CN100441388C - Microneedle preparation method based on multiplayer processing technology - Google Patents

Microneedle preparation method based on multiplayer processing technology Download PDF

Info

Publication number
CN100441388C
CN100441388C CN 200610025467 CN200610025467A CN100441388C CN 100441388 C CN100441388 C CN 100441388C CN 200610025467 CN200610025467 CN 200610025467 CN 200610025467 A CN200610025467 A CN 200610025467A CN 100441388 C CN100441388 C CN 100441388C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
microneedle
microneedles
method
mold
photoresist
Prior art date
Application number
CN 200610025467
Other languages
Chinese (zh)
Other versions
CN1864976A (en )
Inventor
刘景全
军 朱
贾书海
迪 陈
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种微细加工技术领域的基于多层加工技术的微针制备方法,步骤为:1)沉积钛薄膜,并作氧化处理;2)甩SU-8光刻胶,前烘好后进行曝光,中烘、显影、电镀及机械研磨与抛光,得到第一层所需厚度的金属结构;3)抛光后的表面作金属活化处理;4)重复第2)与第3)步直至甩最后一层光刻胶,最后一层光刻胶完成前烘、曝光、中烘、显影后进行的是电铸,完成电铸后去胶得到供模压用的金属模具;5)金属模具进行聚合物热压复制;6)聚合物背部切薄后脱模得到通孔的微针。 A microstructure based processing art processing techniques for preparing the multilayer microneedle method, the steps of: a) depositing a titanium film, and for oxidation; 2) rejection of SU-8 photoresist, post exposure bake before good, in bake, development, electroplating, and mechanical grinding and polishing, to obtain a metal structure of a desired thickness of the first layer; 3) for polishing the metal surface after activation; 4) repeat steps 2) and 3) steps until the last layer of light rejection plastic moment, before completion of the last layer of photoresist bake, exposure bake performed after the developing electroforming, to complete the electrical gum obtained after the casting mold used for molding; 5) hot-pressing mold for polymer replication ; 6) releasing thin polymer obtained after cutting back through hole microneedles. 本发明不仅能实现低成本、批量化的微针加工,而且适宜加工的材料范围更为广泛,只需调整各层的外径偏差与层数就可得到不同阶梯侧面与高度的微针结构。 The present invention is not only low-cost, mass microneedles processing, and more suitable for processing a wide range of materials, simply adjust the outside diameter deviation and the number of layers of different layers can be obtained with the side surface of the step height microneedle structure.

Description

基于多层加工技术的微针制备方法 Preparation microneedle multilayer processing technology based on

技术领域 FIELD

本发明涉及一种微细加工技术领域的方法,特别是一种基于多层加工技术的微针制备方法。 The present invention relates to a technical field of micro-machining methods, in particular to a method for preparing a microneedle-based multilayer processing technology. 背景技术 Background technique

传统的皮下注射法一般需要让针头穿透皮肤表层并深入皮肤以下,以便直接将药物送入血管。 The traditional method is generally a hypodermic needle need to penetrate deeply into the skin and the skin surface, so that the drug directly into the blood vessels. 因此这一过程不仅伴随着疼痛,而且注射技术需接受一定的培训才能掌握。 So this process is not only accompanied by pain, and injection techniques required to undergo some training to master. 而微型针仅仅剌穿皮肤表面角质层而不再深入,药物通过毛细血管进入血液循环系统。 But only microneedle pierces the stratum corneum of the skin surface rather than deep, the drug into the blood circulatory system through the capillaries. 由于角质层中不含神经末梢,注射过程中不会感到明显疼痛。 Since the stratum corneum does not contain nerve endings, the injection process will not feel significant pain. 微型针头的操作过程亦非常简单,只须直接将针头阵列贴上皮肤即可,特别适用于小剂量注射高效药物。 During operation of the microneedles it is also very simple, only the needle array affixed directly to the skin, particularly suitable for injection of small doses of the drug effective.

