CN100428443C - Method for reducing wafer charge damage - Google Patents
Method for reducing wafer charge damage Download PDFInfo
- Publication number
- CN100428443C CN100428443C CNB2005100897361A CN200510089736A CN100428443C CN 100428443 C CN100428443 C CN 100428443C CN B2005100897361 A CNB2005100897361 A CN B2005100897361A CN 200510089736 A CN200510089736 A CN 200510089736A CN 100428443 C CN100428443 C CN 100428443C
- Authority
- CN
- China
- Prior art keywords
- element area
- semiconductor substrate
- integrated circuit
- region
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000006378 damage Effects 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 108
- 239000000758 substrate Substances 0.000 claims abstract description 99
- 238000005468 ion implantation Methods 0.000 claims abstract description 71
- 239000002019 doping agent Substances 0.000 claims abstract description 21
- 238000009413 insulation Methods 0.000 claims abstract description 20
- 238000002955 isolation Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 4
- 208000027418 Wounds and injury Diseases 0.000 claims 8
- 208000014674 injury Diseases 0.000 claims 8
- 229920002120 photoresistant polymer Polymers 0.000 description 41
- 150000002500 ions Chemical class 0.000 description 34
- 229910052785 arsenic Inorganic materials 0.000 description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000005040 ion trap Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种半导体工艺,特别涉及一种能够降低集成电路工艺过程中产生的晶片电荷伤害的方法。The invention relates to a semiconductor process, in particular to a method capable of reducing chip charge damage generated in the integrated circuit process.
背景技术 Background technique
在半导体元件工业中,常须在半导体衬底中加入掺杂剂(dopant)以控制带电载流子的数目,这种加入掺杂剂的方法称为注入掺杂剂或者离子注入工艺。基本上,离子注入机可被概分成几个次级系统:离子源、离子束传输次系统、终端站系统、气体或蒸汽供应系统、真空系统以及电源供应系统。而依其所提供的离子束流大小与能量,离子注入设备又可以分类为高电流(high-current)与中电流(medium-current)离子注入机、及高(百万电子伏特)、中(介于五千与二十五万电子伏特之间)、低(低于五千电子伏特)能量离子注入机。通常,高电流离子注入机另配备有等离子体充溢系统(plasma floodsystem)或电子淋洗设备(electron shower)用来将带电的掺杂剂电中性化。In the semiconductor device industry, it is often necessary to add dopant to the semiconductor substrate to control the number of charged carriers. This method of adding dopant is called implanting dopant or ion implantation process. Basically, an ion implanter can be broken down into several sub-systems: ion source, ion beam delivery subsystem, end station system, gas or vapor supply system, vacuum system, and power supply system. According to the size and energy of the ion beam provided, ion implantation equipment can be classified into high-current and medium-current ion implanters, and high (million electron volts), medium ( Between 5,000 and 250,000 electron volts), low (less than 5,000 electron volts) energy ion implanters. Usually, the high-current ion implanter is equipped with a plasma flood system or an electron shower to neutralize the charged dopant.
离子注入的主要缺点是会在硅芯片内造成某种程度的结构损伤。这种损害可能是晶片在等离子体环境中或者离子注入工艺过程中,由于晶片表面大量累积电荷所造成的。The main disadvantage of ion implantation is that it causes some degree of structural damage within the silicon chip. This damage may be caused by a large amount of charge accumulated on the surface of the wafer when the wafer is in the plasma environment or during the ion implantation process.
在上述的等离子体环境中或者离子注入工艺过程中,晶片表面大量累积电荷可能通过已经制作在晶片表面上的电容结构,例如金氧半导体晶体管的栅极与下方的半导体衬底,以电流形式通过,并造成栅极与半导体衬底间的栅极氧化层的伤害,更严重地,可能由于瞬间高电流的通过而造成栅极结构爆裂而永久损毁。前述在等离子体环境中,使晶片表面大量累积电荷的原因有可能是因为等离子体密度或电子温度的分布不均;或者在离子注入工艺过程中,可能是由于投射到晶片表面的带电离子束未被完全电中性化所致。In the above-mentioned plasma environment or during the ion implantation process, a large amount of accumulated charges on the wafer surface may pass through the capacitive structures that have been fabricated on the wafer surface, such as the gate of the metal oxide semiconductor transistor and the underlying semiconductor substrate, in the form of current. , and cause damage to the gate oxide layer between the gate and the semiconductor substrate, and more seriously, the gate structure may burst and be permanently damaged due to the passage of instantaneous high current. In the aforementioned plasma environment, the reason for a large amount of charge accumulation on the wafer surface may be due to the uneven distribution of plasma density or electron temperature; be completely neutralized.
