CN100424875C - Semiconductor device with a plurality of semiconductor chips - Google Patents
Semiconductor device with a plurality of semiconductor chips Download PDFInfo
- Publication number
- CN100424875C CN100424875C CNB031497063A CN03149706A CN100424875C CN 100424875 C CN100424875 C CN 100424875C CN B031497063 A CNB031497063 A CN B031497063A CN 03149706 A CN03149706 A CN 03149706A CN 100424875 C CN100424875 C CN 100424875C
- Authority
- CN
- China
- Prior art keywords
- well region
- semiconductor element
- region
- substrate contact
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 238000009792 diffusion process Methods 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 11
- 238000009413 insulation Methods 0.000 claims description 17
- 230000005669 field effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明是关于一种半导体元件,特别是关于一种包含动态开启电压的金属氧化物半导体晶体管的半导体元件。The present invention relates to a semiconductor element, in particular to a semiconductor element including a metal-oxide-semiconductor transistor with a dynamic turn-on voltage.
背景技术 Background technique
金属氧化物半导体场效晶体管(MOSFET)由于具备功耗低、可靠度高及弹性的电路设计等优点,目前已被广泛地应用在集成电路上。为了具有最佳的工作性能,晶体管的开启电压均设计在关闭时仅存有很低的漏电流,而在导通时则维持很高的饱合电流。晶体管在导通时的饱合电流以下式表示:Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) have been widely used in integrated circuits due to their advantages of low power consumption, high reliability and flexible circuit design. In order to have the best working performance, the turn-on voltage of the transistor is designed to have a very low leakage current when it is turned off, and maintain a high saturation current when it is turned on. The saturation current of the transistor when it is turned on is expressed by the following formula:
其中,Vt代表开启电压、VGS代表栅极与源极的电压差、k′n代表跨导参数、L代表沟道长度,而W代表沟道宽度。一般而言,晶体管设计成具有较高的开启电压,以降低或避免晶体管在关闭时的漏电流。然而根据上式,较高的开启电压将使得晶体管导通时的饱合电流值降低。晶体管的开启电压可以下式表示:Among them, V t represents the turn-on voltage, V GS represents the voltage difference between the gate and the source, k' n represents the transconductance parameter, L represents the channel length, and W represents the channel width. Generally speaking, transistors are designed to have a higher turn-on voltage to reduce or avoid leakage current when the transistor is turned off. However, according to the above formula, a higher turn-on voltage will reduce the saturation current value when the transistor is turned on. The turn-on voltage of the transistor can be expressed as:
其中,Vt0代表源极与基极的偏压为0时的开启电压,VSB代表源极与衬底的偏压值,而2φf表示源极在强反转(strong inversion)时的表面势能。由上式可知,通过改变源极与衬底的偏压,可调整晶体管的开启电压。Among them, V t0 represents the turn-on voltage when the bias voltage of the source and the base is 0, V SB represents the bias value of the source and the substrate, and 2φ f represents the surface of the source in strong inversion potential energy. It can be seen from the above formula that the turn-on voltage of the transistor can be adjusted by changing the bias voltage of the source and the substrate.
图1是美国专利第6,166,584号(以下称’584专利)揭示的一NMOS晶体管10的剖视图。如图1所示,NMOS晶体管10包含一P型衬底24、一源极扩散区14、一漏极扩散区16、一栅极20及一沟道28。P型衬底24的电位是由P+型衬底接触扩散区26的外接电压控制。亦即,’584专利是利用一外部控制电路来控制P型衬底24的电位,进而调整NMOS晶体管10的开启电压。FIG. 1 is a cross-sectional view of an
图2是美国专利第6,124,618号(以下称’618专利)揭示的一具动态开启电压的晶体管的示意图。如图2所示,NMOS晶体管100是利用一偏压装置200控制衬底130的电位,进而调整NMOS晶体管100的开启电压。FIG. 2 is a schematic diagram of a transistor with a dynamic turn-on voltage disclosed in US Patent No. 6,124,618 (hereinafter referred to as the '618 patent). As shown in FIG. 2 , the
虽然’584专利及’618专利揭示的技术均可调整晶体管的开启电压。然而,’584专利及’618专利揭示的技术都必须使用外部的电压控制电路来控制晶体管的衬底电压,将使得具有动态开启电压的晶体管电路更为复杂。Although the techniques disclosed in the '584 patent and the '618 patent can both adjust the turn-on voltage of the transistor. However, both the techniques disclosed in the '584 patent and the '618 patent must use an external voltage control circuit to control the substrate voltage of the transistor, which will make the transistor circuit with a dynamic turn-on voltage more complicated.
