CN100393400C - 非对称多孔陶瓷微滤膜及其制备方法 - Google Patents

非对称多孔陶瓷微滤膜及其制备方法 Download PDF

Info

Publication number
CN100393400C
CN100393400C CNB2006100146066A CN200610014606A CN100393400C CN 100393400 C CN100393400 C CN 100393400C CN B2006100146066 A CNB2006100146066 A CN B2006100146066A CN 200610014606 A CN200610014606 A CN 200610014606A CN 100393400 C CN100393400 C CN 100393400C
Authority
CN
China
Prior art keywords
nano
porous ceramic
asymmetric porous
filtering
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100146066A
Other languages
English (en)
Other versions
CN1899680A (zh
Inventor
高学平
朱怀勇
曲金秋
叶世海
张淑芬
鲁淑群
尹杰
宋德瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CNB2006100146066A priority Critical patent/CN100393400C/zh
Publication of CN1899680A publication Critical patent/CN1899680A/zh
Application granted granted Critical
Publication of CN100393400C publication Critical patent/CN100393400C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及非对称多孔陶瓷微滤膜及其制备方法。用纳米金属氧化物纤维,代替目前通用的金属氧化物颗粒作过渡层和分离层膜材料,在以α-氧化铝多孔陶瓷为基体,制备高渗透率的非对称多孔陶瓷微滤膜。与对应的微米金属氧化物颗粒作过渡层和分离层膜材料制备的过渡层和分离层陶瓷微滤膜相比,在两者陶瓷基体厚度和平均孔径相同,过渡层和分离层浸渍涂膜次数相同,每次浸渍时间相同,膜厚度相差<10%,分离层的顶层平均孔径相差<5%情况下,前者平均纯水透水率比后者对应的高两倍以上。