在相关的现有技术中,美国专利第5,998,282号公开了一种可以降低在等离子体环境中或者离子注入工艺过程中所造成的晶片电荷伤害的方法,其主要是利用在集成电路的制造过程中,在围绕每一个集成电路管芯周围的切割道上形成可以宣泄电流的路径,如此,使得电流通过集成电路管芯内部元件的可能性降低,从而减少伤害。然而,在该美国专利中同时也指出由于电路元件配置的限制,要在集成电路管芯内另外构成类似该宣泄电流的路径则十分困难。In the related prior art, U.S. Patent No. 5,998,282 discloses a method that can reduce the charge damage to the wafer caused in the plasma environment or during the ion implantation process, which is mainly used in the manufacturing process of integrated circuits , on the dicing lines around each integrated circuit die, a path that can drain current is formed, so that the possibility of current passing through the internal components of the integrated circuit die is reduced, thereby reducing damage. However, it is also pointed out in the US patent that it is very difficult to form another path similar to the leakage current in the integrated circuit die due to the limitation of the configuration of the circuit elements.
发明内容 Contents of the invention
本发明的主要目的在于提供一种能够降低集成电路工艺过程中产生的晶片电荷伤害的方法。The main purpose of the present invention is to provide a method capable of reducing the chip charge damage generated in the integrated circuit process.
根据本发明的优选实施例,本发明公开了一种在半导体工艺中降低晶片电荷伤害的方法,包含有提供一半导体衬底,其上具有多个集成电路管芯,各该集成电路管芯由切割道彼此分开,其中各该集成电路管芯包含有至少一第一元件区域、第二元件区域以及浅沟绝缘虚设区域,且其中该第一元件区域在该集成电路管芯内所占的面积比例较大,而该第二元件区域在该集成电路管芯内所占的面积比例较小;在该半导体衬底上形成第一离子注入掩模,该第一离子注入掩模覆盖该第二元件区域以及该浅沟绝缘虚设区域,但暴露出该第一元件区域的该半导体衬底的表面;将掺杂剂注入该第一元件区域暴露出来的该半导体衬底的表面,以形成第一掺杂区域;去除该第一离子注入掩模;在该半导体衬底上形成第二离子注入掩模,该第二离子注入掩模覆盖该第一元件区域,但暴露出该第二元件区域的该半导体衬底的表面以及该浅沟绝缘虚设区域内的多个浅沟绝缘虚设结构;以及将掺杂剂注入该第二元件区域暴露出来的该半导体衬底的表面,以形成第二掺杂区域。According to a preferred embodiment of the present invention, the present invention discloses a method for reducing wafer charge damage in a semiconductor process, including providing a semiconductor substrate with a plurality of integrated circuit dies, each of which is composed of The cutting lines are separated from each other, wherein each of the integrated circuit dies includes at least a first element region, a second element region and a shallow trench isolation dummy region, and wherein the area occupied by the first element region in the integrated circuit die The proportion of the area occupied by the second element region in the integrated circuit die is relatively small; a first ion implantation mask is formed on the semiconductor substrate, and the first ion implantation mask covers the second element region and the shallow trench insulation dummy region, but exposing the surface of the semiconductor substrate of the first element region; injecting dopant into the surface of the semiconductor substrate exposed by the first element region to form a first doping region; remove the first ion implantation mask; form a second ion implantation mask on the semiconductor substrate, the second ion implantation mask covers the first element region, but exposes the second element region The surface of the semiconductor substrate and the plurality of shallow trench isolation dummy structures in the shallow trench isolation dummy region; and injecting dopant into the surface of the semiconductor substrate exposed by the second element region to form a second doped area.
为了使本发明的特征及技术内容进一步被了解,请参阅以下有关本发明的详细说明与附图。然而附图仅供参考与辅助说明用,并非用来对本发明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings related to the present invention. However, the drawings are only for reference and auxiliary description, and are not intended to limit the present invention.
附图说明 Description of drawings
图1绘示的是在半导体衬底中形成高电压元件的轻掺杂漏极或源极的离子注入光致抗蚀剂掩模的布局示意图。FIG. 1 is a schematic diagram of the layout of an ion-implanted photoresist mask for forming a lightly doped drain or source of a high-voltage device in a semiconductor substrate.