发明内容 Contents of the invention
本发明的主要目的是提供一种包含动态开启电压的金属氧化物半导体晶体管的半导体元件。The main object of the present invention is to provide a semiconductor device including a metal-oxide-semiconductor transistor with a dynamic turn-on voltage.
为达到上述目的,本发明揭示一种半导体元件。该半导体元件包含一具有一阱区的衬底、一设置在该阱区中的漏极扩散区与源极扩散区、一设置在该阱区表面的栅绝缘层、一设置在该栅绝缘层上的栅极、一设置在该阱区中的衬底接触扩散区以及一设置在阱区中的绝缘槽。该阱区可属于P型导电型态,而该衬底接触扩散区则属N型导电型态。该绝缘槽是设置在该衬底接触扩散区与该漏极扩散区之间或该衬底接触扩散区与该源极扩散区之间。该绝缘槽的深度大于该漏极扩散区或该源极扩散区的结深度。本发明的半导体元件可视为是由一金属氧化物半导体晶体管、一结二极管及一电气连接该金属氧化物半导体晶体管及该结二极管的电阻构成。结二极管可视为由该衬底接触扩散区与该阱区构成,而该电阻则是该阱区的本征电阻(Intrinsic resistance)。To achieve the above purpose, the present invention discloses a semiconductor device. The semiconductor element comprises a substrate with a well region, a drain diffused region and a source diffused region arranged in the well region, a gate insulating layer arranged on the surface of the well region, a gate insulating layer arranged on the gate insulating layer A gate on the well, a substrate contact diffusion region arranged in the well region, and an insulating groove arranged in the well region. The well region can be of P-type conductivity, while the substrate contact diffusion region is of N-type conductivity. The insulation groove is arranged between the substrate contact diffusion region and the drain diffusion region or between the substrate contact diffusion region and the source diffusion region. The depth of the insulating groove is greater than the junction depth of the drain diffusion region or the source diffusion region. The semiconductor device of the present invention can be regarded as composed of a metal oxide semiconductor transistor, a junction diode and a resistor electrically connecting the metal oxide semiconductor transistor and the junction diode. The junction diode can be regarded as composed of the substrate contact diffusion region and the well region, and the resistance is the intrinsic resistance of the well region.
相较于现有技艺,本发明具有下列的优点:Compared with the prior art, the present invention has the following advantages:
1.本发明的半导体元件具有相当简单的结构,而且不需要使用外部电路来控制其金属氧化物半导体晶体管的衬底与源极的偏压。1. The semiconductor element of the present invention has a relatively simple structure, and does not need to use an external circuit to control the bias voltages of the substrate and the source of the metal oxide semiconductor transistor thereof.
2.本发明的金属氧化物半导体场效晶体管在关闭时保持有很低的漏电流,而在导通时可提高13%的漏极电流。2. The metal oxide semiconductor field effect transistor of the present invention maintains a very low leakage current when it is turned off, and can increase the drain current by 13% when it is turned on.
附图说明 Description of drawings
图1是美国专利第6,166,584号揭示的一NMOS晶体管的剖视图;FIG. 1 is a cross-sectional view of an NMOS transistor disclosed in US Patent No. 6,166,584;
图2是美国专利第6,124,618号揭示的一具动态开启电压半导体装置的示意图。FIG. 2 is a schematic diagram of a semiconductor device with a dynamic turn-on voltage disclosed in US Pat. No. 6,124,618.
图3是本发明第一实施例的半导体元件的剖视图;3 is a cross-sectional view of a semiconductor element according to a first embodiment of the present invention;
图4示例本发明的半导体元件的等效电路图;Fig. 4 illustrates the equivalent circuit diagram of the semiconductor element of the present invention;
图5A与图5B是显示现有技艺与本发明的漏极电流与栅极电压的关系图;5A and 5B are graphs showing the relationship between drain current and gate voltage in the prior art and the present invention;
图6是本发明第二实施例的半导体元件的剖视图。6 is a cross-sectional view of a semiconductor element according to a second embodiment of the present invention.
