CN100389220C - Method for preparing intermediate alloy of aluminum, silicon and posphor - Google Patents

Method for preparing intermediate alloy of aluminum, silicon and posphor Download PDF

Info

Publication number
CN100389220C
CN100389220C CNB2005100448273A CN200510044827A CN100389220C CN 100389220 C CN100389220 C CN 100389220C CN B2005100448273 A CNB2005100448273 A CN B2005100448273A CN 200510044827 A CN200510044827 A CN 200510044827A CN 100389220 C CN100389220 C CN 100389220C
Authority
CN
China
Prior art keywords
master alloy
aluminium
intermediate alloy
silicon
accounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005100448273A
Other languages
Chinese (zh)
Other versions
CN1760392A (en
Inventor
刘相法
刘相俊
边秀房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CNB2005100448273A priority Critical patent/CN100389220C/en
Publication of CN1760392A publication Critical patent/CN1760392A/en
Application granted granted Critical
Publication of CN100389220C publication Critical patent/CN100389220C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to a method for preparing aluminium, silicon and phosphor intermediate alloy, of which the chemical composition is based on the quantity percentage of aluminium accounting for 60.0% to 85.0%, silicon accounting for 8.0% to 26.0%, phosphor accounting for 2.0% to 7.5%, cuprum accounting for 1.3% to 5.0%, nickel accounting for 0.6% to 4.0%, titanium accounting for 0.05% to 0.5% and carbon or boron accounting for 0.01% to 0.1%. The preparing steps comprise the preparation of industrial pure aluminium, the preparation of Si-15P intermediate alloy, the preparation of Si-20Ni-20P intermediate alloy, the preparation of low melting point Cu-20P-15Si intermediate alloy and the preparation of Al-5Ti-1C or Al-5Ti-1B intermediate alloy according to the proportion. The pure aluminium is melted to be with the temperature of 780 DEG C to 980 DEG C in a smelting furnace. Firstly, the Al-5Ti-1C or the Al-5Ti-1B intermediate alloy is added and after being stirred for 1 to 3 minutes, the Si-15P and the Si-20Ni-20P intermediate alloy are added. After 10 to 20-minute stirring, finally, the low melting point Cu-20P-15Si intermediate alloy is added and after full reaction and uniform stirring, an ingot is directly formed through casting.