Description

非对称多孔陶瓷微滤膜及其制备方法
技术领域
本发明涉及非对称多孔陶瓷微滤膜及其制备方法,用纳米金属氧化物纤维作过渡层和分离层的膜材料制备非对称多孔陶瓷微滤膜,与纳米或微米金属氧化物颗粒作过渡层和分离层的膜材料制备对应的陶瓷微滤膜相比,具有高的渗透率。
背景技术
与有机聚合物膜相比,无机膜具有耐高温、化学稳定性好、机械强度高、抗微生物能力强、使用寿命长等优点,因而近十多年来无机膜技术发展迅速,成为国际上膜技术研究与应用开发的热点。非对称多孔陶瓷滤膜用途较广和研发较多的无机膜。它的结构一般由三层构成:陶瓷基体即支撑体、过渡层即中间层和分离层即顶层。其制备成型方法陶瓷基体主要有固体颗粒烧结法,过渡层和分离层主要有悬浮粒子法、溶胶-凝胶法、化学气相沉积法、水热法等。所用制膜材料是颗粒状陶瓷或金属氧化物,常用的是颗粒状氧化铝。但这种非对称多孔陶瓷滤膜厚度较厚,一般大于2mm,这与厚度较薄的有机聚合物膜相比,在分离层孔径状况、分离对象和操作条件相同情况下,前者渗透率明显要低。所以如何提高非对称多孔陶瓷滤膜渗透率是一个重要研究课题,更是用于生产实践需要解决的问题。不同形态膜材料制备的金属膜(王同庆,金属纤维烧结毡在过滤与分离行业中的应用,过滤与分离,1998(4):35-38)过滤性能试验表明,金属纤维烧结毡过滤效率比金属粉末烧结滤材高2-5倍,孔隙率高2-10倍,这给高渗透率多孔陶瓷滤膜制备提出了启示:能否用金属氧化物纤维,特别是用纳米金属氧化物纤维作过渡层和分离层膜材料制备高渗透率非对称多孔陶瓷微滤膜。多种纳米金属氧化物纤维研制成功(ZL 02139370.2;ZL02139369.9;Gao Xueping et.al,Chem.Commun.,2004,1428-1429;Gao Xueping et.al,J.Phys.Chenm.B,2005,109,19169-19174),给高渗透率多孔陶瓷微滤膜制备创造了条件。
发明内容
本发明目的是提供一种非对称多孔陶瓷微滤膜及其制备方法,它是用纳米金属氧化物纤维作过渡层和分离层膜材料,制备非对称多孔陶瓷微滤膜。与纳米或微米金属氧化物颗粒作过渡层和分离层膜材料,制备对应的非对称陶瓷微滤膜相比,具有高的渗透率。因而更有利广泛用于生物制药、食品饮料、化工环保等行业领域。
本发明提供的非对称多孔陶瓷微滤膜,陶瓷基体的材质是α-氧化铝,它的外形是平板或管式或多通道,厚度2-4mm,孔径1.0-2.0μm;过渡层的材质是纳米金属氧化物纤维,层数1-5层,总厚度20-100μm,每层厚度20-30μm,所述过渡层的表层孔径0.7-1.0μm;分离层的材质是纳米金属氧化物纤维,层数1-2层,总厚度10-30μm,每层厚度10-20μm,所述分离层的顶层孔径100-500nm。
所述的过渡层的纳米金属氧化物纤维是铝、钛和铈纳米氧化物纤维中一种,或是它们的复合。
所述的分离层的纳米金属氧化物纤维是铝、钛和铈纳米氧化物纤维中一种,或是它们的复合。
所述的非对称多孔陶瓷微滤膜的制备方法经过下述的步骤:将直径20-35nm、径长比1∶10-60的纳米金属氧化物纤维分散在水中,在60-90℃下,加入HCl或HNO3分散剂,制成纳米金属氧化物纤维悬浮液,再加入增塑剂和粘结剂配成涂膜液,浸渍在陶瓷基体表面上,经干燥,焙烧,自然冷却,制成过渡层;将直径5-20nm、径长比1∶10-60的纳米金属氧化物纤维重复上述涂膜液的制备过程,再将新制备的涂膜液立即浸渍上述烧制的陶瓷基体过渡层上,经干燥,焙烧,自然冷却,制成分离层,得到非对称多孔陶瓷微滤膜。
所述的粘结剂为甲基纤维素或聚乙烯醇,增塑剂为聚乙烯醇或聚乙二醇。
所述涂膜液中纳米金属氧化物纤维含量1.0-2.5%(wt%),增塑剂和粘结剂总含量0.2-1.0%(wt%),增塑剂和粘结剂质量比1∶3-5。
所述的浸渍在陶瓷基体表面是单一纳米金属氧化物纤维悬浮液的涂膜液浸渍涂膜或是两种或两种以上纳米金属氧化物纤维混合悬浮液的涂膜液浸渍涂膜。
所述的非对称多孔陶瓷微滤膜的过渡层或分离层多孔膜干燥、焙烧过程是:在室温下凉干10-30小时后,以0.1-5℃/分钟速度升温至300-400℃,恒温2-3小时,继续以0.1-3℃/分钟速度升温至500-800℃,焙烧1-4小时,后自然冷却。
