CH711247B1 - Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication. - Google Patents

Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication. Download PDF

Info

Publication number
CH711247B1
CH711247B1 CH00916/15A CH9162015A CH711247B1 CH 711247 B1 CH711247 B1 CH 711247B1 CH 00916/15 A CH00916/15 A CH 00916/15A CH 9162015 A CH9162015 A CH 9162015A CH 711247 B1 CH711247 B1 CH 711247B1
Authority
CH
Switzerland
Prior art keywords
etching
silicon
protective layer
order
substrate
Prior art date
Application number
CH00916/15A
Other languages
English (en)
Other versions
CH711247A2 (fr
Inventor
Gandelhman Alex
Pin André
Original Assignee
Nivarox Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Sa filed Critical Nivarox Sa
Priority to CH00916/15A priority Critical patent/CH711247B1/fr
Publication of CH711247A2 publication Critical patent/CH711247A2/fr
Publication of CH711247B1 publication Critical patent/CH711247B1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00626Processes for achieving a desired geometry not provided for in groups B81C1/00563 - B81C1/00619
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0095Aspects relating to the manufacture of substrate-free structures, not covered by groups B81C99/008 - B81C99/009
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • G04B29/02Plates; Bridges; Cocks
    • G04B29/027Materials and manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/035Microgears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0112Bosch process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Micromachines (AREA)

Abstract

L’invention se rapporte à une pièce de micromécanique (51) à base de silicium, telle qu’une roue d’une pièce d’horlogerie, avec au moins une surface de contact diminuée (54) formée à partir d’un procédé de fabrication combinant au moins une étape de gravage de flancs obliques (37) avec une étape de gravage ionique réactif profond de flancs verticaux. Ce procédé permet notamment l’amélioration tribologique de pièces formées par microusinage d’une plaquette à base de silicium.

