CN100424451C - 超低压低温法空气分离氧气制备方法 - Google Patents

超低压低温法空气分离氧气制备方法 Download PDF

Info

Publication number
CN100424451C
CN100424451C CNB2006100797828A CN200610079782A CN100424451C CN 100424451 C CN100424451 C CN 100424451C CN B2006100797828 A CNB2006100797828 A CN B2006100797828A CN 200610079782 A CN200610079782 A CN 200610079782A CN 100424451 C CN100424451 C CN 100424451C
Authority
CN
China
Prior art keywords
air
liquid
liquid nitrogen
tower
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100797828A
Other languages
English (en)
Other versions
CN1880214A (zh
Inventor
白杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bai Yang
Cao Pengju
Qiu Jing
Weifang Super Combustion Gas Science And Technology Ltd
Yun Xingsheng
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB2006100797828A priority Critical patent/CN100424451C/zh
Publication of CN1880214A publication Critical patent/CN1880214A/zh
Application granted granted Critical
Publication of CN100424451C publication Critical patent/CN100424451C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04442Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with a high pressure pre-rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种超低压低温法空气分离制氧流程,由液氮作冷源的单级精馏制氮流程、液空泵、液空气化器、全低压流程、液氮泵等组合而成,经空气换热器热段预冷的超低压空气与膨胀空气混合,进入液空气化器与液空换热并放出液空气化所需的汽化潜热,再进入空气换热器冷段被过度冷却送入单级精馏塔的底部,初步分离得液空并在冷凝蒸发器低压侧取出纯氮,利用液空泵将液空压缩送入液空气化器后产生的蒸气,替代双级精馏塔原本从另一空气换热器来的低压原料空气,从而实现超低压制氧,双级精馏塔下塔引出的液氮节流后,全部或部分送入单级精馏塔冷凝蒸发器低压侧,再由液氮泵将其压缩送入上塔上部参与精馏,从而防止了低压侧液氮中的高沸点物质特别是氧的浓聚,使液氮作冷源单级精馏塔能正常工作。