目前报道的微针研究主要有三种方法, 一是采用硅工艺,通过湿法腐蚀或反应离子刻蚀技术加工硅微探针,二是利用激光加工、电镀与湿法腐蚀等工艺加工金属微针,上述两种方法存在工艺复杂,加工周期长,成本高的缺点,都难以满足生物医学上一次使用的要求。 There are three methods of primary microneedles reported, one uses a silicon process, by wet etching or reactive ion etching of silicon processing technology microprobe, and second, by laser machining, wet etching and plating a metal other processing microneedles , the presence of the above two methods complex process, long processing cycle disadvantage of high cost, are difficult to meet the requirements of a biomedical use. 三是Jung-Hwan Park等人在2003年the 16th annual international conference on micro electro mechanical systems (第十六届微光机电系统国际年会)上第371页至第374页发表的名为"Micromachined Biodegradable Microstructures"(微加工生物可降解微结构)的文章,该文中介绍的利用SU-8光刻胶制备微针结构母版,然后复制出PDMS模子,再利用该模子浇铸可生物降解微探针。 Third, Jung-Hwan Park et al. In 2003 the 16th annual international conference on 371 pages to page 374 micro electro mechanical systems (MOEMS Sixteenth Annual International) first published entitled "Micromachined Biodegradable Microstructures article "(micromachining biodegradable microstructure), which is described in the article was prepared using SU-8 photoresist microneedle structure master, and then copy the PDMS mold, the mold and then casting using biodegradable microprobe. 该方法虽然可实现微探针的批量化生产,但因为PDMS材料很软, 用它来复制微针只能采用浇铸方法,因此用它来复制微针所需的加工时间比金属模具所采用的模压工艺要长,而且适用PDMS模具来加工的材料也比金属模具少。 Although this method may be implemented microprobe mass production, but because the material is very soft PDMS, use it to copy only the microneedles using a casting method, so it is used to copy the required processing time than the microneedle mold employed longer molding process, but also for processing material PDMS mold to less than the mold.

发明内容本发明的目的在于克服现有技术中的不足,提供一种基于多层加工技术的微针制备方法,采用多层加工技术与UV-LIGA技术,电铸得到带阶梯侧面的金属模具,用该模具就可批量复制带阶梯侧面的聚合物微针,因此该加工方法不仅具有工艺简单, 工艺周期短,成本低的优点,同时具有易于加工不同顶部结构微针的优点。 Object of the present invention is to overcome disadvantages of the prior art, provides a method microneedle based multilayer processing technology, processing technology and multi-layer UV-LIGA technology, electroforming mold to obtain a stepped side surface, the mold can be reproduced by bulk polymer microneedles stepped side surface, so that the processing method is not only simple process, short process cycle, and low cost, easy to process while having the advantage of the roof structure different microneedles.

本发明是通过以下技术方案实现的,本发明的具体步骤如下: The present invention is achieved by the following technical scheme, the present invention specific steps are as follows:

1) 沉积钛薄膜,并作氧化处理。 1) depositing a titanium film, and for oxidation. 金属材料的选择要充分考虑与后面甩的光刻胶之间的结合力,本发明采用金属钛,氧化发黑处理以提高其与光刻胶的结合力。 Selecting a metal material to fully consider the later rejection of the binding force between the photoresist, the present invention is titanium metal, black oxide treatment to improve its bond with the photoresist.

2) 甩SU-8光刻胶,前烘好后进行曝光,中烘、显影、电镀及机械研磨与抛光(得到第一层所需厚度的金属结构)。 2) rejection of SU-8 photoresist, post exposure bake before good, bake, development, electroplating, and mechanical grinding and polishing (metal structure to give a desired thickness of the first layer).

3) 抛光后的表面作金属活化处理,去除表面氧化层以保证多层金属之间的结合力。 3) The polished surface activating treatment for the metal, the surface oxide layer is removed to ensure the bonding force between the multilayered metal.

4) 根据微针结构设计,重复第2)与第3)步直至甩最后一层光刻胶,与前几层不同的是:最后一层光刻胶完成前烘、曝光、中烘、显影后进行的是电铸,完电铸后去胶就得到可供模压用的金属模具。 4) The microneedle structure design, repeat steps 2) and 3) rejection of the final step until a layer of photoresist, is different from the previous layers: photoresist layer before the completion of the final drying, exposure bake, development after the electroforming, the electricity and the casting is obtained for stripping molded with the mold.

