CN100427906C - Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror - Google Patents

Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror Download PDF

Info

Publication number
CN100427906C
CN100427906C CNB200510055609XA CN200510055609A CN100427906C CN 100427906 C CN100427906 C CN 100427906C CN B200510055609X A CNB200510055609X A CN B200510055609XA CN 200510055609 A CN200510055609 A CN 200510055609A CN 100427906 C CN100427906 C CN 100427906C
Authority
CN
China
Prior art keywords
mirror
slit
reflective
fourier transform
fresnel double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200510055609XA
Other languages
Chinese (zh)
Other versions
CN1837763A (en
Inventor
赵达尊
廖宁放
楚建军
李颖
黄庆梅
蒋月娟
胡威捷
范秋梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CNB200510055609XA priority Critical patent/CN100427906C/en
Publication of CN1837763A publication Critical patent/CN1837763A/en
Application granted granted Critical
Publication of CN100427906C publication Critical patent/CN100427906C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

一种采用菲涅尔双面反射镜的全反射式傅立叶变换成像光谱仪。该系统由光学结构、焦平面探测器及信号采集处理系统组成。光学结构包括反射式前置望远镜、狭缝、反射式准直镜、菲涅尔双面反射镜、反射式柱面镜等部分。入射光被菲涅尔双面反射镜分解成两束具有一定交角的相干光束,在焦平面探测器表面产生一维干涉条纹;另一维灰度图由柱面镜聚焦成像。二维焦平面探测器可采用可见光到长波红外(0.4—14μm)中任意波段。信号采集处理系统可得到狭缝上各点的图像及光谱分布。沿与狭缝垂直方向推扫得到目标光谱图像数据立方体。本发明装置光谱响应波段宽、光通量大、信噪比高且结构简单,特别适用于航空航天遥感的高光谱成像领域。

Figure 200510055609

A total reflection Fourier transform imaging spectrometer using Fresnel double-sided mirrors. The system consists of optical structure, focal plane detector and signal acquisition and processing system. The optical structure includes reflective front telescope, slit, reflective collimator, Fresnel double-sided reflector, reflective cylindrical mirror and other parts. The incident light is decomposed by the Fresnel double-sided reflector into two coherent beams with a certain intersection angle, which produces one-dimensional interference fringes on the surface of the focal plane detector; the other-dimensional grayscale image is focused and imaged by the cylindrical mirror. The two-dimensional focal plane detector can use any wavelength band from visible light to long-wave infrared (0.4-14μm). The signal acquisition and processing system can obtain the image and spectral distribution of each point on the slit. Push and broom along the direction perpendicular to the slit to obtain the target spectral image data cube. The device of the invention has wide spectral response band, large luminous flux, high signal-to-noise ratio and simple structure, and is especially suitable for the hyperspectral imaging field of aerospace remote sensing.

Figure 200510055609

Description

采用菲涅尔双面镜的全反射式傅立叶变换成像光谱仪 Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror

技术领域 technical field

本发明涉及一种全反射式傅立叶变换成像光谱仪,属于遥感技术领域中成像光谱仪的设计技术范畴;特别涉及空间调制干涉型傅立叶变换成像光谱仪的光学系统设计。The invention relates to a total reflection Fourier transform imaging spectrometer, which belongs to the design technical category of the imaging spectrometer in the field of remote sensing technology; in particular, it relates to the optical system design of the space modulation interference type Fourier transform imaging spectrometer.

背景技术 Background technique

傅立叶变换成像光谱仪(Fourier Transform imaging spectrometer)又称作干涉型成像光谱仪(imaging interferometer)。与传统的色散型成像光谱仪相比较,傅立叶变换成像光谱仪具有输入光通量大、光谱分辨率高的特点,因此特别适合于航空航天遥感领域中的高光谱成像(Hyper spectralimaging)。从光学原理上看,傅立叶变换成像光谱仪可以划分为时间调制(Temporari1y Modulated)干涉成像光谱仪和空间调制(Spatially Modulated)干涉成像光谱仪两大类。前者以依靠动镜扫描的迈克尔逊型(Michelson)傅立叶变换成像光谱仪为代表;后者的典型代表主要有采用Sagnac分束结构或其变体的傅立叶变换成像光谱仪,以及双折射晶体分束式即偏振干涉式傅立叶变换成像光谱仪等。文献[3]、[4]、[5]分别介绍了采用Sagnac型分束干涉部件的空间调制型傅立叶变换成像光谱仪;文献[6]、[7]分别介绍了采用偏振型分束干涉部件的空间调制型傅立叶变换成像光谱仪。注意到上述装置都在它们的干涉系统中采用了透反式分束板或者透射式分光部件。Fourier Transform imaging spectrometer is also called imaging interferometer. Compared with the traditional dispersive imaging spectrometer, the Fourier transform imaging spectrometer has the characteristics of large input luminous flux and high spectral resolution, so it is especially suitable for hyperspectral imaging in the field of aerospace remote sensing. From the perspective of optical principles, Fourier transform imaging spectrometers can be divided into two categories: temporally modulated (Temporari1y Modulated) interferometric imaging spectrometers and spatially modulated (Spatially Modulated) interferometric imaging spectrometers. The former is represented by the Michelson Fourier transform imaging spectrometer that relies on moving mirror scanning; the typical representatives of the latter mainly include the Fourier transform imaging spectrometer using the Sagnac beam splitting structure or its variants, and the birefringent crystal beam splitting type. Polarization Interferometric Fourier Transform Imaging Spectrometer, etc. Documents [3], [4], [5] respectively introduced the spatially modulated Fourier transform imaging spectrometer using Sagnac beam-splitting interference components; Documents [6] and [7] respectively introduced the Spatial Modulation Fourier Transform Imaging Spectrometer. Note that the above-mentioned devices all use transflective beam splitters or transmissive beam splitters in their interference systems.