图2绘示的是本发明优选实施例在半导体衬底中形成高电压元件的轻掺杂漏极或源极的离子注入光致抗蚀剂掩模的布局示意图。FIG. 2 is a schematic layout diagram of an ion-implanted photoresist mask for forming a lightly doped drain or source of a high-voltage device in a semiconductor substrate according to a preferred embodiment of the present invention.
图3至图6绘示的是本发明优选实施例在集成电路制作过程中降低晶片电荷伤害的方法的剖面示意图。FIG. 3 to FIG. 6 are cross-sectional schematic diagrams of a method for reducing charge damage to a wafer during the fabrication of integrated circuits according to a preferred embodiment of the present invention.
图7至图10绘示的是本发明另一优选实施例在集成电路制作过程中降低晶片电荷伤害的方法的剖面示意图。FIG. 7 to FIG. 10 are schematic cross-sectional views of another preferred embodiment of the present invention for reducing the charge damage of the wafer during the integrated circuit manufacturing process.
附图标记说明Explanation of reference signs
1晶片 10集成电路管芯1
12割道 20离子注入光致抗蚀剂掩模12 scribes 20 ion implantation photoresist mask
20a离子注入光致抗蚀剂掩模 22开口20a ion
24虚设开口 100半导体衬底24
101高压元件区域 102低压元件区域101 High
103中压元件区域 104沟绝缘虚设区域103 Medium
110浅沟绝缘结构1 21栅极110 shallow
122栅极 123栅极122
124浅沟绝缘虚设结构 131栅极氧化层124 shallow trench
132栅极氧化层 133栅极氧化层132
141轻掺杂漏极/源极区域 142轻掺杂漏极/源极区域141 Lightly doped drain/
143轻掺杂漏极/源极区域 210离子注入光致抗蚀剂掩模143 Lightly doped drain/
220离子注入光致抗蚀剂掩模 230离子注入光致抗蚀剂掩模220 Ion Implantation Photoresist
304无源区域304 passive area
310离子注入光致抗蚀剂掩模 320离子注入光致抗蚀剂掩模310 Ion Implantation Photoresist Mask 320 Ion Implantation Photoresist Mask
320a开口 324衬底320a opening 324 substrate
330离子注入光致抗蚀剂掩模 330a开口330 ion implantation photoresist mask 330a opening
具体实施方式 Detailed ways
如前所述,离子注入工艺中所使用的高电流离子注入机通常配备有等离子体充溢系统(plasma flood system)或电子淋洗设备(electron shower),用来将带电的掺杂剂电中性化,以抑制晶片表面带正电的电荷数量。然而,在某些情况中,离子注入工艺中所使用的离子注入机并未配备或不使用这种等离子体充溢系统或电子淋洗设备。举例来说,中电流离子注入机即为了离子注入剂量的考虑因素,而未配备这种等离子体充溢系统或电子淋洗设备。这种中电流离子注入机所提供的离子注入剂量通常介于1E11~1E14atoms/cm2,离子注入能量通常介于10KeV~500KeV,常用来在半导体衬底中形成轻掺杂漏极或源极(lightly doped drain/source)区域。As mentioned earlier, the high current ion implanter used in the ion implantation process is usually equipped with a plasma flood system (plasma flood system) or electron shower equipment (electron shower) to neutralize the charged dopant to suppress the amount of positive charges on the wafer surface. However, in some cases, the ion implanter used in the ion implantation process is not equipped with or does not use such plasma flooding system or electron rinse equipment. For example, a medium current ion implanter is not equipped with such a plasma flooding system or an electronic shower device for ion implantation dose considerations. The ion implantation dose provided by this medium-current ion implanter is usually between 1E11~1E14 atoms/cm 2 , and the ion implantation energy is usually between 10KeV~500KeV, and is often used to form lightly doped drains or sources in semiconductor substrates ( lightly doped drain/source) area.