5) 金属模具进行聚合物热压复制。 5) hot-pressing mold for polymer replication.

6) 聚合物背部切薄后脱模得到通孔的微针。 6) releasing thin polymer obtained after cutting back the microneedles through hole.

本发明利用多层加工技术电铸得到带阶梯侧面的金属模具,用该模具再批量复制带阶梯侧面的聚合物微针。 The present invention is a multilayer processing techniques electroformed mold to obtain a stepped side surface, and then copy the bulk polymer microneedles with a stepped side surface of the mold. 模具金属是镍、铁镍合金或铜,这种模具结构具有脱模方便的优点。 Mold metal is nickel, copper or iron-nickel alloy, such a mold structure having the advantages of easy release.

微针的外径以及微针的内孔直径均由光刻掩膜版上掩膜尺寸决定,改变掩膜版上掩膜尺寸就得到不同外径以及内孔直径的微针,微针可以是单个,也可以是阵列。 On the photomask by the outer diameter of the inner bore diameter of the microneedle and a microneedle mask size decision to change the size of the mask on the mask to obtain different outer diameters and the inner diameter of the microneedles, the microneedles may be individual, it may be an array. 微针的长度决定于光刻胶总厚度。 Microneedle length is determined by the total thickness of the photoresist. 因此该方法适用于加工不同长度的微针。 Thus the method is applicable to the processing of microneedles of different lengths.

本发明利用多层加工技术得到带阶梯侧面的微针结构,因此该方法只需调整多层结构之间的外径差,相应就可得到不同阶梯侧面结构的微针。 The present invention is a multilayer processing techniques give microneedle structure stepped side surface, so that the outer diameter of the adjustment method only the difference between the multilayered structure, can be obtained microneedles respective different sides of the stepped structure. 本发明的微针顶部结构可以在最后一层光刻时依靠平面加工技术就可实现。 Microneedle structure of the present invention may be a top planar processing techniques rely upon the last layer lithography can be achieved.