在国内专利方面,中国专利No.99115952[8]和No.99256131[9]分别介绍了采用Sagnac分束结构的干涉型成像光谱仪;No.01213109[10]、No.01213108[11]以及No.99256129[12]分别介绍了采用偏振型器件的干涉型成像光谱仪。上述发明装置的共同特点是都包含透反式或透射式光学部件。In terms of domestic patents, Chinese patents No.99115952[8] and No.99256131[9] respectively introduced the interference imaging spectrometer using the Sagnac beam splitting structure; No.01213109[10], No.01213108[11] and No. 99256129[12] respectively introduced the interference imaging spectrometer using polarization devices. The common feature of the above inventive devices is that they all contain transflective or transmissive optical components.

在国际专利方面,美国专利US4523846[13]和US5777736[14]分别介绍了采用Sagnac分束结构的干涉型成像光谱仪,二者都包含透反式或透射式光学部件;美国专利US5260767[15]虽然介绍了一种全反射式成像光谱仪,但它采用的是色散型分光结构,不属于傅立叶变换成像光谱仪的类型。In terms of international patents, U.S. Patent US4523846[13] and US5777736[14] respectively introduced the interference imaging spectrometer using the Sagnac beam splitting structure, both of which include transflective or transmissive optical components; U.S. Patent US5260767[15] although A total reflection imaging spectrometer is introduced, but it uses a dispersion type spectroscopic structure, which does not belong to the type of Fourier transform imaging spectrometer.

综上所述,迄今为止的傅立叶变换成像光谱仪都不可避免的采用了透反式或透射式的分束干涉结构。从原理上看,透反式或透射式分束干涉结构存在很多问题。其一,光谱范围受到限制;透反式分束板的基底材料对光波段有选择性;同时,镀在基底表面的分束膜的分光比也与波长有关;结果导致在成像光谱仪中必须采用多个具有不同光谱特性的分束板才能完成从可见光至红外波段的分束干涉,从而加大整个系统结构的复杂程度。其二,光能损失较大,分束器件透反射比例的非对称性以及在分束板的表面和内部存在的光损耗都会造成光能损失,这一问题不利于低照度下的高光谱成像。其三,偏振问题,分束膜导致两束光存在偏振现象,结果导致干涉调制度下降,从而降低所获取光谱图像的信噪比。其四,光程差与条纹位置的非线性问题。透反式和透射式干涉结构采用分振幅干涉原理,因此必须在干涉光路中采用一个傅立叶透镜才能使光程差与条纹位置成线性关系,这也增加了系统的复杂程度。To sum up, the Fourier transform imaging spectrometers so far have inevitably adopted transflective or transmissive beam splitting interference structures. In principle, there are many problems in the transflective or transmissive beam splitting interference structure. First, the spectral range is limited; the substrate material of the transflective beam splitter is selective to the light band; at the same time, the splitting ratio of the beam splitting film coated on the substrate surface is also related to the wavelength; as a result, it must be used in the imaging spectrometer Multiple beam-splitter plates with different spectral characteristics can complete the beam-splitting interference from visible light to infrared bands, thus increasing the complexity of the entire system structure. Second, the loss of light energy is large. The asymmetry of the transmission and reflection ratio of the beam splitter and the light loss existing on the surface and inside of the beam splitter will cause light energy loss. This problem is not conducive to hyperspectral imaging under low illumination . The third is the polarization problem. The beam splitting film causes the polarization of the two beams of light, resulting in a decrease in the degree of interference modulation, thereby reducing the signal-to-noise ratio of the acquired spectral image. Fourth, the nonlinear problem of optical path difference and fringe position. The transflective and transmissive interference structures adopt the principle of sub-amplitude interference, so a Fourier lens must be used in the interference optical path to make the optical path difference linear with the fringe position, which also increases the complexity of the system.

参考文献references

[1]廖宁放,基于干涉型傅立叶变换成像光谱带宽图像处理系统,国家863-13主题项目2002AA135040研究报告,2004。[1] Liao Ningfang, Interferometric Fourier Transform Imaging Spectral Bandwidth Image Processing System, National 863-13 Subject Project 2002AA135040 Research Report, 2004.

[2]楚建军,傅立时变换成像光谱技术研究,北京理工大学博士学位论文,2002.。[2] Chu Jianjun, Research on Fourier Transform Imaging Spectroscopy Technology, Doctoral Dissertation of Beijing Institute of Technology, 2002.

[3]R.G.Sellar,J.B.Rafert,The effects of aberrations on spatially modulated Fourier transformspec-trometers.Opt.Engng.,1994,33(16):3087~3092.[3] R.G.Sellar, J.B.Rafert, The effects of aberrations on spatially modulated Fourier transformspec-trometers.Opt.Engng., 1994, 33(16): 3087~3092.

[4]R.G.ellar,J.B.Rafert,Fourier transform imaging spectrometer with a single toroidal optic.Appl.Opt.,1995,34(16):2931~2933.[4] R.G.ellar, J.B.Rafert, Fourier transform imaging spectrometer with a single toroidal optic.Appl.Opt., 1995, 34(16): 2931~2933.

[5]J.B.Rafert,R.G.Sellar,J.H.Blatt,Monolithic Fourier transform imaging spectrometer.Appl.Opt.,1995,34(31):7228~7230.[5] J.B.Rafert, R.G.Sellar, J.H.Blatt, Monolithic Fourier transform imaging spectrometer.Appl.Opt., 1995, 34(31):7228~7230.

[6]P.D.Hammer,F.P.J.Valero,D.L.Peterson,An imaging interferometer for terrestrial remote sensing.Proc.SPIE,1993,1937:244~255.[6] P.D.Hammer, F.P.J.Valero, D.L.Peterson, An imaging interferometer for terrestrial remote sensing.Proc.SPIE, 1993, 1937: 244~255.