非对称多孔陶瓷滤膜中,一般陶瓷基体厚大于2mm,平均孔径1-10μm。过渡层和分离层总厚100μm左右,平均孔径在1000nm以下(微滤膜1000-100nm,超滤膜100-5nm,纳滤膜<5nm),所以陶瓷基体的孔径、孔隙率对非对称多孔陶瓷滤膜的渗透率有较大影响。由于陶瓷基体平均孔径较大,通常采取架桥法,用直径大于基体平均孔径的颗粒金属氧化物作膜材料涂膜,但大颗粒烧结困难,严重影响膜的强度,用较小颗粒作膜材料,在涂膜过程中易掉入基体孔中,堵死基体活性孔,降低非对称多孔陶瓷滤膜渗透率。本发明所用的纳米金属氧化物纤维一般直径5-35nm,有很高的径长比,选择纤维长度略大于基体平均孔径,用架桥法涂膜,形成三维迷宫式膜,不仅不易掉入基体孔中,而且纤维有更多接触点,在烧结时焊接在一起,与颗粒制膜相反,纤维制膜既增加膜的强度,也提高了渗透率。
为了比较,在相同条件下,用纳米γ-Al2O3纤维为膜材料制备非对称多孔陶瓷微滤膜(纤维)(见图1),用微米γ-Al2O3颗粒为膜材料制备非对称多孔陶瓷微滤膜(颗粒)(见图2),同时进行了性能测试。测试结果表明:两者陶瓷基体厚度和平均孔径相同,过渡层和分离层浸渍涂膜次数相同,每次浸渍时间相同,膜平均厚度相差<10%。顶层平均孔径相差<5%,非对称多孔陶瓷微滤膜(纤维)平均纯水透水率比非对称多孔陶瓷微滤膜(颗粒)高两倍以上。
用增重法测膜的平均厚度(黄培等,粒子烧结法制备氧化铝微滤膜,水处理技术,1996(3):129-133)。用泡压法和液体流速法测定非对称多孔陶瓷滤膜平均孔径和平均纯水透水率。
本发明是用纳米金属氧化物纤维,代替目前通用的金属氧化物颗粒作过渡层和分离层膜材料,制备高渗透率的非对称多孔陶瓷微滤膜,与纳米或微米金属氧化物颗粒作过渡层和分离层膜材料制备对应的过渡层和分离层非对称陶瓷微滤膜相比,具有高的渗透率,平均纯水透水率高两倍以上,更有利于广泛用于生物制药、食品饮料、化工环保等行业领域。
附图说明
图1为用纳米γ-Al2O3纤维为膜材料制备非对称多孔陶瓷微滤膜(纤维)的横断面SEM照片。
图2为用微米γ-Al2O3颗粒为膜材料制备非对称多孔陶瓷微滤膜(颗粒)的横断面SEM照片。
具体实施方式
各种纳米金属氧化物纤维通过水热法制备,具体制备方法参阅有关文献。纳米γ-Al2O3纤维:ZL 02139370.2;纳米水合二氧化钛纤维(TiO2·H2O):ZL 02139369.9;纳米氧化铈纤维:J.Phys.Chenm.B 2005,109,19169-19174。
以下实施例所用的非对称多孔陶瓷微滤膜过渡层多孔膜制备。基体是α-Al2O3陶瓷园片,直径40mm,厚4mm,平均孔径1.5μm。过渡层材质是纳米γ-Al2O3纤维,其制备方法是:将2克平均直径30nm、长1.5-1.7μm纳米γ-Al2O3纤维分散在无离子水中(两者质量比为2.0∶100),在85℃下,加入适量HNO3分散剂(H+/Al3+=0.04∶1),电磁搅拌4小时左右制成纳米γ-Al2O3纤维悬浮液,加入粘结剂甲基纤维素和增塑剂聚乙烯醇配成涂膜液,纳米γ-Al2O3纤维含量1.4%(wt%),增塑剂和粘结剂总量0.4%(wt%),增塑剂和粘结剂质量比1∶4。将制成涂膜液立即浸渍在陶瓷基体表面上,在室温下凉干15小时后,以0.5℃/分钟速度升温至350℃,恒温2小时,继续以1℃/分钟速度升温600℃,焙烧3小时,后自然冷却,制成过渡层多孔膜,膜平均厚度28μm,平均孔径0.8μm。
过渡层材质还可以是纳米二氧化钛纤维或纳米氧化铈纤维。
实施例1:非对称多孔γ-Al2O3陶瓷微滤膜制备
将2克平均直径20nm、长800-1000nm纳米γ-Al2O3纤维分散在无离子水中(两者质量比为2.0∶100),在85℃下,加入适量HNO3分散剂(H+/Al3+=0.04∶1),搅拌4小时左右制成纳米金属氧化物纤维悬浮液,加入粘结剂甲基纤维素和增塑剂聚乙烯醇配成涂膜液,纳米γ-Al2O3纤维含量1.4%(wt%),增塑剂和粘结剂总量0.4%(wt%),增塑剂和粘结剂质量比1∶4。将制成涂膜液立即浸渍在陶瓷基体过渡层(平均孔径0.8μm)表面上,在室温下凉干15小时后,以0.5℃/分钟速度升温至350℃,恒温3小时,继续以1℃/分钟速度升温至550℃,焙烧4小时,后自然冷却,制成分离层膜平均厚度20μm,平均孔径420nm的非对称多孔陶瓷微滤膜,平均纯水透水率18.5×10-2L/m2·h·Pa。
