CL2022001166A1 - Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada - Google Patents

Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada

Info

Publication number
CL2022001166A1
CL2022001166A1 CL2022001166A CL2022001166A CL2022001166A1 CL 2022001166 A1 CL2022001166 A1 CL 2022001166A1 CL 2022001166 A CL2022001166 A CL 2022001166A CL 2022001166 A CL2022001166 A CL 2022001166A CL 2022001166 A1 CL2022001166 A1 CL 2022001166A1
Authority
CL
Chile
Prior art keywords
container
visual inspection
images
automated visual
deep learning
Prior art date
Application number
CL2022001166A
Other languages
English (en)
Inventor
Neelima Chavali
Thomas C Pearson
Manuel A Soto
Jorge Delgado Torres
Rentas Roberto C Alvarado
Javier O Tapia
Sandra Rodriguez-Toledo
Eric R Flores-Acosta
Osvaldo Perez
Brenda A Torres
Original Assignee
Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc filed Critical Amgen Inc
Publication of CL2022001166A1 publication Critical patent/CL2022001166A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Chemical & Material Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Image Input (AREA)

Abstract

En un método para potenciar la precisión y la eficiencia en la inspección visual automatizada de recipientes, un recipiente que contiene una muestra se orienta de tal modo que una cámara de exploración de líneas tiene una vista de perfil de un borde de un tapón del recipiente. Una pluralidad de imágenes del borde del tapón es capturada por la primera cámara de exploración de líneas mientras se gira el recipiente, donde cada imagen de la pluralidad de imágenes corresponde a una posición de rotación diferente del recipiente. Se genera una imagen bidimensional del borde del tapón basándose al menos en la pluralidad de imágenes, y píxeles de la imagen bidimensional son procesados, por uno o más procesadores que ejecutan un modelo de inferencia que incluye una red neuronal entrenada, para generar datos de salida indicativos de una probabilidad de que la muestra sea defectuosa.
CL2022001166A 2019-11-07 2022-05-04 Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada CL2022001166A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962932413P 2019-11-07 2019-11-07
US201962949667P 2019-12-18 2019-12-18

Publications (1)

Publication Number Publication Date
CL2022001166A1 true CL2022001166A1 (es) 2023-02-10

Family

ID=73654910

Family Applications (1)

Application Number Title Priority Date Filing Date
CL2022001166A CL2022001166A1 (es) 2019-11-07 2022-05-04 Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada

Country Status (12)

Country Link
US (1) US20220398715A1 (es)
EP (1) EP4055559A1 (es)
JP (1) JP2022553572A (es)
KR (1) KR20220090513A (es)
CN (1) CN114631125A (es)
AU (1) AU2020378062A1 (es)
BR (1) BR112022008676A2 (es)
CA (1) CA3153701A1 (es)
CL (1) CL2022001166A1 (es)
IL (1) IL291773A (es)
MX (1) MX2022005355A (es)
WO (1) WO2021092297A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230153978A1 (en) * 2021-11-17 2023-05-18 Communications Test Design, Inc. Methods and systems for grading devices
US20230184738A1 (en) * 2021-12-15 2023-06-15 Optum, Inc. Detecting lab specimen viability

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309486A (en) * 1992-11-12 1994-05-03 Westinghouse Electric Corp. Non-contact flaw detection for cylindrical nuclear fuel pellets
JP4547828B2 (ja) * 2001-04-19 2010-09-22 大日本印刷株式会社 容器搬送システム
EP1560017B1 (en) * 2002-10-18 2009-08-05 Kirin Techno-System Company, Limited Glass bottle inspection device
US20090154789A1 (en) * 2007-12-17 2009-06-18 Gradience Imaging, Inc. System and method for detecting optical defects
TWI708052B (zh) * 2011-08-29 2020-10-21 美商安美基公司 用於非破壞性檢測-流體中未溶解粒子之方法及裝置
US10899138B2 (en) * 2017-01-11 2021-01-26 Applied Vision Corporation Container inspection system controlling printheads to correct for detected ink thickness errors
JP2019002725A (ja) * 2017-06-13 2019-01-10 コニカミノルタ株式会社 欠陥検査装置
EP3673258A1 (en) * 2017-08-25 2020-07-01 Baxter International, Inc. Automated visual inspection for visible particulate matter in empty flexible containers

Also Published As

Publication number Publication date
BR112022008676A2 (pt) 2022-07-19
CN114631125A (zh) 2022-06-14
AU2020378062A1 (en) 2022-04-07
JP2022553572A (ja) 2022-12-23
MX2022005355A (es) 2022-06-02
EP4055559A1 (en) 2022-09-14
US20220398715A1 (en) 2022-12-15
WO2021092297A1 (en) 2021-05-14
IL291773A (en) 2022-06-01
KR20220090513A (ko) 2022-06-29
CA3153701A1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
CL2022001166A1 (es) Aplicación dirigida de aprendizaje profundo a un equipo de inspección visual automatizada
EP3655923B1 (en) Weakly supervised anomaly detection and segmentation in images
US11216927B2 (en) Visual localization in images using weakly supervised neural network
CL2017002353A1 (es) Control de calidad y selección automatizados
AR121849A2 (es) Un método de preprocesamiento de una imagen digital copiada de una habitación
Thipakorn et al. Egg weight prediction and egg size classification using image processing and machine learning
WO2020125319A1 (zh) 青光眼图像识别方法、设备和筛查系统
CN107945200A (zh) 图像二值化分割方法
EP3327617A3 (en) Object detection in image data using depth segmentation
TW201732651A (zh) 一種單詞的分割方法和裝置
Nguyen et al. Mavnet: An effective semantic segmentation micro-network for mav-based tasks
US10643576B2 (en) System and method for white spot Mura detection with improved preprocessing
JP7150468B2 (ja) 構造物劣化検出システム
Perdana et al. Automatic aerial victim detection on low-cost thermal camera using convolutional neural network
CN109767431A (zh) 零件外观缺陷检测方法、装置、设备及可读存储介质
Pérez-Gonzalo et al. Robust wind turbine blade segmentation from RGB images in the wild
WO2018096122A3 (en) System and method for determining the presence of objects in an image
Singh et al. Performance analysis of object detection algorithms for robotic welding applications in planar environment
Yun et al. Image preprocessing method in radiographic inspection for automatic detection of ship welding defects
EP3182335A2 (en) Methods, systems, and apparatuses for inspecting goods
RU2560789C1 (ru) Способ идентификации печати на цифровом изображении
Reina Molina et al. Image segmentation using tissue-like P systems with multiple auxiliary cells
Li Fast multi-level connected component labeling for large-scale images
Yeboah et al. Robotic crack detection and classification via AdaBoost-RVM implementation
Liang et al. Exploring Meibomian Gland Dysfunction Grading: A Comparison of Machine Learning and XAI Approaches