Description

Description
Domaine de l’invention [0001] L’invention se rapporte à une pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication. Plus particulièrement, l’invention se rapporte à une telle pièce formée par microusinage d’une plaquette de matière.
Arrière-plan de l’invention [0002] Le document CH 698 837 divulgue la fabrication d’un composant horloger par micro-usinage d’une plaquette en matériau amorphe ou cristallin tel que du silicium sous forme cristalline ou polycristalline.
[0003] Un tel micro-usinage est généralement obtenu à partir d’un gravage ionique réactif profond (connu également sous l’abréviation anglaise «DRIE»). Comme illustré aux fig. 1 à 3, un micro-usinage connu consiste en une structuration d’un masque 1 sur un substrat 3 (cf. fig. 1, étape A) suivi d’un gravage ionique réactif profond du type «Bosch» combinant successivement une phase d’attaque (cf. fig. 1, étapes B, D, E) suivie d’une phase de passivation (cf. fig. 1, étape C, couche 4) pour obtenir, à partir du motif du masque 1, d’une gravure anisotrope 5, c’est-à-dire sensiblement verticale, dans la plaquette (cf. fig. 2).
[0004] Comme illustré à la fig. 3, un exemple de gravage ionique réactif profond du type «Bosch» est représenté avec, en trait plein, le flux en SCCM de SF6 en fonction du temps en secondes permettant le gravage d’une plaquette en silicium et, en trait interrompu, le flux en SCCM de C4F8 en fonction du temps en secondes permettant la passivation, c’est-à-dire la protection, de la plaquette en silicium. On peut ainsi très bien voir que les phases sont strictement consécutives et comportent un flux et un temps qui leur sont propres.
[0005] Dans l’exemple de la fig. 3, une première phase de gravage est représentée avec un flux de SF6 à 300 SCCM pendant 7 secondes, suivie par une première phase de passivation avec un flux de C4F8 à 200 SCCM pendant 2 secondes, suivie d’une deuxième phase de gravage avec un flux de SF6 à 300 SCCM à nouveau pendant 7 secondes et, enfin, suivie d’une deuxième phase de passivation avec un flux de C4F8 à 200 SCCM pendant 2 secondes. On remarque donc qu’un certain nombre de paramètres permet de faire varier le gravage ionique réactif profond du type «Bosch» pour avoir une ondulation plus ou moins marquée de la paroi de la gravure verticale 5.
[0006] Après plusieurs années de fabrication, il s’est avéré que ces gravures 5 verticales n’étaient pas totalement satisfaisantes notamment au niveau tribologique.
Résumé de l’invention [0007] Le but de la présente invention est de pallier tout ou partie les inconvénients cités précédemment en proposant un nouveau type de pièce de micromécanique et un nouveau type de procédé de fabrication permettant notamment l’amélioration tribologique de pièces formées par micro-usinage d’une plaquette de matière.
[0008] A cet effet, l’invention se rapporte à un procédé de fabrication d’une pièce de micromécanique à base de silicium comportant les étapes suivantes:
a) se munir d’un substrat à base de silicium;
b) former un masque muni d’ajourages sur une partie horizontale du substrat;
c) graver, dans une chambre de gravage, selon des parois sensiblement verticales, dans au moins une partie de l’épaisseur du substrat à partir d’ajourages du masque afin de former des parois périphériques de la pièce de micromécanique;
d) former une couche de protection sur les parois verticales en laissant le fond de gravure de l’étape c) sans couche de protection;
e) graver, dans la chambre de gravage, selon des parois obliques, dans le reste de l’épaisseur du substrat à partir du fond sans couche de protection afin de former des surfaces inférieures obliques sous les parois périphériques de la pièce de micromécanique.
f) libérer la pièce de micromécanique du masque et du substrat.
[0009] On comprend que, dans la même chambre de gravage, deux types distincts de gravage sont obtenus. On comprend immédiatement que le gravage oblique de l’étape e) permet de former une deuxième surface sensiblement oblique pour former plusieurs pièces de micromécanique sur le même substrat ayant une paroi périphérique à surface de contact réduite. On peut également s’apercevoir que, grâce à la couche de protection uniquement sur les parois verticales, le gravage oblique de l’étape e) autorise un angle largement plus ouvert et une direction de gravure sensiblement rectiligne
CH 711 247 B1 qui évite d’être limité par les paramètres d’un gravage ionique réactif profond du type «Bosch» qui est, en revanche, utilisé lors de l’étape c) selon ses paramètres optimisés de gravure verticale.
[0010] Conformément à d’autres variantes avantageuses de l’invention:
- l’étape c) est réalisée en alternant un flux de gaz de gravage et un flux de gaz de passivation dans la chambre de gravage afin de former des parois sensiblement verticales;
- l’étape d) comporte les phases d1): oxyder la gravure obtenue lors de l’étape c) pour former la couche de protection en oxyde de silicium et d2): graver de manière directionnelle la couche de protection afin de retirer sélectivement la partie de couche de protection uniquement au niveau du fond de la gravure de l’étape c);
- l’étape e) est réalisée en mélangeant du gaz de gravage et du gaz de passivation dans la chambre de gravage afin de former des parois obliques;
- lors de l’étape e), les flux de gaz de gravage et de passivation sont continûment puisés afin de favoriser le gravage en fond de cavité.
[0011] De plus, l’invention se rapporte à une pièce de micromécanique obtenue à partir du procédé selon l’une des revendications précédentes, caractérisée en ce qu’elle comporte un corps à base de silicium dont la paroi périphérique comporte une première surface sensiblement verticale et une deuxième surface oblique permettant de diminuer la surface de contact de la paroi périphérique.
[0012] Avantageusement selon l’invention, on comprend que la paroi périphérique ou interne verticale de la pièce de micromécanique offre une réduction de sa surface de contact ou quant à l’entrée d’un organe le long d’une paroi interne de la pièce de micromécanique permettant d’apporter une amélioration quant à la tribologie contre une autre pièce.
[0013] Conformément à d’autres variantes avantageuses de l’invention:
- la pièce de micromécanique comporte en outre au moins une cavité comportant une paroi interne comprenant également une première surface sensiblement verticale et une deuxième surface sensiblement oblique;
- la pièce de micromécanique forme tout ou partie d’un organe de mouvement ou d’habillage d’une pièce d’horlogerie.
Description sommaire des dessins [0014] D’autres particularités et avantages assortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels:
les fig. 1 à 3 sont des représentations destinées à expliquer le gravage ionique réactif profond du type «Bosch» utilisé dans le cadre de l’invention;
les fig. 4 à 10 sont des représentations d’étapes de fabrication d’une pièce de micromécanique selon un mode de réalisation de l’invention;
la fig. 11 est une représentation d’une pièce de micromécanique selon un mode de réalisation de l’invention;
la fig. 12 est un schéma fonctionnel du procédé de fabrication selon un mode de réalisation de l’invention.
Description détaillée des modes de réalisation préférés [0015] L’invention se rapporte à un procédé 11 de fabrication d’une pièce de micromécanique à base de silicium. Comme illustré à la fig. 12, le procédé 11 comporte une première étape 13 destinée à se munir d’un substrat à base de silicium.
[0016] Les termes à base de silicium signifient un matériau comportant du silicium monocristallin, du silicium monocristallin dopé, du silicium polycristallin, du silicium polycristallin dopé, du silicium poreux, de l’oxyde de silicium, du quartz, de la silice, du nitrure de silicium ou du carbure de silicium. Bien entendu, quand le matériau à base de silicium est sous phase cristalline, n’importe quelle orientation cristalline peut être utilisée.
[0017] Typiquement, comme illustré à la fig. 4, le substrat 31 à base de silicium peut être du silicium sur isolant (également connu sous l’abréviation anglaise «SOI») comportant une couche supérieure 30 en silicium et une couche inférieure 34 en silicium reliées par une couche intermédiaire 32 en oxyde de silicium. Toutefois, alternativement, le substrat pourrait comporter une couche de silicium rapportée sur une autre type de base comme, par exemple, en métal.
[0018] Le procédé se poursuit avec l’étape 15 destinée à former un masque 33 muni d’ajourages 35 sur une partie horizontale du substrat 31. Dans l’exemple de la fig. 4, le masque 33 est formé sur la partie supérieure de la couche supérieure 30 en silicium. Le masque 33 est formé à partir d’un matériau capable de résister aux futures étapes de gravage du procédé 11. A ce titre, le masque 33 peut être formé à partir de nitrure de silicium ou d’oxyde de silicium. Dans l’exemple de la fig. 4, le masque 33 est formé à partir d’oxyde de silicium.
[0019] Avantageusement selon l’invention, le procédé 11 se poursuit avec une étape 17 destinée à graver, dans une chambre de gravage, selon des parois 36 sensiblement verticales, dans au moins une partie de l’épaisseur du substrat 31 à partir des ajourages 35 du masque 33 afin de former des parois périphériques ou internes de la pièce de micromécanique.
CH 711 247 B1 [0020] L’étape 17 de gravage sensiblement vertical est typiquement un gravage ionique réactif profond du type «Bosch» décrit ci-dessus, c’est-à-dire en alternant un flux de gaz de gravage et un flux de gaz de passivation dans la chambre de gravage afin de former des parois sensiblement verticales.
[0021] En effet, l’étape 17 autorise une direction de gravure sensiblement verticale par rapport au masque 33 comme visible à la fig. 5. On obtient ainsi une gravure 39 dont la section, visible à la fig. 5, est sensiblement sous forme d’un quadrilatère droit. Bien entendu, suivant la forme des ajourages 35, la forme du volume enlevé lors du gravage varie. Ainsi, un ajourage circulaire donnera une gravure cylindrique et un ajourage carré, un cube ou un parallélépipède rectangle.
[0022] Le procédé 11 se poursuit avec l’étape 19 destinée à former une couche de protection 42 sur les parois verticales 36 en laissant le fond 38 de gravure 39 sans couche de protection comme visible à la fig. 7.
[0023] Préférentiellement, la couche de protection 42 est formée en oxyde de silicium. En effet, comme visible aux fig. 6 et 7, l’étape 19 peut alors comporter une première phase 18 destinée à oxyder tout le dessus du substrat 31, c’est-à-dire le masque 33 et les parois 36, 38 formées par la gravure 39 pour former une surépaisseur sur le masque 33 et une épaisseur sur les parois verticales 36 et le fond 38 de la gravure 39 pour former la couche de protection 42 en oxyde de silicium.
[0024] La deuxième phase 20 pourrait alors consister à graver, de manière directionnelle, la couche de protection 42 afin de retirer sélectivement les surfaces horizontales en oxyde de silicium d’une partie du masque 33 et de la totalité de la partie de couche de protection 42 uniquement au niveau du fond 38 de la gravure 39 comme visible à la fig. 7.
[0025] Le procédé 11 peut alors se poursuivre avec l’étape 21 destinée à graver, dans la même chambre de gravage, mais selon des parois obliques 37, dans le reste de l’épaisseur du substrat 31 à partir du fond 38 sans couche de protection 42 afin de former des surfaces inférieures obliques sous les parois périphériques de la pièce de micromécanique.
[0026] L’étape 21 de gravage oblique n’est pas un gravage ionique réactif profond du type «Bosch» décrit ci-dessus. En effet, l’étape 21 autorise, grâce à la couche de protection 42, un angle largement plus ouvert et une direction de gravure sensiblement rectiligne qui évitent d’être limités par les paramètres d’un gravage ionique réactif profond du type «Bosch». En effet, on estime généralement que, même en modifiant les paramètres d’un gravage ionique réactif profond du type «Bosch», l’angle d’ouverture ne peut excéder 10 degrés en ayant une direction de gravure courbe.
[0027] Avantageusement selon l’invention, l’étape 21 est réalisée, préférentiellement, en mélangeant du gaz SF6 de gravage et du gaz C4F8 de passivation dans la chambre de gravage afin de former les parois 37 obliques. Plus précisément, les flux de gaz SF6 de gravage et de passivation C4F8 sont continûment puisés afin de favoriser le gravage en fond de cavité. [0028] On comprend donc l’étape 21 autorise un angle largement plus ouvert typiquement autour de 45 degrés dans l’exemple de la fig. 8 au lieu des 10 degrés obtenus au mieux par un gravage ionique réactif profond du type «Bosch» avec une modification optimisée des paramètres. De plus, la pulsation des flux continus autorise une meilleure directivité de gravure, voire obtenir des parois en tronc de cônes parfaits, et non sphériques (parfois appelés gravures isotropes) comme avec un gravage humide ou un gravage sec comme, par exemple, avec du gaz SF6 seul.
[0029] Pour obtenir la forme de parois 37 de la fig. 8, on peut par exemple appliquer une séquence pouvant comporter une première phase avec un flux de SF6 mélangé avec un flux de C4F8 pendant une première durée, suivie par une deuxième phase avec un flux augmenté de SF6 mélangé avec un flux diminué de C4F8 pendant une deuxième durée, puis à nouveau les première et deuxième phases et ainsi de suite.
[0030] A titre d’exemple, cette séquence pourrait comporter une première phase avec un flux de SF6à500SCCM mélangé avec un flux de C4F8 à 150 SCCM pendant 1,2 seconde, suivie par une deuxième phase représentée avec un flux de SF6 à 600 SCCM mélangé avec un flux de C4F8 à 100 SCCM pendant 0,8 seconde, suivie d’une troisième phase avec, à nouveau, un flux de SF6 à 500 SCCM mélangé avec un flux de C4F8 à 150 SCCM pendant 1,2 seconde et suivie d’une quatrième phase avec un flux de SF6 à 600 SCCM mélangé avec un flux de C4F8 à 100 SCCM pendant 0,8 seconde et ainsi de suite.
[0031] On remarque donc que cette pulsation des flux continus favorise le gravage en fond de cavité ce qui va élargir, au fur et à mesure de l’étape 21, l’ouverture possible de la gravure 41 en fonction de sa profondeur et, incidemment, une ouverture de gravure 41 plus large au niveau de la partie inférieure de la couche supérieure 30 jusqu’à commencer à obtenir une ouverture de gravure 41 plus large que l’ajourage 35 du masque ou du fond 38 de gravure 39 en début d’étape 21 comme visible lors du passage de la fig. 7 à la fig. 8.
[0032] Le procédé 11 se finit avec l’étape 23 destinée à libérer la pièce de micromécanique du substrat 31 et du masque 33. Plus précisément, dans l’exemple présenté aux fig. 9 et 12, l’étape 23 peut comporter une phase 24 de désoxydation permettant de retirer le masque 33 en oxyde de silicium et, éventuellement, tout ou partie de la couche intermédiaire 32 en oxyde de silicium puis une phase 25 de libération du substrat 31 à l’aide, par exemple, d’une attaque chimique sélective.
[0033] Le procédé 11 illustré en trait simple à la fig. 12 permet, dans une même chambre de gravage, deux types distincts de gravage. On peut également s’apercevoir que le gravage oblique de l’étape 21 autorise un angle largement plus ouvert et une direction de gravure sensiblement rectiligne qui évitent d’être limités par les paramètres d’un gravage ionique réactif profond du type «Bosch» et d’utiliser ce dernier, lors de l’étape 17, selon ses paramètres optimisés de gravure verticale.
CH 711 247 B1 [0034] Avantageusement selon l’invention, la pièce de micromécanique 51 formant une roue dans l’exemple de la fig. 11 comporte une paroi périphérique 54 formant une denture qui comporte une surface de contact réduite.
[0035] Comme mieux visible à la fig. 10 qui est une vue agrandie sur une partie de la pièce 51, la pièce de micromécanique 51 comporte ainsi un corps 61 à base de silicium dont la paroi périphérique 54 borde une surface supérieure horizontale et une inférieure horizontale 55 et comporte une première surface 56 sensiblement verticale et une deuxième surface 57 oblique.
[0036] On comprend donc que la deuxième surface oblique 57 sensiblement rectiligne apporte à la paroi périphérique formant denture, une diminution de la surface de contact permettant une amélioration quant à sa tribologie contre une autre pièce. On comprend également que la paroi interne 60 peut également recevoir plus facilement un organe.
[0037] Bien entendu, la présente invention ne se limite pas à l’exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l’homme de l’art. En particulier, une étape d’oxydation 22 destinée à lisser les parois en silicium peut être exécutée entre les étapes 21 et 23.
[0038] De plus, une partie en métal ou en alliage métallique pourrait être déposée dans la gravure 41, lors d’une étape optionnelle entre les phases 24 et 25, de sorte à former une chemise 59 dans un trou 60 de la pièce de micromécanique 51 comme illustré à la fig. 11.
[0039] Cette partie en métal ou en alliage métallique pourrait même déborder au-dessus de la gravure 41 afin de former un niveau fonctionnel supplémentaire de la pièce de micromécanique composite 51 uniquement formé en métal.
[0040] Ainsi, après la phase 24 désoxydant le substrat 31, le procédé 11 pourrait se poursuivre avec une étape destinée à remplir sélectivement une cavité formée lors des gravages 17 et 21, d’un métal ou d’un alliage métallique afin d’offrir une attache à la pièce de micromécanique.
[0041] A titre d’exemple, préférentiellement, la couche inférieure 34 du substrat 31 pourrait alors être fortement dopée et utilisée comme base directe ou indirecte pour un remplissage par galvanoplastie. Ainsi, une première phase pourrait être destinée à former un moule, par exemple en résine photosensible, sur le dessus du masque 33 et dans une partie de la gravure 41. Une deuxième phase pourrait consister à électroformer une partie métallique, à partir de la couche inférieure 34, au moins entre la pièce de micromécanique en silicium et une partie du moule formé dans la gravure 41. Enfin, une troisième phase pourrait consister à retirer le moule formé lors de la première phase. Le procédé se finirait avec la phase 25 de libération de la pièce de micromécanique composite du substrat 31 par une attaque chimique sélective.
[0042] Avantageusement selon l’invention, on comprend alors que le dépôt galvanique 59 est, par les formes de la première surface sensiblement verticale 56 et une deuxième surface oblique 57, plus difficile à retirer qu’avec une surface essentiellement verticale et bénéficie d’une meilleure résistance au cisaillement.
[0043] De plus, ladite au moins une cavité 60 qui est au moins partiellement remplie d’un métal ou d’un alliage métallique 59 permet d’offrir une attache à la pièce de micromécanique composite 51. Ainsi, dans l’exemple de la fig. 11, la cavité 60 pourrait laisser un évidement cylindrique 62 apte à permettre le chassage de la pièce de micromécanique composite 51 sur un arbre avec une bonne résistance mécanique lors du dudgeonnage de la partie en métal ou en alliage métallique 59 grâce aux formes de la paroi périphérique 54.
[0044] Enfin, la pièce de micromécanique 51 ne saurait se limiter à l’application d’une roue comme visible à la fig. 11. Ainsi, la pièce de micromécanique 51 peut former tout ou partie d’un organe de mouvement ou d’habillage d’une pièce d’horlogerie.
[0045] A titre d’exemples nullement limitatifs, la pièce de micromécanique 51 peut ainsi former tout ou partie d’un spiral, d’une cheville, d’un balancier, d’un axe, d’un plateau, d’une ancre comme une tige, une baguette, une fourchette, une palette et un dard, d’un mobile comme une roue, un arbre et un pignon, d’un pont, d’une platine, d’une masse oscillante, d’une tige de remontoir, d’un coussinet, d’un boîtier comme la carrure et les cornes, d’un cadran, d’un réhaut, d’une lunette, d’un poussoir, d’une couronne, d’un fond de boîtier, d’une aiguille, d’un bracelet comme un maillon, d’un décor, d’une applique, d’une glace, d’un fermoir, d’un pied de cadran, d’une tige de couronne ou d’une tige de poussoir.
Revendications

Claims (8)

1. Procédé (11) de fabrication d’une pièce de micromécanique (51) à base de silicium comportant les étapes suivantes:
a) se munir d’un substrat (30) à base de silicium;
b) former un masque (33) muni d’ajourages (35) sur une partie horizontale du substrat (30);
c) graver, dans une chambre de gravage, selon des parois (36) sensiblement verticales, dans une partie de l’épaisseur du substrat (30), à partir d’ajourages (35) du masque (33), afin de former des parois périphériques (54) de la pièce de micromécanique (51);
d) former une couche (42) de protection sur les parois (36) verticales en laissant le fond (38) de gravure (39) de l’étape c) sans couche de protection;
CH 711 247 B1
e) graver, dans la chambre de gravage, selon des parois (37) obliques, dans le reste de l’épaisseur du substrat (30) à partir du fond (38) sans couche de protection afin de former des surfaces inférieures (57) obliques sous les parois périphériques (54) de la pièce de micromécanique, afin de réduire la surface de contact;
f) libérer la pièce de micromécanique (51) du masque (33) et du substrat (30).
2. Procédé selon la revendication précédente, caractérisé en ce que l’étape c) est réalisée en alternant un flux de gaz de gravage et un flux de gaz de passivation dans la chambre de gravage afin de former des parois (36) sensiblement verticales.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l’étape d) comporte les phases suivantes:
d1) oxyder la gravure (39) obtenue lors de l’étape c) pour former la couche (42) de protection en oxyde de silicium; d2) graver de manière directionnelle la couche (42) de protection afin de retirer sélectivement la partie de couche (42) de protection uniquement au niveau du fond (38) de la gravure (39) de l’étape c).
4. Procédé selon l’une des revendications précédentes, caractérisé en ce que l’étape e) est réalisée en mélangeant du gaz de gravage et du gaz de passivation dans la chambre de gravage afin de former des parois (37) obliques.
5. Procédé selon la revendication précédente, caractérisé en ce que, lors de l’étape e), les flux de gaz de gravage et de passivation sont continûment puisés afin de favoriser le gravage en fond de cavité.
6. Pièce de micromécanique (51) obtenue à partir du procédé selon l’une des revendications précédentes, caractérisée en ce qu’elle comporte un corps (61) à base de silicium dont la paroi périphérique (54) comporte une première surface (56) sensiblement verticale et une deuxième surface (57) oblique permettant de diminuer la surface de contact de la paroi périphérique (54).
7. Pièce de micromécanique (51) selon la revendication précédente, caractérisée en ce qu’elle comporte, en outre, au moins une cavité (62) comportant une paroi interne comprenant également une première surface (56) sensiblement verticale et une deuxième surface (57) sensiblement oblique.
8. Pièce de micromécanique (51) selon la revendication 6 ou 7, caractérisé en ce qu’il s’agit d’un organe ou d’une partie d’un organe de mouvement ou d’habillage d’une pièce d’horlogerie.
CH00916/15A 2015-06-25 2015-06-25 Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication. CH711247B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00916/15A CH711247B1 (fr) 2015-06-25 2015-06-25 Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00916/15A CH711247B1 (fr) 2015-06-25 2015-06-25 Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication.

Publications (2)

Publication Number Publication Date
CH711247A2 CH711247A2 (fr) 2016-12-30
CH711247B1 true CH711247B1 (fr) 2019-08-15

Family

ID=57571547

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00916/15A CH711247B1 (fr) 2015-06-25 2015-06-25 Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication.

Country Status (1)

Country Link
CH (1) CH711247B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072688B1 (fr) * 2017-10-20 2019-10-11 Tronic's Microsystems Procede de fabrication d'une piece micromecanique en silicium
JP2021081299A (ja) * 2019-11-19 2021-05-27 セイコーエプソン株式会社 時計用部品及び時計

Also Published As

Publication number Publication date
CH711247A2 (fr) 2016-12-30

Similar Documents

Publication Publication Date Title
EP3109200B1 (fr) Piece de micromecanique avec une surface de contact diminuee et son procede de fabrication
EP3109199B1 (fr) Piece a base de silicium avec au moins un chanfrein et son procede de fabrication
EP2259997B2 (fr) Procede de fabrication d'une piece de micromecanique composite silicium-metal
EP2767870B1 (fr) Procédé de fabrication d'une pièce de micromécanique monobloc comportant au moins deux niveaux fonctionnels distincts
EP2230208B1 (fr) Moule pour galvanoplastie et son procédé de fabrication
EP2628607A1 (fr) Dispositif d'ancrage d'une incrustation métallique
CH713871A1 (fr) Composant horloger comprenant des éléments graphiques de divers aspects et procédé de fabrication d'un tel composant.
EP2263971A1 (fr) Pièce de micromécanique composite et son procédé de fabrication
EP3066044B1 (fr) Pièce de micromécanique creuse, à plusieurs niveaux fonctionnels et monobloc en un matériau à base d'un allotrope synthétique du carbone
EP2482143A1 (fr) Assemblage par blocage à cliquet
CH711247B1 (fr) Pièce de micromécanique avec une surface de contact diminuée et son procédé de fabrication.
EP3168058B1 (fr) Procédé de fabrication d'une pièce métallique avec au moins un motif a illusion d'optique
EP3168697B1 (fr) Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique
CH711248B1 (fr) Pièce à base de silicium avec au moins un chanfrein et son procédé de fabrication.
WO2012104110A1 (fr) Methode de fabrication d'une piece de micromecanique complexe et a faible rugosite
CH701266A2 (fr) Pièce de micromécanique composite et son procédé de fabrication.
EP2881808B1 (fr) Procédé de fabrication d'un composant horloger
CH715191A2 (fr) Procédé de décoration d'un composant d'habillage en horlogerie.
CH711740A2 (fr) Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique.
CH707562B1 (fr) Procédé de fabrication d'une pièce de micromécanique monobloc comportant au moins deux niveaux distincts.
EP4312085A1 (fr) Procédé de fabrication d'un composant horloger
CH700554A2 (fr) Moule pour galvanoplastie et son procédé de fabrication.