CN100386585C - Thin fin type heat exchanger - Google Patents

Thin fin type heat exchanger Download PDF

Info

Publication number
CN100386585C
CN100386585C CNB038041995A CN03804199A CN100386585C CN 100386585 C CN100386585 C CN 100386585C CN B038041995 A CNB038041995 A CN B038041995A CN 03804199 A CN03804199 A CN 03804199A CN 100386585 C CN100386585 C CN 100386585C
Authority
CN
China
Prior art keywords
heat exchanger
plate
fin
backing plate
cover plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038041995A
Other languages
Chinese (zh)
Other versions
CN1636126A (en
Inventor
艾伦·K·吴
迈克尔·A·马丁
斯蒂芬·A·比奇
迈克尔·E·戴维斯
托马斯·F·塞勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dana Canada Corp
Original Assignee
Dana Canada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana Canada Corp filed Critical Dana Canada Corp
Publication of CN1636126A publication Critical patent/CN1636126A/en
Application granted granted Critical
Publication of CN100386585C publication Critical patent/CN100386585C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0087Fuel coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0092Radiators with particular location on vehicle, e.g. under floor or on roof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant

Abstract

Low profile heat exchanger (10) including a fin plate (5) having opposite facing first and second sides (40, 42) and including a plurality of spaced apart elongate fins (44) that extend outward from the first side and define a plurality of elongate passages (50) that are open facing on the second side, and a flat container having spaced apart cover and shim plates (18, 14) sealably joined about peripheral edges thereof and defining a fluid conducting chamber (24), the container having an inlet opening (28) and an outlet opening (30) in communication with the fluid conducting chamber (24) to permit a fluid to pass into, through, and out of the fluid conducting chamber, wherein the first side (40) of the fin plate is mounted to the shim plate (14) to permit thermal transfer therebetween and the second side (42) of the fin plate is exposed.