为了比较,制备非对称多孔陶瓷微滤膜颗粒状γ-Al2O3过渡层和分离层多孔膜。其制备方法是:(1)在加热(82℃)和高速搅拌下,使异丙醇铝充分水解形成勃姆石(即γ-AlOOH)沉淀。在100℃下烘干2小时后,以5℃/分钟速度升温至450℃,恒温3小时,制得γ-Al2O3粉体。将2克此γ-Al2O3分散在无离子水中(两者质量比为2.0∶100),在85℃下,加入适量HNO3分散剂(H+/Al3+=0.04∶1),电磁搅拌(300-400r/min)4小时左右制成粒径1.5-1.8μm左右的γ-Al2O3悬浮液,加入粘结剂甲基纤维素和增塑剂聚乙烯醇配成涂膜液,γ-Al2O3颗粒含量1.4%(wt%),增塑剂和粘结剂总量0.4%(wt%),增塑剂和粘结剂质量比1∶4。将制成涂膜液立即浸渍在α-Al2O陶瓷基体(园片直径40mm,厚4mm,平均孔径1.5μm)表面上,在室温下凉干15小时后,以0.5℃/分钟速度升温至350℃,恒温2小时,继续以1℃/分钟速度升温至600℃,焙烧3小时,后自然冷却,制成过渡层多孔膜,膜平均厚度26μm,平均孔径0.8μm。(2)将上述制得γ-Al2O3粉体,在相同条件下,电磁搅拌(800-900r/min)4小时左右,制成平均粒径0.8-1.0μm左右的γ-Al2O3悬浮液,配成涂膜液后,立即浸渍在上述制备好的陶瓷基体过渡层(平均孔径0.8μm)表面上,在室温下凉干15小时后,以0.5℃/分钟速度升温至350℃,恒温2小时,继续以1℃/分钟速度升温至550℃,焙烧3小时,后自然冷却,制成分离层膜平均厚度18μm,平均孔径400nm的非对称多孔陶瓷微滤膜,平均纯水透水率6.5×10-2L/m2·h·Pa。
图1和图2是实施例1两种对称多孔陶瓷微滤膜横断面SEM照片。可以看出非对称多孔陶瓷微滤膜横断面结构-基体和过渡层与分离层。同时明显看出颗粒γ-Al2O3进入基体孔中较多,纤维γ-Al2O3进入基体孔中很少。两者陶瓷基体厚度和平均孔径相同,过渡层和分离层浸渍涂膜次数相同,每次浸渍时间相同,膜厚度相差<10%,分离层顶层平均孔径相差<5%情况下,后者平均纯水透水率比前者高两倍以上。
实施例2:非对称多孔陶瓷Al2O3-TiO2复合微滤膜制备
将1.5克平均直径20nm、长800-900nm的纳米TiO2纤维,分散在无离子水中(两者质量比为1.5∶100),在85℃下,加入适量HNO3分散剂(H+/Ti4+=0.05∶1),电磁搅拌4小时左右,制成纳米TiO2纤维悬浮液,加入粘结剂甲基纤维素和增塑剂聚乙烯醇配成涂膜液,纳米TiO2纤维含量1.1%(wt%),增塑剂和粘结剂总量0.4%(wt%)。增塑剂和粘结剂质量比1∶4。将制成涂膜液立即浸渍在陶瓷基体过渡层(平均孔径0.8μm)表面上,在室温下凉干20小时后,以0.1℃/分钟速度升温至350℃,恒温2小时,继续以0.2℃/分钟速度升温至600℃,焙烧3小时,后自然冷却,制成分离膜平均厚度22μm,平均孔径420nm的非对称多孔陶瓷微滤膜,平均纯水透水率18.0×10-2L/m2·h·Pa。
实施例3:非对称多孔陶瓷Al2O3-CeO2复合微滤膜制备
将2.5克平均直径20nm、长850-1000nm的纳米CeO2纤维,分散在无离子水中(两者质量比为2.5∶100),在60-90℃下,加入适量HNO3分散剂(H+/Ce4+=0.05∶1),电磁搅拌4小时左右,制成纳米CeO2纤维悬浮液,加入粘结剂甲基纤维素和增塑剂聚乙烯醇配成涂膜液,纳米CeO2纤维含量2.0%(wt%),增塑剂和粘结剂总量0.6%(wt%)。增塑剂和粘结剂质量比1∶4。将制成涂膜液立即浸渍在陶瓷基体过渡层(平均孔径0.8μm)表面上,在室温下凉干20小时后,以0.1℃/分钟速度升温至350℃,恒温2小时,继续以0.1℃/分钟速度升温至550℃,焙烧3小时,后自然冷却,制成分离层膜平均厚度20μm,平均孔径410nm的非对称多孔陶瓷微滤膜,平均纯水透水率19.0×10-2L/m2·h·Pa。

Claims (8)

1.一种非对称多孔陶瓷微滤膜,陶瓷基体的材质是α-氧化铝,它的外形是平板或管式或多通道,厚度2-4mm,孔径1.0-2.0μm;其特征在于非对称多孔陶瓷微滤膜过渡层的材质是纳米金属氧化物纤维,层数1-5层,总厚度20-100μm,每层厚度20-30μm,所述的过渡层表层孔径0.7-1.0μm;分离层的材质是纳米金属氧化物纤维,层数1-2层,总厚度10-30μm,每层厚度10-20μm,所述的分离层顶层孔径100-500nm。
2.根据权利要求1所述的非对称多孔陶瓷微滤膜,其特征在于所述的过渡层的纳米金属氧化物纤维是纳米γ-氧化铝纤维、纳米氧化钛纤维和纳米氧化铈纤维中的一种,或是它们的复合。
3.根据权利要求1所述的非对称多孔陶瓷微滤膜,其特征在于所述的分离层的纳米金属氧化物纤维是纳米γ-氧化铝纤维、纳米氧化钛纤维和纳米氧化铈纤维中的一种,或是它们的复合。
4.权利要求1所述的非对称多孔陶瓷微滤膜的制备方法,其特征在于经过下述的步骤:将直径20-35nm、径长比1∶10-60的纳米金属氧化物纤维分散在水中,在60-90℃下,加入HCl或HNO3分散剂,制成纳米金属氧化物纤维悬浮液,再加入增塑剂和粘结剂,配成涂膜液,浸渍在陶瓷基体表面上,经干燥,焙烧,自然冷却,制成过渡层;将直径5-20nm、径长比1∶10-60的纳米金属氧化物纤维重复上述涂膜液的制备过程,再将新制备的涂膜液立即浸渍上述烧制的陶瓷基体过渡层上,经干燥,焙烧,自然冷却,制成分离层,得到非对称多孔陶瓷微滤膜。
5.根据权利要求4所述的非对称多孔陶瓷微滤膜制备方法,其特征在于所述的粘结剂为甲基纤维素或聚乙烯醇,所述的增塑剂为聚乙烯醇或聚乙二醇。
6.根据权利要求4所述的非对称多孔陶瓷微滤膜制备方法,其特征在于所述的非对称多孔陶瓷微滤膜的过渡层或分离层多孔膜干燥、焙烧过程是:在室温下凉干10-30小时后,以0.1-5℃/分钟速度升温至300-400℃,恒温2-3小时,继续以0.1-3℃/分钟速度升温至500-800℃,焙烧1-4小时,后自然冷却。
7.根据权利要求4所述的非对称多孔陶瓷微滤膜制备方法,其特征在于所述的浸渍在陶瓷基体表面是单一纳米金属氧化物纤维悬浮液的浸渍涂膜或是两种或两种以上纳米金属氧化物纤维混合悬浮液的浸渍涂膜。
8.根据权利要求4所述的非对称多孔陶瓷微滤膜制备方法,其特征在于所述涂膜液中纳米金属氧化物纤维质量百分比含量为1.0-2.5%,所述的增塑剂和粘结剂总含量的质量百分比为0.2-1.0%,增塑剂和粘结剂质量比1∶3-5。
CNB2006100146066A 2006-07-04 2006-07-04 非对称多孔陶瓷微滤膜及其制备方法 Expired - Fee Related CN100393400C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100146066A CN100393400C (zh) 2006-07-04 2006-07-04 非对称多孔陶瓷微滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100146066A CN100393400C (zh) 2006-07-04 2006-07-04 非对称多孔陶瓷微滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN1899680A CN1899680A (zh) 2007-01-24
CN100393400C true CN100393400C (zh) 2008-06-11

Family

ID=37655782

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100146066A Expired - Fee Related CN100393400C (zh) 2006-07-04 2006-07-04 非对称多孔陶瓷微滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN100393400C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785119B (zh) * 2014-01-18 2017-01-04 刘旭红 一种管式陶瓷滤芯及其制备方法
CN108246123B (zh) * 2018-03-30 2023-09-19 江苏赛瑞迈科新材料有限公司 一种用于净化焦化含硫污水的无机膜及其膜组件
CN110368820B (zh) * 2019-08-11 2021-10-19 景德镇陶瓷大学 一种喷涂淋浆涂膜装置以及平板型陶瓷超滤膜的制备方法
CN114797284B (zh) * 2022-04-20 2023-12-15 核建高温堆控股有限公司 纳米多孔镍复合膜的制备方法及纳米多孔镍复合膜

Also Published As

Publication number Publication date
CN1899680A (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
CN100391582C (zh) 非对称多孔陶瓷超滤膜及其制备方法
US9512041B2 (en) Ceramic membranes
US7699903B2 (en) Porous ceramic body and method for production thereof
Li et al. Zirconia ultrafiltration membranes on silicon carbide substrate: microstructure and water flux
CN100393400C (zh) 非对称多孔陶瓷微滤膜及其制备方法
CN108911706B (zh) 一种粉煤灰基陶瓷微滤膜的共烧结制备方法
Zhou et al. Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers
CN110252156B (zh) 一种金属复合陶瓷膜及其制备方法
CN111495209B (zh) 一种陶瓷膜及其制备方法
CN108585883A (zh) 微滤陶瓷膜及其制备方法
Qiao et al. Al-DTPA microfiber assisted formwork construction technology for high-performance SiC membrane preparation
CN112044285A (zh) 一种高通量陶瓷过滤膜及其制备方法
Khalili et al. Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
Vida-Simiti et al. Characterization of gradual porous ceramic structures obtained by powder sedimentation
CN101204637B (zh) 耐低浓度氢氟酸的多孔陶瓷过滤板及制造方法
CN110981453B (zh) 一种轻质陶瓷过滤膜的制备方法
TW200303234A (en) Composite membrane, its production and use
CN110577405A (zh) 双层陶瓷膜及其制备方法
JP2008238744A (ja) 多層型多孔質材料およびその製造方法
Ke et al. Metal oxide nanofibres membranes assembled by spin-coating method
CN108479419A (zh) 一种陶瓷膜及其制备方法
Benito et al. Preparation of multilayer ceramic systems for deposition of mesoporous membranes
CN111763095B (zh) 一种氧化锆晶须强化氧化锆陶瓷超滤膜及其制备方法
CN115180926B (zh) 煤基固废物-氧化铝复合陶瓷膜及其制备方法和应用
CN110898683B (zh) 一种陶瓷过滤膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080611

Termination date: 20150704

EXPY Termination of patent right or utility model