[7]W.H.Smith,P.D.Hammer,Digital array scanned interferometer:sensors and results.Appl.Opt.,1996,35(16):2902~2909.[7] W.H.Smith, P.D.Hammer, Digital array scanned interferometer: sensors and results. Appl. Opt., 1996, 35(16): 2902~2909.

[8]相里斌 赵葆常 杨建峰 王炜 原新晶 高立民 王忠厚 袁艳,高灵敏度干涉成像光谱装置,中国专利:99256131。[8] Xiang Libin, Zhao Baochang, Yang Jianfeng, Wang Wei, Yuan Xinjing, Gao Limin, Wang Zhonghou, Yuan Yan, high-sensitivity interference imaging spectroscopy device, Chinese patent: 99256131.

[9]相里斌 赵葆常 杨建峰 原新晶 高立民 王忠厚 袁艳 王炜,一种干涉成像光谱技术及其装置,中国专利:99115952。[9] Xiang Libin, Zhao Baochang, Yang Jianfeng, Yuan Xinjing, Gao Limin, Wang Zhonghou, Yuan Yan, Wang Wei, an interference imaging spectroscopy technology and its device, Chinese patent: 99115952.

[10]张淳民 相里斌 赵葆常 杨建峰,超小型稳态偏振干涉成像光谱仪,中国专利:01213109。[10] Zhang Chunmin, Xiang Libin, Zhao Baochang, Yang Jianfeng, ultra-small steady-state polarization interference imaging spectrometer, Chinese patent: 01213109.

[111张淳民,稳态大视场偏振干涉成像光谱仪,中国专利:01213108。[111 Zhang Chunmin, Steady-state large-field polarization interference imaging spectrometer, Chinese patent: 01213108.

[12]相里斌 杨建峰 阮萍 张淳民 王炜,偏振型干涉成像光谱仪,中国专利:99256129。[12] Xiang Libin, Yang Jianfeng, Ruan Ping, Zhang Chunmin, Wang Wei, Polarization Interferometric Imaging Spectrometer, Chinese Patent: 99256129.

[13]Integrated optics in an electrically scanned imaging Fourier transform spectrometer.Patent Number:US4523846.[13]Integrated optics in an electrically scanned imaging Fourier transform spectrometer. Patent Number: US4523846.

[14]High Etendue Imaging Fourier Transform Spectrometer.Patent Number:US5777736.[14]High Etendue Imaging Fourier Transform Spectrometer. Patent Number: US5777736.

[15]Compact all-reflective imaging spectrometer,Patent Number:US5260767[15]Compact all-reflective imaging spectrometer, Patent Number: US5260767

发明内容 Contents of the invention

为了克服现有傅立叶变换成像光谱仪的透反式或透射式分束干涉结构存在的问题,本发明提出一种采用菲涅尔(Fresnel)双面反射镜作为干涉部件的全反射式傅立叶变换成像光谱仪。菲涅尔双面反射镜是一种经典的分波前干涉装置,与其它分振幅干涉装置相比,菲涅尔双面镜具有全反射的特点,因此可以工作在从可见光到热红外的波段范围。值得注意,菲涅尔双面反射镜的干涉调制度与狭缝宽度有一定联系,因此在传统的非成像型傅立叶变换成像光谱仪中,例如迈克尔逊型(Michelson)干涉仪,一般都不采用菲涅尔双面反射镜干涉结构而采用了分振幅干涉结构。然而,本发明涉及的成像光谱仪对空间分辨率有较高要求,必须采用一个狭缝来限制瞬时视场(IFOV),因此,采用菲涅尔双面反射镜的干涉结构不会对成像光谱仪的干涉调制度造成影响。In order to overcome the problems existing in the transflective or transmissive beam-splitting interference structure of the existing Fourier transform imaging spectrometer, the present invention proposes a total reflection Fourier transform imaging spectrometer using Fresnel (Fresnel) double-sided mirrors as interference components . The Fresnel double-sided mirror is a classic wavefront interference device. Compared with other amplitude-divided interference devices, the Fresnel double-sided mirror has the characteristics of total reflection, so it can work in the wavelength band from visible light to thermal infrared scope. It is worth noting that the interference modulation degree of the Fresnel double-sided reflector has a certain relationship with the slit width, so in traditional non-imaging Fourier transform imaging spectrometers, such as Michelson interferometers, generally do not use phenanthrene The Niell double-sided mirror interference structure adopts the sub-amplitude interference structure. However, the imaging spectrometer involved in the present invention has higher requirements for spatial resolution, and a slit must be used to limit the instantaneous field of view (IFOV). Influenced by interference modulation.