请参阅图1,其绘示的是在半导体衬底中形成高电压元件的轻掺杂漏极或源极的离子注入光致抗蚀剂掩模20的布局示意图。如图1所示,集成电路管芯10通过周围的切割道12与晶片上其它邻近的集成电路管芯分开。在切割道12上通常会形成许多的测试键,用以监测集成电路管芯10的完整性。在集成电路管芯10内,元件的离子阱、栅极氧化层、多晶硅栅极以及浅沟绝缘区域已经制作在如硅衬底等的半导体衬底上。Please refer to FIG. 1 , which is a schematic layout diagram of an ion-implanted photoresist mask 20 for forming a lightly doped drain or source of a high voltage device in a semiconductor substrate. As shown in FIG. 1 , an
在半导体衬底中形成高电压元件的轻掺杂漏极或源极的工艺中,离子注入光致抗蚀剂掩模20遮盖了集成电路管芯10的绝大部分区域,仅在如图中左下角附近有小开口22,暴露出半导体衬底中的高压金氧半导体晶体管的位置,准备使用前述的中电流离子注入机在半导体衬底中形成高压金氧半导体晶体管的轻掺杂漏极或源极。In the process of forming the lightly doped drain or source of the high voltage element in the semiconductor substrate, the ion-implanted photoresist mask 20 covers most of the area of the
由于前述的高压金氧半导体晶体管仅占集成电路管芯10的一小部分,所以离子注入光致抗蚀剂掩模20的开口22通常很小,往往仅占单一集成电路管芯10面积的0.2%~2%左右。在形成高压金氧半导体晶体管的轻掺杂漏极或源极过程中,由于使用未配备等离子体充溢系统或电子淋洗设备的中电流离子注入机,因此会产生集成电路管芯10内部元件的破坏,例如栅极结构爆裂。Since the aforementioned high-voltage metal-oxygen-semiconductor transistors only account for a small portion of the integrated circuit die 10, the opening 22 of the ion-implanted photoresist mask 20 is usually very small, often accounting for only 0.2 of the area of a single integrated circuit die 10. %~2%. In the process of forming the lightly doped drain or source of the high-voltage metal-oxygen-semiconductor transistor, due to the use of a medium-current ion implanter that is not equipped with a plasma flooding system or an electron rinsing device, there will be damage to the internal components of the integrated
由此可知,如何降低上述在形成高压金氧半导体晶体管的轻掺杂漏极或源极过程中,使用未配备等离子体充溢系统或电子淋洗设备的中电流离子注入机,产生集成电路管芯10内部元件的破坏已成为当务之急。It can be seen from this how to reduce the above-mentioned process of forming the lightly doped drain or source of the high-voltage metal-oxygen-semiconductor transistor by using a medium-current ion implanter that is not equipped with a plasma flooding system or electronic rinsing equipment to produce an integrated circuit die. 10 The destruction of internal components has become a priority.
请参阅图2,其绘示的是本发明优选实施例在半导体衬底中形成高电压元件的轻掺杂漏极或源极的离子注入光致抗蚀剂掩模20a的布局示意图。如图2所示,晶片1上具有多个集成电路管芯10,并通过其周围的切割道12与其它邻近的集成电路管芯分开。在切割道12上通常会形成许多的测试键,用以监测集成电路管芯10的完整性。在集成电路管芯10内,元件的离子阱、栅极氧化层、多晶硅栅极以及浅沟绝缘区域已经制作在如硅衬底等的半导体衬底上。Please refer to FIG. 2 , which is a schematic layout diagram of an ion-implanted
离子注入光致抗蚀剂掩模20a包含有小面积的开口22,其暴露出下方即将以中电流离子注入机形成高电压MOS元件的轻掺杂漏极或源极的衬底表面。这些经由小面积的开口22所暴露出来的高电压MOS元件的衬底表面(下称“元件暴露区域”)通常为浅沟绝缘区域所隔离的高电压MOS元件的漏极源极区域。此外,离子注入光致抗蚀剂掩模20a另包含有许多的虚设开口24,其分布在集成电路管芯10内的其它位置。此时,集成电路管芯10周围的切割道12可以部分被遮蔽,或者切割道12可以完全不遮蔽。The ion-
