CN100351491C - 煤层气的热力开采方法 - Google Patents

煤层气的热力开采方法 Download PDF

Info

Publication number
CN100351491C
CN100351491C CNB021556903A CN02155690A CN100351491C CN 100351491 C CN100351491 C CN 100351491C CN B021556903 A CNB021556903 A CN B021556903A CN 02155690 A CN02155690 A CN 02155690A CN 100351491 C CN100351491 C CN 100351491C
Authority
CN
China
Prior art keywords
coal seam
gas
coal
well
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021556903A
Other languages
English (en)
Other versions
CN1508389A (zh
Inventor
杨胜来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CNB021556903A priority Critical patent/CN100351491C/zh
Publication of CN1508389A publication Critical patent/CN1508389A/zh
Application granted granted Critical
Publication of CN100351491C publication Critical patent/CN100351491C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明公开了煤层气的热力开采方法,煤层甲烷气通常是以吸附状态存在于煤层孔隙表面的,它的产出至少要经过解吸、渗流两个过程,因而解吸速度和渗流速度是决定产气速度的主要因素。这种热力采气方法,通过热力驱方式注入热能,增加吸附态煤层气(甲烷)的自由能,从而增加甲烷从煤层孔隙表面上解吸的速度,同时气体受热膨胀加速渗流流动,从而达到大幅度提高煤层气产量、实现煤层气的工业化开发的目的。