Description

超低压低温法空气分离氧气制备方法
技术领域
本发明涉及一种低温法空气分离制氧流程,特别是一种超低压低温法空气分离制氧流程。
背景技术
从1902年德国林德公司制造出第一台10m3/h低温法空气分离制氧机以来至今已有一百多年的历史,在此期间,制氧机由小到大,不断发展。按操作压力分类低温法空气分离氧气制备流程分为高压流程、中压流程、全低压流程,其中全低压流程又包括切换式自清除流程和分子筛纯化带增压透平膨胀机流程。制氧能耗与加工空气的压力有关,加工空气的压力越低制氧能耗越低,目前世界公认能耗最低的流程是全低压流程。我们已经知道,工业上空气液化常用两种方法获得低温,即空气的节流膨胀和等熵膨胀,同时已还知道无论从温降大小及制冷量大小方面比较,等熵膨胀都比节流膨胀效果显著,而且膨胀机还可以回收一部分膨胀功,从而提高其经济性。冷却空气需要冷量,而冷量的产生则要花一定的代价,预先要将空气压缩。按理压缩空气应尽可能多的通过膨胀机制取冷量使其制冷量最大化,从而降低制氧能耗。可是分析目前世界公认能耗最低的全低压流程,可以看出压缩空气中只有小部分(最多约占25%)是通过膨胀机产冷的,大部分(约占75%)则是直接进入装置经节流降压后复热后出装置的,可以认为这部分压缩空气是不产冷的(相对于通过膨胀机产冷时的制冷量而言)。冶金工业出版社1977年8月出版的《制氧机的原理与操作》第31页中说“对于目前的制氧装置,生产的是气氧,要求装置的制冷量不大,只需要装置提供克服跑冷损失与热交换不完全的冷损失的制冷量即可,因此空气不必压缩到很高的压力。由于精馏空气要求精馏塔下塔压力为6大气压,所以只需将空气压缩至下塔压力就可以满足装置所需的制冷量。”单从冷量方面看,这样的理论显然是错误的,因为全低压流程的压缩空气如果全部通过膨胀机产冷的话,其制冷量将大大超过装置所需的制冷量。将通过膨胀机产冷的这部分空气压缩,使装置能够提供克服跑冷损失与热交换不完全的冷损失的制冷量,是必需(须)的,而将并不产冷的空气也压缩至6大气压显然是很无奈的,因此说全低压流程其实是一种很不经济的流程,它迟早会被能耗更低的超低压流程所取代。冶金工业出版社1997年3月出版的《制氧技术》第244页制氧机的发展中说:现在,中、大型制氧机全部为全低压流程。小型制氧机也向全低压方向发展,而且对超低压流程正进行研究探讨。
发明内容
本发明的目的就是要提供一种超低压低温法空气分离氧气制备方法,从而使超低压制氧得以实现,它只需对通过膨胀机产冷的这部分空气压缩,使装置能够提供克服跑冷损失与热交换不完全的冷损失的制冷量即可,对上述提到的压缩空气中不产冷的这部分空气则不再需要压缩至6大气压,而只需压缩至2大气压即可,制氧能耗为低温法空气分离制氧的最低值。
发明是这样实现的:一种超低压低温法空气分离氧气制备方法,制备流程由液氮作冷源的单级精馏空气液化液空制备流程、液空泵、液空气化器、全低压流程、液氮泵等组合而成,所述液空制备流程包括一第三分馏塔和第二冷凝蒸发器组成的单级精馏塔,所述全低压流程包括一第一分馏塔、第二分馏塔和第一冷凝蒸发器组成的双级精馏塔。经第二空气换热器预冷的超低压空气与经过膨胀机膨胀后的空气混合,进入液空气化器与液空换热并放出液空气化所需的汽化潜热,再进入第三空气换热器被过度冷却后送入第三分馏塔的底部,经过初步分离可在第三分馏塔塔底得到富氧液空,在第二冷凝蒸发器的低压侧取出氮气,利用液空泵将得到的富氧液空压缩至所需压力(6大气压)送入液空气化器后产生的蒸气,替代第一分馏塔原本从第一空气换热器来的低压原料空气,从而实现超低压制氧,将第一分馏塔上部引出的液氮节流后全部或部分送入第二冷凝蒸发器的低压侧,再由液氮泵将其压缩至所需压力送入第二分馏塔上部参与精馏,从而防止了第二冷凝蒸发器低压侧液氮中的高沸点物质特别是氧的浓聚,使液氮作冷源的单级精馏塔能够正常工作,即可在第二冷凝蒸发器的低压侧取出氮气,在第三分馏塔的塔底得到富氧液空。
附图说明
附图是依据本发明提出的超低压低温法空气分离氧气制备流程图,图中E101为第一空气换热器、E201为第二空气换热器、E202为第三空气换热器,C101为第一分馏塔、C102为第二分馏塔、C201为第三分馏塔,K1为第一冷凝蒸发器、K2为第二冷凝蒸发器,Fs为过冷器,AP为液空泵,NP为液氮泵,SL为液空气化器,J1为液空节流阀、J2为第一液氮节流阀、J3为第二液氮节流阀,D为液空调节阀,ET为膨胀机,B为膨胀机ET的增压机,增压机后为冷却器用于冷却增压空气(附图中未画出)。
具体实施方式
下面结合附图及实施例对流程的细节和工作原理进一步描述。
附图中的这些部机E101、C101、K1、C102、FS、J1、J2、ET、B等组成一相当于把膨胀后空气复热后放空的全低压流程,双级精馏塔由第一分馏塔C101、第二分馏塔C102和第一冷凝蒸发器K1组成。显然,第一分馏塔C101上部引出经第一液氮节流阀J2节流降压后的液氮是可以直接送入第二分馏塔C102的上部参与精馏的(附图中未画出),由于通过膨胀机ET的膨胀空气量大小对双级精馏塔的精馏工况没有任何影响,因此膨胀机ET能够提供足够的冷量,那么只用部分返流气体就可以将出第一空气换热器E101压力为6大气压的空气,冷却至饱和温度并少量含湿,从而使得双级精馏塔能够正常工作,即可在第二分馏塔C102的顶部和下部分别取出氮气和氧气,其原理与目前正在广泛应用中的双级精馏塔的工作原理是完全相同的,在此不再作阐述。