图中元件符号说明:Explanation of component symbols in the figure:
40半导体元件40 semiconductor components
42 N型衬底42 N-type substrate
50 P型阱50 P-well
52源极扩散区52 source diffusion area
54漏极扩散区54 drain diffusion area
56栅氧化层56 Gate Oxide
58栅极58 grid
60、62绝缘槽60, 62 insulation groove
64衬底接触扩散区64 substrate contact diffusion area
70 NMOS晶体管70 NMOS transistors
80结二极管80 junction diode
90电阻90 resistors
140半导体元件,142 P型衬底140 semiconductor element, 142 P type substrate
150 N型阱,152源极扩散区,154漏极扩散区,156栅氧化层,158栅极150 N-type well, 152 source diffusion region, 154 drain diffusion region, 156 gate oxide layer, 158 gate
160绝缘槽,162绝缘槽,164衬底接触扩散区160 insulation groove, 162 insulation groove, 164 substrate contact diffusion area
200偏压装置,201、203、205、207曲线200 bias device, 201, 203, 205, 207 curves
210 P型晶体管开关210 P-type transistor switch
具体实施方式 Detailed ways
图3是本发明第一实施例的半导体元件40的剖视图。如图3所示,该半导体元件40包含一N型衬底42、一设置在该N型衬底42中的P型阱区50、一设置在该P型阱区50中的N+型漏极扩散区54与N+型源极扩散区52、一设置在该P型阱区50表面的栅绝缘层56、一设置在该栅绝缘层56上的栅极58、一设置在该P型阱区64中的N+型衬底接触扩散区64以及一设置在该P型阱区64中的绝缘槽62。FIG. 3 is a cross-sectional view of a
该绝缘槽62设置在该N+型衬底接触扩散区64与该漏极扩散区54之间,且该绝缘槽62的深度大于该漏极扩散区54的结深度。虽然图3示例的半导体元件40是将N+型衬底接触扩散区64及绝缘槽62设置在漏极扩散区54侧,熟悉该项技术人员应了解该N+型衬底接触扩散区64及该绝缘槽62还可设置在该源极扩散区52侧。The insulating
图4示例本发明的半导体元件40的等效电路图。如图4所示,半导体元件40可视为由一NMOS晶体管70、一结二极管80及一电气连接该NMOS晶体管70及该结二极管80的电阻90所构成。请参考图3,结二极管80可视为由该N+型衬底接触扩散区64与该P型阱区50构成,而该电阻90则是该P型阱区50的本征电阻。FIG. 4 illustrates an equivalent circuit diagram of a
当NMOS晶体管70导通时,漏极扩散区54与源极扩散区52间的电流将因热载流子效应而产生电子-空穴对。电子将流向漏极扩散区52,而空穴将经N+型衬底接触扩散区64流出半导体元件40,迫使结二极管80轻微地导通,且使得P型阱区50呈现约0.3至0.4伏特的正电压。因此,P型阱区50与源极扩散区52间将产生0.3至0.4伏特的偏压,使得NMOS晶体管70的开启电压下降。当NMOS晶体管70关闭时,漏极扩散区54与源极扩散区52间没有任何的导通电流,开启电压将维持不变。When the
图5A与图5B显示现有技术与本发明的漏极电流与栅极电压的关系图,其中曲线201及205代表本发明的半导体元件40,而曲线203及207则代表图1的元件。请参考图5A的曲线201及203,本发明与现有技术在栅极电压为零时,漏极电流均小于10-9安培,亦即本发明的半导体元件40在关闭时仅有很低的漏电流。请参考图5B,代表现有技术的曲线207在栅极电压约0.6伏时,才开始产生漏极电流。而本发明的曲线205在栅极电压约0.4伏特时,即已产生漏极电流,亦即本发明的半导体元件40的开启电压已降为0.4伏特。此外,曲线205在线性区的漏极电流比曲线207增加13%,即本发明具有提高漏极电流的功效。5A and 5B show the relationship diagrams of drain current and gate voltage in the prior art and the present invention, wherein
图6是本发明第二实施例的半导体元件140的剖视图。如图6所示,该半导体元件140包含一P型衬底142、一设置在该P型衬底142中的N型阱区150、一设置在该N型阱区150中的P+型漏极扩散区154与P+型源极扩散区152、一设置在该N型阱区150表面的栅绝缘层156、一设置在该栅绝缘层156上的栅极158、一设置在该N型阱区150中的P+型衬底接触扩散区164,以及一设置在该N型阱区150中的绝缘槽162。FIG. 6 is a cross-sectional view of a
该绝缘槽162设置在该P+型衬底接触扩散区164与该漏极扩散区154之间,且该绝缘槽162的深度大于该漏极扩散区154的结深度。虽然图6示例的半导体元件140是将P+型衬底接触扩散区164及绝缘槽162设置在该漏极扩散区154侧,熟悉该项技术的人员应了解该P+型衬底接触扩散区164及该绝缘槽162还可设置在该源极扩散区152侧。The insulating
相较于现有技艺,本发明具有下列的优点:Compared with the prior art, the present invention has the following advantages:
1.本发明的半导体元件具有相当简单的结构,而且不需要使用外部电路来控制其金属氧化物半导体晶体管的衬底与源极的偏压。1. The semiconductor element of the present invention has a relatively simple structure, and does not need to use an external circuit to control the bias voltages of the substrate and the source of the metal oxide semiconductor transistor thereof.