本发明的傅立叶变换成像光谱仪具有全反射的光路结构。整个装置由反射式前置望远镜、入射狭缝、反射式准直镜、菲涅尔双面镜、反射式柱面镜、焦平面探测器以及信号采集处理系统等部分组成。前置望远镜把远距离的线状目标成像在入射狭缝上,这相当于在空间遥感系统中,把垂直于推扫方向的远距离一维线状目标成像于干涉系统的入射狭缝上。准直镜把入射狭缝的出射光平行投射到菲涅尔双面反射镜表面;菲涅尔双面镜的表面镀金以实现可见光到热红外的宽光谱反射特性;经过菲涅尔双面镜反射后,由狭缝上发出的束光被分解成两束具有一定交角的光束;柱面镜的母线与菲涅尔双面镜的交线相互垂直,因此可以把狭缝的一维灰度图像聚焦到探测器表面,同时又不妨碍菲涅尔双面镜的两束光在探测器表面产生另一维干涉条纹。采用光谱响应范围分别为可见光及近红外(VIS&NIR,0.4-1μm)、短波红外(SWIR,1-5μm)以及长波红外(LWIR,8-14μm)的焦平面探测器,就可以分别实现从可见光到红外波段的干涉条纹图像信号采集。信号采集处理系统由前置处理电路、视频图像采集卡、微型计算机系统以及输入输出接口等组成,对焦平面探测器输出的信号进行数字化采集和处理,并完成由空域到频域的傅立叶变换,最后求出狭缝上各点图像的光谱分布。完整的一幅二维目标图像的光谱图像(即光谱图像数据立方体)可以通过沿着与狭缝垂直方向的推扫(push-broom)过程产生。The Fourier transform imaging spectrometer of the present invention has a total reflection light path structure. The whole device is composed of reflective front telescope, incident slit, reflective collimator, Fresnel double-sided mirror, reflective cylindrical mirror, focal plane detector and signal acquisition and processing system. The front telescope images the long-distance linear target on the incident slit, which is equivalent to imaging the long-distance one-dimensional linear target perpendicular to the push-broom direction on the incident slit of the interference system in the space remote sensing system. The collimating mirror projects the outgoing light from the incident slit to the surface of the Fresnel double-sided mirror in parallel; the surface of the Fresnel double-sided mirror is gold-plated to achieve wide-spectrum reflection characteristics from visible light to thermal infrared; after passing through the Fresnel double-sided mirror After reflection, the beam of light emitted from the slit is decomposed into two beams with a certain angle of intersection; the bus line of the cylindrical mirror and the intersection line of the Fresnel double-sided mirror are perpendicular to each other, so the one-dimensional grayscale of the slit can be The image is focused on the surface of the detector without hindering the two beams of light from the Fresnel double-sided mirror to produce another dimension of interference fringes on the surface of the detector. Using focal plane detectors with spectral response ranges of visible light and near-infrared (VIS&NIR, 0.4-1μm), short-wave infrared (SWIR, 1-5μm) and long-wave infrared (LWIR, 8-14μm), it is possible to realize from visible light to Interference fringe image signal acquisition in the infrared band. The signal acquisition and processing system is composed of a pre-processing circuit, a video image acquisition card, a microcomputer system, and input and output interfaces. The signal output by the focal plane detector is digitally collected and processed, and the Fourier transform from the air domain to the frequency domain is completed. Finally, Find the spectral distribution of the image at each point on the slit. A complete spectral image of a two-dimensional target image (ie, a spectral image data cube) can be generated by a push-broom process along a direction perpendicular to the slit.

本发明装置具有光谱范围宽、光通量大、图像信噪比高以及光学结构简单的特点,特别适合于航空航天遥感领域的高光谱成像系统。The device of the invention has the characteristics of wide spectral range, large luminous flux, high image signal-to-noise ratio and simple optical structure, and is especially suitable for hyperspectral imaging systems in the field of aerospace remote sensing.

附图说明 Description of drawings

图1为本发明的全反射式傅立叶变换成像光谱仪的光路结构示意。Fig. 1 is a schematic diagram of the optical path structure of the total reflection Fourier transform imaging spectrometer of the present invention.

图2为本发明的菲涅尔双面镜干涉图案产生原理示意。Fig. 2 is a schematic diagram of the generation principle of the Fresnel double-sided mirror interference pattern of the present invention.

图3为本发明的菲涅尔双面镜、柱面聚焦镜、焦平面探测器的光路原理示意。Fig. 3 is a schematic diagram of the optical path principle of the Fresnel double-sided mirror, the cylindrical focusing mirror and the focal plane detector of the present invention.

图4为本发明信号采集处理系统原理。Fig. 4 is the principle of the signal acquisition and processing system of the present invention.

图5为第1实施例原理图。Fig. 5 is a schematic diagram of the first embodiment.

图6为第2实施例原理图。Fig. 6 is a schematic diagram of the second embodiment.

图中主要结构为:1-前置望远镜,2-狭缝,3-反射式准直镜,4-菲涅尔双面镜,5-反射式柱面镜,6-焦平面探测器,7-信号采集处理系统。The main structure in the figure is: 1-front telescope, 2-slit, 3-reflective collimator, 4-Fresnel double-sided mirror, 5-reflective cylindrical mirror, 6-focal plane detector, 7 -Signal acquisition and processing system.

具体实施方式 Detailed ways

本发明叙述的傅立叶变换成像光谱仪,其特点是在光学系统中采用一组非涅尔双面反射镜作为分束干涉部件,从而实现整个光学结构的全反射特性。现结合图1、图2、图3、图4以及图5对本发明的工作原理说明如下。The Fourier transform imaging spectrometer described in the present invention is characterized in that a group of Fresnel double-sided mirrors are used as beam splitting interference components in the optical system, so as to realize the total reflection characteristic of the entire optical structure. The working principle of the present invention is described below with reference to FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 .

如图1所示,本发明装置由反射式前置望远镜1、狭缝2、反射式准直镜3、菲涅尔双面镜4、反射式柱面镜5、焦平面探测器6以及信号采集处理系统7组成。As shown in Fig. 1, device of the present invention is made of reflective front telescope 1, slit 2, reflective collimator mirror 3, Fresnel double-sided mirror 4, reflective cylindrical mirror 5, focal plane detector 6 and signal The collection and processing system consists of 7 components.