本发明复制的聚合物是塑料或橡胶,复制塑料微针采用模压的方法,复制橡胶微针采用浇铸的方法。 Replication of the present invention is a polymer plastic or rubber, plastic copying method by compression molding the microneedles, the microneedles rubber casting method using replication. 本发明中,因为电铸模具所需的时间较长,所以优先采用低速小应力电铸工艺。 In the present invention, since the longer time required for electroforming mold, it is preferentially a low-speed small stress electroforming process. 采用去除光刻胶的溶剂来去胶。 The solvent is removed using the photoresist come gum. 本发明采用多层加工技术加工出金属模具,然后复制微针的方法来加工微针, 所以它是一种批量化的微针加工方法,加工成本低,另外与现有加工技术不同的是-(l)由于该技术加工得到的微针模具为金属材料,不仅模具寿命长,而且适宜用该技术来加工的材料范围更宽,既可用来模压塑料类聚合物,也可用来浇铸橡胶类聚合物。 The present invention uses a multilayer die machined processing technology, and the method to process copy microneedles microneedles, so it is a batch processing method microneedle, low cost, and additional processing prior art is different - (l) Since the technique obtained by processing a metal material microneedle mold, the mold not only long life, and a suitable range of materials processed by this technique is wider for molded plastic polymers can also be used to cast polymerized rubber-based thereof. (2)利用多层加工技术以得到阶梯侧面的微针结构,因此该方法只需调整各层的外径偏差与层数就可得到不同阶梯侧面的微针结构。 (2) processing techniques to obtain a multilayer microneedle structure of the step side, this method simply adjust the outside diameter deviation and the number of layers of the respective layers can be obtained microneedle structure different sides of the step. (3)微针的长度由光刻胶的总厚度决定。 (3) the length of the microneedles is determined by the total thickness of the photoresist. (4)微针的顶部结构由最后一层掩模版设计决定。 (4) the top structure is determined by the final microneedles reticle design layer. 具体实施方式以下结合本发明方法的具体内容提供实施例:首先在硅基片上沉积2微米的金属钛做种子层,然后进行氧化处理,具体的氧化工艺为:将15克的Na0H溶解在750ml的去离子水中,为提高氧化速率与氧化均匀性, 氧化在65。 DETAILED DESCRIPTION bonding method of the present invention the specific content provider Example: first depositing titanium 2 microns on the silicon substrate to make the seed layer, and then the oxidation treatment, the specific oxidation process as follows: 15 g of Na0H was dissolved in 750ml of deionized water, to increase the oxidation rate and the uniformity of the oxide, the oxide 65. C水浴锅中进行,当水浴锅温度达到50。 For C water bath, water bath when the temperature reached 50. C时,加入15ml双氧水,当水浴锅温度达到65。 C, the addition of 15ml of hydrogen peroxide, when the temperature of water bath reaches 65. C时将基片放入,三分钟结束氧化,然后放入去离子水中清洗基片。 C when the substrate is placed, the end of three minutes oxide, and then washed in deionized water into the substrate. 在氧化并清洗干净的基片上甩50微米SU-8光刻胶,然后进行前烘,前烘条件为: 在65。 Oxidized and thrown on the cleaned substrate 50 micrometers SU-8 photoresist, and then pre-baking, before baking conditions: 65. C烘半小时,95。 C oven for half an hour, 95. C烘15分钟后随炉冷却。 C after 15 minutes bake furnace cooling. 前烘好的基片进行曝光,曝光条件为: 450mJ/cra2。 Baked good before the substrate is exposed, the exposure conditions were: 450mJ / cra2. 曝光后的基片进行后烘,后烘条件为:65。 After exposure the substrate for drying, post-baking conditions: 65. C烘半小时,90。 C oven for half an hour, 90. C烘10分钟后随炉冷却。 C after 10 minutes bake furnace cooling. 后烘好的基片进行显影,显影条件为6分钟。 After baking good substrates were then developed conditions for 6 minutes. 在显影好的基片上电镀金属镍,电镀的条件为:电铸液PH值5,温度50。 In developing a good substrate electroplated nickel, plating conditions: electroforming PH value of 5, a temperature of 50. C,电铸速率控制在14微米/小时时电铸金属的质量较好。 C, preferably at a rate control electroforming mass 14 m / hr electroforming metal. 当电镀金属的厚度超过光刻胶厚度时进行磨片,然后将磨好的基片活化处理, 处理后的基片甩第二层50微米SU-8光刻胶,然后重复前烘、曝光、后烘、显影、电镀、磨平、活化处理,接着甩第三层50微米SU-8光刻胶,然后重复前烘、曝光、后烘、显影、电镀、磨平、活化处理,然后甩第四层50微米SU-8光刻胶,然后重复前5烘、曝光、后烘、显影后电铸成模具。 When the thickness of the metal plating for a thickness of the photoresist over grinding, and the grinding activation good substrate, the substrate after the treatment layer 50 is thrown a second photoresist SU-8 microns, and then repeat the previous baking, exposure, post-baking, developing, plating, polished, the activation treatment, followed by rejection of a third layer of photoresist SU-8 50 microns, and then repeat the previous baking, exposure, post-baking, developing, plating, polished, the activation treatment, and then dumped on four SU-8 photoresist 50 microns, and then drying was repeated 5 before exposure, post-baking after development electroforming mold.

用去SU-8胶的溶剂去除嵌在模具中的光刻胶。 SU-8 spent removing the solvent embedded in the gel mold photoresist.

用镍模具压制PC材料微针,采用的模压条件为:模压温度200。 Pressing the microneedle PC material with a nickel mold, molding conditions used are: molding temperature of 200. C,模压压力5000N, 模压时间60S,脱模温度120。 C, the molding pressure 5000N, molding time 60S, the release temperature of 120. C,脱模速度O. 2 (隱/s)。 C, the release rate O. 2 (hidden / s).

本发明采用多层加工技术加工出金属模具,然后复制微针的方法来加工微针, 所以它是一种批量化的微针加工方法,加工成本低,由于该技术加工得到的微针模具为金属材料,不仅模具寿命长,而且适宜用该技术来加工的材料范围更宽,既可用来模压塑料类聚合物,也可用来浇铸橡胶类聚合物。 The present invention uses a multilayer die machined processing technology, and the method to process copy microneedles microneedles, so it is a batch processing method microneedle, low cost, since the microneedle mold processing technology is obtained metal material, not only the mold long life, and a suitable range of materials processed by this technique is wider for molded plastic polymers can also be used to cast a rubber-based polymer.