根据本发明的优选实施例,离子注入光致抗蚀剂掩模20a的虚设开口24是用来在前述中电流离子注入机形成高电压MOS元件的轻掺杂漏极或源极的工艺中刻意地增加所暴露出来的衬底表面。虚设开口24需暴露出非元件区域(下称“非元件暴露区域”),换言之,虚设开口24所暴露出来的衬底表面上不会形成有源电路的元件。根据本发明的优选实施例,虚设开口24可以是形成浅沟绝缘区域时用以减少负荷效应(loading effect)所使用到的虚设图案。根据本发明的优选实施例,将前述开口22的元件暴露区域以及虚设开口24的非元件暴露区域的面积相加,其所占面积比例最好能超过每一集成电路管芯10面积的5%以上。According to a preferred embodiment of the present invention, the dummy opening 24 of the ion-implanted
本发明的主要优点在于利用虚设开口24刻意地增加所暴露出来的衬底表面,且虚设开口24所暴露出来的衬底表面上不会形成有源电路的元件(非元件暴露区域),如此可以有效地增加集成电路管芯10内部的电流宣泄路径,大大地降低进行高压元件的轻掺杂漏极或源极的离子注入工艺中可能产生的晶片电荷伤害。The main advantage of the present invention is that the exposed substrate surface is deliberately increased by using the
为更清楚说明本发明,请参阅图3至图6,其绘示的是本发明优选实施例在集成电路制作过程中降低晶片电荷伤害的方法的剖面示意图。首先,如图3所示,半导体衬底100包含有高压元件区域101、低压元件区域102、中压元件区域103以及浅沟绝缘虚设区域104,浅沟绝缘结构110已形成在半导体衬底100表面以电性隔绝不同区域内的元件。为简化说明,形成于半导体衬底100中的离子阱并未绘出。To illustrate the present invention more clearly, please refer to FIG. 3 to FIG. 6 , which are schematic cross-sectional views of a method for reducing charge damage to a wafer during the fabrication of integrated circuits according to a preferred embodiment of the present invention. First, as shown in FIG. 3 , the
在高压元件区域101内,形成高压金氧半导体晶体管元件,例如,5伏特金氧半导体晶体管元件。举例来说,以高压元件区域101内的高压N型金氧半导体晶体管元件的栅极121做说明。栅极121形成在厚栅极氧化层131上,并与下方的半导体衬底100电性隔离。在低压元件区域102内,形成低压金氧半导体晶体管元件,例如,1.8伏特金氧半导体晶体管元件。举例来说,以低压元件区域102内的低压N型金氧半导体晶体管元件的栅极122做说明。栅极122形成在栅极氧化层132上,并与下方的半导体衬底100电性隔离,其中栅极氧化层132的厚度小于栅极氧化层131。在中压元件区域103内,形成中压金氧半导体晶体管元件,例如,3.3伏特金氧半导体晶体管元件。举例来说,以中压元件区域103内的中压N型金氧半导体晶体管元件的栅极123做说明。栅极123形成在栅极氧化层133上,并与下方的半导体衬底100电性隔离,其中栅极氧化层133的厚度小于栅极氧化层131。在浅沟绝缘虚设区域104内,已形成有多个浅沟绝缘虚设结构124。这多个浅沟绝缘虚设结构124具有暴露出来的半导体衬底100表面,其上不会形成有任何的有源电路的元件。In the high
如图4所示,接着在半导体衬底100表面上形成一轻掺杂漏极(LDD)离子注入光致抗蚀剂掩模210,其覆盖高压元件区域101、低压元件区域102以及浅沟绝缘虚设区域104,但是暴露出中压元件区域103。由于在集成电路管芯10内,中压元件区域103所占的面积比例较大,此时,所暴露出来的半导体衬底100表面积也相对地较大。As shown in FIG. 4 , a lightly doped drain (LDD) ion-implanted
接着,覆有LDD离子注入光致抗蚀剂掩模210的半导体衬底100被置于离子注入机台中,例如中电流离子注入机台,进行LDD离子注入工艺,将砷等掺杂剂注入暴露出来的半导体衬底100表面中,如此在中压元件区域103内形成轻掺杂漏极/源极区域143。根据本发明的优选实施例,执行LDD离子注入工艺之离子注入机是中电流离子注入机,而且考虑剂量问题并未使用等离子体充溢系统或电子淋洗设备。接下来,将LDD离子注入光致抗蚀剂掩模210去除。Next, the
如图5所示,接着在半导体衬底100表面上形成另一LDD离子注入光致抗蚀剂掩模220,其覆盖中压元件区域103以及低压元件区域102,但是暴露出高压元件区域101以及浅沟绝缘虚设区域104。由于在集成电路管芯10内,高压元件区域101所占的面积比例较小,此时,所暴露出来的半导体衬底100表面积也相对地较小,如前所述,约仅占单一集成电路管芯10面积的0.2%~2%左右。因此,为了增加LDD离子注入工艺过程中集成电路管芯10内部所暴露出来的半导体衬底100表面积,本发明刻意在LDD离子注入光致抗蚀剂掩模220中将浅沟绝缘虚设区域104以及浅沟绝缘虚设区域104内的多个浅沟绝缘虚设结构124暴露出来。As shown in FIG. 5 , another LDD ion
通过在LDD离子注入光致抗蚀剂掩模220中将浅沟绝缘虚设区域104以及浅沟绝缘虚设区域104内的多个浅沟绝缘虚设结构124暴露出来,可以使得高压元件的LDD离子注入工艺过程中所暴露出来的半导体衬底表面积增加到单一集成电路管芯10面积的5%以上。接着,覆有LDD离子注入光致抗蚀剂掩模220的半导体衬底100被置于离子注入机台中,例如中电流离子注入机,进行LDD离子注入工艺,将砷等掺杂剂注入暴露出来的半导体衬底100表面中,如此在高压元件区域101内形成轻掺杂漏极/源极区域141。同样地,执行LDD离子注入工艺的离子注入机是中电流离子注入机,而且考虑剂量问题并未使用等离子体充溢系统或电子淋洗设备。接下来,将LDD离子注入光致抗蚀剂掩模220去除。By exposing the shallow trench
如图6所示,接着在半导体衬底100表面上形成另一LDD离子注入光致抗蚀剂掩模230,其覆盖中压元件区域103以及高压元件区域101,但是暴露出低压元件区域102以及浅沟绝缘虚设区域104。由于在集成电路管芯10内,如果低压元件区域102所占的面积比例同样较小时,所暴露出来的半导体衬底100表面积也相对地较小,例如小于单一集成电路管芯10面积的5%。因此,为了增加LDD离子注入工艺过程中集成电路管芯10内部所暴露出来的半导体衬底100表面积,本发明在LDD离子注入光致抗蚀剂掩模230中将浅沟绝缘虚设区域104以及浅沟绝缘虚设区域104内的多个浅沟绝缘虚设结构124暴露出来。As shown in Figure 6, another LDD ion
接着,覆有LDD离子注入光致抗蚀剂掩模230的半导体衬底100被置在离子注入机台中,例如中电流离子注入机,进行LDD离子注入工艺,将砷等掺杂剂注入暴露出来的半导体衬底100表面中,如此在低压元件区域102内形成轻掺杂漏极/源极区域142。同样地,执行LDD离子注入工艺的离子注入机是中电流离子注入机,而且考虑剂量问题并未使用等离子体充溢系统或电子淋洗设备。接下来,将LDD离子注入光致抗蚀剂掩模230去除。接下来的半导体工艺步骤则包括栅极侧壁子的形成、漏极/源极的重掺杂以及硅化金属工艺等等,其皆为该领域的技术人员所熟知,因此不再赘述。值得一提的是,后续的漏极/源极的重掺杂工艺通常是在高电流离子注入机中进行。Next, the
请参阅图7至图10,其绘示的是本发明另一优选实施例在集成电路制作过程中降低晶片电荷伤害的方法的剖面示意图。首先,如图7所示,半导体衬底100包含有高压元件区域101、低压元件区域102、中压元件区域103以及无源区域304,浅沟绝缘结构110已形成在半导体衬底100表面以电性隔绝不同区域内的元件。为简化说明,形成于半导体衬底100中的离子阱并未绘出。Please refer to FIG. 7 to FIG. 10 , which are schematic cross-sectional views of another preferred embodiment of the present invention for reducing the charge damage of the wafer during the fabrication of integrated circuits. First, as shown in FIG. 7, the
在高压元件区域101内,形成高压金氧半导体晶体管元件,例如,5伏特金氧半导体晶体管元件。举例来说,以高压元件区域101内的高压N型金氧半导体晶体管元件的栅极121做说明。栅极121形成在厚栅极氧化层131上,并与下方的半导体衬底100电性隔离。在低压元件区域102内,用来形成低压金氧半导体晶体管元件,例如,1.8伏特金氧半导体晶体管元件。举例来说,以低压元件区域102内的低压N型金氧半导体晶体管元件的栅极122做说明。栅极122形成在栅极氧化层132上,并与下方的半导体衬底100电性隔离,其中栅极氧化层132的厚度小于栅极氧化层131。在中压元件区域103内,形成中压金氧半导体晶体管元件,例如,3.3伏特金氧半导体晶体管元件。举例来说,以中压元件区域103内的中压N型金氧半导体晶体管元件的栅极123做说明。栅极123形成在栅极氧化层133上,并与下方的半导体衬底100电性隔离,其中栅极氧化层133的厚度小于栅极氧化层131。所谓无源区域304,亦即具有暴露出来的衬底表面324,但是其上不会形成有任何的有源电路的元件。In the high
如图8所示,接着在半导体衬底100表面上形成一轻掺杂漏极(LDD)离子注入光致抗蚀剂掩模310,其覆盖高压元件区域101、低压元件区域102以及无源区域304,但是暴露出中压元件区域103。由于在集成电路管芯10内,中压元件区域103所占的面积比例较大,此时,所暴露出来的半导体衬底100表面积也相对地较大。As shown in FIG. 8 , a lightly doped drain (LDD) ion-implanted
接着,覆有LDD离子注入光致抗蚀剂掩模310的半导体衬底100被置于离子注入机台中,例如中电流离子注入机台,进行LDD离子注入工艺,将砷等掺杂剂注入暴露出来的半导体衬底100表面中,如此在中压元件区域103内形成轻掺杂漏极/源极区域143。执行LDD离子注入工艺之离子注入机系为中电流离子注入机,而且考虑剂量问题并未使用等离子体充溢系统或电子淋洗设备。接下来,将LDD离子注入光致抗蚀剂掩模310去除。Next, the