前置望远镜1把远距离的线状物成像在入射狭缝2上,这相当于在空间遥感系统中,把垂直于推扫方向的远距离地面的线状目标成像于干涉系统的入射狭缝上。在狭缝2之后,反射式准直镜3把狭缝的出射光投射到菲涅尔双面镜4表面;经过菲涅尔双面镜4反射后,狭缝2出射的一束光被分解为两束互相成一定交角的光;该两束光再经过反射式柱面镜5聚焦后投射到焦平面探测器6表面,并在焦平面探测器6表面同时形成一维干涉条纹分布和另一维的灰度图像分布。其中,反射式柱面镜5的母线与菲涅尔双面镜4的交线相互垂直;干涉条纹的方向与反射式柱面镜5母线平行。焦平面探测器6采用具有宽光谱响应的传感器件以实现宽光谱波段的信号采集。信号采集处理系统7由前置处理电路、视频图像采集卡、微型计算机系统以及输入输出接口等组成,将焦平面探测器的视频图像信号转变为数字图像信号,并实施由空域到频域的傅立叶变换,就可以求出沿狭缝方向分布的一维目标图像的光谱分布。另一维目标图像的光谱分布可由推扫过程产生,推扫方向与狭缝方向垂直。The front telescope 1 images the long-distance linear object on the incident slit 2, which is equivalent to imaging the long-distance ground linear target perpendicular to the push-broom direction on the incident slit of the interference system in the space remote sensing system superior. After the slit 2, the reflective collimator 3 projects the light emitted from the slit to the surface of the Fresnel double-sided mirror 4; after being reflected by the Fresnel double-sided mirror 4, a beam of light emitted from the slit 2 is decomposed It is two beams of light that form a certain angle with each other; the two beams of light are then focused by the reflective cylindrical mirror 5 and then projected onto the surface of the focal plane detector 6, and simultaneously form a one-dimensional interference fringe distribution and another One-dimensional grayscale image distribution. Wherein, the intersecting lines of the busbars of the reflective cylindrical mirror 5 and the Fresnel double-sided mirror 4 are perpendicular to each other; the direction of the interference fringes is parallel to the busbars of the reflective cylindrical mirror 5 . The focal plane detector 6 adopts a sensing device with a wide spectral response to realize signal acquisition of a wide spectral band. The signal acquisition and processing system 7 is composed of a pre-processing circuit, a video image acquisition card, a microcomputer system, and input and output interfaces, etc., and converts the video image signal of the focal plane detector into a digital image signal, and implements the Fourier transform from the air domain to the frequency domain. Transformation, the spectral distribution of the one-dimensional target image distributed along the direction of the slit can be obtained. The spectral distribution of another dimensional target image can be generated by a push-broom process, and the push-broom direction is perpendicular to the slit direction.

菲涅尔双面镜4的干涉原理如图2所示。菲涅尔双面镜中两平面反射镜S1、S2间有一很小的交角θ,两镜的交线和图面垂直且通过O点。考虑理想情形,假设很细的入射狭缝位于图中L处,即L处出射的为理想球面波,又假设两个反射镜分别为理想平面,那么由L点发出的光线经过两个反射镜后形成两个分开的虚象L1和L2,它们是一对相干的虚光源,两像位于以0点为圆心,0L为半径的圆周上,弧L1L2等于2θ。按照波动光学理论,L点发出的光波经S1和S2反射镜后得到两系球面波,其中心分别为L1和L2。这两系球面波有部分重叠,在这个重叠部分产生了两束球面波的干涉。在放置于干涉区域内的任一平面BB上可以对干涉图进行收集。The interference principle of the Fresnel double-sided mirror 4 is shown in FIG. 2 . There is a small intersection angle θ between the two plane mirrors S 1 and S 2 in the Fresnel double-sided mirror, and the intersection line of the two mirrors is perpendicular to the drawing surface and passes through point O. Consider the ideal situation, assuming that the very thin incident slit is located at L in the figure, that is, the exit at L is an ideal spherical wave, and assuming that the two mirrors are ideal planes, then the light emitted by point L passes through the two mirrors After that, two separate virtual images L 1 and L 2 are formed, which are a pair of coherent virtual light sources. The two images are located on a circle with 0 as the center and 0L as the radius. The arc L 1 L 2 is equal to 2θ. According to the theory of wave optics, the light wave from point L passes through mirrors S 1 and S 2 to obtain two series of spherical waves, whose centers are L 1 and L 2 respectively. The two series of spherical waves partially overlap, and the interference of the two beams of spherical waves is produced in this overlapping portion. Interferograms can be collected on any plane BB placed within the interferometric region.

由于本发明装置在干涉光路中采用了准直镜和分波前干涉原理,因此在焦平面上产生的光程差ΔL与干涉条纹位置ξ的关系是ΔL=2ξsinθ,其中0为菲涅尔双面镜的交角,因此光程差与干涉条纹位置成线性关系。Since the device of the present invention adopts the principle of collimating mirror and sub-wavefront interference in the interference optical path, the relationship between the optical path difference ΔL generated on the focal plane and the interference fringe position ξ is ΔL=2ξsinθ, where 0 is Fresnel double The intersection angle of the mirror, so the optical path difference has a linear relationship with the position of the interference fringe.

本发明装置在焦平面探测器表面产生的干涉条纹宽度Δx由下式计算:The interference fringe width Δx produced by the device of the present invention on the surface of the focal plane detector is calculated by the following formula:

ΔxΔx == λλ 22 sinsin θθ -- -- -- (( 11 ))

其中λ为光波长,θ为菲涅尔双面镜的交角。由(1)式可知,菲涅尔双面镜的交角越大,干涉条纹越密,对探测器的分辨率要求越高。Where λ is the wavelength of light, and θ is the intersection angle of the Fresnel double-sided mirror. It can be known from formula (1) that the larger the intersection angle of the Fresnel double-sided mirror, the denser the interference fringes, and the higher the resolution requirement of the detector.