利用多层加工技术可以方便地得到阶梯侧面的微针结构,因此该方法只需调整各层的外径偏差与层数就可得到不同阶梯侧面与高度的微针结构。 A multilayer processing techniques can be easily obtained in the step side microneedle structure, this method simply adjust the outside diameter deviation and the number of layers of the layers can be obtained with the different sides of the step height microneedle structure.

Claims (6)

  1. 1、一种基于多层加工技术的微针制备方法,其特征在于,包括如下步骤: 1)沉积钛薄膜,并作氧化处理; 2)甩SU-8光刻胶,前烘好后进行曝光、中烘、显影、电镀及机械研磨与抛光,得到第一层所需厚度的金属结构; 3)抛光后的表面作金属活化处理; 4)重复第2)与第3)步直至甩最后一层光刻胶,最后一层光刻胶完成前烘、曝光、中烘、显影后进行电铸,完成电铸后去胶得到供模压用的金属模具; 5)金属模具进行聚合物热压复制; 6)聚合物背部切薄后脱模得到通孔的微针。 1. A method for producing a microneedle-based multilayer processing technology, which is characterized in that it comprises the following steps: 1) depositing a titanium film, and for oxidation; 2) rejection of SU-8 photoresist, post exposure bake before Good , bake, development, electroplating, and mechanical grinding and polishing, to obtain a first desired thickness of the metal structure; 3) for polishing the metal surface after activation; 4) repeat steps 2) and 3) steps until a final rejection photoresist layer, the photoresist layer is completed before the final drying, exposure, electroforming after bake, development, to complete the electrical gum obtained after the casting mold used for molding; 5) hot-pressing mold for polymer replication ; 6) releasing thin polymer obtained after cutting back through hole microneedles.
  2. 2、 根据权利要求l所述的基于多层加工技术的微针制备方法,其特征是,所述的金属模具,是带阶梯侧面的金属模具,模具金属是镍、铁镍合金或铜。 2. A method for preparing a microneedle-based multilayer processing technology according to claim l, wherein said mold is a metal mold stepped sides, the mold metal is nickel, copper or iron-nickel alloy.
  3. 3、 根据权利要求l所述的基于多层加工技术的微针制备方法,其特征是,微针的外径以及微针的内孔直径均由光刻掩膜版上掩膜尺寸决定,微针是单个或者是阵列,微针的长度决定于光刻胶总厚度。 3, prepared according to the method of microneedle-based multilayer processing technology according to claim l, characterized in that the outer diameter of the inner bore of the microneedles and microneedle diameter by the photomask mask size determining, micro a single or an array of needles, microneedles depends on the length of the total thickness of the photoresist.
  4. 4、 根据权利要求1或者3所述的基于多层加工技术的微针制备方法,其特征是,调整各层的外径偏差与层数就得到不同阶梯侧面与高度的微针结构。 4. The production method as claimed in claim microneedle-based multilayer processing technology, which is characterized in claim 1 or 3, the outer diameter of each layer of the layers is obtained deviation with different sides of the step height microneedle structure.
  5. 5、 根据权利要求l所述的基于多层加工技术的微针制备方法,其特征是,所述的聚合物,是塑料或橡胶。 5. The method of preparing a multi-layer processing techniques based microneedle of claim l, wherein said polymer is a plastic or rubber.
  6. 6、 根据权利要求l所述的基于多层加工技术的微针制备方法,其特征是,所述的电铸,采用低速小应力电铸工艺。 6, prepared according to the method of microneedle-based multilayer processing technology according to claim l, characterized in that, the electroforming, the small stress of low-speed electroforming process.
CN 200610025467 2006-04-06 2006-04-06 Microneedle preparation method based on multiplayer processing technology CN100441388C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610025467 CN100441388C (en) 2006-04-06 2006-04-06 Microneedle preparation method based on multiplayer processing technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610025467 CN100441388C (en) 2006-04-06 2006-04-06 Microneedle preparation method based on multiplayer processing technology

Publications (2)

Publication Number Publication Date
CN1864976A true CN1864976A (en) 2006-11-22
CN100441388C true CN100441388C (en) 2008-12-10

Family

ID=37424192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610025467 CN100441388C (en) 2006-04-06 2006-04-06 Microneedle preparation method based on multiplayer processing technology

Country Status (1)

Country Link
CN (1) CN100441388C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100579599C (en) 2008-04-09 2010-01-13 南京大学 Preparation of micro-needle array injection syringe
CN101297989B (en) 2008-06-19 2010-06-23 上海交通大学 Batch preparation of hollow micro-needle based on molding
CN101342404B (en) 2008-08-28 2010-04-14 上海交通大学 Method for manufacturing different-plane metal hollow fine needle for transdermal drug administration
CN101347652B (en) 2008-09-09 2011-01-12 南京大学 Method for preparing hollow micro-needle array injection syringe
CN102175840A (en) * 2010-12-30 2011-09-07 北京大学 Whole blood centrifugal separation chip and preparation method thereof
CN102139138A (en) * 2011-03-22 2011-08-03 上海交通大学 Preparation method of solid metal microneedle array
CN102320559B (en) * 2011-09-14 2014-06-18 上海交通大学 Preparation method of hollow-structured micro-array electrode
EP2767869A1 (en) * 2013-02-13 2014-08-20 Nivarox-FAR S.A. Method for manufacturing a one-piece micromechanical part comprising at least two separate levels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1425062A2 (en) 2001-09-05 2004-06-09 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
CN1526454A (en) 2003-03-06 2004-09-08 财团法人工业技术研究所 Manufacture of micro syringe array
CN1555893A (en) 2003-12-30 2004-12-22 上海交通大学 Method of bulk processing micro probe based on three dimensional micro processing technology
WO2005087305A1 (en) 2004-03-12 2005-09-22 Agency For Science, Technology And Research Methods and moulds for use in fabricating side-ported microneedles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1425062A2 (en) 2001-09-05 2004-06-09 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
CN1526454A (en) 2003-03-06 2004-09-08 财团法人工业技术研究所 Manufacture of micro syringe array
CN1555893A (en) 2003-12-30 2004-12-22 上海交通大学 Method of bulk processing micro probe based on three dimensional micro processing technology
WO2005087305A1 (en) 2004-03-12 2005-09-22 Agency For Science, Technology And Research Methods and moulds for use in fabricating side-ported microneedles

Also Published As

Publication number Publication date Type
CN1864976A (en) 2006-11-22 application

Similar Documents

Publication Publication Date Title
US6471903B2 (en) Method for manufacturing an intracutaneous microneedle array
Park et al. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery
US6511463B1 (en) Methods of fabricating microneedle arrays using sacrificial molds
US20060015061A1 (en) Microneedle array device and its fabrication method
US6103399A (en) Method for the manufacturing of micromachined structures and a micromachined structure manufactured using such method
US6931277B1 (en) Intracutaneous microneedle array apparatus
US6652478B1 (en) Intracutaneous edged microneedle apparatus
Mata et al. Fabrication of multi-layer SU-8 microstructures
US20020188310A1 (en) Microfabricated surgical device
US20080108959A1 (en) Solid type microneedle and methods for preparing it
JP2003043203A (en) Antireflection film, method for manufacturing the same, stamper for manufacture of antireflection film, method for manufacturing the stamper, casting mold for manufacture of stamper and method for manufacturing the casting mold
Ho et al. Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots
Claverol-Tinture et al. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons
US6663820B2 (en) Method of manufacturing microneedle structures using soft lithography and photolithography
JP2006513811A (en) Production of micro-needle and micro-needle
JP2002517300A (en) Microneedle device and a manufacturing method and use thereof
JP2006341089A (en) Instrument for carrying medicinal material and manufacturing method of the same
Ji et al. Microfabricated microneedle with porous tip for drug delivery
WO2009113856A1 (en) Integrated microneedle array and a method for manufacturing thereof
Gittard et al. Two-photon polymerization of microneedles for transdermal drug delivery
Kim et al. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector
Han et al. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer
EP1790380A1 (en) Microelectrode array and method for producing the same
JPH09138981A (en) Production of stamper for optical disk
CN101509130A (en) Method for producing film metal fine device on PDMS surface

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right