附图中的这些部机E201、E202、C201、K2、FS、J3、ET、B等组成一液氮作冷源的单级精馏空气液化液空制备流程,单级精馏塔由第三分馏塔C201和第二冷凝蒸发器K2组成。同样另部分返流气体能将出第三空气换热器E202的空气冷却至饱和温度并少量含湿,冷却后的空气送入第三分馏塔C201的底部,在塔内空气自下而上与回流液接触至塔的上部便得到氮气,氮气进入第二冷凝蒸发器K2的高压侧被冷凝为液氮,一部分液氮作为第三分馏塔C201的回流液沿塔自上而下流动,回流液体中的氧浓度不断提高,至塔底便得到氧纯度较高的富氧液空;另部分液氮引出经过过冷器FS过冷后经第二液氮节流阀J3节流降压后,送入第二冷凝蒸发器K2的低压侧作冷源,使进入第二冷凝蒸发器K2高压侧的氮气被冷凝为液氮,而低压侧的液氮自身受热后便蒸发生成氮气。由于第二冷凝蒸发器K2的高低压侧均为同一种物质氮,实验表明,在不同的压力下,对应的饱和温度也不同。压力越高,饱和温度也增高,亦即压力越高蒸气越容易液化。假设第二冷凝蒸发器K2低压侧的压力为1.5大气压(低压侧压力应该等于氮气克服所通过各设备的阻力及由装置排出时所必须的压力之和),K2的温差为3K,那么K2高压侧的压力只需2大气压就可以保证进入高压侧的氮气被冷凝为液氮,而低压侧的液氮自身则受热蒸发为氮气,也就是说经第二空气换热器E201、液空气化器SL、第三空气换热器E202进入第三分馏塔C201底部的原料空气只需压缩至2大气压,就可以保证液氮作冷源的单级精馏塔能够正常工作,即可在第二冷凝蒸发器K2的低压侧取出氮气,在第三分馏塔C201的塔底得到富氧液空。
由于第三分馏塔C201的压力只有2大气压,因此可以将经过膨胀机ET膨胀后的空气送入第三分馏塔C201参与精馏。如果将膨胀空气直接送入第三分馏塔C201的底部,就必须使其温度接近或达到饱和温度,以减少过热度对精馏工况的影响,显然这样的温度要求对膨胀机是不利的。本发明将膨胀空气送入经过第二空气换热器E201预冷的正流空气中,既组织了产冷系统,又使得膨胀后空气同样可以进入到第三分馏塔C201参与精馏。
在第三分馏塔C201塔底得到的富氧液空,被液空泵AP压缩至所需压力(6大气压)送入液空气化器SL,在这里部分压力液空由于吸收了由超低压空气和膨胀后空气组成的混合空气放出的汽化潜热而被气化为饱和蒸气,将饱和蒸气和另部分不要求气化而通过液空调节阀D引出的液空,一起送入第一分馏塔C101的底部继续精馏,由于第一分馏塔C101的加工能力是有限的,这时可以缓慢关闭第一分馏塔C101原本从第一空气换热器E101来的低压原料空气(同时也要缓慢关闭第一空气换热器E101的返流气体),从而实现了超低压制氧的目的。
超低压空气和膨胀后空气组成的混合空气经过液空气化器SL时,由于放出了液空气化所需的汽化潜热,混合空气进入第三空气换热器E202时被过度冷却,部分混合空气被液化为液体流入第三分馏塔C201的塔底,另部分未被液化的混合空气则作为第三分馏塔C201的原料空气参与精馏。由于第三空气换热器E202液化空气的作用明显,用液化器是否会更好些,由专业的工程技术人员考虑决定。
由于精馏塔存在冷损失,为了补偿冷量,加工空气入塔的状况不仅要达到饱和,而且必须含有少量的液体;又由于膨胀后空气是进入第三分馏塔C201底部参与精馏的,膨胀空气的多少对精馏工况没有任何影响,因而膨胀空气量可以随意增加,这样入塔的混合空气中所含的液体比例势必要增加(由于混合空气液化量大,压力会下降,这时需增加超低压空气的供给量,以保证第三分馏塔C201的压力),显然,这些为了维持装置的冷量平衡,而要求入塔的混合空气中必须含有的液体,是不要求其在液空气化器SL中气化为饱和蒸气的,因而通过液空调节阀D将其引出,使之随同饱和蒸气一起送入第一分馏塔C101底部参与精馏。
由上可知,第三分馏塔C201塔底的液空由三部分的液体构成:1、第三分馏塔C201的回流液;2、入塔混合空气由于放出汽化潜热而被过度冷却液化产生的液体;3、为了维持装置的冷量平衡,而要求入塔空气中必须含有的液体。其中1和2产生的液空是要求在液空气化器SL中被气化为饱和蒸气的,由于进入液空气化器SL的混合空气的温度可以高于压力液空的温度(具体温差由专业的工程技术人员考虑决定),混合空气的量也大于被要求气化的液空产生的蒸气量,因而压力液空能够被气化为饱和蒸气。
由于从第三分馏塔C201上部引出的液氮不可能达到百分之百的含氮量,那么随着第二冷凝蒸发器K2低压侧液氮的不断蒸发,一些高沸点物质特别是氧就会逐渐浓聚,从而使得第三分馏塔C201的压力逐渐升高,那么从第二冷凝蒸发器K2低压侧取出的氮气的含氧量也升高。因此,单独的液氮作冷源的单级精馏塔实际上是不能正常工作的。为了防止第二冷凝蒸发器K2低压侧液氮中的高沸点物质特别是氧的浓聚,使液氮作冷源的单级精馏塔能够正常工作,本发明将第一分馏塔C101上部引出,经第一液氮节流阀J2节流降压后的液氮全部或部分送入第二冷凝蒸发器K2的低压侧,再由液氮泵NP将其压缩至所需压力送入第二分馏塔C102的上部参与精馏,这样既不影响第二分馏塔C102的精馏,又防止了第二冷凝蒸发器K2低压侧液氮中的高沸点物质特别是氧的浓聚,使液氮作冷源的单级精馏塔能够正常工作,即可在第二冷凝蒸发器K2的低压侧取出氮气,在第三分馏塔C201的塔底得到富氧液空。在这里所用的原理与目前被广泛采用的从主冷中排放相当于气氧产量1%的液氧就可以防止乙炔等碳氢化合物在主冷中浓聚的原理是一样的。同样,液空气化器SL由于不断有液空经液空调节阀D引出,也可以防止乙炔等碳氢化合物的浓聚。由于经液空调节阀D引出的液空量与膨胀机ET提供的冷量大小有关,而膨胀空气又是参与精馏的,不存在空气复热放空造成氧损失的问题,并且膨胀空气量对精馏工况没有任何影响。因此,膨胀机ET的制冷量调节范围很大,必要时可以生产大量的液态产品,使得第一冷凝蒸发器K1更具安全保障。
所述空气视为经过分子筛纯化后的空气。

Claims (2)

1. 一种超低压低温法空气分离氧气制备方法,其特征在于出第一空气换热器(E101)的低压原料空气被部分返流气体冷却至饱和并少量含湿后,送入第一分馏塔(C101)、第二分馏塔(C102)和第一冷凝蒸发器(K1)组成的双级精馏塔的第一分馏塔(C101)底部,经初步分离在第一分馏塔(C101)塔底得到富氧液空在上部引出液氮,引出的液氮经过过冷器(FS)过冷后,经第一液氮节流阀(J2)节流降压后全部或部分送入第二冷凝蒸发器(K2)的低压侧,再由液氮泵(NP)将其压缩至所需压力送入第二分馏塔(C102)上部参与精馏,在第一分馏塔(C101)塔底得到的富氧液空经过过冷器(FS)过冷后,经液空节流阀(J1)节流降压后送入第二分馏塔(C102)中部参与精馏,在第二分馏塔(C102)的顶部和下部分别取出氮气和氧气;经第二空气换热器(E201)预冷的超低压空气与经过膨胀机(ET)膨胀后的空气混合,进入液空气化器(SL)与液空换热并放出液空气化所需的汽化潜热,再进入第三空气换热器(E202)被过度冷却后,送入第三分馏塔(C201)和第二冷凝蒸发器(K2)组成的单级精馏塔的第三分馏塔(C201)底部,经初步分离在第三分馏塔(C201)塔底得到富氧液空在上部引出液氮,引出的液氮经过过冷器(FS)过冷后,经第二液氮节流阀(J3)节流降压后送入第二冷凝蒸发器(K2)的低压侧,受热蒸发出来的气氮作为产品引出,在第三分馏塔(C201)塔底得到的富氧液空经液空泵(AP)压缩至所需压力送入液空气化器(SL),部分液空由于吸收了混合空气放出的汽化潜热而被气化为饱和蒸气,将饱和蒸气和另部分不需要气化而经液空调节阀(D)引出的液空,一起送入第一分馏塔(C101)底部继续参与精馏,使之替代第一分馏塔(C101)原本从第一空气换热器(E101)来的低压原料空气。
2. 根据权利要求1所述的氧气制备方法,其特征在于第一分馏塔(C101)上部引出的液氮,经过过冷器(FS)过冷后经第一液氮节流阀(J2)节流降压后,部分液氮送入第二分馏塔(C102)上部参与精馏,另部分液氮送入第二冷凝蒸发器(K2)的低压侧,再由液氮泵(NP)将其压缩至所需压力送入第二分馏塔(C102)上部参与精馏,从而防止第二冷凝蒸发器(K2)低压侧液氮中的高沸点物质特别是氧的浓聚,使液氮作冷源的单级精馏塔能够正常工作,即可在第二冷凝蒸发器(K2)的低压侧取出氮气,在第三分馏塔(C201)的塔底得到富氧液空。
CNB2006100797828A 2006-05-15 2006-05-15 超低压低温法空气分离氧气制备方法 Expired - Fee Related CN100424451C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100797828A CN100424451C (zh) 2006-05-15 2006-05-15 超低压低温法空气分离氧气制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100797828A CN100424451C (zh) 2006-05-15 2006-05-15 超低压低温法空气分离氧气制备方法

Publications (2)

Publication Number Publication Date
CN1880214A CN1880214A (zh) 2006-12-20
CN100424451C true CN100424451C (zh) 2008-10-08

Family

ID=37518611

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100797828A Expired - Fee Related CN100424451C (zh) 2006-05-15 2006-05-15 超低压低温法空气分离氧气制备方法

Country Status (1)

Country Link
CN (1) CN100424451C (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503180B (zh) * 2009-03-17 2011-04-13 四川空分设备(集团)有限责任公司 新型高纯氧制取方法
DE102011114090A1 (de) * 2010-11-09 2012-05-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US20130000352A1 (en) * 2011-06-30 2013-01-03 General Electric Company Air separation unit and systems incorporating the same
US9150801B2 (en) 2012-01-27 2015-10-06 General Electric Company System and method for heating a gasifier
US9145524B2 (en) 2012-01-27 2015-09-29 General Electric Company System and method for heating a gasifier
CN102809261B (zh) * 2012-04-19 2014-07-23 四川空分设备(集团)有限责任公司 从空气中制取低纯度氧气的深冷法分离方法及其装置
CN105466154B (zh) * 2015-12-21 2017-12-15 七台河宝泰隆煤化工股份有限公司 一种空分工艺方法
CN114812097B (zh) * 2022-04-22 2023-02-03 杭州特盈能源技术发展有限公司 一种跨流程高契合度耦合低能耗高氮制取工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656557A (en) * 1993-04-22 1997-08-12 Nippon Sanso Corporation Process for producing various gases for semiconductor production factories
JPH1163812A (ja) * 1997-08-13 1999-03-05 Nippon Sanso Kk 低純度酸素の製造方法及び装置
CN1210964A (zh) * 1997-09-09 1999-03-17 普拉塞尔技术有限公司 生产低纯氧的高压高效低温精馏系统
CN1082029C (zh) * 1995-06-01 2002-04-03 空气及水株式会社 制氧装置
JP2004198003A (ja) * 2002-12-17 2004-07-15 Nippon Sanso Corp 空気液化分離装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656557A (en) * 1993-04-22 1997-08-12 Nippon Sanso Corporation Process for producing various gases for semiconductor production factories
CN1082029C (zh) * 1995-06-01 2002-04-03 空气及水株式会社 制氧装置
JPH1163812A (ja) * 1997-08-13 1999-03-05 Nippon Sanso Kk 低純度酸素の製造方法及び装置
CN1210964A (zh) * 1997-09-09 1999-03-17 普拉塞尔技术有限公司 生产低纯氧的高压高效低温精馏系统
JP2004198003A (ja) * 2002-12-17 2004-07-15 Nippon Sanso Corp 空気液化分離装置及び方法