本发明理论上的光谱分辨极限(即最小可分辨波数差δv)主要取决于光学系统的几何参数及探测器特性。计算公式为:The theoretical spectral resolution limit of the present invention (that is, the minimum resolvable wavenumber difference δv) mainly depends on the geometric parameters of the optical system and the characteristics of the detector. The calculation formula is:

δvδv == 11 22 ξξ Mm sinsin θθ -- -- -- (( 22 ))

其中ξM为探测器的最大宽度,2ξM sinθ就是干涉系统所获得的最大光程差。由(2)式可知,焦平面探测器的总宽度越大,则光谱分辨率越高。Where ξ M is the maximum width of the detector, and 2ξ M sinθ is the maximum optical path difference obtained by the interference system. It can be known from (2) that the larger the total width of the focal plane detector, the higher the spectral resolution.

根据(1)式还可推出本发明的可探测光谱的截止波长计算式:According to (1) formula also can deduce the cut-off wavelength computing formula of detectable spectrum of the present invention:

λcut-off=4dsinθ(3)λ cut-off = 4dsinθ(3)

其中d为CCD单元尺寸。Where d is the CCD unit size.

由(3)式可知,具有高像素密度的探测器有助于扩展系统的可探测波长范围。It can be known from (3) that a detector with a high pixel density helps to expand the detectable wavelength range of the system.

本发明的信号采集处理系统7原理如图4所示。由焦平面探测器6采集到的复合视频信号包含狭缝的一维灰度图像信息及一维干涉条纹信息,在CPU的控制下,输入信号经前置处理电路和A/D转换处理后,保存在内存中。系统对保存的信号进行处理,完成由空域到频域的傅立叶变换,求出狭缝上各点图像的光谱分布并将结果保存,以备进一步的应用。CPU还可以对整个系统进行推扫同步采样,从而使系统得到完整目标的光谱图像数据立方体。The principle of the signal acquisition and processing system 7 of the present invention is shown in FIG. 4 . The composite video signal collected by the focal plane detector 6 includes the one-dimensional grayscale image information of the slit and the one-dimensional interference fringe information. Under the control of the CPU, after the input signal is processed by the pre-processing circuit and A/D conversion, stored in memory. The system processes the saved signal, completes the Fourier transform from the space domain to the frequency domain, obtains the spectral distribution of the image at each point on the slit and saves the result for further application. The CPU can also perform push-broom synchronous sampling on the entire system, so that the system can obtain a complete target spectral image data cube.

在本发明中,光谱分布B(v)由干涉条纹分布I(ξ)的傅立叶变换得到,即:In the present invention, the spectral distribution B (v) is obtained by the Fourier transform of the interference fringe distribution I (ξ), that is:

B(v)=FT{I(ξ)}(4)B(v)=FT{I(ξ)}(4)

在计算机中,可以采用一维离散傅立叶变换算法计算(4)式,方法如下:In the computer, one-dimensional discrete Fourier transform algorithm can be used to calculate (4) formula, the method is as follows:

设在与干涉条纹相垂直的方向上,可以取得干涉条纹强度分布的数据序列:Set in the direction perpendicular to the interference fringe, the data sequence of the intensity distribution of the interference fringe can be obtained:

I(ξ),ξ=0,1,2…N-1I(ξ), ξ=0, 1, 2...N-1

则I (ξ)的傅立叶变换式为:Then the Fourier transform formula of I (ξ) is:

BB (( 00 )) == 11 NN ΣΣ ξξ == 00 NN -- 11 II (( ξξ ))

BB (( vv )) == 22 NN ΣΣ nno == 00 NN -- 11 II (( ξξ )) coscos (( 22 ξξ ++ 11 )) vπvπ 22 NN -- -- -- (( 55 ))

v=1,2,3,...N-1v=1, 2, 3, . . . N-1

ξ=0,1,2,3...N-1ξ=0, 1, 2, 3...N-1

目前可以利用商品化的快速傅立叶变换(FFT)软件完成上述计算。At present, the above calculation can be completed by commercialized Fast Fourier Transform (FFT) software.

在本发明的计算结果中,对光谱数据的波长位置标定采用如下方法:In the calculation result of the present invention, adopt following method to the wavelength position calibration of spectral data:

根据本发明装置的光程差ΔL与干涉条纹在焦平面的位置坐标ξ的线性关系ΔL=2ξsinθ可知,对于任意给定波长的单色光,其在焦平面产生的干涉条纹的间距相等;因此根据傅立叶变换的空间不变性可知,经过傅立叶变换后,频域空间的刻度也是线性的,即在计算结果的光谱数据序列中,波数值与数据序列号成正比关系。设在计算结果中,光谱数据序列为:According to the optical path difference ΔL of the device of the present invention and the linear relationship ΔL=2ξsinθ of the position coordinates ξ of the interference fringes at the focal plane, it can be known that for any monochromatic light of a given wavelength, the spacing of the interference fringes produced at the focal plane is equal; therefore According to the space invariance of Fourier transform, after Fourier transform, the scale of the frequency domain space is also linear, that is, in the spectral data sequence of the calculation result, the wave value is proportional to the data sequence number. Assuming that in the calculation result, the spectral data sequence is:

x1,x2,x3,......xn x 1 , x 2 , x 3 , ... x n

它们对应的波数序列为:Their corresponding wavenumber sequences are:

v1,v2,v3,......vn v 1 , v 2 , v 3 , ... v n

则有如下比例关系:Then there is the following proportional relationship:

vv 11 -- vv 22 xx 11 -- xx 22 == vv 33 -- vv 22 xx 33 -- xx 22 == ΛΛ vv nno -- vv nno -- 11 xx nno -- xx nno -- 11 -- -- -- (( 66 ))

因此,在波长标定中,如果已知波数的起点位置,则仅需要确定其中一条已知波长光线的谱线位置,就可以根据(6)式确定其它光线的波数位置。如果确定了两条谱线的波数位置,则不需要波数的零点位置也能根据(6)式标定整个波段的波数位置。Therefore, in wavelength calibration, if the starting position of the wavenumber is known, it is only necessary to determine the spectral line position of one of the known wavelength rays, and then the wavenumber positions of other rays can be determined according to equation (6). If the wavenumber positions of the two spectral lines are determined, the wavenumber positions of the entire band can be calibrated according to formula (6) without the zero position of the wavenumber.