Description

The preparation method of a kind of aluminium, silicon, phosphorus master alloy
One, technical field
The invention belongs to metal material field, particularly relate to a kind of polynary Al-Si-P master alloy that is used for refinement Al-Si-Cu-Ni piston alloy primary silicon and preparation method thereof.
Two, background technology
The method that general employing phosphorates in the industrial production is come the primary silicon in the refinement Al-Si-Cu-Ni piston alloy, mainly is to add the processing of going bad with red phosphorus, microcosmic salt or phosphorus-forms such as copper master alloy.But these methods all exist many shortcomings: the burning-point of red phosphorus is about 240 ℃, discharges a large amount of deleterious P during rotten the processing 2O 5Gas, serious environment pollution; Also there is problem of environmental pollution in microcosmic salt modification effect instability in the use; Phosphorus-copper master alloy density is big, fusing point is high, is leaving standstill under the stove melting condition, joins the easy precipitation in back, infusibilityization in the aluminium alloy melt, the modification effect instability, and make copper content increase in the alloy.Owing to have good structural similarity between silicon crystal itself and the AlP, can play the effect of solid phosphorus, and silicon is the main alloy element in the Al-Si-Cu-Ni piston alloy, and the silicon in polynary Al-Si-P master alloy and the Al-Si-Cu-Ni piston alloy, copper, nickel content are suitable.Therefore, when adopting polynary Al-Si-P master alloy that this multicomponent alloy is gone bad processing, can not cause the variation of other composition outside the dephosphorization, avoid the waste product that causes because of the chemical alloying off analysis.
Three, summary of the invention
The object of the present invention is to provide and a kind ofly can play efficient metamorphism the primary silicon in the Al-Si-Cu-Ni piston alloy, pollution-free, easy to use, and the preparation method of a kind of aluminium with low cost, silicon, phosphorus master alloy.
The present invention is achieved by the following technical solutions:
This polynary Al-Si-P master alloy, its chemical ingredients mass percent is: aluminium 60.0-85.0%, silicon 8.0-26.0%, phosphorus 2.0-7.5%, copper 1.3-5.0%, nickel 0.6-4.0%, titanium 0.05-0.5%, carbon or boron 0.01-0.1%.
Wherein, phosphorus is distributed on the aluminum substrate with the aluminium phosphide form in this master alloy, and aluminium phosphide and silicon crystal all belong to the diamond lattice structure.Therefore, aluminium phosphide can serve as the heterogeneous central role of primary silicon, thereby primary silicon is played metamorphism.Phosphorus adds with three kinds of rich phosphorus alloy intermediate forms, is accompanied by to have added silicon, copper, nickel element, and they are main alloy element of Al-Si-Cu-Ni piston alloy, all play the effect of reinforced aluminum matrix.Titanium and boron exist with the TiB2 form, add by Al-5Ti-1B master alloy form; Titanium and carbon exist with the titanium carbide compound form, are to add by Al-5Ti-1C master alloy form.TiB2 and titanium carbide play the effect of phosphor-curing agent in the Al-Si-P master alloy, further improve the phosphorus content in the Al-Si-P master alloy.
The preparation method of above-mentioned polynary Al-Si-P master alloy, realize by following steps:
(1) takes by weighing raw material by commercial-purity aluminium 50.40~84.04%, Al-5Ti-1C or Al-5Ti-1B master alloy 1~10%, Si-15P master alloy 7~15%, Si-20Ni-20P master alloy 3.0~20.0%, low melting point Cu-20P-15Si master alloy 2.0~7.7% mass ratioes.
(2) in smelting furnace, fine aluminium is melted to 780~980 ℃, at first adds Al-5Ti-1C or the Al-5Ti-1B master alloy that has taken by weighing, stirred 1-3 minute; Add Si-15P and Si-20Ni-20P master alloy simultaneously, and stirred 10-20 minute; Add low melting point Cu-20P-15Si master alloy at last, stir after reaction finishes.
(3) direct casting ingot-forming.
This master alloy has that fusing point is low, add-on is little, advantages such as modification effect is good, stable and long-acting, add-on less than 0.5% situation under, the size that can make the primary silicon in the Al-Si alloy is a kind of novel high-efficiency environment friendly type alterant by refineing to below the 30 μ m more than the 150 μ m.
Four, embodiment
Provide several preferred example of the present invention below.
Embodiment 1
(1) takes by weighing raw material by commercial-purity aluminium 72%, Al-5Ti-1C master alloy 5%, Si-15P master alloy 10%, Si-20P-20Ni master alloy 8%, low melting point Cu-20P-15Si master alloy 5% mass percent.
(2) in smelting furnace, fine aluminium is melted to 820~850 ℃, adds the Al-5Ti-1C master alloy that has taken by weighing, stirred 2 minutes; Add Si-15P and Si-20Ni-20P master alloy simultaneously, and stirred 15 minutes; Add low melting point Cu-20P-15Si master alloy at last, stir after reaction finishes.
(3) direct casting ingot-forming.
Obtain a kind of polynary Al-Si-P master alloy of optimal components according to said ratio and technology, the mass percent of its chemical ingredients is: phosphorus 3.8-4.1, and silicon 13.8-14.5, copper 3.1-3.3, nickel 1.5-1.7, titanium 0.23-0.27, carbon 0.04-0.06, all the other are aluminium.
Embodiment 2
(1) takes by weighing raw material by commercial-purity aluminium 72%, Al-5Ti-1B master alloy 5%, Si-15P master alloy 10%, Si-20P-20Ni master alloy 8%, low melting point Cu-20P-15Si master alloy 5% mass percent.
(2) in smelting furnace, fine aluminium is melted to 820~850 ℃, adds the Al-5Ti-1B master alloy that has taken by weighing, stirred 2 minutes; Add Si-15P and Si-20Ni-20P master alloy simultaneously, and stirred 15 minutes; Add low melting point Cu-20P-15Si master alloy at last, stir after reaction finishes.
(3) direct casting ingot-forming.
The polynary Al-Si-P master alloy of producing, the mass percent of its chemical ingredients is: phosphorus 3.8-4.1, silicon 13.8-14.5, copper 3.1-3.3, nickel 1.5-1.7, titanium 0.23-0.27, boron 0.04-0.06, all the other are aluminium.
Embodiment 3
According to adding technology and the melting method of embodiment 1, different is that proportioning raw materials and smelting temperature change.Its proportioning raw materials is: commercial-purity aluminium 52%, Al-5Ti-1C master alloy 9%, Si-15P master alloy 14%, Si-20Ni-20P master alloy 18%, low melting point Cu-20P-15Si master alloy 7% mass ratio take by weighing raw material.Its smelting temperature is: 940-970 ℃.The polynary Al-Si-P master alloy of producing, the mass percent of its chemical ingredients is: phosphorus 7.0-7.2, silicon 23.2-23.8, copper 4.4-4.6, nickel 3.5-37, titanium 0.43-0.46, boron 0.08-0.10, all the other are aluminium.
Embodiment 4
According to adding technology and the melting method of embodiment 2, different is that proportioning raw materials and smelting temperature change.Its proportioning raw materials is: commercial-purity aluminium 82%, Al-5Ti-1C master alloy 2%, Si-15P master alloy 9%, Si-20Ni-20P master alloy 4%, low melting point Cu-20P-15Si master alloy 3% mass ratio take by weighing raw material.Its smelting temperature is: 790-810 ℃.The polynary Al-Si-P master alloy of producing, the mass percent of its chemical ingredients is: phosphorus 2.6-2.8, silicon 10.0-10.5, copper 1.8-2.0, nickel 0.7-0.9, titanium 0.04-0.06, boron 0.008-0.012, all the other are aluminium.

Claims (1)

1. the preparation method of an aluminium, silicon, phosphorus master alloy, comprise aluminium, silicon, phosphorus, copper, nickel and titanium elements, it is characterized in that also contain carbon or boron, the mass percent of each component is: aluminium 60.0-85.0%, silicon 8.0-26.0%, phosphorus 2.0-7.5%, copper 1.3-5.0%, nickel 0.6-4.0%, titanium 0.05-0.5%, carbon or boron 0.01-0.1%; Its method steps is as follows:
(1) mass ratio by commercial-purity aluminium 50.40~84.04%, Al-5Ti-1C or Al-5Ti-1B master alloy 1~10%, Si-15P master alloy 7~15%, Si-20Ni-20P master alloy 3.0~20.0%, low melting point Cu-20P-15Si master alloy 2.0~7.7% takes by weighing raw material
(2) in smelting furnace, fine aluminium is melted to 780 ℃~980 ℃, at first adds Al-5Ti-1C or the Al-5Ti-1B master alloy that has taken by weighing, after stirring 1-3 minute; Add Si-15P and Si-20Ni-20P master alloy more simultaneously, and stirred 10-20 minute; Add low melting point Cu-20P-15Si master alloy at last, directly casting ingot-forming of back reacts completely and stirs.
CNB2005100448273A 2005-09-28 2005-09-28 Method for preparing intermediate alloy of aluminum, silicon and posphor Active CN100389220C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100448273A CN100389220C (en) 2005-09-28 2005-09-28 Method for preparing intermediate alloy of aluminum, silicon and posphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100448273A CN100389220C (en) 2005-09-28 2005-09-28 Method for preparing intermediate alloy of aluminum, silicon and posphor

Publications (2)

Publication Number Publication Date
CN1760392A CN1760392A (en) 2006-04-19
CN100389220C true CN100389220C (en) 2008-05-21

Family

ID=36706612

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100448273A Active CN100389220C (en) 2005-09-28 2005-09-28 Method for preparing intermediate alloy of aluminum, silicon and posphor

Country Status (1)

Country Link
CN (1) CN100389220C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613820B (en) * 2009-07-15 2010-11-03 山东大学 Aluminum-zirconium-phosphorus master alloy and preparation method thereof
CN103290271B (en) * 2013-07-01 2014-12-24 山东大学 Aluminum-titanium-phosphorus-carbon-boron intermediate alloy and preparation method thereof
CN116024460B (en) * 2022-12-29 2024-04-30 承德天大钒业有限责任公司 Nickel-phosphorus-boron intermediate alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261390B1 (en) * 2000-05-15 2001-07-17 Hsien-Yang Yeh Process for nodulizing silicon in casting aluminum silicon alloys
CN1317590A (en) * 2001-01-04 2001-10-17 山东大学 Al-P-Cu intermediate alloy and its preparing process
CN1410565A (en) * 2002-11-25 2003-04-16 山东大学 Aluminium-phosphorus intermediate alloy and its preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261390B1 (en) * 2000-05-15 2001-07-17 Hsien-Yang Yeh Process for nodulizing silicon in casting aluminum silicon alloys
CN1317590A (en) * 2001-01-04 2001-10-17 山东大学 Al-P-Cu intermediate alloy and its preparing process
CN1410565A (en) * 2002-11-25 2003-04-16 山东大学 Aluminium-phosphorus intermediate alloy and its preparation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Al-P中间合金在Al-Si活塞合金中的应用. 刘相法等.特种铸造及有色合金,第06期. 2002
Al-P中间合金在Al-Si活塞合金中的应用. 刘相法等.特种铸造及有色合金,第06期. 2002 *

Also Published As

Publication number Publication date
CN1760392A (en) 2006-04-19

Similar Documents

Publication Publication Date Title
CN103205614B (en) A kind of production technique of 6063 aluminum alloy materials
CN101591746B (en) Grain refinement and modification master alloy for aluminum and aluminum alloy and method for preparing same
CN102424924B (en) WN2 and LiBH4 powder added high-strength aluminum alloy and preparation method thereof
CN101220432A (en) Cerium lanthanum containing high-strength anti-corrosion die-casting magnesium alloy
CN102534312A (en) Aluminum-lanthanum-cerium-phosphorus intermediate alloy and preparation method thereof
CN100389220C (en) Method for preparing intermediate alloy of aluminum, silicon and posphor
CN102329998B (en) Aluminium-magnesium-phosphorus intermediate alloy and preparation method thereof
CN102433472B (en) High strength aluminium alloy and smelting and casting methods thereof
CN106591637A (en) Aluminum-niobium-boron intermediate alloy and preparation method thereof
CN102134673A (en) High-toughness heat-resistant corrosion-resistant rare earth magnesium alloy and preparation method thereof
CN101838759A (en) 4032 alloy alterant and use method thereof
CN101368237B (en) Process for producing silicon particle reinforced zinc based composite material
CN102534310B (en) High-strength aluminum alloy doped with Mo2C and MgH2 and preparation method thereof
CN100389219C (en) Nickel-silicon-boron intermediate alloy and process for preparing same
CN100443606C (en) Silicon-base interalloy and its prepn process
CN102517475B (en) ZrC-doped high strength aluminum alloy and preparation method thereof
CN102560200A (en) Aluminum-titanium-iron-carbon-boron intermediate alloy and preparation method thereof
CN110093524A (en) A kind of silumin alterant and its application method
CN106834769A (en) A kind of aluminium yttrium boron intermediate alloy and preparation method thereof
CN102433469B (en) Smelting method of aluminium alloy co-dissolved with VC
CN102888524B (en) Copper-strontium-phosphorus alloy modifier for aluminum-silicon alloy and production technique thereof
CN102505084B (en) High-strength aluminum alloy added with TaC and preparation method for high-strength aluminum alloy
CN102433471A (en) High-toughness aluminum alloy and preparation method thereof
CN101709417B (en) Magnesium base in-situ composite and preparation method thereof
CN117248140B (en) Aluminum-molybdenum intermediate alloy for aerospace-grade titanium alloy and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20060419

Assignee: Linyi step alloy materials Co., Ltd.

Assignor: Shandong University

Contract record no.: 2015370000032

Denomination of invention: Method for preparing intermediate alloy of aluminum, silicon and posphor

Granted publication date: 20080521

License type: Common License

Record date: 20150312

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model