Also Published As

Publication number Publication date
CN1880214A (zh) 2006-12-20

Similar Documents

Publication Publication Date Title
CN100424451C (zh) 超低压低温法空气分离氧气制备方法
CN102155841B (zh) 低温分离方法及设备
CN100592013C (zh) 利用从液化天然气中提取的冷量生产液氧的空气分离方法
MX2013014870A (es) Proceso para la licuefaccion de gas natural.
CA2796982C (en) Method and installation for liquefying flue gas from combustion installations
US20090193817A1 (en) Method for refrigerating a thermal load
CN105783424B (zh) 利用液化天然气冷能生产高压富氧气体的空气分离方法
CN102940974B (zh) 一种利用混和制冷剂循环的油气冷凝回收方法
CN101351680A (zh) 低温空气分离法
US20150253075A1 (en) Process for the separation of air by cryogenic distillation
WO2013002025A1 (ja) 空気分離方法及び装置
CN102047057A (zh) 分离空气的方法和设备
US7096688B2 (en) Liquefaction method comprising at least a coolant mixture using both ethane and ethylene
CN101899342B (zh) 一种煤矿区煤层气生产液化天然气的工艺
US11434141B2 (en) Synthesis of ammonia with internal cooling circuit
CN101509722A (zh) 蒸馏方法和设备
RU2540032C2 (ru) Способ и устройство для получения жидкого азота путем разложения воздуха при низкой температуре
CN105473968A (zh) 用于以可变的能量消耗通过空气的低温分离产生氧的方法和装置
US8549878B2 (en) Method of generating nitrogen and apparatus for use in the same
CA2736175C (en) Air separation refrigeration supply method
US20240068744A1 (en) Method for liquefying a stream rich in co2
CN105637311A (zh) 通过低温蒸馏分离空气的方法和装置
CN109323533A (zh) 一种使用中压精馏塔降低空分能耗方法及装置
JP7291472B2 (ja) 窒素ガス製造装置
US6490884B2 (en) Process and device for production of oxygen and nitrogen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GUANGXI LIUZHOU HAIWAN HENGRI CHEMICAL GAS CO., LT

Free format text: FORMER OWNER: BAI YANG

Effective date: 20130527

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 545002 LIUZHOU, GUANGXI ZHUANG AUTONOMOUS REGION TO: 545116 LIUZHOU, GUANGXI ZHUANG AUTONOMOUS REGION

TR01 Transfer of patent right

Effective date of registration: 20130527

Address after: 545116 No. 19 Yang Road, Keelung Development Zone, Liuzhou, the Guangxi Zhuang Autonomous Region, China

Patentee after: Liuzhou Hengri Chemicals Gases Co., Ltd.

Address before: 545002 the Guangxi Zhuang Autonomous Region Liuzhou Liuzhou iron and steel (Group) Company gas company

Patentee before: Bai Yang

ASS Succession or assignment of patent right

Owner name: BAI YANG

Free format text: FORMER OWNER: GUANGXI LIUZHOU HAIWAN HENGRI CHEMICAL GAS CO., LTD.

Effective date: 20150527

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 545116 LIUZHOU, GUANGXI ZHUANG AUTONOMOUS REGION TO: 545002 LIUZHOU, GUANGXI ZHUANG AUTONOMOUS REGION

TR01 Transfer of patent right

Effective date of registration: 20150527

Address after: Liubei North Bird Road 545002 Liuzhou city the Guangxi Zhuang Autonomous Region No. 33 Fu Jiang Xiaoyuan 5 Building 2 unit 401 room

Patentee after: Bai Yang

Address before: 545116 No. 19 Yang Road, Keelung Development Zone, Liuzhou, the Guangxi Zhuang Autonomous Region, China

Patentee before: Liuzhou Hengri Chemicals Gases Co., Ltd.

DD01 Delivery of document by public notice

Addressee: Bai Yang

Document name: Notification to Pay the Fees

C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Bai Yang

Inventor after: Yun Xingsheng

Inventor before: Bai Yang

COR Change of bibliographic data
TR01 Transfer of patent right

Effective date of registration: 20161228

Address after: 545002 the Guangxi Zhuang Autonomous Region, Liuzhou Liu Liu North District, building No. 33, No. 202

Patentee after: Bai Yang

Patentee after: Weifang super combustion gas Science and Technology Ltd.

Patentee after: Yun Xingsheng

Patentee after: Cao Pengju

Address before: 545002 Guangxi Liuzhou Liubei North Bird Road, No. 33 Fu Jiang Xiaoyuan 5 Building 2 unit 401 room

Patentee before: Bai Yang

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180403

Address after: 545002 the Guangxi Zhuang Autonomous Region, Liuzhou Liu Liu North District, building No. 33, No. 202

Co-patentee after: Weifang super combustion gas Science and Technology Ltd.

Patentee after: Bai Yang

Co-patentee after: Yun Xingsheng

Co-patentee after: Cao Pengju

Co-patentee after: Qiu Jing

Address before: 545002 the Guangxi Zhuang Autonomous Region, Liuzhou Liu Liu North District, building No. 33, No. 202

Co-patentee before: Weifang super combustion gas Science and Technology Ltd.

Patentee before: Bai Yang

Co-patentee before: Yun Xingsheng

Co-patentee before: Cao Pengju

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081008

Termination date: 20200515