用上述工艺制作的一悬臂梁式检测结构10。本发明的检测结构10还可以采用两端固支梁的结构形式和折梁支承的平行板电容器结构形式(如图9所示),由于采用悬臂梁和两端固支梁的侧向吸合电压提取修正参数比较麻烦,下面以折梁支承的平行板电容器作为检测结构来提取不同版图宽度和间距的体硅梁的修正弹性模量和修正弯曲刚度。
如图9、图10所示,折梁支承的平行板电容器检测结构10包括两固定块11,可动电极包括一折梁12支承的刚性梁13,折梁12的一端与固定块11固接,另一端与作为可动电极的刚性梁13连接,固定电极是一与刚性梁13平行且相隔一间距的固定块14。辅助梁15是用来减小硅片上的其它结构对检测结构10的折梁12过刻量的影响。测量侧向吸合电压的装置包括:探针台16的两根探针17分别与直流电压源18的正、负极相连,其中的一根探针17与直流电压源18之间串联一个大电阻19,以确保在静电吸合时,电路内的电流比较小,不会损坏电压源,两探针17之间的电压采用一个电压表20来测量。测量吸合电压时,两根探针17分别扎在检测结构10上两电极的固定块11、14上,再使电压源的电压由零慢慢增加,通过一个与探针台16上的CCD摄像机21相连的监视器22来观察检测结构10的吸合过程,吸合时电压表上的电压就是吸合电压。
将本发明预测微结构力学特性的方法用于预测体硅梁的刚度时,包括以下步骤:
1、首先设计实验片,由版图宽度不同、间距不同的折梁支承的平行板电容器(如图9所示),以使它们的吸合电压在直流电压源所能提供的电压范围内;
2、在不同宽度的长窄槽刻透时,测量作为检测结构的各平行板电容器的侧向吸合电压;
3、由这些检测结构的版图尺寸和测得的吸合电压,通过计算得到不同版图宽度和间距的体硅梁的修正弹性模量和修正弯曲刚度,并制成图表曲线(如图11所示)。
4、根据体硅梁的版图尺寸,选用相应的修正参数,预测所设计的结构的刚度。
检测结构的设计和修正参数的提取:
为了降低几何非线性(包括应力刚化效应)对修正参数的影响,一根折梁12应该由两根以上的长横梁121和相应的短连接梁122组成,最好不要仅由一根长横梁121组成(即两端固支梁在中间支承一个可动电极的平行板电容器),因为这种结构在吸合时,梁内会产生较大的轴向拉力,而这个轴向拉力会使梁的抗弯刚度显著增加。当一根折梁12包含两根以上的长横梁121时,由于横梁轴向拉力大大减小,因此应力刚化效应会大大减小,几何非线性影响会大大减小,分析表明,此时的几何非线性对吸合电压的影响可以忽略不计,因此每根折梁都应包含两根以上的长横梁121。由于短连接梁122不满足梁的基本假设(即梁的长度应该远大于其宽度),这里把短的连接梁122的宽度设计得比长折梁的宽度大的多,这样就可以在分析时忽略短连接梁122的变形,从而减小了短梁给修正参数的提取带来的误差。
设折梁12的长横梁121的版图宽度为wd,梁的高度为h,长横梁121的长度为L,可动电极与固定电极之间的间隙的版图宽度为gd,可动电极的长度为Le。设两个电极顶部、底部的过刻量分别为lt、lb,由此得两电极的等效宽度为
g eff = ( g d + 2 l t ) ( g d + 2 l b ) - - - ( 1 )
对于平行板电容器式,如果忽略边缘效应,当存在过刻时,吸合电压为
V PIc = V PI ( E ~ I ) eff g eff 3 E ~ I g d 3 - - - ( 2 )
其中截面惯性矩 I = h w d 3 / 1 2 , VPI是按版图尺寸和硅的真实修正弹性模量
Figure C20051011734000084
得到的吸合电压。
假发测出的吸合电压为VPIm,根据上式可以求出梁的修正抗弯刚度(EI)m=(EI)eff,为
( E ~ I ) m = E ~ IV PIm 2 g d 3 V PI 2 g eff 3 - - - ( 3 )
而修正弹性模量为
E ~ m = E ~ V PIm 2 g d 3 V PI 2 g eff 3 - - - ( 4 )
根据上面的公式和实验结果计算修正弹模和修正抗弯刚度时,只需要首先确定Gap(间隙)的等效宽度,因此比较简单,得到的结果可信度高。由于这种结构的折梁间距与Gap宽度无关,这种检测结构的设计灵活性更大。这里折梁的长横梁之间的间距分别为4、6和10μm,检测结构的几何形状已经列于表1中,当将体硅的弹性模量取为 E ~ = 1.7 E 5 MPa 时,得到的吸合电压VPI也列于表中。
然后测出各平行板电容器的侧向吸合电压VPIm如表1所示:
表1提取参数平行板电容器的吸合电压
  宽度-间距-数量-梁长度-电极长度   V<sub>PI</sub>(V)   V<sub>PIm</sub>(V)   宽度-间距-数量-梁长度-电极长度   V<sub>PI</sub>(V)   V<sub>PIm</sub>(V)
  6-4-3-400-850   43.3   41.8   7-4-3-400-850   54.5   54.0
  8-4-3-500-1050   43.1   -   9-4-3-500-1050   51.3   54.4
  10-4-3-600-1250   42.0   44.9   12-4-3-600-1250   54.9   61.2