实施举例:Implementation example:

在图5所示的实施例1中,本发明装置对近距离的线状光源(汞灯)目标进行采样,以标定系统的谱线位置。其中,光源的两条主要谱线波长分别为4358nm(22946cm-1)和5461nm(18312cm-1);前置望远镜1采用单个离轴抛物面反射镜,焦距为250mm,有效口径φ60mm,离轴距离30mm,在近轴区域具有很好的成像质量:狭缝2位于前置望远镜1的焦点附近,因此被测目标的像被成在狭缝的入射面上。反射式准直镜3同样采用一个与前置望远镜1相同的离轴抛物面反射镜,其物方焦点与前置望远镜1的像面位置重合,即与狭缝2的像面位置重合;狭缝2的出射光被准直后成为平行光束并以一定角度投射到菲涅尔双面镜4的中心区域。反射式柱面镜5采用一个离轴设计的抛物线形柱面镜,焦距为40mm,有效口径50×50mm,离轴距离30mm;焦平面探测器采用硅CCD阵列(1/2英寸,768×586象素),在可见光及近红外波段(0.4-1.0μm)有响应。图像采集卡为量化精度8bit的普通视频图像采集卡,通过PCI总线与计算机连接。信号处理系统采用可视化编程技术,完成图像采集、噪声处理、FFT变换、数据存储等功能。In Embodiment 1 shown in FIG. 5 , the device of the present invention samples a short-distance linear light source (mercury lamp) target to calibrate the spectral line position of the system. Among them, the wavelengths of the two main spectral lines of the light source are 4358nm (22946cm -1 ) and 5461nm (18312cm -1 ) respectively; the front telescope 1 uses a single off-axis parabolic reflector with a focal length of 250mm, an effective aperture of φ60mm, and an off-axis distance of 30mm , has very good imaging quality in the paraxial region: the slit 2 is located near the focal point of the front telescope 1, so the image of the measured object is formed on the incident surface of the slit. The reflective collimator 3 also adopts an off-axis parabolic reflector identical to the front telescope 1, and its object focus coincides with the image plane position of the front telescope 1, that is, coincides with the image plane position of the slit 2; the slit The outgoing light of 2 is collimated and becomes a parallel beam and projected to the central area of Fresnel double-sided mirror 4 at a certain angle. The reflective cylindrical mirror 5 adopts an off-axis parabolic cylindrical mirror with a focal length of 40mm, an effective aperture of 50×50mm, and an off-axis distance of 30mm; the focal plane detector adopts a silicon CCD array (1/2 inch, 768×586 pixel), responds in the visible light and near-infrared bands (0.4-1.0μm). The image acquisition card is an ordinary video image acquisition card with a quantization precision of 8 bits, which is connected to the computer through the PCI bus. The signal processing system uses visual programming technology to complete functions such as image acquisition, noise processing, FFT transformation, and data storage.

设狭缝宽度为0.1mm,则对应的瞬时视场角为:Assuming that the slit width is 0.1mm, the corresponding instantaneous field of view is:

IFOV=0.1/250=0.004rad=4mrad.IFOV=0.1/250=0.004rad=4mrad.

设菲涅尔双面镜的交角为0.5°,CCD感光面接收干涉光束的有效宽度2ξM为7.68mm,则由光学系统限制的光谱(波数)分辨极限为:Assuming that the intersection angle of the Fresnel double-sided mirror is 0.5°, and the effective width 2ξ M of the interference beam received by the photosensitive surface of the CCD is 7.68mm, then the spectral (wavenumber) resolution limit limited by the optical system is:

同时设CCD单元尺寸d为9μm,则由光学系统限制的可探测截止波长为:At the same time, if the CCD unit size d is 9 μm, the detectable cut-off wavelength limited by the optical system is:

λcut-off=4dsinθ=4×9000×sin0.5°≈314nmλ cut-off =4dsinθ=4×9000×sin0.5°≈314nm

在图6所示的实施例2中,本发明装置对一维黑白条带目标进行采样,以获得光谱图像数据立方体。其中,被测目标被普通卤钨灯照明,因此在可见光及近红外波段具有连续光谱信号;条带方向与狭缝方向垂直;光学系统、焦平面探测器的参数与图5完全相同。另外,图6所示装置也可以对红外波段目标采样,此时将条带目标改为等温条带红外辐射靶源,并把焦平面探测器改为红外焦平面探测器。例如在1-5μm波段,采用制冷型PtSi-CCD阵列(512×512象素);在热红外8~12μm波段,采用制冷型HgCdTe焦平面器件或非制冷型红外焦平面器件(512×512象素)。同样设菲涅尔双面镜的交角为0.5°,PtSi-CCD阵列的单个像元尺寸为30μm,则系统可探测光谱的截止波长为:In Embodiment 2 shown in FIG. 6 , the device of the present invention samples a one-dimensional black and white strip target to obtain a spectral image data cube. Among them, the measured target is illuminated by ordinary tungsten-halogen lamps, so it has continuous spectral signals in the visible light and near-infrared bands; the strip direction is perpendicular to the slit direction; the parameters of the optical system and focal plane detector are exactly the same as those in Figure 5. In addition, the device shown in Figure 6 can also sample infrared band targets. At this time, the strip target is changed to an isothermal strip infrared radiation target source, and the focal plane detector is changed to an infrared focal plane detector. For example, in the 1-5μm band, use a cooled PtSi-CCD array (512×512 pixels); white). Also assume that the intersection angle of the Fresnel double-sided mirror is 0.5°, and the single pixel size of the PtSi-CCD array is 30 μm, then the cut-off wavelength of the detectable spectrum of the system is:

λcut-off=4×30×sin0.5°≈1.04μm.λ cut-off =4×30×sin0.5°≈1.04μm.