如图9所示,接着在半导体衬底100表面上形成另一LDD离子注入光致抗蚀剂掩模320,其覆盖中压元件区域103以及低压元件区域102。LDD离子注入光致抗蚀剂掩模320暴露出高压元件区域101,且LDD离子注入光致抗蚀剂掩模320具有一开口320a,藉以暴露出部分的无源区域304内的衬底表面324。根据本发明,LDD离子注入光致抗蚀剂掩模320的开口320a可以与回蚀刻沟渠充填绝缘层的STI虚设图案相同。As shown in FIG. 9 , another LDD ion-implanted photoresist mask 320 is then formed on the surface of the
前述的STI虚设图案即是用来避免进行STI沟渠充填绝缘层研磨时,在较大面积的无源区域上方可能产生的负荷效应(loading effect)或残留问题,因此,在进行研磨前,先利用STI虚设图案将该无源区域上方的STI沟渠充填绝缘层回蚀刻至预定厚度。The aforementioned STI dummy pattern is used to avoid the loading effect or residual problem that may be generated above the large passive area when polishing the STI trench filling insulating layer. Therefore, before polishing, use The STI dummy pattern etches back the STI trench-fill insulating layer above the passive area to a predetermined thickness.
接着,覆有LDD离子注入光致抗蚀剂掩模320的半导体衬底100被置于离子注入机台中,例如中电流离子注入机,进行LDD离子注入工艺,将砷等掺杂剂注入暴露出来的半导体衬底100表面中,如此在高压元件区域101内形成轻掺杂漏极/源极区域141。同样地,执行LDD离子注入工艺的离子注入机是中电流离子注入机,而且考虑剂量问题并未使用等离子体充溢系统或电子淋洗设备。接下来,将LDD离子注入光致抗蚀剂掩模320去除。Next, the
如图10所示,接着在半导体衬底100表面上形成另一LDD离子注入光致抗蚀剂掩模330,其覆盖中压元件区域103以及高压元件区域101,但是暴露出低压元件区域102,且LDD离子注入光致抗蚀剂掩模330具有开口330a暴露出部分无源区域304内的衬底表面324。As shown in FIG. 10 , another LDD ion implantation photoresist mask 330 is then formed on the surface of the
接着,覆有LDD离子注入光致抗蚀剂掩模330的半导体衬底100被置于离子注入机台中,例如中电流离子注入机,进行LDD离子注入工艺,将砷等掺杂剂注入暴露出来的半导体衬底100表面中,如此在低压元件区域102内形成轻掺杂漏极/源极区域142。同样地,执行LDD离子注入工艺的离子注入机是中电流离子注入机,而且考虑剂量问题并未使用等离子体充溢系统或电子淋洗设备。接下来,将LDD离子注入光致抗蚀剂掩模330去除。Next, the
虽然本发明公开的优选实施例以在半导体衬底中形成高压元件区域内的轻掺杂漏极源极区域为例做说明,但本发明并不应仅限制在离子注入工艺中,本领域的一般技术人员应可理解本发明的精神后,应用于其它类似应用中,例如同样会造成晶片电荷伤害效应的等离子体蚀刻机或等离子体工艺中。此外,前述本发明的优选实施例中,高压元件区域、低压元件区域以及中压元件区域的离子注入先后顺序可以调整互换,例如,先进行低压元件的LDD注入或者先进行高压元件的LDD注入皆可。Although the preferred embodiment of the present invention is described by taking the formation of the lightly doped drain source region in the high voltage element region in the semiconductor substrate as an example, the present invention should not be limited only to the ion implantation process, and those skilled in the art Those skilled in the art should be able to understand the spirit of the present invention and apply it to other similar applications, such as plasma etching machines or plasma processes that also cause wafer charge damage. In addition, in the above-mentioned preferred embodiments of the present invention, the order of ion implantation in the high-voltage element area, low-voltage element area, and medium-voltage element area can be adjusted and interchanged, for example, the LDD implantation of the low-voltage element is performed first or the LDD implantation of the high-voltage element is performed first can be.