  14-4-3-800-1600   38.8   43.4   16-4-3-800-1600   46.1   54.0
  18-4-3-800-1600   54.9   65.1   20-4-3-800-1600   64.1   77.2
  6-6-3-400-850   43.3   -   7-6-3-400-850   54.5   -
  8-6-3-500-1050   43.1   40.6   9-6-3-500-1050   51.3   50.8
  10-6-3-600-1250   42.0   41.4   12-6-3-600-1250   54.9   56.5
  14-6-3-800-1600   38.8   41.4   16-6-3-800-1600   46.1   52.2
  18-6-3-800-1600   54.8   62.5   20-6-3-800-1600   64.0   73.5
  6-10-3-400-850   43.3   33.9   7-10-3-400-850   54.4   46.2
  8-10-3-500-1050   43.0   37.4   9-10-3-500-1050   51.2   45.5
  10-10-3-600-1250   41.9   37.6   12-10-3-600-1250   54.9   52.9
  14-10-3-800-1600   38.8   38.9   16-10-3-800-1600   46.0   49.7
  18-10-3-800-1600   54.8   -   20-10-3-800-1600   63.9   -
由式(4)和式(3)可以分别得到相应的修正弹性模量和修正弯曲刚度。对于不同的间距,不同宽度梁的修正弹性模量(如图11所示)和修正弯曲刚度的取值如表2所示:
表2  与版图宽度对应的修正弹性模量
Figure C20051011734000092
和修正抗弯刚度
Figure C20051011734000094
实施例一:
为了验证采用修正参数进行结构设计的有效性和展示修正参数的用法,采用表1或2中宽度为8μm的梁的修正参数来计算验证结构的吸合电压,测量与提取参数的检测结构位于同一个单元的验证结构的吸合电压,并与根据修正参数计算出的值进行比较。
如图12所示,验证结构的一根折梁由十二根长度为400μm的长横梁组成,而表1或表2中提取修正参数的检测结构10的一根折梁12由三根长度为500μm的长横梁121组成,两者的几何差异由图12可清楚地看出来,其中上面一个结构为提取参数的检测结构10(如图12中a),下面一个结构是验证结构30(如图12中b)。两个结构的折梁12间距都是10μm,平行板电容器的实际有效Gap宽度为6μm,电极的正对长度为955μm,结构的厚度为76μm。根据表1,宽度为8μm的梁的修正弹性模量应该取为 E ~ m = 0.777 E 5 MPa , 等效抗弯刚度为 ( E ~ I ) m = 0.2519 &times; 10 9 ( Mpa &CenterDot; &mu;m 4 ) , 通过有限元分析得到的验证结构30的两根折梁12的刚度为K=6.51μN/μm,由此得到的吸合电压为25.5V,而根据实验得到的吸合电压为24.8V,相对误差仅2.8%,可见采用本章得到的修正弹性模量来计算所设计的结构的刚度是很准确的。显然,直接采用修正抗弯刚度可以得到相同的结论。
实施例二:
如图13所示,修正弹性模量的检测结构10(如图13中a)的一根折梁12由三根长度为250μm的长横梁121组成,验证结构30(如图13中b)的一根折梁由十二根长度为400μm的长横梁组成,长横梁121的版图宽度都很小,为4μm,长横梁121之间的间距都是10μm,两个电极之间的实际有效Gap都是6μm。检测结构10和验证结构30的形状差异可以由图可清楚地看出来,两者的长横梁121的长度有较大差异,数量的差异更大。由检测结构10的吸合电压32.0V计算出的的修正弹性模量为3.40E4MPa,由此修正弹性模量和版图尺寸计算出的验证结构30的吸合电压为6.12V,而实际测出的吸合电压为5.9V,相对误差3.73%。
实例三:
如图14所示,修正弹性模量的检测结构10的一根折梁12由三根长度为800μm的长横梁121组成,验证结构的一根折梁由十二根长度为500μm的长横梁组成,长横梁121的版图宽度都较宽,为16μm,长横梁121之间的间距都是10μm,两个电极之间的实际有效Gap都是6μm。检测结构10(如图14中a)和验证结构30(如图14中b)的形状差异可以由图可清楚地看出来,两者的长横梁的长度和数量有较大差异。实验测得的检测结构的吸合电压46.8V,根据这个吸合电压可以反算出间距为10μm,宽度为16μm的梁的修正弹性模量,根据这个修正模量,计算出的验证结构的吸合电压为66.2V,而实际测出的验证结构的吸合电压恰好也为66.2V,相对误差小于0.05%。
上面的三个实例分别表明,对于宽梁、窄梁和中等宽度的梁,本发明提出的预测体硅结构力学特性的新方法都可以准确预测出结构刚度。因此本发明提出的方法是可行的,并具有较高的精度。

Claims (2)

1、一种预测微结构力学特性的方法,其包括以下步骤:
(1)制作出一系列版图宽度不同、梁之间间距不同的悬臂梁检测结构、两端固支梁检测结构或者折梁支撑的平行板电容器式检测结构;
(2)测量所述悬臂式检测结构、所述两端固支梁检测结构或者所述支撑的平行板电容器式检测结构在不同宽度的长窄槽刻透时的侧向吸合电压;
(3)由所述悬臂式检测结构、所述两端固支梁检测结构或者所述支撑的平行板电容器式检测结构的版图宽度和间距以及所述侧向吸合电压,得到体硅梁的修正抗弯刚度和修正弹性模量:
g eff = ( g d + 2 l t ) ( g d + 2 l b )
V PIc = V PI ( E ~ I ) eff g eff 3 EI ~ g d 3
其中,geff为两电极的等效宽度,gd为版图宽度,lt、lb为两个电极顶部、底部的过刻量, I = hw d 3 / 12 为截面惯性矩,VPI是按版图宽度、间距和硅的真实修正弹性模量得到的侧向吸合电压;根据上式和测得的侧向吸合电压VPIm,可得梁的修正抗弯刚度和修正弹性模量分别为
( EI ~ ) m = ( EI ~ ) eff = E ~ IV PIm 2 g d 3 V PI 2 g eff 3
E ~ m = E ~ V PIm 2 g d 3 V PI 2 g eff 3
将不同版图宽度、间距、梁的数量、梁的长度和电极长度情况下的体硅梁,在取一定值的真实弹性模量时得到的吸合电压VPI和测量所得的侧向吸合电压VPIm制成表格;将上述修正抗弯刚度和修正弹性模量公式得到的不同宽度、不同间距的体硅梁的修正抗弯刚度和修正弹性模量制成另一表格;
(4)根据设计的所述悬臂式检测结构、所述两端固支梁检测结构或者所述支撑的平行板电容器式检测结构版图宽度和间距,从步骤(3)的两个表格中选择相应的修正抗弯刚度和修正弹性模量,预测设计的所述悬臂式检测结构、所述两端固支梁检测结构或者所述支撑的平行板电容器式检测结构的抗弯刚度。
2、如权利要求1所述的一种预测微结构力学特性的方法,其特征在于:所述折梁支撑的平行板电容器式检测结构包括一作为可动电极的折梁支承的刚性梁,一与所述刚性梁平行且相隔一间距设置的固定电极,一与所述固定电极相对设置在所述折梁另一侧的辅助梁和连接在所述辅助梁两端的两固定块;所述折梁的一端与所述两固定块连接,另一端连接所述可动电极的刚性梁。
CNB2005101173403A 2005-11-02 2005-11-02 一种预测微结构力学特性的方法 Expired - Fee Related CN100448771C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101173403A CN100448771C (zh) 2005-11-02 2005-11-02 一种预测微结构力学特性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101173403A CN100448771C (zh) 2005-11-02 2005-11-02 一种预测微结构力学特性的方法

Publications (2)

Publication Number Publication Date
CN1785794A CN1785794A (zh) 2006-06-14
CN100448771C true CN100448771C (zh) 2009-01-07

Family

ID=36783414

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101173403A Expired - Fee Related CN100448771C (zh) 2005-11-02 2005-11-02 一种预测微结构力学特性的方法

Country Status (1)

Country Link
CN (1) CN100448771C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107292028B (zh) * 2017-06-21 2020-08-04 中国电子产品可靠性与环境试验研究所 确定阶梯型微固支梁结构设计方案的方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086951A (ja) * 2000-09-20 2002-03-26 Fuji Photo Film Co Ltd 平版印刷版の画像形成面強度測定方法、平版印刷版及び平版印刷版包装構造
CN1385359A (zh) * 2002-02-05 2002-12-18 西安交通大学 碳纳米管薄膜微机械红外探测器
CN1546364A (zh) * 2003-11-28 2004-11-17 天津大学 基于计算机视觉的微机电系统的测试装置与方法
CN1549302A (zh) * 2003-05-06 2004-11-24 北京大学 半导体微器件的一种键合方法及其键合强度的检测方法
CN1569608A (zh) * 2004-04-29 2005-01-26 上海交通大学 金属薄膜微桥的制造方法及其力学特性测试方法
CN1673723A (zh) * 2005-04-18 2005-09-28 中北大学 微机电系统的动态应力测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086951A (ja) * 2000-09-20 2002-03-26 Fuji Photo Film Co Ltd 平版印刷版の画像形成面強度測定方法、平版印刷版及び平版印刷版包装構造
CN1385359A (zh) * 2002-02-05 2002-12-18 西安交通大学 碳纳米管薄膜微机械红外探测器
CN1549302A (zh) * 2003-05-06 2004-11-24 北京大学 半导体微器件的一种键合方法及其键合强度的检测方法
CN1546364A (zh) * 2003-11-28 2004-11-17 天津大学 基于计算机视觉的微机电系统的测试装置与方法
CN1569608A (zh) * 2004-04-29 2005-01-26 上海交通大学 金属薄膜微桥的制造方法及其力学特性测试方法
CN1673723A (zh) * 2005-04-18 2005-09-28 中北大学 微机电系统的动态应力测试方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
单晶硅微构件力学特性片上测试系统. 苏才钧等.机械强度,第27卷第4期. 2005
单晶硅微构件力学特性片上测试系统. 苏才钧等.机械强度,第27卷第4期. 2005 *
微米尺度下键合强度的评价方法和测试结构. 阮勇等.微电子学与计算机,第22卷第8期. 2005
微米尺度下键合强度的评价方法和测试结构. 阮勇等.微电子学与计算机,第22卷第8期. 2005 *
微结构特性的光学测试平台. 胡晓东等.光学学报,第25卷第6期. 2005
微结构特性的光学测试平台. 胡晓东等.光学学报,第25卷第6期. 2005 *

Also Published As

Publication number Publication date
CN1785794A (zh) 2006-06-14

Similar Documents

Publication Publication Date Title
Hu et al. Investigation of stamping process of metallic bipolar plates in PEM fuel cell—Numerical simulation and experiments
CN104462680B (zh) 静电驱动阶梯型微悬臂梁吸合电压的预测方法和系统
CN101629859B (zh) 基于变形测量与数值反求确定薄膜应力的系统与方法
CN105209854A (zh) 用于测量玻璃片制造工艺的不对称性的方法
CN103017713B (zh) 光学材料亚表面损伤层厚度的测量方法
CN103245437A (zh) 一种确定非线性薄膜应力的系统与方法
CN103366071B (zh) 一种化学机械抛光模拟方法
Petrzelka et al. Static load-displacement behavior of PDMS microfeatures for soft lithography
CN101976045A (zh) 用于tft-lcd蚀刻制程的面板品质虚拟量测方法与系统
Schiavone et al. A wafer mapping technique for residual stress in surface micromachined films
CN102522354B (zh) 一种提取互连线方块电阻的方法和装置
CN101908090B (zh) 基于响应函数的空间映射的冲压成形优化方法
CN100448771C (zh) 一种预测微结构力学特性的方法
CN102506805A (zh) 一种基于支持向量分类的多测点平面度评定方法
CN100478646C (zh) 多晶硅薄膜残余应变的在线检测结构
CN103995022B (zh) 硅材料顶层硅杨氏模量和残余应力的测试结构及测试方法
Horvath et al. Mechanical modelling and life cycle optimisation of screen printing
JP3994884B2 (ja) 薄膜の膜応力評価方法と弾性率・線膨張率同定方法
Chan et al. Comprehensive static characterization of vertical electrostatically actuated polysilicon beams
TWI772301B (zh) 預測玻璃板無重力形狀的方法及基於無重力形狀管理玻璃板品質的方法
Zeng et al. An equation-based nonlinear model for non-flat MEMS fixed–fixed beams with non-vertical anchoring supports
CN100447542C (zh) Mems力学微探针及其制备方法
CN105046031B (zh) 一种预测铝合金薄壁构件机加工产生的形变量的方法
CN108052727B (zh) 一种金属栅功函数变化导致栅电容统计分布的估计方法
Haluzan et al. VM-TEST: Mechanical property measurement using electrostatically actuated vertical MEMS test structures fabricated in thick metal layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090107

Termination date: 20111102