2.本发明的金属氧化物半导体晶体管在关闭时保持有很低的漏电流,而在导通时可提高13%的漏极电流。2. The metal oxide semiconductor transistor of the present invention maintains a very low leakage current when it is turned off, and can increase the drain current by 13% when it is turned on.
本发明的技术内容及技术特点已揭示如上,然而熟悉本项技术的人士仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。The technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still make various substitutions and modifications based on the teaching and disclosure of the present invention without departing from the spirit of the present invention. Therefore, the protection scope of the present invention should not be limited to the contents disclosed in the embodiments, but should include various replacements and modifications that do not depart from the present invention, and are covered by the claims of this patent application.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031497063A CN100424875C (en) | 2003-08-04 | 2003-08-04 | Semiconductor device with a plurality of semiconductor chips |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031497063A CN100424875C (en) | 2003-08-04 | 2003-08-04 | Semiconductor device with a plurality of semiconductor chips |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1581487A CN1581487A (en) | 2005-02-16 |
CN100424875C true CN100424875C (en) | 2008-10-08 |
Family
ID=34579641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031497063A Expired - Lifetime CN100424875C (en) | 2003-08-04 | 2003-08-04 | Semiconductor device with a plurality of semiconductor chips |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100424875C (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000133799A (en) * | 1998-10-23 | 2000-05-12 | Nec Corp | Semiconductor electrostatic protection element and method of manufacturing the same |
US6123618A (en) * | 1997-07-31 | 2000-09-26 | Jetfan Australia Pty. Ltd. | Air movement apparatus |
US6166584A (en) * | 1997-06-20 | 2000-12-26 | Intel Corporation | Forward biased MOS circuits |
CN1433077A (en) * | 2002-01-10 | 2003-07-30 | 旺宏电子股份有限公司 | CMOS architecture with dynamic threshold voltage |
-
2003
- 2003-08-04 CN CNB031497063A patent/CN100424875C/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6166584A (en) * | 1997-06-20 | 2000-12-26 | Intel Corporation | Forward biased MOS circuits |
US6123618A (en) * | 1997-07-31 | 2000-09-26 | Jetfan Australia Pty. Ltd. | Air movement apparatus |
JP2000133799A (en) * | 1998-10-23 | 2000-05-12 | Nec Corp | Semiconductor electrostatic protection element and method of manufacturing the same |
CN1433077A (en) * | 2002-01-10 | 2003-07-30 | 旺宏电子股份有限公司 | CMOS architecture with dynamic threshold voltage |
Also Published As
Publication number | Publication date |
---|---|
CN1581487A (en) | 2005-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5696396A (en) | Semiconductor device including vertical MOSFET structure with suppressed parasitic diode operation | |
JP5290574B2 (en) | Schottky device | |
KR100922914B1 (en) | Field effect transistor formed on an insulating substrate | |
JPH0575110A (en) | Semiconductor device | |
CN109103240B (en) | A low on-power dissipation silicon-on-insulator lateral insulated gate bipolar transistor | |
KR100284746B1 (en) | Power MOSFET with decresed body resistance under source region | |
JPS63166269A (en) | Complementary lateral insulated gate rectifier | |
JP2008235933A (en) | Semiconductor device | |
JPS63266882A (en) | Vertical insulated gate field effect transistor | |
JP3186405B2 (en) | Horizontal MOSFET | |
JP3509896B2 (en) | Semiconductor device | |
KR20100109922A (en) | Low leakage integrated diode | |
US20020093052A1 (en) | Semiconductor device | |
US20100084684A1 (en) | Insulated gate bipolar transistor | |
CN111129131B (en) | Planar Gate IGBT Devices | |
CN100424875C (en) | Semiconductor device with a plurality of semiconductor chips | |
US6815765B2 (en) | Semiconductor device with function of modulating gain coefficient and semiconductor integrated circuit including the same | |
US5497011A (en) | Semiconductor memory device and a method of using the same | |
JPS6241428B2 (en) | ||
JPH0291975A (en) | semiconductor equipment | |
KR100297704B1 (en) | Power Semiconductors with Overlapping Well Regions | |
JP2629437B2 (en) | Lateral insulated gate bipolar transistor | |
TWI223450B (en) | Semiconductor device | |
JP2002343971A (en) | Semiconductor device | |
US8450799B2 (en) | Field effect transistor formed on an insulating substrate and integrated circuit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20081008 |