Claims (1)

1. a total reflection type Fourier transform imaging spectrometer that adopts Fresnel double-mirror comprises optical texture, focus planardetector (6) and signal acquiring processing system (7); It is characterized in that: in its optical texture, adopt one group of two-sided catoptron of Fresnel (4) to constitute optical interference structure; Fresnel double mirror (4) is by two plane mirror s with certain angle theta 1, s 2Form; Optical texture also comprises a cover reflective preposition telescope (1), slit (2), reflective collimating mirror (3), reflective cylindrical mirror (5); Slit (2) is positioned on the focal plane of preposition telescope (1), and the focus in object space of reflective collimating mirror (3) overlaps with the image planes position of slit (2); Fresnel double mirror (4) is positioned at reflective collimating mirror (3) afterwards; Be provided with reflective cylindrical mirror (5), focus planardetector (6) and signal acquiring processing system (7) behind the Fresnel double mirror (4); Reflective cylindrical mirror (5) bus intersection and the slit (2) with Fresnel double mirror (4) two mirrors respectively is vertical.
CNB200510055609XA 2005-03-21 2005-03-21 Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror Expired - Fee Related CN100427906C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200510055609XA CN100427906C (en) 2005-03-21 2005-03-21 Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200510055609XA CN100427906C (en) 2005-03-21 2005-03-21 Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror

Publications (2)

Publication Number Publication Date
CN1837763A CN1837763A (en) 2006-09-27
CN100427906C true CN100427906C (en) 2008-10-22

Family

ID=37015227

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510055609XA Expired - Fee Related CN100427906C (en) 2005-03-21 2005-03-21 Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror

Country Status (1)

Country Link
CN (1) CN100427906C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368849B (en) * 2007-08-17 2010-06-23 北京理工大学 Compact Fresnel two-sided mirror full reflection large visual field interference imaging optical spectrometer light path structure
CN101750754B (en) * 2008-12-17 2011-05-25 中国科学院西安光学精密机械研究所 Visual field division type optical synthetic aperture imaging system
CN102589702B (en) * 2012-02-27 2013-08-14 安徽工业大学 Interference imaging spectrometer for fresnel double sided mirror
CN103293524B (en) * 2013-05-15 2015-05-13 中国科学院上海光学精密机械研究所 Michelson direct-vision synthetic aperture laser imaging radar transmitter
CN110989314B (en) * 2019-12-26 2021-10-15 北京工业大学 A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523846A (en) * 1982-09-10 1985-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Integrated optics in an electrically scanned imaging Fourier transform spectrometer
US5260767A (en) * 1991-12-16 1993-11-09 Hughes Aircraft Company Compact all-reflective imaging spectrometer
US5777736A (en) * 1996-07-19 1998-07-07 Science Applications International Corporation High etendue imaging fourier transform spectrometer
CN2667475Y (en) * 2004-01-08 2004-12-29 北京理工大学 Reflective space modulation amplitude separating interference imaging spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523846A (en) * 1982-09-10 1985-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Integrated optics in an electrically scanned imaging Fourier transform spectrometer
US5260767A (en) * 1991-12-16 1993-11-09 Hughes Aircraft Company Compact all-reflective imaging spectrometer
US5777736A (en) * 1996-07-19 1998-07-07 Science Applications International Corporation High etendue imaging fourier transform spectrometer
CN2667475Y (en) * 2004-01-08 2004-12-29 北京理工大学 Reflective space modulation amplitude separating interference imaging spectrometer

Also Published As

Publication number Publication date
CN1837763A (en) 2006-09-27

Similar Documents

Publication Publication Date Title
US5801831A (en) Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
US5777736A (en) High etendue imaging fourier transform spectrometer
US6141100A (en) Imaging ATR spectrometer
US7230717B2 (en) Pixelated phase-mask interferometer
CN103063304B (en) Image plane interference Hyper spectral Imaging device and method is sheared in dispersion
US20060098206A1 (en) Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
WO1995002171A1 (en) Improved spectrometer
CN101368849B (en) Compact Fresnel two-sided mirror full reflection large visual field interference imaging optical spectrometer light path structure
CN111208067A (en) Spectro-Polarization Imaging Measurement System
CN103234635A (en) Photoelastic-modulation Fourier transform interference imaging spectrometer
CN104568152B (en) transverse shearing interference scanning Fourier transform imaging spectrometer
US6930781B2 (en) Miniaturized holographic fourier transform spectrometer with digital aberration correction
US7440108B2 (en) Imaging spectrometer including a plurality of polarizing beam splitters
CN106644076B (en) Phase-shifting type interference spectrum imaging system and imaging method
CN114295332B (en) Large-caliber telescope calibration system
Welford Useful optics
CN100427906C (en) Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror
US7167249B1 (en) High efficiency spectral imager
CN111208072A (en) Spectrum system for detecting trace gas concentration
Velghe et al. Advanced wave-front sensing by quadri-wave lateral shearing interferometry
CN108613742A (en) A kind of binary channels LARGE APERTURE STATIC IMAGING inteference imaging spectrometer
Ren et al. Optical design and investigation of a dual-interference channels and bispectrum static fourier-transform imaging spectrometer based on stepped micro-mirror
CN108931298B (en) Compact high-flux high-stability interference imaging spectrometer
Guérineau et al. New techniques of characterisation
CN102589702A (en) Interference imaging spectrometer for fresnel double sided mirror

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081022

Termination date: 20100321