Description

Slim finned heat exchanger
Technical field
The present invention relates to a kind of slim finned heat exchanger that is used for cooling fluid.
Background technology
Slim heat exchanger is generally used in the very low application of head room, for example is installed in the fuel cooler at the bottom of the car on the mud box cooler of snowmobile, the automobile.One type of known slim heat exchanger comprises the shutter board that is exposed in air stream, snow and the general residue, and wherein coiled pipe is installed on the plate and passes this plate to and fro.Need the fluid of cooling this coiled pipe of flowing through.The slim heat exchanger of another kind of known type comprises the fin of horizontal expansion, the whole compacting of the roof of itself and wall and diapire forms, wall connects the cavity of suppressing back sealing closure on relative end to be limited to along relative lateral margin, thereby forms the fluid cooled containers.
Known slim heat exchanger relatively heaviness and manufacturing expense is higher relatively.Therefore, just need the relatively low a kind of slim heat exchanger of lightweight and manufacturing expense.But also wish the size of this slim heat exchanger with respect to it, can have improved fluid temperature reduction performance.
Summary of the invention
Slim heat exchanger comprises fin plate, it comprises towards the first opposite side and second side, first end and second end, also comprise a plurality of elongated fins that separate, described fin extends from second side, and limits the outer and a plurality of elongated air duct lead to described second end from described first end by second side direction; Each fin is the vertical row who has for the horizontal convolution of U-shaped, and fin is arranged on the fin plate, and at least some convolutions with respect to other convolutions among the row lateral shift have taken place along row among every row; And slim container, it has cover plate and the backing plate that couples together round their neighboring, cover plate and backing plate define a diversion cavity, container has the entrance and exit that is communicated with described chamber, wherein second side of fin plate and described fin are exposed to the outside, thereby in the process of using described heat exchanger, make air flow through described second side and described fin, described cover plate has been equipped with the monoblock type lateral margin around its neighboring, lateral margin towards described backing plate extend and sealed welding to backing plate; Wherein, thus described fin plate first side is soldered to carries out exchange heat between slim container and fin plate on the backing plate.
Description of drawings
By example the preferred embodiments of the present invention are described below with reference to the accompanying drawings.
Fig. 1 is the decomposition diagram of heat exchanger according to an embodiment of the invention.
The cross-sectional view that Fig. 2 cuts open for the line II-II in Fig. 1.
Fig. 3 is the bottom plan view of heat exchanger among Fig. 1.
Fig. 4 is the enlarged perspective of the turbulent flow reinforcement plate in the heat exchanger that shows Fig. 1.
Fig. 5 is for being marked the partial enlarged drawing of part by circle 5 among Fig. 4.
Fig. 6 is the plane of the turbulent flow reinforcement plate among Fig. 4.
Fig. 7 is the top plan view of heat exchanger among Fig. 1.
Fig. 8 is the top plan view of the backing plate that uses in heat exchanger embodiments.
The cross-sectional view that Fig. 9 cuts open for the line IX-IX in Fig. 8.
Figure 10 is the top plan view of the framework shield plates that uses in heat exchanger embodiments.
The cross-sectional view that Figure 11 cuts open for the line XI-XI in Figure 10.
Figure 12 is the top plan view of heat exchanger in accordance with another embodiment of the present invention.
The cross-sectional view that Figure 13 cuts open for the line X III-X III in Figure 12.
Figure 14 is the bottom plan view of heat exchanger among Figure 12.
Figure 15 is the bottom plan view of the another kind of fin plate that uses together with heat exchanger embodiments of the present invention.
Figure 16 is the side view of the fin plate among Figure 15.
Figure 17 is the bottom plan view of another fin plate.
Figure 18 is the top plan view of the another kind of cover plate that uses together with heat exchanger of the present invention.
Figure 19 is the top plan view according to another embodiment of heat exchanger of the present invention.
The cross-sectional view that Figure 20 cuts open for the line XX-XX in Figure 19.
Figure 21 is the decomposition diagram according to another embodiment of heat exchanger of the present invention, the heat exchanger assembling partial cross section view partly that Figure 21 A cuts open for the line IA-XXIA in Figure 21.
Figure 22 is the top plan view of heat exchanger in accordance with another embodiment of the present invention.
The cross-sectional view that Figure 23 A-23C cuts open for the line XXIII-XXIII in Figure 22, wherein every figure demonstrates several different may the making up of cover plate according to the present invention and backing plate respectively.
Figure 24 is the top plan view of heat exchanger in accordance with another embodiment of the present invention.
The cross-sectional view that Figure 25 cuts open for the line XXV-XXV in Figure 24.
Figure 26 is the side view of the heat exchanger among Figure 24.
The specific embodiment
Please refer to Fig. 1 below, according to a preferred embodiment of the invention, Fig. 1 has shown mainly the exploded view of the heat exchanger that is marked by Reference numeral 10.Heat exchanger 10 comprises bottom fin plate 12, backing plate 14, turbulent flow reinforcement plate 16 and cover plate 18.Demonstrate the mode of these plates among Fig. 1, yet this only is for illustrative purposes for vertically arranging.Heat exchanger can also be arranged to the direction of any hope.
With reference to figure 1 and Fig. 2, cover plate 18 limits a flat and thin container that comprises inner diversion cavity 24 with backing plate 14.Cover plate 18 comprises the central flat face 20 that is essentially rectangle in the embodiment shown.Lateral margin 22 is equipped to all four neighborings round central flat face 20.Lateral margin 22 extends to provide round the continuous side walls of diversion cavity 24 to backing plate 14, and wherein diversion cavity 24 is limited between cover plate 18 and the backing plate 14.Preferred outward extending flange connector 26 is arranged on the bottom margin of the opposed wall of at least one pair of of lateral margin 22 portion.Each flange connector 26 have with backing plate 14 in abutting connection with and the plane 27 that is fixed to the upper.
The a pair of fluid openings 28 and 30 that penetrates central flat facial 20 and be communicated with diversion cavity 24 is provided, and one is as fluid intake, and another is as fluid issuing.In one embodiment, provide tubular accessory 32 and 34 for opening 28 and 30 with fluid passage.Accessory 32 and 34 comprises accessory is connected to collar flange 36 on the cover plate 18 hermetically.
In a preferred embodiment, cover plate 18 has consistent structure, by forming through the copper facing aluminium alloy of rolling and forming or punching press.
Backing plate 14 is a flat board just, and this flat board comprises two planar side, and its midplane one side is towards the inboard of the central flat face 20 of cover plate 18, and opposite plane opposite side 37 is towards fin plate 12 and be connected on the fin plate 12.Backing plate 14 is essentially rectangle in the embodiment shown, and the area of coverage of the area of coverage that it has and cover plate 18 about equally.Backing plate 14 is made by copper-plated aluminium sheet or aluminium alloy plate in a preferred embodiment.
In a preferred embodiment, fin plate 12 has the structure of the unanimity that is formed by the compacting of aluminium or aluminium alloy.Fin plate 12 comprises the flat supporting walls 38 with two planar side, and its midplane one side 40 is towards backing plate 14 and be fixed on the backing plate, and has been equipped with a plurality of parallel elongated fins 44 on opposite plane opposite side 42.Having the mounting flange that tightens up opening 48 46 that penetrates above can arrange along the opposite side edges of supporting walls 38, thereby heat exchanger can be installed on the surface.
Referring to figs. 2 and 3, each fin 44 basically all from an end of supporting walls 38 to the other end, thereby limit elongated passageway 50 between them.Be open towards the side away from the direction of backing plate 14 in the fin plate 12, fin 44 and passage 50 just are exposed to the outside like this, just can flow through passage 50 and flow through fin 44 of air when therefore using.In other application, other material for example water, snow and other residue can be shed on the fin and passage that exposes.In heat exchanger as Figure 1-3, fin 44 is that each all extends the straight sheet of same distance from the outerplanar side 42 of fin supporting walls 38 with vertical angle, and fin extends to the relative other end from an end of heat exchanger.
Turbulent flow reinforcement plate 16 is arranged in diversion cavity 24 strengthening flowing of wherein fluid, thereby improves the radiating efficiency of fluid.With reference to figure 4,5,6 and 7, in a preferred embodiment, turbulent flow reinforcement plate 16 is promptly formed by the aluminium of process rolling and forming or punching operation by expanded metals.On turbulent flow reinforcement plate 16, be equipped with the horizontally-arranged convolution 64 that staggers or be shifted.Convolution has flat bottom and top 66, thus with cover plate 18 and backing plate 14 can good combination; But if desired, they also can have circular top or sinusoidal wave structure.The part of one of horizontally-arranged convolution 64 is by compression or rolling and forming or be crimped onto and form cupping transverse curl portion 68 and 69 (comprise that this used curling curling, punching press, rolling and forming or other draw the method for the convolution of turbulent flow reinforcement plate 16 in) together. Curled portion 68 and 69 is formed for suppressing the mobile barrier 62 that is short-circuited in the diversion cavity 24.Barrier 62 makes and dots among Fig. 7, and barrier 62 is between fluid openings 28 and 30, thereby the fluid that an opening from opening 28 or 30 enters just can not pass convolution 64 simply to come out from another fluid openings 30 or 28 through the straight line path, but must be through circuitous path.In the illustrated embodiment that two openings 28 and 30 is placed contiguous common port 60 places, barrier 62 extends to from the point 72 of the relative other end 58 beginnings of heat exchanger 10 from contiguous common port 60, thereby quite a few that flows to fluid the chamber 24 from opening 28 is before coming out from chamber 24 by opening 30, must be flow in the U-shaped route of point 72 (opening 28 be inlets in this case, and opening 30 is outlets) by arrow 74 expression.In a preferred embodiment, cover plate 18 and backing plate 14 are formed by copper-plated aluminium, heat exchanger 10 forms according to the order of Assembly part among Fig. 1, all parts are clipped together, in soldering oven, the parts after the assembling are heated then, thereby the lower end around it with cover sidewall flange 22 is soldered on the backing plate 14 hermetically, and turbulent flow reinforcement plate 16 just is clipped between cover plate 18 and the backing plate 14, also cover plate 14 is soldered on the supporting walls 38 of fin plate 12 in addition.In some applications, can use welding to replace soldering and parts are linked together.For some embodiment, can also use other metal material of steel for example and nonmetal polymeric material to form some or all parts of heat exchanger.The polymeric material parts can be by adding heat bonding, ultrasonic bonds, being bonded together by adhesive or alternate manner.
Heat exchanger 10 can serve as the slim equipment of the fluid that is used for the diversion cavity that cool stream limited via cover plate 18 and backing plate 14 very expediently, and wherein the heat of fluid passes on the fin 44 of exposure, and fin 44 is cooled off by the air there of flowing through.In some applications, also use other material of shedding on the fin for example to avenge the fin 44 of helping cool off exposure with water.For example, heat exchanger 10 can also be used as the engine coolant cooler of snowmobile, perhaps in the fuel cooler that is used as on the automobile at the bottom of being installed in car, but the not exhaustive intact all possible application of these examples.
Obtain corresponding long backing plate 14 and cover plate 18 by suppressing longer fin plate 12 and rolling and forming, just can relatively easily make heat exchanger 10 with different size.Have integrally formed lateral margin 22 though above-mentioned cover plate 18 is described as, also can use independently sidewall in certain embodiments.In addition, backing plate 14 can omit in certain embodiments, and the upper side of supporting walls 38 just is in the diapire that serves as diversion cavity 24 on the position of backing plate.Though the heat exchanger 10 that illustrates is rectangle, it also can have other difformity, and for example it can be circular disk-like structure in certain embodiments.
In diversion cavity 24, can use the turbulizer or the flow enhancement means of number of different types, and also can omit turbulent flow reinforcement plate 16 in certain embodiments.Also can use the short circuit barrier that is different from the barrier 62 that curls in certain embodiments.In this, Fig. 8 and Fig. 9 have shown another backing plate 78 of the backing plate 14 that can replace in the heat exchanger 10.Backing plate 78 has elongated central dividing walls 80, and dividing walls 80 laterally extends upwardly to cover plate 18 (not shown Fig. 8) from backing plate 78 edges.Dividing walls 80 be arranged in the fluid openings 28 that penetrated cover plate 18 and 30 residing positions (two positions by the dotted line 28 of Fig. 8 ', 30 ' shown in) between, dividing walls makes the fluid in the chamber 24 flow through by shown in the arrow 82 and non-directional U-shaped path like this.Preferred dividing walls 80 is formed by the part of backing plate 78, at first carry out die forging along three lateral margins, to upwards turn over the 4th lateral margin that backing plate 78 remainders still keep being connected then, stay the rectangular aperture 84 that has penetrated backing plate 78 and sealed obstruction by supporting walls 38 at last.Independently the turbulent flow reinforcement plate can place the opposite side of dividing walls 80.
As shown in Figure 10 and Figure 11, in another embodiment of heat exchanger 10, framework flow distribution plate 86 can substitute the turbulent flow reinforcement plate 16 between backing plate 15 and the cover plate 18. Fluid openings 28 and 30 with respect to the position of framework flow distribution plate 86 by the dotted line among Figure 10 28 ', 30 ' shown in.Framework flow distribution plate 86 comprises outer rectangular frame 88, and the size of its middle frame 88 is decided to be and enables very suitably to be contained in the lateral margin 22 of cover plate 18.Framework flow distribution plate 86 comprises the height H consistent with the height of diversion cavity 24 (seeing Figure 11), also comprises alternately and substantially parallel dividing walls 90,92.Dividing walls 90 from close first end wall 94 of opening 28,30 extend to relative end wall 96 near.Dividing walls 92 alternately from relative end wall 96 extend to first end wall 94 near, dividing walls 90,92 jointly limits and passes the serpentine flow path of diversion cavity 24 like this, (supposes that opening 28 is the high pressure opening) shown in the flow arrows among Figure 10 98.In another embodiment, for example the dividing walls that provides by framework flow distribution plate 86 also can by on the backing plate 14 or on the cover plate 18 or the protrusion rib that forms on both provide, protrusion rib on many application cover plate and/or backing plate is preferably independently flow distribution plate, because can reduce the part count that needs assembling like this.Hereinafter shown the multiple example that is suitable for the protrusion covering plate structure of heat exchanger 10 uses.
In some applications, wish to use the fin plate lighter than the fin plate 12 of compacting.With reference to figure 12-14, show another embodiment according to the slim heat exchanger of other preferred embodiment of the present invention, wherein heat exchanger is mainly marked by Reference numeral 100.Heat exchanger 100 is similar to heat exchanger 10, except several difference that will become apparent by following description.Heat exchanger 100 has and substantially is the area of coverage of rectangle, and can be found out best by Figure 13, and it is similar to heat exchanger 10, the lamination of being made up of fin plate 102, backing plate 104 and cover plate 106.In the embodiment shown, cover plate 106 comprises by adding flank 108 through rolling and forming or the copper-plated aluminium of punching press or the rectangle central plane that aluminium alloy forms.Lateral margin 110 extends to backing plate 104 round the neighboring of central flat face 108, and wherein the eversion edge 112 of lateral margin 110 has the planar portions that also is connected thereto hermetically towards backing plate 104.The backing plate 104 of heat exchanger 100 and cover plate 106 limit the diversion cavity 113 between them jointly, diversion cavity 113 comprises the fluid path that is between the first fluid opening 114 and second fluid openings 116, and wherein two openings penetrate cover plate 106 and are arranged on two relative corners on cover plate 106 diagonal.Fluid openings 114 and one of 1116 is for to enter the inlet of diversion cavity 113, and another is fluid issuing.In the embodiment shown, all be equipped with corresponding accessory 122 on each opening 114,116, wherein accessory is soldered on the cover plate 106 and has with the plane parallel of central portion 108 and penetrate the fluid passage of cover plate.
Rib 118 and 120 is shunted in alternately protruding of forming in the central portion 108 of cover plate 106, and the fluid path between the opening 114,116 is separated into snakelike path back and forth.Specifically, near the parallel rib 118 that separates extends to cover plate opposite end 126 from first end 124 of cover plate 106, and keeping distance with end 126.Parallel rib 120 alternately from hold 126 extend to first end 124 near, and keeping distance with first end 124.Can find out best by Figure 13, each rib 118,120 comprises a pair of relative elongate side wall 128, wherein this oppose side wall 128 couples together by planar portions 130 along the edge edge away from axis, and planar portions 130 has the plane surface that is used for forming with backing plate 104 good combination.
Support 132 can be soldered on the cover plate 108 so that heat exchanger 100 can be fixed in position.Support 132 shown in Figure 12 and 13 all has substantially and is the centerbody of rectangle, and that part that extends beyond cover plate on the centerbody has the installing hole 134 that penetrates.The size design of the carriage center body 132 on the cover plate 108 becomes to enable to extend through between two adjacent ribs 120 and 118, preferred carriage center body 132 comprises the opposed wing 136, thus the wing 136 put in help in rib 120 and 118 support 132 fixing in position.In some applications, because the light structures of heat exchanger, can heat exchanger be supported well, like this with regard to the support that do not need to add by using pipe to be connected on the entrance and exit accessory.
Backing plate 112 only is a flattened rectangular plate that is formed by copper-plated aluminium or aluminium alloy.Fin plate 102 is installed in the backing plate 112 on the side opposite with diversion cavity 113, be used for absorbing heat from diversion cavity, and fin is essentially rectangle, and has covered whole backing plate substantially.One side of fin plate 102 is installed on the backing plate 104, and opposite opposite side is exposed to the outside.Can find out best by the cross-sectional view of Figure 13 and the bottom plan view of Figure 14, fin plate 102 comprises a plurality of elongate hollow fins 138 that separate, wherein fin 138 is stretched out by backing plate 104, and the length of fin equals the length of backing plate, and each fin 138 is formed by the wall that is U-shaped substantially.Fin 138 limits a plurality of open type air ducts 140 that separated by the enclosed passage 142 in each fin 138.The transverse end of fin plate 102 can be opened, so enclosed passage 142 can be opened on its opposite end.Each U-shaped fin 138 is connected on the adjacent fin by the plane connecting wall 144 that is soldered on the backing plate 104.In fact, U-shaped fin plate 38 and connecting wall 144 have formed square wave jointly.As can be seen from Figure 14, fin 138 has identical size, thereby but but has mild wavy curve to help to break the boundary layer of all air wherein of flowing through along their length direction.Fin 138 be preferably lightweight and by aluminium or aluminium alloy by rolling and forming or be stamped to form.In the embodiment shown, the alternately open type with essentially identical cross-sectional area also can have different relative areas according to situation about using with enclosed air duct 140,142.And, also can use fin with other side, for example can use fin with V-arrangement side.
Figure 15 has shown the example of another fin plate structure 146, and it can be used in the downside of the backing plate 14,104 of heat exchanger 10,100.Fin plate 146 is soldered to first side 146 on the backing plate and is exposed to the opposite side 150 of outside.A plurality of open type air ducts 152 extend to the other end 156 of fin 146 from first end 154 between elongated fin structure, wherein this structure is made of the horizontally-arranged convolution 158 that staggers or be shifted.Convolution has flat top 160, is used for forming good binding with backing plate 14,104; But if desired, they also can have circular top or sinusoidal wave structure.In a preferred embodiment, fin plate 146 is promptly formed by the aluminium through rolling and forming or punching operation by expanded metals.
Figure 17 has shown the upward view of the fin plate structure that another is possible.The fin plate 162 of Figure 17 is arranged to Pacific herring bone pattern back and forth, and wherein fin plate 162 is identical with fin plate 102, except that the U-shaped fin 164 of hollow (it is used to limit the open channel 166 that separates).
Except above-mentioned cover plate 18 and 106, also have many other plane cover plate structures.Figure 18 has illustrated the cover plate 168 that another kind according to the present invention is possible by example, it is identical with cover plate 18, except following difference, extend perpendicular to the direction of the rib 118,120 of cover plate 106 on projecting rib 170,172 edges that promptly replace, and rib 118,120 all forms wavy curve along their length, thereby determines the circulation path that laterally crawls shown in arrow 174 between the opening 114,116.Yet herein can be not on the cover board but on backing plate, form outstanding shunting rib, backing plate can have and similar plane shown in Figure 180 in this case, but does not penetrate backing plate and the fluid openings that forms.Perhaps, cover plate and backing plate can have the protrusion rib that forms thereon, it abuts against the fluid passage of passing diversion cavity together with qualification hermetically, in this case, the top of cover plate and backing plate and bottom plan view similar with the plane of Figure 18 respectively (backing plate does not penetrate its fluid openings) wherein all have the protrusion rib 170,172 that highly approximates half height of diversion cavity on each cover plate and the backing plate.Should be appreciated that, can on cover plate or backing plate, be equipped with the protrusion rib of many different patterns and the protrusion air jet system or the barrier of other type.
Figure 19 and 20 has shown another heat exchanger 190 by example, and itself and heat exchanger 100 are basic identical, have suppressed a plurality of indentures 194 in its cover plate 192.Indenture 194 extends to backing plate 104 and is engaged with, thereby provides the fluid booster in diversion cavity 113.
Exploded view among Figure 21 also shows the another kind of heat exchanger that is mainly marked by Reference numeral 200.Heat exchanger 200 is basic identical with heat exchanger 100, except as can be seen from the figure and by hereinafter describing some that can understand.That is, do not comprise the protrusion rib that is used for limiting diversion cavity 113 fluid paths on the cover plate 202 of heat exchanger 200, but waveform flow distribution plate 204 (being formed by aluminium or other suitable metal) are installed in the diversion cavity 113 between cover plate 202 and backing plate 104.Waveform flow distribution plate 204 comprises a plurality of first, second substantially parallel barrier wall to 206A, 206B, and wherein barrier wall extends to the relative other end 210 to the end 208 from diversion cavity 113.The barrier wall 206A of every centering, 206B couple together by planar wall along its top first longitudinal edge, wherein planar wall in abutting connection with and be installed to the inside of cover plate 202.(the direction word " makes progress ", " level " etc. only is to use for illustrative purposes, because heat exchanger can be direction arbitrarily in use.) barrier wall to along they lower limb by another in abutting connection with and the wall 214 that is installed on the backing plate 104 couple together, specifically, the lower limb of the barrier wall 206A that the lower limb of the barrier wall 206B that promptly barrier wall is right and adjacent barrier wall are right is connected.Lateral fluid opening 216 is provided on that end of the end 208 of close heat exchanger among each barrier wall 206A, and lateral fluid opening 218 is provided among each barrier wall 206B near on the relative other end of heat exchanger 200 1 ends 210.Therefore, in diversion cavity 113, define the parallel fluid passage that replaces by barrier wall 206A, 206B, barrier wall opening 216,218 makes snakelike fluid back and forth flow to another fluid openings 114 (perhaps flow to opening 116 from opening 114 conversely, and this depending on which is the high pressure opening) through passage from a fluid openings 116.
With reference to figure 21A, in one embodiment, waveform shield plates 204 comprises the flat transverse portion 220 of the outer longitudinal edge that is used to form it, and transverse part 220 is sandwiched between the following flange connector 26 and backing plate 104 of cover plate 202.
With reference to figure 22-23C, the another kind of cover plate and the backing structure that are used for heat exchanger 200 will be discussed.At first see Figure 22 and 23A, cover plate 230 is a dish type in one embodiment, comprise central flat face 240, that central flat face 240 has is all-in-one-piece, from the flange 242 that periphery extends downwards, and its flange 242 defines an angle that is slightly larger than 90 ° with respect to the inner surface of central flat face 240.Backing plate 236 is identical with cover plate 230, except following several places difference, be not penetrate it on the backing plate 236 and the opening 116,114 that forms, the following stretch flange formability 244 of backing plate 236 is nested in the flange 242 of cover plate 240 and by it and supports, and wherein diversion cavity 113 is limited between the plane central portion and backing plate 236 of cover plate 240.Fin plate 102 (fin shown in the figure is circular ripple rather than square wave) is installed on the lower surface of central flat face of backing plate 244.Backing plate flange 244 can amputation gets the bottom edge place that just is in cover plate lateral margin 242 or under it, thereby makes the harmful effect on the fin plate 102 of flowing through become minimum.
Figure 23 B has shown similar structure, and except following difference, promptly backing plate 238 has to the curved periphery flange 246 of going up of the reverse extension of cover plate flange 242, and periphery flange 246 is nested in the inner surface of cover plate flange 242 and is soldered on it.Structure shown in Figure 23 A and Figure 23 B can be at an easy rate by fin plate being placed on the opposite side and it " is turned over ", as the dotted line among Figure 23 B 102 ' shown in.In addition, fin plate can be used on two sides of heat exchanger in certain embodiments.
Figure 23 C has shown another kind of configuration, its cover plate 234 and backing plate 248 identical (on backing plate, not having the fluid openings), and each all has planar portions support lug 250,252 all around in the central.
Figure 24 has shown another heat exchanger 260 identical with heat exchanger 100, except following several places difference with note.The cover plate 262 of heat exchanger 260 is included in a plurality of air flow openings 264 of its upper punch.Each opening 264 aligns with the hole 268 that penetrates backing plate 266 respectively.By the neighboring of the air flow openings 264 of wall 265 on each cover plate opening is surrounded, the neighboring of its mesospore extends to backing plate and diversion cavity 113 and air openings is separated hermetically from cover plate.Preferably washing mouthfuls 264 o'clock open from cover plate materials compacting wall-forming 265.The hole 264,268 of alignment is positioned at the place that fin plate 102 and backing plate do not contact, and like this, the hole of alignment just can not blocked by fin plate 102 fully.In certain embodiments, corresponding opening can strike out and penetrate fin plate 102.As shown in figure 26, therefore the air opening 268,264 of can flowing through in use makes flow through seal section in the fluid cavity that is limited by backing plate and cover plate of air.As marking among Figure 26, heat exchanger can produce with respect to flow direction (arrow 270) in some applications, so just can improve its performance by the angle of attack that increases air impact fin plate 102.
Though many parts all are described as by aluminium or aluminium alloy and form in the heat exchanger of the present invention, but should be appreciated that, other metal also is applicable to and forms these parts, nonmetallic materials also can be used in some applications, for example by adding heat bonding, ultrasonic bonds or using the bonding polymer of adhesive.For a person skilled in the art, clearly, the present invention can have many conversion and change in actual use, and does not deviate from spirit of the present invention or scope.Therefore, scope of the present invention will be explained according to the essence of following claims.

Claims (9)

1. slim heat exchanger is used for heat exchange between liquid that flows through described heat exchanger and air, and described heat exchanger comprises:
Fin plate, it comprises towards the first opposite side and second side, and first end and second end also comprise a plurality of elongated fins that separate, described fin extends from second side, and limits the outer and a plurality of elongated air duct lead to described second end from described first end by second side direction; Each fin is the vertical row who has for the horizontal convolution of U-shaped, and fin is arranged on the fin plate, and at least some convolutions with respect to other convolutions among the row lateral shift have taken place along row among every row; And
Slim container, it has cover plate and the backing plate that couples together round their neighboring, cover plate and backing plate define a diversion cavity, container has the entrance and exit that is communicated with described chamber, wherein second side of fin plate and described fin are exposed to the outside, thereby in the process of using described heat exchanger, make air flow through described second side and described fin, described cover plate has been equipped with the monoblock type lateral margin around its neighboring, lateral margin towards described backing plate extend and sealed welding to backing plate;
Wherein, thus described fin plate first side is soldered to carries out exchange heat between slim container and fin plate on the backing plate.
2. heat exchanger as claimed in claim 1, wherein backing plate is a surface plate, and cover plate has the central portion for the plane, and the monoblock type lateral margin extends around the neighboring of central portion.
3. heat exchanger as claimed in claim 2, wherein laterally flange connector is provided on the neighboring of lateral margin, and has the plane surface that contacts and be connected to backing plate on the backing plate.
4. as each described heat exchanger among the claim 1-3, wherein be provided with booster in described diversion cavity, booster has the many current drainages body circulation that is arranged in diversion cavity and strengthens convolution.
5. heat exchanger as claimed in claim 3, at least one in its cover plate and the backing plate have a plurality of protrusion ribs that form thereon, and described protrusion rib extends into diversion cavity and passes diversion cavity and the serpentine flow path between entrance and exit to provide.
6. as any one described heat exchanger in claim 1-3 and 5, wherein inlet and opening penetrate cover plate and form, and described cover plate is relative with backing plate.
7. heat exchanger as claimed in claim 1 wherein provides a plurality of airflow path, diversion cavity and cover plates that backing plate extends that pass by slim container, seals between each airflow path and the diversion cavity.
8. heat exchanger as claimed in claim 7 is wherein by described fin described airflow path that limits and the airflow path fluid communication of passing slim heat exchanger
9. as any one described heat exchanger in claim 1-3 and 5, wherein said backing plate is made by copper facing aluminium or copper facing aluminium alloy.
CNB038041995A 2002-02-19 2003-02-18 Thin fin type heat exchanger Expired - Fee Related CN100386585C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2372399 2002-02-19
CA2372399A CA2372399C (en) 2002-02-19 2002-02-19 Low profile finned heat exchanger

Publications (2)

Publication Number Publication Date
CN1636126A CN1636126A (en) 2005-07-06
CN100386585C true CN100386585C (en) 2008-05-07

Family

ID=27739995

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038041995A Expired - Fee Related CN100386585C (en) 2002-02-19 2003-02-18 Thin fin type heat exchanger

Country Status (7)

Country Link
US (2) US20030164233A1 (en)
EP (1) EP1478894A1 (en)
JP (1) JP2005517893A (en)
CN (1) CN100386585C (en)
AU (1) AU2003206521B2 (en)
CA (1) CA2372399C (en)
WO (1) WO2003071213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155851A (en) * 2011-04-01 2011-08-17 株洲时代金属制造有限公司 Water-cooling heat dissipater

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011142B2 (en) 2000-12-21 2006-03-14 Dana Canada Corporation Finned plate heat exchanger
US6651765B1 (en) * 2002-05-02 2003-11-25 Steven M. Weinzierl Snowmobile with a supercharged engine
CA2392610C (en) 2002-07-05 2010-11-02 Long Manufacturing Ltd. Baffled surface cooled heat exchanger
CA2425233C (en) 2003-04-11 2011-11-15 Dana Canada Corporation Surface cooled finned plate heat exchanger
JP4338480B2 (en) * 2003-09-05 2009-10-07 カルソニックカンセイ株式会社 Heat exchanger
DE10349141A1 (en) * 2003-10-17 2005-05-12 Behr Gmbh & Co Kg Stacked plate heat exchangers, in particular oil coolers for motor vehicles
US6962194B2 (en) * 2003-11-28 2005-11-08 Dana Canada Corporation Brazed sheets with aligned openings and heat exchanger formed therefrom
CA2451424A1 (en) * 2003-11-28 2005-05-28 Dana Canada Corporation Low profile heat exchanger with notched turbulizer
FR2864610B1 (en) * 2003-12-24 2006-12-22 Valeo Thermique Moteur Sa HEAT EXCHANGER TUBE HAVING TWO CIRCULATING CURRENTS AND HEAT EXCHANGER HAVING SUCH TUBES
DE102005025381A1 (en) * 2005-05-31 2006-12-07 Behr Industry Gmbh & Co. Kg Device for cooling electronic components
DE202005015627U1 (en) * 2005-09-28 2007-02-08 Autokühler GmbH & Co. KG Heat exchanger network and thus equipped heat exchanger
KR101256076B1 (en) * 2006-01-06 2013-04-18 삼성에스디아이 주식회사 Heat exchanger of plate type and fuel cell system with the same
JP4724602B2 (en) * 2006-05-17 2011-07-13 トーステ株式会社 Heat exchanger
GB2441183B (en) * 2007-04-16 2009-04-08 Enertek Internat Ltd Heat exchanger
SE532837C2 (en) * 2008-03-28 2010-04-20 Titanx Engine Cooling Holding Heat exchanger, such as a charge air cooler
US8297341B2 (en) * 2008-09-08 2012-10-30 Getac Technology Corp. Heat dissipating structure and method of forming the same
JP5343574B2 (en) * 2009-01-20 2013-11-13 トヨタ自動車株式会社 Brazing method of heat sink
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
EP2224197A3 (en) * 2009-02-25 2013-01-09 Ying Lin Cai Heat exchanger for bathing shower
US20110232887A1 (en) * 2010-03-29 2011-09-29 Zaffetti Mark A Cold plate with integral structural fluid port
US8522861B2 (en) * 2010-03-29 2013-09-03 Hamilton Sundstrand Space Systems International, Inc. Integral cold plate and structural member
FR2967249B1 (en) * 2010-11-09 2012-12-21 Valeo Systemes Thermiques HEAT EXCHANGER AND METHOD OF FORMING RELATED DISTURBERS
TW201221895A (en) * 2010-11-24 2012-06-01 Ying-Lin Tsai Heat exchange device for hot water shower
CN102207304A (en) * 2011-05-20 2011-10-05 张玉贵 Vacuum superconducting inner and outer fin laminating multidirectional air outlet electric heating fan heater
FR2979983B1 (en) * 2011-09-13 2015-10-16 Valeo Systemes Thermiques THERMAL EXCHANGER AND METHOD FOR PRODUCING THERMAL EXCHANGER
CN102425836A (en) * 2011-12-14 2012-04-25 合肥通用制冷设备有限公司 Novel seperation type heat pipe heat exchange air conditioning unit
WO2013159172A1 (en) 2012-04-26 2013-10-31 Dana Canada Corporation Heat exchanger with adapter module
US9310138B2 (en) 2012-09-13 2016-04-12 International Business Machines Corporation Cooling system for high performance solar concentrators
DE102012217868A1 (en) 2012-09-28 2014-04-03 Behr Gmbh & Co. Kg Heat exchanger
DE102012217874A1 (en) 2012-09-28 2014-04-17 Behr Gmbh & Co. Kg Device for guiding a fluid
CN104033966B (en) * 2013-03-06 2017-04-12 苏州昆拓热控系统股份有限公司 Equipment cabinet air conditioner
CN105102917B (en) * 2013-04-16 2019-05-03 松下知识产权经营株式会社 Heat exchanger
CN104165413B (en) * 2013-05-20 2017-08-22 苏州昆拓热控系统股份有限公司 Machine cabinet air-conditioner
FR3008173B1 (en) * 2013-07-08 2018-11-23 Liebherr-Aerospace Toulouse Sas THERMAL EXCHANGE DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE
WO2016038420A1 (en) 2014-09-09 2016-03-17 Bombardier Recreational Products Inc. Snowmobile heat exchanger assembly
JP5932757B2 (en) * 2013-11-15 2016-06-08 株式会社フィルテック Fluid heat exchange device
RU2654264C1 (en) 2014-09-09 2018-05-17 Бомбардье Рекриэйшенел Продактс Инк. Heat exchanger for snowmobile engine air intake
EP3259546B1 (en) * 2015-02-19 2020-07-08 JR Thermal LLC Intermittent thermosyphon
KR101706263B1 (en) * 2015-04-16 2017-02-15 서울시립대학교 산학협력단 Wavy fin, heat exchanger having the same, apparatus for manufacturing the same, method for manufacturing the same and computer recordable medium storing the method
CN104776652B (en) * 2015-04-21 2017-09-01 苏州东山昆拓热控系统有限公司 Condenser
US10160545B2 (en) * 2015-10-19 2018-12-25 Hamilton Sundstrand Corporation Ram air heat exchanger
ITUA20164166A1 (en) * 2016-06-07 2017-12-07 Fondital Spa HEATING DEVICE AND MODULAR HEATING SYSTEM WITH POSSIBILITY OF MODULAR EQUIPMENT IN INSTALLATION PHASE
ITUA20164171A1 (en) * 2016-06-07 2017-12-07 Fondital Spa HEATING DEVICE
JP6767620B2 (en) * 2016-10-21 2020-10-14 パナソニックIpマネジメント株式会社 Heat exchanger and freezing system using it
US20180156548A1 (en) * 2016-12-05 2018-06-07 S&G Co.,Ltd Plate heat exchanger integrated with pipeline
CN108332599A (en) * 2017-01-19 2018-07-27 张跃 A kind of Efficient high-temperature ventilation heat exchange device
CN108332585A (en) * 2017-01-19 2018-07-27 张跃 A kind of high temperature ventilation heat exchange device
JP6932428B2 (en) * 2017-02-28 2021-09-08 ダイハツ工業株式会社 Heat exchanger for oil
DE112018006027T5 (en) 2017-11-27 2020-09-17 Dana Canada Corporation IMPROVED HEAT TRANSFER AREA
CN108800557A (en) * 2018-06-07 2018-11-13 万向钱潮传动轴有限公司 A kind of compressed air heating device
JP7126388B2 (en) 2018-06-28 2022-08-26 昭和電工パッケージング株式会社 Resin fusion heat exchanger
WO2020009997A1 (en) * 2018-07-05 2020-01-09 Modine Manufacturing Company Battery cooling plate and fluid manifold
CN109341145B (en) * 2018-09-27 2021-04-23 江西新电汽车空调系统有限公司 Plate heat exchanger with inner fins and vehicle air conditioning system
US20200166293A1 (en) * 2018-11-27 2020-05-28 Hamilton Sundstrand Corporation Weaved cross-flow heat exchanger and method of forming a heat exchanger
US11306979B2 (en) * 2018-12-05 2022-04-19 Hamilton Sundstrand Corporation Heat exchanger riblet and turbulator features for improved manufacturability and performance
TWI689698B (en) * 2019-05-10 2020-04-01 訊凱國際股份有限公司 Flow-rate adjustment component and liquid cooling device
TWI691696B (en) * 2019-05-31 2020-04-21 訊凱國際股份有限公司 Heat dissipation device
FR3112847A1 (en) * 2020-07-27 2022-01-28 Valeo Systemes Thermiques Device for thermal regulation, in particular for cooling, for a motor vehicle
US11924996B2 (en) * 2020-09-30 2024-03-05 Coolit Systems, Inc. Liquid-cooling devices, and systems, to cool multi-chip modules
WO2022168900A1 (en) * 2021-02-04 2022-08-11 大日本印刷株式会社 Heat exchanger
CN113624042A (en) * 2021-07-28 2021-11-09 祥博传热科技股份有限公司 Phase-change cooling heat exchanger
DE102021121814A1 (en) * 2021-08-23 2023-02-23 Valeo Klimasysteme Gmbh Cooling device for energy storage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796239A (en) * 1951-12-20 1957-06-18 Gen Motors Corp Heat exchanger
FR1189606A (en) * 1957-01-29 1959-10-05 Ford Francf S A heat exchanger
US4002200A (en) * 1972-12-07 1977-01-11 Dean Products, Inc. Extended fin heat exchanger panel
JPH07280484A (en) * 1994-04-06 1995-10-27 Calsonic Corp Stacked type heat exchanger
DE29722841U1 (en) * 1997-12-24 1998-02-12 Sander Kg Gmbh & Co Cooler for diesel oil flowing back from the injection pump or injector
JPH10115261A (en) * 1996-08-30 1998-05-06 Volkswagen Ag <Vw> Cooling device of fuel supplied to internal combustion engine
EP0907061A2 (en) * 1997-10-01 1999-04-07 Behr GmbH & Co. Heat exchanger for an air conditioning system of an automotive vehicle

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1318875A (en) * 1919-10-14 Henby g
US448241A (en) * 1891-03-17 Roundabout
US1049695A (en) * 1912-01-11 1913-01-07 Milburn H Garrison Combined foot-warmer and muffler.
US1996622A (en) * 1931-02-04 1935-04-02 Heintz Mfg Co Sheet metal radiator
US2039593A (en) * 1935-06-20 1936-05-05 Theodore N Hubbuch Heat transfer coil
US2154216A (en) * 1936-06-24 1939-04-11 Gen Electric Cooling pad
US2547668A (en) * 1946-04-24 1951-04-03 Modine Mfg Co Heat exchanger
US2582358A (en) * 1948-06-08 1952-01-15 Northrop Aircraft Inc Method of producing stiffened skin panel
US2814470A (en) * 1952-02-12 1957-11-26 Air Preheater Heat exchanger
US2985434A (en) * 1957-03-15 1961-05-23 Air Preheater Regenerator
US3116541A (en) * 1957-05-20 1964-01-07 Ford Motor Co Method of making a heat exchanger
US3024003A (en) * 1958-07-10 1962-03-06 Air Preheater Heat exchanger
US2981520A (en) * 1959-11-09 1961-04-25 Borg Warner Plate-type heat-exchangers
NL273035A (en) * 1960-12-29
US3141500A (en) * 1962-02-14 1964-07-21 Dean Products Inc Heat exchanger coils of the panel type
US3650310A (en) * 1970-07-16 1972-03-21 Stewart & Stevenson Serv Inc Combination boat trim tab and heat exchanger
US3810509A (en) * 1971-10-15 1974-05-14 Union Carbide Corp Cross flow heat exchanger
US3818984A (en) * 1972-01-31 1974-06-25 Nippon Denso Co Heat exchanger
US3800868A (en) * 1972-04-14 1974-04-02 Curtiss Wright Corp Heat exchanger
US4072188A (en) * 1975-07-02 1978-02-07 Honeywell Information Systems Inc. Fluid cooling systems for electronic systems
US4011905A (en) * 1975-12-18 1977-03-15 Borg-Warner Corporation Heat exchangers with integral surge tanks
SE7601607L (en) * 1976-02-12 1977-08-13 Atomenergi Ab PLATE HEAT EXCHANGER
US4184542A (en) * 1976-04-16 1980-01-22 Hisaka Works, Ltd. Plate type condenser
SE7805830L (en) * 1978-05-22 1979-11-23 Lockmans Ing Byra Ab LAMELLA HEAT EXCHANGER
US4253520A (en) * 1978-10-26 1981-03-03 The Garrett Corporation Heat exchanger construction
US4235285A (en) * 1979-10-29 1980-11-25 Aavid Engineering, Inc. Self-fastened heat sinks
US4574876A (en) * 1981-05-11 1986-03-11 Extracorporeal Medical Specialties, Inc. Container with tapered walls for heating or cooling fluids
DE3143332C1 (en) * 1981-10-31 1983-04-14 Daimler-Benz Ag, 7000 Stuttgart Heat exchanger with an inflatable bundle of parallel pipes
CA1200039A (en) * 1981-12-26 1986-01-28 Hiroaki Koyama Resin composition containing granular or powdery phenol-aldehyde resin
US4478277A (en) * 1982-06-28 1984-10-23 The Trane Company Heat exchanger having uniform surface temperature and improved structural strength
US4646815A (en) * 1983-12-23 1987-03-03 Matsushita Electric Works, Ltd. Heat exchange mat
US4615129A (en) * 1985-12-12 1986-10-07 Jackson Patrick H Snow-disposal unit and method
JPH0435735Y2 (en) * 1986-09-16 1992-08-24
US4805693A (en) * 1986-11-20 1989-02-21 Modine Manufacturing Multiple piece tube assembly for use in heat exchangers
US4787442A (en) * 1987-12-04 1988-11-29 Carrier Corporation Delta wing and ramp wing enhanced plate fin
JPH02265469A (en) * 1988-02-25 1990-10-30 Yokohama Rubber Co Ltd:The Culture of micro-organism and preparation of fermentative produce using it
US5327947A (en) * 1988-11-14 1994-07-12 Mcgregor Harold R Vertical auger type bag filler having a vibrating bowl with inverted venting cone and rotating agitator assembly
US5025641A (en) * 1989-02-24 1991-06-25 Broadhurst John A Modular ice machine
US5369883A (en) * 1989-02-24 1994-12-06 Long Manufacturing Ltd. Method for making an in tank oil cooler
FR2644531B1 (en) * 1989-03-20 1991-05-17 Bost Sa ASSEMBLY MEANS AND METHODS USING THE SAME
JPH036848A (en) * 1989-06-03 1991-01-14 Hitachi Ltd Semiconductor cooling module
US4932469A (en) * 1989-10-04 1990-06-12 Blackstone Corporation Automotive condenser
US5273386A (en) * 1990-03-23 1993-12-28 Allfast Fastening Systems, Inc. Expandable head rivet
US5285347A (en) * 1990-07-02 1994-02-08 Digital Equipment Corporation Hybird cooling system for electronic components
US5209285A (en) * 1990-09-24 1993-05-11 General Motors Corporation Inclined tube radiator
US5129473A (en) * 1990-12-18 1992-07-14 Yamaha Hatsudoki Kabushiki Kaisha Fan/radiator combination for snowmobile with liquid cooled engine
JPH04237692A (en) * 1991-01-16 1992-08-26 Yamaha Motor Co Ltd Engine cooling device of snow mobile
JP3156085B2 (en) * 1991-01-16 2001-04-16 ヤマハ発動機株式会社 Snowmobile engine intake system
JPH04306168A (en) * 1991-01-16 1992-10-28 Yamaha Motor Co Ltd Air guiding device of snowmobile
US5099311A (en) * 1991-01-17 1992-03-24 The United States Of America As Represented By The United States Department Of Energy Microchannel heat sink assembly
US5381510A (en) * 1991-03-15 1995-01-10 In-Touch Products Co. In-line fluid heating apparatus with gradation of heat energy from inlet to outlet
US5159529A (en) * 1991-05-15 1992-10-27 International Business Machines Corporation Composite liquid cooled plate for electronic equipment
US5205348A (en) * 1991-05-31 1993-04-27 Minnesota Mining And Manufacturing Company Semi-rigid heat transfer devices
US5294831A (en) * 1991-12-16 1994-03-15 At&T Bell Laboratories Circuit pack layout with improved dissipation of heat produced by high power electronic components
IT226255Z2 (en) * 1992-02-18 1997-06-02 Miralfin Srl STRUCTURE OF RADIATOR PARTICULARLY FOR HEATING ROOMS
US5232066A (en) * 1992-03-03 1993-08-03 Schnelker Irwin W Snowmobile cooler protector
JPH0674677A (en) * 1992-08-27 1994-03-18 Mitsubishi Heavy Ind Ltd Manufacture of lamination type heat exchanger
JPH0694386A (en) * 1992-09-14 1994-04-05 Sanden Corp Heat exchanger
US5316077A (en) * 1992-12-09 1994-05-31 Eaton Corporation Heat sink for electrical circuit components
FR2701600B1 (en) * 1993-02-10 1995-09-08 Gec Alsthom Transport Sa DEVICE FOR COOLING ELECTRIC POWER COMPONENTS.
FR2701554B1 (en) * 1993-02-12 1995-05-12 Transcal Heat exchanger for electronic components and electro-technical equipment.
US5375655A (en) * 1993-03-31 1994-12-27 Lee; Yong N. Heat sink apparatus
JP3301676B2 (en) * 1993-11-29 2002-07-15 本田技研工業株式会社 Snow car
KR100353020B1 (en) * 1993-12-28 2003-01-10 쇼와 덴코 가부시키가이샤 Multilayer Heat Exchanger
US5462113A (en) * 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
US5490559A (en) * 1994-07-20 1996-02-13 Dinulescu; Horia A. Heat exchanger with finned partition walls
JP3158983B2 (en) * 1994-10-03 2001-04-23 住友精密工業株式会社 Corrugated radiator fin for cooling LSI package
JPH08200977A (en) * 1995-01-27 1996-08-09 Zexel Corp Flat tube for heat exchanger and manufacture thereof
CA2150437C (en) * 1995-05-29 1999-06-08 Alex S. Cheong Plate heat exchanger with improved undulating passageway
AUPN697995A0 (en) * 1995-12-04 1996-01-04 Urch, John Francis Metal heat exchanger
JP3414915B2 (en) * 1996-01-22 2003-06-09 ヤマハ発動機株式会社 Front structure of snowmobile
JPH09193878A (en) * 1996-01-22 1997-07-29 Yamaha Motor Co Ltd Cooling device of snow vehicle
US6305463B1 (en) * 1996-02-22 2001-10-23 Silicon Graphics, Inc. Air or liquid cooled computer module cold plate
DE19617396C2 (en) * 1996-05-02 1998-03-26 Dornier Gmbh Flow module
US5787613A (en) * 1996-07-03 1998-08-04 Derome; Andre Method and apparatus for melting snow using exhaust and cooling system waste heat
DE19644586C2 (en) * 1996-10-26 2000-10-26 Behr Industrietech Gmbh & Co Finned tube block for a heat exchanger
SE9700614D0 (en) * 1997-02-21 1997-02-21 Alfa Laval Ab Flat heat exchanger for three heat exchanging fluids
US5799727A (en) * 1997-05-29 1998-09-01 Ford Motor Company Refrigerant tubes for heat exchangers
US5901037A (en) * 1997-06-18 1999-05-04 Northrop Grumman Corporation Closed loop liquid cooling for semiconductor RF amplifier modules
SE9702420L (en) * 1997-06-25 1998-12-26 Alfa Laval Ab plate heat exchangers
US5954127A (en) * 1997-07-16 1999-09-21 International Business Machines Corporation Cold plate for dual refrigeration system
CA2215173C (en) * 1997-09-11 2004-04-06 Thomas F. Seiler Stepped dimpled mounting brackets for heat exchangers
SE9800783L (en) * 1998-03-11 1999-02-08 Swep International Ab Three-circuit plate heat exchanger with specially designed door areas
US6109217A (en) * 1998-12-30 2000-08-29 Polaris Industries Inc. Snowmobile with improved cooling system
CA2260890A1 (en) * 1999-02-05 2000-08-05 Long Manufacturing Ltd. Self-enclosing heat exchangers
US6293338B1 (en) * 1999-11-04 2001-09-25 Williams International Co. L.L.C. Gas turbine engine recuperator
US6820682B2 (en) * 2000-12-19 2004-11-23 Denso Corporation Heat exchanger
CA2329408C (en) * 2000-12-21 2007-12-04 Long Manufacturing Ltd. Finned plate heat exchanger
US6478080B2 (en) * 2001-03-29 2002-11-12 Standard Motor Products, Inc. Fluid cooling device
CA2389119A1 (en) * 2002-06-04 2003-12-04 Christopher R. Shore Lateral plate finned heat exchanger
US6843512B2 (en) * 2002-06-11 2005-01-18 Cuno Incorporated Tubing connector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796239A (en) * 1951-12-20 1957-06-18 Gen Motors Corp Heat exchanger
FR1189606A (en) * 1957-01-29 1959-10-05 Ford Francf S A heat exchanger
US4002200A (en) * 1972-12-07 1977-01-11 Dean Products, Inc. Extended fin heat exchanger panel
JPH07280484A (en) * 1994-04-06 1995-10-27 Calsonic Corp Stacked type heat exchanger
JPH10115261A (en) * 1996-08-30 1998-05-06 Volkswagen Ag <Vw> Cooling device of fuel supplied to internal combustion engine
EP0907061A2 (en) * 1997-10-01 1999-04-07 Behr GmbH & Co. Heat exchanger for an air conditioning system of an automotive vehicle
DE29722841U1 (en) * 1997-12-24 1998-02-12 Sander Kg Gmbh & Co Cooler for diesel oil flowing back from the injection pump or injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155851A (en) * 2011-04-01 2011-08-17 株洲时代金属制造有限公司 Water-cooling heat dissipater
CN102155851B (en) * 2011-04-01 2013-10-16 株洲时代金属制造有限公司 Water-cooling heat dissipater

Also Published As

Publication number Publication date
WO2003071213A1 (en) 2003-08-28
CA2372399C (en) 2010-10-26
AU2003206521A1 (en) 2003-09-09
US20060243431A1 (en) 2006-11-02
EP1478894A1 (en) 2004-11-24
JP2005517893A (en) 2005-06-16
US20030164233A1 (en) 2003-09-04
CA2372399A1 (en) 2003-08-19
CN1636126A (en) 2005-07-06
AU2003206521B2 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
CN100386585C (en) Thin fin type heat exchanger
JP4122578B2 (en) Heat exchanger
JP2005532522A (en) Baffle type surface cooling heat exchanger
US7182125B2 (en) Low profile heat exchanger with notched turbulizer
US20070006998A1 (en) Heat exchanger with plate projections
JP2007518958A (en) Heat exchangers, especially oil / coolant coolers
CN115579569A (en) Method of manufacturing battery bracket for mounting battery module
JP2001059690A (en) Heat exchanger
JP3965901B2 (en) Evaporator
JP4041437B2 (en) Semiconductor device cooling device
US20090065186A1 (en) Condenser assembly
KR20150093242A (en) Flat tube for a charge air heat exchanger and corresponding charge air heat exchanger
EP0258253A1 (en) Heat exchanger.
JPH079865A (en) Radiator for electric vehicle
JPS58145891A (en) Heat exchanger and manufacture thereof
JPH10111086A (en) Heat exchanger
CN209459484U (en) Fin, heat exchanger, heat-exchange system and air conditioner
KR101679344B1 (en) Flat tube for a charge air cooler and corresponding charge air cooler
CN113532166A (en) Heat exchange core and heat exchanger
JP3283471B2 (en) Stacked heat exchanger
CN109579593A (en) Fin, heat exchanger, heat-exchange system and air conditioner
CN215337881U (en) Heat exchanger
KR101071348B1 (en) Plate type heat exchanger
JPH11257877A (en) Lamination-type heat exchanger
TWI613953B (en) Water-cooling radiator unit and device thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080507

Termination date: 20200218