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100897361A CN100428443C (en) | 2005-08-05 | 2005-08-05 | Method for reducing wafer charge damage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100897361A CN100428443C (en) | 2005-08-05 | 2005-08-05 | Method for reducing wafer charge damage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1909210A CN1909210A (en) | 2007-02-07 |
CN100428443C true CN100428443C (en) | 2008-10-22 |
Family
ID=37700256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100897361A Active CN100428443C (en) | 2005-08-05 | 2005-08-05 | Method for reducing wafer charge damage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100428443C (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1227407A (en) * | 1998-02-27 | 1999-09-01 | 联诚积体电路股份有限公司 | Method of making a dual voltage metal oxide semiconductor transistor |
US5998282A (en) * | 1997-10-21 | 1999-12-07 | Lukaszek; Wieslaw A. | Method of reducing charging damage to integrated circuits in ion implant and plasma-based integrated circuit process equipment |
US6013927A (en) * | 1998-03-31 | 2000-01-11 | Vlsi Technology, Inc. | Semiconductor structures for suppressing gate oxide plasma charging damage and methods for making the same |
US6235642B1 (en) * | 2000-01-14 | 2001-05-22 | United Microelectronics Corporation | Method for reducing plasma charging damages |
US20040171197A1 (en) * | 2003-02-27 | 2004-09-02 | Park Seong-Hee | Method for fabricating a high voltage dual gate device |
-
2005
- 2005-08-05 CN CNB2005100897361A patent/CN100428443C/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998282A (en) * | 1997-10-21 | 1999-12-07 | Lukaszek; Wieslaw A. | Method of reducing charging damage to integrated circuits in ion implant and plasma-based integrated circuit process equipment |
CN1227407A (en) * | 1998-02-27 | 1999-09-01 | 联诚积体电路股份有限公司 | Method of making a dual voltage metal oxide semiconductor transistor |
US6013927A (en) * | 1998-03-31 | 2000-01-11 | Vlsi Technology, Inc. | Semiconductor structures for suppressing gate oxide plasma charging damage and methods for making the same |
US6235642B1 (en) * | 2000-01-14 | 2001-05-22 | United Microelectronics Corporation | Method for reducing plasma charging damages |
US20040171197A1 (en) * | 2003-02-27 | 2004-09-02 | Park Seong-Hee | Method for fabricating a high voltage dual gate device |
Also Published As
Publication number | Publication date |
---|---|
CN1909210A (en) | 2007-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6281059B1 (en) | Method of doing ESD protective device ion implant without additional photo mask | |
CN103178097A (en) | Dummy gate for a high voltage transistor device | |
US7547584B2 (en) | Method of reducing charging damage to integrated circuits during semiconductor manufacturing | |
KR101051684B1 (en) | Electrostatic discharge protection device and manufacturing method | |
US8921941B2 (en) | ESD protection device and method for fabricating the same | |
US6040222A (en) | Method for fabricating an electrostatistic discharge protection device to protect an integrated circuit | |
KR101477606B1 (en) | A method for forming a semiconductor structure | |
CN106856169B (en) | Transistor and method of forming the same | |
KR100698096B1 (en) | ESD protection circuit and manufacturing method thereof | |
US20120161235A1 (en) | Electrostatic discharge protection device and manufacturing method thereof | |
KR100628246B1 (en) | ESD protection circuit and manufacturing method thereof | |
US6670245B2 (en) | Method for fabricating an ESD device | |
CN100428443C (en) | Method for reducing wafer charge damage | |
CN105336689B (en) | A kind of MOS field device making method for saving reticle quantity | |
US7344963B2 (en) | Method of reducing charging damage to integrated circuits during semiconductor manufacturing | |
US7176051B2 (en) | Method of reducing charging damage to integrated circuits during semiconductor manufacturing | |
CN101930947B (en) | CMOS (Complementary Metal-Oxide-Semiconductor) transistor and making method thereof | |
CN109545674B (en) | Semiconductor device forming method and semiconductor device | |
US20120161236A1 (en) | Electrostatic discharge protection device and manufacturing method thereof | |
KR100732774B1 (en) | Dual gate formation method of semiconductor device | |
US7157346B2 (en) | Method of reducing charging damage to integrated circuits during semiconductor manufacturing | |
US6514807B1 (en) | Method for fabricating semiconductor device applied system on chip | |
KR100799020B1 (en) | Manufacturing Method of Semiconductor Memory Device | |
KR100459932B1 (en) | Method for fabricating semiconductor device | |
KR100521439B1 (en) | Method for fabricating the p-channel MOS transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |