CL2022001166A1 - Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada - Google Patents
Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizadaInfo
- Publication number
- CL2022001166A1 CL2022001166A1 CL2022001166A CL2022001166A CL2022001166A1 CL 2022001166 A1 CL2022001166 A1 CL 2022001166A1 CL 2022001166 A CL2022001166 A CL 2022001166A CL 2022001166 A CL2022001166 A CL 2022001166A CL 2022001166 A1 CL2022001166 A1 CL 2022001166A1
- Authority
- CL
- Chile
- Prior art keywords
- container
- visual inspection
- images
- automated visual
- deep learning
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8803—Visual inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Chemical & Material Sciences (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- User Interface Of Digital Computer (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Image Input (AREA)
Abstract
En un método para potenciar la precisión y la eficiencia en la inspección visual automatizada de recipientes, un recipiente que contiene una muestra se orienta de tal modo que una cámara de exploración de líneas tiene una vista de perfil de un borde de un tapón del recipiente. Una pluralidad de imágenes del borde del tapón es capturada por la primera cámara de exploración de líneas mientras se gira el recipiente, donde cada imagen de la pluralidad de imágenes corresponde a una posición de rotación diferente del recipiente. Se genera una imagen bidimensional del borde del tapón basándose al menos en la pluralidad de imágenes, y píxeles de la imagen bidimensional son procesados, por uno o más procesadores que ejecutan un modelo de inferencia que incluye una red neuronal entrenada, para generar datos de salida indicativos de una probabilidad de que la muestra sea defectuosa.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962932413P | 2019-11-07 | 2019-11-07 | |
US201962949667P | 2019-12-18 | 2019-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
CL2022001166A1 true CL2022001166A1 (es) | 2023-02-10 |
Family
ID=73654910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CL2022001166A CL2022001166A1 (es) | 2019-11-07 | 2022-05-04 | Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada |
Country Status (12)
Country | Link |
---|---|
US (1) | US20220398715A1 (es) |
EP (1) | EP4055559A1 (es) |
JP (1) | JP2022553572A (es) |
KR (1) | KR20220090513A (es) |
CN (1) | CN114631125A (es) |
AU (1) | AU2020378062A1 (es) |
BR (1) | BR112022008676A2 (es) |
CA (1) | CA3153701A1 (es) |
CL (1) | CL2022001166A1 (es) |
IL (1) | IL291773A (es) |
MX (1) | MX2022005355A (es) |
WO (1) | WO2021092297A1 (es) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230153978A1 (en) * | 2021-11-17 | 2023-05-18 | Communications Test Design, Inc. | Methods and systems for grading devices |
US20230184738A1 (en) * | 2021-12-15 | 2023-06-15 | Optum, Inc. | Detecting lab specimen viability |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5309486A (en) * | 1992-11-12 | 1994-05-03 | Westinghouse Electric Corp. | Non-contact flaw detection for cylindrical nuclear fuel pellets |
JP4547828B2 (ja) * | 2001-04-19 | 2010-09-22 | 大日本印刷株式会社 | 容器搬送システム |
EP1560017B1 (en) * | 2002-10-18 | 2009-08-05 | Kirin Techno-System Company, Limited | Glass bottle inspection device |
US20090154789A1 (en) * | 2007-12-17 | 2009-06-18 | Gradience Imaging, Inc. | System and method for detecting optical defects |
TWI708052B (zh) * | 2011-08-29 | 2020-10-21 | 美商安美基公司 | 用於非破壞性檢測-流體中未溶解粒子之方法及裝置 |
US10899138B2 (en) * | 2017-01-11 | 2021-01-26 | Applied Vision Corporation | Container inspection system controlling printheads to correct for detected ink thickness errors |
JP2019002725A (ja) * | 2017-06-13 | 2019-01-10 | コニカミノルタ株式会社 | 欠陥検査装置 |
EP3673258A1 (en) * | 2017-08-25 | 2020-07-01 | Baxter International, Inc. | Automated visual inspection for visible particulate matter in empty flexible containers |
-
2020
- 2020-11-06 US US17/775,036 patent/US20220398715A1/en active Pending
- 2020-11-06 MX MX2022005355A patent/MX2022005355A/es unknown
- 2020-11-06 IL IL291773A patent/IL291773A/en unknown
- 2020-11-06 CN CN202080076841.4A patent/CN114631125A/zh active Pending
- 2020-11-06 CA CA3153701A patent/CA3153701A1/en active Pending
- 2020-11-06 AU AU2020378062A patent/AU2020378062A1/en active Pending
- 2020-11-06 WO PCT/US2020/059293 patent/WO2021092297A1/en unknown
- 2020-11-06 BR BR112022008676A patent/BR112022008676A2/pt unknown
- 2020-11-06 EP EP20817138.9A patent/EP4055559A1/en active Pending
- 2020-11-06 KR KR1020227014112A patent/KR20220090513A/ko unknown
- 2020-11-06 JP JP2022524988A patent/JP2022553572A/ja active Pending
-
2022
- 2022-05-04 CL CL2022001166A patent/CL2022001166A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
BR112022008676A2 (pt) | 2022-07-19 |
CN114631125A (zh) | 2022-06-14 |
AU2020378062A1 (en) | 2022-04-07 |
JP2022553572A (ja) | 2022-12-23 |
MX2022005355A (es) | 2022-06-02 |
EP4055559A1 (en) | 2022-09-14 |
US20220398715A1 (en) | 2022-12-15 |
WO2021092297A1 (en) | 2021-05-14 |
IL291773A (en) | 2022-06-01 |
KR20220090513A (ko) | 2022-06-29 |
CA3153701A1 (en) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CL2022001166A1 (es) | Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada | |
EP3655923B1 (en) | Weakly supervised anomaly detection and segmentation in images | |
US11216927B2 (en) | Visual localization in images using weakly supervised neural network | |
CL2017002353A1 (es) | Control de calidad y selección automatizados | |
AR121849A2 (es) | Un método de preprocesamiento de una imagen digital copiada de una habitación | |
Thipakorn et al. | Egg weight prediction and egg size classification using image processing and machine learning | |
WO2020125319A1 (zh) | 青光眼图像识别方法、设备和筛查系统 | |
CN107945200A (zh) | 图像二值化分割方法 | |
EP3327617A3 (en) | Object detection in image data using depth segmentation | |
TW201732651A (zh) | 一種單詞的分割方法和裝置 | |
Nguyen et al. | Mavnet: An effective semantic segmentation micro-network for mav-based tasks | |
US10643576B2 (en) | System and method for white spot Mura detection with improved preprocessing | |
JP7150468B2 (ja) | 構造物劣化検出システム | |
Perdana et al. | Automatic aerial victim detection on low-cost thermal camera using convolutional neural network | |
CN109767431A (zh) | 零件外观缺陷检测方法、装置、设备及可读存储介质 | |
Pérez-Gonzalo et al. | Robust wind turbine blade segmentation from RGB images in the wild | |
WO2018096122A3 (en) | System and method for determining the presence of objects in an image | |
Singh et al. | Performance analysis of object detection algorithms for robotic welding applications in planar environment | |
Yun et al. | Image preprocessing method in radiographic inspection for automatic detection of ship welding defects | |
EP3182335A2 (en) | Methods, systems, and apparatuses for inspecting goods | |
RU2560789C1 (ru) | Способ идентификации печати на цифровом изображении | |
Reina Molina et al. | Image segmentation using tissue-like P systems with multiple auxiliary cells | |
Li | Fast multi-level connected component labeling for large-scale images | |
Yeboah et al. | Robotic crack detection and classification via AdaBoost-RVM implementation | |
Liang et al. | Exploring Meibomian Gland Dysfunction Grading: A Comparison of Machine Learning and XAI Approaches |