Description

煤层气的热力开采方法
技术领域
本发明涉及一种提高煤层气井产量、高速开发煤层气的方法和技术,特别是指煤层气的热力开采方法,属于煤炭化工技术领域。
背景技术
煤层甲烷气(Coal bed Methane)简称煤层气,煤矿称瓦斯或沼气,是成煤过程中形成的、仍以煤层为储集层的天然气,主要成分为甲烷(CH4)。甲烷是宝贵的资源、优质的能源和化工原料,可作为常规天然气的接替能源或补充能源,但是,如果不预先开发煤层气,采煤过程中甲烷将进入矿井巷道而可能导致瓦斯爆炸事故,或作为废气排入大气、引起环境污染。因此,开发煤层气能充分利用宝贵的自然资源、防止煤矿瓦斯爆炸事故、保护大气环境。
中国煤层气资源丰富,90年代开始有关公司借鉴美国成功开发煤层气的经验,开发煤层气,打井数百口,但试验效果不理想,主要问题是产量低(产气量超过1000米3/日的井仅占总钻井数的10%左右)、产量不稳定,不能达到工业化开发的标准。
试验表明,中国煤层气储层特点与其他国家不同,简单地照搬应用他国经验是行不通的,必须研制适合中国煤层特点的开发技术。
产气量小的原因主要为:与常规天然气相比,煤层气的储存方式以吸附为主、储层能量低(压力低)、渗透性差,煤层气的产出过程是首先降压解吸,然后在孔隙介质中渗流。由此可见煤层气的产出过程复杂,产量受解吸速度和渗流速度的制约,除非针对个别很高渗透性的储层,否则仅依靠天然能量较难获得很高的产气量和采收率,必须寻找和研究提高开采速度(或日产气量)和采收率的新方法。
常规石油天然气开采可以采用注水或注天然气的方法,增加地层压力和能量,达到驱替石油天然气、实现高速开采的目的。而对于煤层气,如果高压注水或注气,则煤层气体压力增高,由于甲烷是吸附态的,增加压力不利于解吸放出,甚至使已经解吸的游离气体再吸附。所以注水或注气致使煤层气无法解吸,只有降压才能解吸,因此采用高压注水、注气是不合适的。
目前,有一种针对煤层气的CO2吸附法,该方法是利用CO2具有比甲烷高的吸附性,注入CO2后,排挤甲烷或改变其吸附特性。但这种方法还必须适当地降压,在降压过程中CH4解吸,CO2具有强吸附性而占据CH4的位置,从而使CH4保持游离状态。总的过程是:生产井开井降压,注入井注入CO2,降压后甲烷解吸为游离状态,CO2吸附。然后增加注入压力,甲烷无法吸附,只能沿孔隙流动从气井产出。生产一段时间后,再次降压,进行下一个循环的注入和产出。但由于降压过程在生产井,而CO2是在注入井注入,所以CH4与CO2的竞争可能不同时发生,另外由于升压与降压的反复循环,因此也不能很大幅度地提高产气量。目前这只是一种理论上的方法。
通过研究发现,高温下CH4的吸附能力大大降低,采用热力方法加热煤层可以增加CH4的解吸速度,同时热能在向煤层传递的过程中气体受热膨胀,有利于建立生产压差,从而大幅度地增加气井日产量。当前,有热力开采稠油的专利,但没有把热力方法引入开采煤层气的先例。
发明内容
本发明的主要目的在于提供一种煤层气的热力开采方法,使煤层气产量得到提高。
本发明的目的是通过如下技术方案实现的:
一种煤层气的热力开采方法,包括:
以微波直接加热的方式从注入井向地层注入热能,直接加热煤层,在注入热能的同时,从生产井开采煤层气;
所述的微波直接加热方法中的微波发生器发射的微波频率为1NHZ-10GHZ,功率为100千瓦-1000千瓦;
所述的热能注入量至少使煤层温度升高20℃,且以生产井产气量不低于工业气流为标准。
所述微波直接加热煤层气的方式,是向装设在注入井内煤层部位的微波发生器供电,使其向煤层发射微波,直接加热煤层气。
在注入热能之前,首先自然产气;当日产气量低于工业化开发标准时,再注入热能。
所述的注入井和生产井均为一口或一口以上。
换言之,煤层气的热力开采方法,至少包括如下步骤:步骤1、注入:从注入井,向地层注入热能,使煤层加热;
步骤2、采气:在注入热能的同时,从生产井开采煤层气。
所述的热能种类至少包括:热流体或化学剂氧化生热或电加热的方式之一或其结合。
当以热流体注入的方式加热时,该开采方法的具体步骤如下:
步骤a1:从注入井口连续注入热流体,使煤层加热,并驱替煤层气朝生产井前进;
步骤a2:在注入热流体的同时,从生产井开采煤层气。
所述的热流体至少为过热蒸汽或热水;
所述的热流体的注入条件为:
注入温度:注入热流体的温度应当远高于煤层气藏的原始温度,考虑各种热损失后,能使煤层平均温度升高20-60℃以上;
注入压力:≤煤层破裂压力;
注入速度:每米油层:0.01-0.2kg/s
所述的热流体的注入总量,根据煤层厚度、煤层孔隙度、开发井组面积确定,当产气井产量低于工业产气量标准时,停止注气。
当以微波加热方式注入热能时,该开采方法的具体步骤如下:
步骤b1:向装设在注入井内的微波发生器供电,使其向煤层发射用于加热的微波;
步骤b2:在注入热能的同时,从生产井开采煤层气。
所述的微波加热方式为:由微波发生器直接加热煤层,或由微波发生器对水加热,以加热水产生的热量加热煤层。
所述的微波发生器安装在注入井的煤层部位,微波频率为1NHZ-10GHZ,功率为100千瓦-1000千瓦。
在注入热能之前,首先自然产气;当日产气量低于工业化开发标准时,再注入热能。
所述的注入井和生产井均至少为一口,且注入井为,注入热量与采气同时在不同的井口进行多于两口时为井组注热力采气。
所述的热能注入量至少使煤层温度升高20℃;且以生产井产气量不低于工业气流为标准。
煤层气的热力开采方法,通过向煤层注入热流体(过热蒸汽或热水)或其它增加热能的方法(化学剂氧化生热或电加热)使煤层加热升温。一方面加速解吸,使吸附态甲烷迅速变为游离状态,另一方面热流体在前进过程中驱替游离状态的煤层气朝生产井前进。由于加速了解吸,加上气体的热膨胀,使得生产井产量急剧提高。
选择注入何种热能,主要根据注入规模、设备费、运行费等因素综合考虑。一般注热蒸汽的投入高,但热量也高,增产效果最好。注热水的设备投资小,但水的热容量也低,增产效果不如注蒸汽。化学氧化剂生热或电加热方法的特点是设备投资小,应用灵活方便,适合于小型气田或井组试验。
注入热流体的温度应当远高于煤层气藏的原始温度,考虑各种热损失后,能使煤层平均温度升高20-60℃以上;注入的压力应尽量高以满足快速注入的需要,但最高不应高于煤层的破裂压力。
现场应用时,应根据实际煤层情况,进行经济核算和评价,综合考虑确定各参数。
热力驱方式为井组、区块注热流体驱替煤层气的过程。
产气量明显上升为宜、注入量应满足产气速度的要求,一般在生成井产气量下降到低于工业标准时,停止注入。
通过以上技术方案,本发明具有如下优点:
1、加热煤层提高了煤层气(甲烷)的解吸速度;
2、温度升高,气体膨胀,提高了渗流速度;
3、热力开采还具有清除井底污染物并疏通堵塞物的作用;
4、热力驱可以实现连续、高速开采的目的。
附图说明
图1为本发明实施例一的示意图;
图2为本发明实施例二的示意图;
图3为本发明实施例三的示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步说明:
实施例一:热蒸汽加热开采煤层气
如图1所示,设计一注一采两口井,从注入井1的井口连续注入过热蒸汽,注入热流体的温度控制在远高于煤层气藏的原始温度,具体而言,考虑各种热损失后,该温度升高的范围为至少20-60℃以上;注入的压力不大于煤层的破裂压力,并应尽量满足快速注入的需要。蒸汽由注入井1井底进入煤层4后,在煤层4中前进,一方面加热煤层,使煤层的原始温度提高,加速CH4的解吸,使吸附态的甲烷变为游离状态甲烷;另一方面蒸汽在前进过程中驱替游离状态的煤层气向生产井2前进。由于加速了解吸,再加上气体的热膨胀,使得生产井2的产量急剧提高。该方法是连续注入蒸汽,直到生产井2产出大量蒸汽、凝析水,或煤层气日产量低于工业标准时停止注入蒸汽。此时煤层的吸附能力大大降低,解吸速度提高相应提高,生产井的日产量提高因此得到提高,瞬时可增产近千倍。
实施例二:微波加热煤层开采煤层气
如图2所示,设计一注一采两口井,微波发生器3安装在注入井1的煤层4部位,地面工业电源5通过电缆6向微波发生器3供电,微波发生器3发射微波,用微波对地下煤层4直接加热,使煤层4温度升高。微波的频率范围1NHZ-10GHZ之间,微波发生器的功率为100千瓦-1000千瓦,加热后煤层温度达到400℃以上。加热煤层,加速解吸,使吸附态甲烷迅速变为游离状态。由于加速了解吸,加上气体的热膨胀,使得生产井2的产量急剧提高。
实施例三:微波井下锅炉热力开采煤层气
如图3所示,设计至少一注一采两口井,其中1为注入井,另一口井为生产井2。微波发生器3安装在注入井1的煤层4部位,地面工业电源5通过电缆6向微波发生器供电,由微波发生器发生微波。从地面经油管7向微波发生器注水,微波发生器对水加热成为蒸汽或热水,蒸汽或热水注入煤层。对煤层进行加热。达到提高煤层气产量的目的。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1、一种煤层气的干式热力开采方法,其特征在于:包括:
以微波直接加热的方式从注入井向地层注入热能,直接加热煤层,在注入热能的同时,从生产井开采煤层气;
所述微波直接加热方式中所述的微波发生器发射的微波频率为1NHZ-10GHZ,功率为100千瓦-1000千瓦;
所述的热能注入量至少使煤层温度升高20℃;且以生产井产气量不低于工业气流为标准。
2、根据权利要求1所述的煤层气的干式热力开采方法,其特征在于:当采用微波直接加热方式时,是向装设在注入井内煤层部位的微波发生器供电,使其向煤层发射微波,直接加热煤层气。
3、根据权利要求1所述的煤层气的干式热力开采方法,其特征在于:在注入热能之前,首先自然产气;当日产气量低于工业化开发标准时,再注入热能。
4、根据权利要求1所述的煤层气的干式热力开采方法,其特征在于:所述的注入井和生产井均为一口或一口以上。
CNB021556903A 2002-12-13 2002-12-13 煤层气的热力开采方法 Expired - Fee Related CN100351491C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021556903A CN100351491C (zh) 2002-12-13 2002-12-13 煤层气的热力开采方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021556903A CN100351491C (zh) 2002-12-13 2002-12-13 煤层气的热力开采方法

Publications (2)

Publication Number Publication Date
CN1508389A CN1508389A (zh) 2004-06-30
CN100351491C true CN100351491C (zh) 2007-11-28

Family

ID=34236033

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021556903A Expired - Fee Related CN100351491C (zh) 2002-12-13 2002-12-13 煤层气的热力开采方法

Country Status (1)

Country Link
CN (1) CN100351491C (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122217A (zh) * 2007-09-19 2008-02-13 中国科学院武汉岩土力学研究所 井下抽排巷混合气体驱替煤层气开采系统及其方法
CN102434142B (zh) * 2011-11-30 2014-12-03 中国神华能源股份有限公司 一种煤炭地下气化方法
WO2013095829A2 (en) * 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
CN102747998B (zh) * 2012-06-29 2015-11-25 中国石油大学(北京) 页岩气增产方法及页岩气增产设备
CN102913222A (zh) * 2012-11-20 2013-02-06 中国石油集团长城钻探工程有限公司工程服务公司 煤层气开发水平井的氧化法完井方法
CN103225497B (zh) * 2013-04-16 2015-07-08 中国石油天然气股份有限公司 微波原位汽化地层水并驱替稠油的开采方法
CN103470236B (zh) * 2013-09-16 2016-02-10 中国海洋石油总公司 煤层气井自动加热回注水增产工艺
CN103742113A (zh) * 2014-01-06 2014-04-23 贵州盘江煤层气开发利用有限责任公司 一种煤层气井下红外增产设备
CN104234740B (zh) * 2014-09-03 2016-04-13 太原理工大学 一种低中压空气驱替高压煤层瓦斯系统及其方法
CN104632270B (zh) * 2015-01-06 2016-11-16 中国矿业大学 一种振荡脉冲式高能气体压裂与注热交变抽采瓦斯方法
CN106499368B (zh) * 2016-10-26 2019-01-11 西南石油大学 一种深海海底表层天然气水合物开采方法
CN107387045A (zh) * 2017-07-20 2017-11-24 苏州大学 一种煤层气热力开采系统和开采方法
CN109403924A (zh) * 2018-09-29 2019-03-01 山西晋城无烟煤矿业集团有限责任公司 一种单个煤层气井注入热水驱动井群增产方法
CN109519157A (zh) * 2018-09-29 2019-03-26 山西晋城无烟煤矿业集团有限责任公司 煤层气井井下加热增产工艺
CN112901120B (zh) * 2021-03-30 2023-05-02 西安科技大学 一种煤层气u型井注气循环负压抽采装置及方法
CN113982589B (zh) * 2021-10-26 2022-12-23 西安交通大学 一种富油煤原位开采的温度控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019577A (en) * 1976-02-23 1977-04-26 Mobil Oil Corporation Thermal energy production by in situ combustion of coal
US4026359A (en) * 1976-02-06 1977-05-31 Shell Oil Company Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale
DE3013293A1 (de) * 1980-04-05 1981-10-15 Basf Ag, 6700 Ludwigshafen Verfahren zur untertaegigen vergasung von kohle
US4638863A (en) * 1986-06-25 1987-01-27 Atlantic Richfield Company Well production method using microwave heating
US5072990A (en) * 1990-07-12 1991-12-17 Mobil Oil Corporation Acceleration of hydrocarbon gas production from coal beds
CN1165236A (zh) * 1996-01-31 1997-11-19 瓦斯塔资源有限公司 化学诱导激发的煤内生裂隙生成
US20020053436A1 (en) * 2000-04-24 2002-05-09 Vinegar Harold J. In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026359A (en) * 1976-02-06 1977-05-31 Shell Oil Company Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale
US4019577A (en) * 1976-02-23 1977-04-26 Mobil Oil Corporation Thermal energy production by in situ combustion of coal
DE3013293A1 (de) * 1980-04-05 1981-10-15 Basf Ag, 6700 Ludwigshafen Verfahren zur untertaegigen vergasung von kohle
US4638863A (en) * 1986-06-25 1987-01-27 Atlantic Richfield Company Well production method using microwave heating
US5072990A (en) * 1990-07-12 1991-12-17 Mobil Oil Corporation Acceleration of hydrocarbon gas production from coal beds
CN1165236A (zh) * 1996-01-31 1997-11-19 瓦斯塔资源有限公司 化学诱导激发的煤内生裂隙生成
US20020053436A1 (en) * 2000-04-24 2002-05-09 Vinegar Harold J. In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
微波在油气开发中的作用 马宝岐等.石油勘探与开发,第24卷第3期 1977 *
过氧化氢在石油工业上的应用 海云等.断块汽油田,第7卷第6期 2000 *

Also Published As

Publication number Publication date
CN1508389A (zh) 2004-06-30

Similar Documents

Publication Publication Date Title
CN100351491C (zh) 煤层气的热力开采方法
CN100347402C (zh) 煤层气的热力开采方法
US7753122B2 (en) Method of developing and producing deep geothermal reservoirs
CN1212318A (zh) 从含煤、油页岩、焦油沥青砂和油的岩层中回收烃或热能的水槽
CN1051355C (zh) 回收煤层甲烷的方法
US8205674B2 (en) Apparatus, system, and method for in-situ extraction of hydrocarbons
CN105114048A (zh) 一种水平井分段压裂同井注采采油方法
WO2011109143A1 (en) Co2 storage in organic-rich rock formation with hydrocarbon recovery
US8235141B2 (en) Procedure and device for the optimal, utilization of carbon resources such as oil fields, oil shales, oil sands, coal, and CO2
CN103939071B (zh) 一种水平井蒸汽驱井网结构及蒸汽驱方法
WO2008128252A1 (en) Apparatus, system, and method for in-situ extraction of hydrocarbons
WO2014176933A1 (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
WO2014176932A1 (zh) 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN101122217A (zh) 井下抽排巷混合气体驱替煤层气开采系统及其方法
CN102493795A (zh) 液化氮气在油气层内气化压裂方法
CN108005618A (zh) 一种基于太阳能-海水源热泵联合供热技术的天然气水合物开采装置及方法
WO2008041990A1 (en) Methods and systems for stimulating biogenic production of natural gas in a subterranean formation
CN107345480A (zh) 一种加热油页岩储层的方法
CN106437657A (zh) 一种利用流体对油页岩进行原位改造和开采的方法
US20150192002A1 (en) Method of recovering hydrocarbons from carbonate and shale formations
CN110159241A (zh) 一种微波辐照与水力压裂协同开采页岩气的装置
CN113775376A (zh) 一种富油煤原位热解及co2地质封存一体化的方法
CN114482955A (zh) 利用井下原油裂解改质提高深层稠油开采效率的方法
CN104747156A (zh) 一种超稠油油藏的开采方法及注入系统
CN112049614A (zh) 一种低压裂缝性致密油藏二氧化碳整体超注异井吞吐的采油方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee