CH705061A1 - Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range - Google Patents

Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range Download PDF

Info

Publication number
CH705061A1
CH705061A1 CH00927/11A CH9272011A CH705061A1 CH 705061 A1 CH705061 A1 CH 705061A1 CH 00927/11 A CH00927/11 A CH 00927/11A CH 9272011 A CH9272011 A CH 9272011A CH 705061 A1 CH705061 A1 CH 705061A1
Authority
CH
Switzerland
Prior art keywords
glass solder
metallic sheet
substrate
thermal expansion
thin
Prior art date
Application number
CH00927/11A
Other languages
German (de)
Inventor
Patrik Mueller
Original Assignee
Von Roll Solar Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Von Roll Solar Ag filed Critical Von Roll Solar Ag
Priority to CH00927/11A priority Critical patent/CH705061A1/en
Publication of CH705061A1 publication Critical patent/CH705061A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The substrate has an electrical insulation layer formed by a glass solder on a part of a surface a metallic sheet. Melting temperature of the glass solder lies in magnitude of 400 degree Celsius to 1000 degree Celsius. The glass solder exhibits thermal expansion coefficients adapted to thermal expansion coefficients of the metallic sheet such that excessive mechanical stresses do not occur in temperature range between minus 50 degree Celsius and the melting temperature of the glass solder. The glass solder is applied on the surface of the metallic sheet as powder or paste. Independent claims are also included for the following: (1) a method for manufacturing a substrate (2) a thin-film solar cell.

Description

[0001] Gegenstand der Erfindung ist ein Substrat für eine Dünnschichtsolarzelle, ein Verfahren zu dessen Herstellung und eine Dünnschichtsolarzelle mit diesem Substrat gemäss dem Oberbegriff der Patentansprüche 1, 6 und 8. Bei der Herstellung von Dünnschichtsolarzellen werden auf einem Substrat oder alternativ auf einem transparenten Superstrat wie z.B. Glas sequentiell mehrere dünne Schichten unterschiedlicher Materialien aufgebracht. In der Regel sind zwei dieser Schichten aus unterschiedlichen halbleitenden Materialien gefertigt, von denen eine als Absorberschicht für einfallendes Licht genutzt wird. Solche Absorberschichten können beispielsweise CdTe oder CIS/CIGS-Verbindungen bzw. den Chalkopyriten zugeordnete I-III-VI-Halbleiter umfassen. The invention relates to a substrate for a thin-film solar cell, a process for its preparation and a thin-film solar cell with this substrate according to the preamble of claims 1, 6 and 8. In the production of thin-film solar cells are on a substrate or alternatively on a transparent superstrate such as Glass sequentially applied several thin layers of different materials. In general, two of these layers are made of different semiconducting materials, one of which is used as an absorber layer for incident light. Such absorber layers may comprise, for example, CdTe or CIS / CIGS compounds or chalcopyrite-associated I-III-VI semiconductors.

[0002] Die an diese halbleitenden Schichten angrenzenden Schichten sind elektrisch leitend ausgebildet. Der Rückseitenkontakt ist in der Regel ein metallischer Leiter wie z.B. Molybdän, der lichtundurchlässig ist. Die an die zweite Halbleiterschicht angrenzende Schicht hingegen ist als lichtdurchlässiger elektrischer Leiter, beispielsweise aus ZnO:Al gefertigt. The adjacent to these semiconductive layers layers are electrically conductive. The backside contact is typically a metallic conductor such as e.g. Molybdenum, which is opaque. The layer adjacent to the second semiconductor layer, on the other hand, is made as a translucent electrical conductor, for example made of ZnO: Al.

[0003] Dünnschichtsolarzellen, die ein bandartiges flexibles Flächengebilde als Substrat umfassen, können in effizienten Durchlaufverfahren von Rolle zu Rolle gefertigt werden. In mehreren Prozessschritten werden auf dem Substrat mehrere Schichten aufgebaut und - wo dies erforderlich ist - zusätzlich strukturiert. Zum Aufbringen und/oder Strukturieren der Schichten können unterschiedliche, an sich bekannte Techniken angewendet werden. Insbesondere können die Halbleiterschichten z.B. besonders effizient in einem Druckverfahren aufgebracht werden. Dabei werden diese Halbleitermaterialien in pastöser Konsistenz als dünne Schichten auf die Oberfläche der obersten auf dem Substrat ausgebildeten Schicht aufgetragen und anschliessend gesintert. Die einzelnen Prozessschritte werden hier nicht näher erläutert. Es wird aber darauf hingewiesen, dass die Temperaturen beim Sintern und gegebenenfalls auch bei anderen Prozessschritten abhängig von den jeweils verwendeten Materialien gewisse Obergrenzen nicht überschreiten sollten, da sonst unerwünschte strukturelle oder chemische Veränderungen in einer oder mehreren der Schichten auftreten könnten. Dünnschichtsolarzellen, die auf einem Substrat aufgebaut sind, haben in der Regel im Wesentlichen folgenden Schichtaufbau: a) flexibles Flächengebilde als Substrat b) optional, falls das Flächengebilde elektrisch leitend ist, umfasst das Substrat zusätzlich eine Isolationsschicht c) metallischer Rückseitenkontakt d) erste Halbleiterschicht(Absorberschicht) e) zweite Halbleiterschicht f) transparenter Frontseitenkontakt g) eine oder mehrere transparente Schutzschichten Während des Herstellprozesses können insbesondere die Kontakt- und die Halbleiterschichten strukturiert und so miteinander verbunden werden, dass einzelne Zellen auf dem Substrat monolithisch seriell und/oder parallel miteinander verschaltet sind. Thin-film solar cells comprising a ribbon-like flexible sheet as a substrate can be manufactured in an efficient pass-through process from roll to roll. In several process steps, several layers are built up on the substrate and - where necessary - additionally structured. For applying and / or structuring the layers, different techniques known per se can be used. In particular, the semiconductor layers may be e.g. be applied particularly efficiently in a printing process. In this case, these semiconductor materials are applied in pasty consistency as thin layers on the surface of the uppermost formed on the substrate layer and then sintered. The individual process steps will not be explained here. However, it should be noted that the temperatures during sintering and possibly also in other process steps should not exceed certain upper limits, depending on the materials used in each case, since otherwise unwanted structural or chemical changes in one or more of the layers could occur. Thin-film solar cells, which are built on a substrate, generally have the following layer structure: a) flexible sheet as a substrate b) optionally, if the sheet is electrically conductive, the substrate additionally comprises an insulating layer c) metallic back contact d) first semiconductor layer (absorber layer) e) second semiconductor layer f) transparent front-side contact g) one or more transparent protective layers During the manufacturing process, in particular the contact layers and the semiconductor layers can be structured and connected to one another in such a way that individual cells are monolithically connected in series and / or parallel to one another on the substrate.

[0004] Die Substrate können z.B. Folien aus elektrisch isolierenden Materialien mit einer möglichst hohen Temperaturbeständigkeit wie z.B. Polyimid umfassen. Alternativ können die Substrate auch elektrisch leitfähige Metalle wie z.B. Titan oder Edelstahl umfassen. Diese müssen aber gegenüber dem Rückseitenkontakt der angrenzenden Halbleiterschicht elektrisch isoliert werden. Substrate auf Kunststoffbasis haben zwar den Vorteil, dass eine dünne, elektrisch leitende Schicht als Rückseitenkontakt z.B. durch Aufdampfen oder Sputtern oder Aufdrucken relativ einfach direkt aufgebracht werden kann. Als Nachteil erweisen sich aber die relativ niedrigen Temperaturen, denen solche Substrate bei den nachfolgenden Prozessschritten ausgesetzt werden dürfen, da sonst das Substrat zerstört würde. So dürfen beispielsweise bei Substratfolien aus Polyimid nur Temperaturen von maximal etwa 400 °C bis 450 °C ausgesetzt werden. Bei nachfolgenden Prozessschritten wie etwa dem Trocknen und Sintern der Halbleiterschichten könnten mit höheren Temperaturen - je nach Anwendungsfall bis zu 1000 °C - qualitativ wesentlich bessere Ergebnisse erreicht werden. Im Weiteren müssen auch die Umgebungsbedingungen beachtet werden, denen das Substrat bei den einzelnen Prozessschritten ausgesetzt ist. So können beispielsweise bei der Herstellung von Photovoltaikmodulen mit Cadmiumtellurid-Absorbern die Halbleiterschichten durch Tempern und durch eine Behandlung mit Cadmiumchlorid CdCl2 aktiviert werden. Bei der Herstellung von Dünnschichtsolarzellen können in einem Sinterofen je nach Herstellprozess z.B. Stickstoff, Formiergas, Selendampf oder Chlorgas in unterschiedlichen Kombinationen und mit unterschiedlichen Konzentrationen verwendet werden. Das Substrat bzw. dessen elektrische Isolationsschicht sollte deshalb möglichst nicht nur hohen Temperaturen ausgesetzt werden können, sondern auch möglichst inert bzw. resistent in Bezug auf aggressive Umgebungsbedingungen sein. The substrates may e.g. Films of electrically insulating materials with the highest possible temperature resistance such. Polyimide include. Alternatively, the substrates may also include electrically conductive metals, e.g. Include titanium or stainless steel. However, these must be electrically insulated from the backside contact of the adjacent semiconductor layer. Although plastic-based substrates have the advantage that a thin, electrically conductive layer as back contact, e.g. can be applied relatively easily directly by vapor deposition or sputtering or printing. However, the disadvantage is the relatively low temperatures to which such substrates may be exposed in the subsequent process steps, otherwise the substrate would be destroyed. For example, in the case of substrate films made of polyimide, only temperatures of a maximum of approximately 400 ° C. to 450 ° C. may be exposed. In subsequent process steps, such as drying and sintering of the semiconductor layers, qualitatively much better results could be achieved with higher temperatures, depending on the application up to 1000 ° C. Furthermore, the environmental conditions to which the substrate is exposed during the individual process steps must also be taken into account. For example, in the manufacture of photovoltaic modules with cadmium telluride absorbers, the semiconductor layers can be activated by annealing and by treatment with cadmium chloride CdCl2. In the production of thin film solar cells, in a sintering furnace, depending on the manufacturing process, e.g. Nitrogen, forming gas, selenium vapor or chlorine gas can be used in different combinations and with different concentrations. The substrate or its electrical insulation layer should therefore not only be exposed to high temperatures, but also be as inert or resistant as possible to aggressive environmental conditions.

[0005] Im Vergleich zu Substraten auf Kunststoffbasis können metallische Substrate grundsätzlich höheren Temperaturen ausgesetzt werden. Da bei Metallen jedoch eine zusätzliche Isolationsschicht erforderlich ist, ist die maximale Prozesstemperatur auch hier in der Regel durch das Material der Isolationsschicht begrenzt. Compared to substrates based on plastic metallic substrates can generally be exposed to higher temperatures. However, since metals require an additional insulation layer, the maximum process temperature is usually limited by the material of the insulation layer.

[0006] Eine Aufgabe der vorliegenden Erfindung ist es deshalb, ein bei hohen Temperaturen von über 400 °C prozessierbares Substrat mit einer Metallschicht und einer elektrischen Isolationsschicht sowie ein Verfahren zu dessen Herstellung zu schaffen. Eine weitere Aufgabe der Erfindung besteht darin, eine Dünnschichtsolarzelle mit einem solchen Substrat zu schaffen. An object of the present invention is therefore to provide a processable at high temperatures of about 400 ° C substrate with a metal layer and an electrical insulation layer and a method for its preparation. Another object of the invention is to provide a thin film solar cell with such a substrate.

[0007] Diese Aufgaben werden gelöst durch ein Substrat, durch ein Verfahren zur Herstellung dieses Substrats und durch eine Dünnschichtsolarzelle mit diesem Substrat gemäss den Merkmalen der Patentansprüche 1, 6 und 8. These objects are achieved by a substrate, by a method for producing this substrate and by a thin-film solar cell with this substrate according to the features of patent claims 1, 6 and 8.

[0008] Das erfindungsgemässe Substrat umfasst ein metallisches Flächengebilde, dessen Oberfläche mindestens partiell mit einer Isolationsschicht aus einem Glaslot überzogen ist. Das Glaslot wird in der Regel nur auf jener Seite des Flächengebildes ausgebildet, auf der auch die weiteren Schichten aufgebaut werden. Im Weiteren können gewisse Bereiche der Oberfläche des Substrats wie z.B. ein rahmenartiger Randbereich ohne isolierendes Glaslot ausgebildet werden, falls dies erforderlich sein sollte. Dies kann z.B. durch vorgängiges Maskieren dieser Bereiche geschehen, sodass diese aufgrund einer niedrigeren Oberflächenspannung nicht mit dem Glaslot benetzt werden können. Alternativ kann das Glaslot auch auf der gesamten Oberfläche ausgebildet und anschliessend in einem Nachbearbeitungsschritt lokal wieder entfernt werden. The inventive substrate comprises a metallic sheet whose surface is coated at least partially with an insulating layer of a glass solder. The glass solder is usually formed only on that side of the sheet on which the other layers are built. Furthermore, certain areas of the surface of the substrate, such as e.g. a frame-like edge region without insulating glass solder are formed, if necessary. This can e.g. by masking these areas beforehand, so that they can not be wetted with the glass solder due to a lower surface tension. Alternatively, the glass solder can also be formed on the entire surface and then removed locally in a subsequent processing step.

[0009] Das Glaslot wird vorzugsweise als Pulver oder alternativ als Paste in einer dünnen Schicht auf die Oberfläche des metallischen Flächengebildes aufgetragen. Bei pastösem Glaslot ist dieses als Pulver mit einem Bindemittel versetzt. Vorzugsweise wird hierfür eine wässrige Lösung mit Cellulosefasern verwendet. Zum Aufbringen einer gleichmässig dünnen Schicht können beispielsweise Rakel verwendet werden. Alternativ kann die Metalloberfläche mit einem temporär wirkenden Haftvermittler benetzt werden, an dem anschliessend aufgestreutes pulverförmiges Glaslot haften bleibt. Überschüssiges Pulver kann z.B. durch Blasen, Absaugen, Rütteln oder vorübergehendes Kippen des Flächengebildes von der horizontalen in eine vertikale Lage von der Oberfläche entfernt werden. Eine weitere Möglichkeit besteht darin, das Pulver mittels elektrostatischer Aufladung an der Oberfläche des Flächengebildes anzuziehen und anzulagern. Bei der folgenden thermischen Behandlung verdampft ein gegebenenfalls vorhandener Haftvermittler wieder, bevor das Glaslot seine Schmelztemperatur erreicht. Die Schmelztemperatur des Glaslots kann durch dessen Zusammensetzung beeinflusst werden. Sie liegt je nach Anwendung zwischen etwa 400 °C bis etwa 1000 °C. Vorzugsweise liegt die Schmelztemperatur im Bereich zwischen 450 °C und 700 °C. Durch Wärmezufuhr wird das metallische Flächengebilde mit der Glaslot-Pulverschicht soweit erhitzt, dass das Glaslot schmilzt. Die Oberflächenspannung des Glaslots ist vorzugsweise kleiner als jene des Metalls, sodass das flüssige Glaslot die Metalloberfläche benetzt. Falls erforderlich, kann vor dem Aufbringen des pulverförmigen Glaslots die gesamte Metalloberfläche oder Teile davon oxidiert oder durch eine thermische und/oder chemische Behandlung so verändert werden, dass ihre Oberflächenspannung grösser ist als jene des geschmolzenen Glaslots. Das geschmolzene Glaslot hat vorzugsweise eine niedrige Viskosität und benetzt die Oberfläche des Flächengebildes. Nach dem anschliessenden Abkühlen haftet das erstarrte Glaslot als dünne, glatte Schicht an der Oberfläche des metallischen Flächengebildes. Die Zusammensetzung des Glaslots wird so gewählt, dass seine thermischen Ausdehnungskoeffizienten etwa jenen des metallischen Flächengebildes entsprechen. Bei Flächengebilden aus Titan oder Edelstahl sollte der Längenausdehnungskoeffizient a der Isolationsschicht somit im Bereich von etwa 8 x 10~6 bis etwa 12 x KT6 FT1 liegen. Dadurch kann verhindert werden, dass sich bei grösseren Temperaturänderungen zwischen dem Metall und der Glas-Isolationsschicht störende mechanische Spannungen aufbauen können. Im Weiteren haftet die dünne Glasschicht nach dem Abkühlen am metallischen Flächengebilde. Sie ist ausreichend flexibel bzw. elastisch verformbar, sodass sie Umformungen, wie sie z.B. beim Umspulen von einer Vorratsrolle auf eine Aufnahmerolle während des Fertigungsprozesses in der erforderlichen Weise reversibel verformt werden kann. The glass solder is preferably applied as a powder or alternatively as a paste in a thin layer on the surface of the metallic sheet. In pasty glass solder this is mixed as a powder with a binder. Preferably, an aqueous solution with cellulose fibers is used for this purpose. For applying a uniformly thin layer, for example, doctor blades can be used. Alternatively, the metal surface can be wetted with a temporarily acting adhesion promoter, which then adheres to scattered powdered glass solder. Excess powder may e.g. by blowing, sucking, shaking or temporarily tilting the sheet from the horizontal to a vertical position from the surface. Another possibility is to attract and deposit the powder by means of electrostatic charging on the surface of the sheet. In the following thermal treatment, an optional adhesion promoter evaporates again before the glass solder reaches its melting temperature. The melting temperature of the glass solder can be influenced by its composition. Depending on the application, it is between about 400 ° C to about 1000 ° C. Preferably, the melting temperature is in the range between 450 ° C and 700 ° C. By supplying heat, the metallic sheet with the glass solder powder layer is heated to the point that the glass solder melts. The surface tension of the glass solder is preferably smaller than that of the metal so that the liquid glass solder wets the metal surface. If necessary, before applying the pulverulent glass solder, the entire metal surface or parts thereof may be oxidized or changed by thermal and / or chemical treatment so that their surface tension is greater than that of the molten glass solder. The molten glass solder preferably has a low viscosity and wets the surface of the sheet. After the subsequent cooling, the solidified glass solder adheres as a thin, smooth layer on the surface of the metallic fabric. The composition of the glass solder is chosen so that its thermal expansion coefficients correspond approximately to those of the metallic sheet. Thus, for titanium or stainless steel sheets, the coefficient of linear expansion a of the insulating layer should be in the range of about 8 × 10 -6 to about 12 × KT 6-FT 1. As a result, it is possible to prevent disturbing mechanical stresses from building up with greater temperature changes between the metal and the glass insulation layer. Furthermore, after cooling, the thin glass layer adheres to the metallic fabric. It is sufficiently flexible or elastically deformable, so that it transformations, as e.g. can be reversibly deformed during rewinding from a supply roll to a take-up roll during the manufacturing process in the required manner.

[0010] Im Unterschied zu Isolationsschichten aus anderen Materialien, die mittels anderer Verfahren wie z.B. Plasma-Verdampfen bzw. PECVD auf dem metallischen Flächengebilde abgeschieden werden können, sind Isolationsschichten aus einem Glaslot einfacher und kostengünstiger herstellbar und haben zudem vergleichsweise glatte Oberflächen bzw. die Porosität der beschichteten Oberfläche ist minimal. Als Materialien für das metallische Flächengebilde können beispielsweise Titan oder Edelstahl verwendet werden. Vorzugsweise werden diese Flächengebilde als Band- oder Rollenware in kontinuierlichen Prozessen von Rolle zu Rolle verarbeitet. Als Materialien für die Isolatorschicht können beispielsweise Glaslote bzw. Technische Gläser der Firma Schott, 55122 Mainz, Deutschland verwendet werden, die unter den Bezeichnungen 8421, 8431 oder 8470 erhältlich sind. In contrast to insulating layers of other materials, which by other methods such. Plasma evaporation or PECVD can be deposited on the metallic sheet, insulation layers of a glass solder are easier and cheaper to produce and also have comparatively smooth surfaces or the porosity of the coated surface is minimal. As materials for the metallic sheet, for example, titanium or stainless steel can be used. Preferably, these fabrics are processed as a ribbon or roll goods in continuous processes from roll to roll. As materials for the insulator layer, for example, glass solders or technical glasses of the company Schott, 55122 Mainz, Germany can be used, which are available under the designations 8421, 8431 or 8470.

[0011] Die Dicke des metallischen Flächengebildes kann beispielsweise in der Grössenordnung von etwa 0.05 mm bis etwa 0.2 mm, die Dicke der Isolationsschicht aus Glas in der Grössenordnung von beispielsweise 0.001 mm bis etwa 0.05 mm liegen. The thickness of the metallic sheet may for example be of the order of about 0.05 mm to about 0.2 mm, the thickness of the insulating layer of glass in the order of, for example, 0.001 mm to about 0.05 mm.

[0012] Bei einer bevorzugten Ausgestaltung einer Dünnschichtsolarzelle wird als Rückseitenkontakt eine dünne Molybdänschicht auf die Isolationsschicht des Substrats aufgedampft. Als weitere Schichten folgen der Reihe nach eine erste Halbleiterschicht aus CdTe, eine zweite Halbleiterschicht aus CdS, eine lichtdurchlässige vordere Kontaktschicht und eine lichtdurchlässige elektrisch isolierende Deckschicht. In a preferred embodiment of a thin-film solar cell, a thin layer of molybdenum is vapor-deposited on the insulating layer of the substrate as the rear-side contact. As further layers follow in sequence a first semiconductor layer of CdTe, a second semiconductor layer of CdS, a transparent front contact layer and a light-transmissive electrically insulating cover layer.

Claims (8)

1. Substrat für Dünnschichtsolarzellen, umfassend ein metallisches Flächengebilde, dadurch gekennzeichnet, dass zumindest auf einem Teil der Oberfläche dieses metallischen Flächengebildes eine Isolationsschicht aus einem Glaslot ausgebildet ist.1. A substrate for thin-film solar cells, comprising a metallic sheet, characterized in that at least on a part of the surface of this metallic sheet an insulating layer is formed from a glass solder. 2. Substrat nach Anspruch 1, dadurch gekennzeichnet, dass die Schmelztemperatur des Glaslotes in der Grössenordnung von 400 °C bis 1000 °C liegt.2. Substrate according to claim 1, characterized in that the melting temperature of the glass solder is of the order of 400 ° C to 1000 ° C. 3. Substrat nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Glaslot einen an den thermischen Ausdehnungskoeffizienten des metallischen Flächengebildes angepassten thermischen Ausdehnungskoeffienten aufweist, derart, dass in einem Temperaturbereich zwischen -50 °C und der Schmelztemperatur des Glaslotes keine übermässigen mechanischen Spannungen auftreten können, die zu einer Beschädigung des Substrats führen könnten.3. Substrate according to one of claims 1 or 2, characterized in that the glass solder has an adapted to the thermal expansion coefficient of the metallic sheet thermal expansion coefficient, such that in a temperature range between -50 ° C and the melting temperature of the glass solder no excessive mechanical stresses may occur, which could lead to damage to the substrate. 4. Substrat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dessen elastische Verformbarkeit so gross ist, dass es mit minimalen Biegeradien bis zu 150 mm elastisch verformbar ist.4. Substrate according to one of claims 1 to 3, characterized in that its elastic deformability is so great that it is elastically deformable with minimal bending radii up to 150 mm. 5. Substrat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dicke des metallischen Flächengebildes in der Grössenordnung von 0.05 mm bis etwa 0.2 mm liegt, und dass die Dicke der Isolationsschicht in der Grössenordnung von etwa 0.001 mm bis etwa 0.05 mm liegt.5. Substrate according to one of claims 1 to 4, characterized in that the thickness of the metallic sheet is of the order of 0.05 mm to about 0.2 mm, and that the thickness of the insulating layer is of the order of about 0.001 mm to about 0.05 mm , 6. Verfahren zur Herstellung eines Substrates nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass auf zumindest auf einen Teil der Oberfläche des metallischen Flächengebildes eine dünne Schicht pulverförmiges oder pastöses Glaslot aufgebracht wird, dass dieses Glaslot durch eine Wärmebehandlung geschmolzen wird, das das geschmolzene Glaslot zumindest einen Teil der Oberfläche des metallischen Flächengebildes benetzt, und dass das Glaslot nach dem Auskühlen eine dünne Isolationsschicht mit glatter Oberfläche auf dem metallischen Flächengebilde bildet.6. A method for producing a substrate according to any one of claims 1 to 5, characterized in that applied to at least a portion of the surface of the metallic sheet, a thin layer of powdered or pasty glass solder, that this glass solder is melted by a heat treatment, the molten glass solder wets at least a portion of the surface of the metallic sheet, and that the glass solder after cooling forms a thin insulating layer with a smooth surface on the metallic sheet. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Haftung von pulverförmigem Glaslot am metallischen Flächengebilde vor dem Aufbringen auf das Flächengebilde durch eine Vorbehandlung des Flächengebildes und/oder des Pulvers ermöglicht oder verbessert wird.7. The method according to claim 6, characterized in that the adhesion of powdered glass solder on the metallic sheet before application to the sheet by a pretreatment of the sheet and / or the powder allows or is improved. 8. Dünnschichtsolarzelle, umfassend ein Substrat mit einem metallischen Flächengebilde, einen metallischen Rückseitenkontakt, eine als Absorber wirkende erste Halbleiterschicht, eine zweite Halbleiterschicht sowie einen lichtdurchlässigen Frontseitenkontakt, dadurch gekennzeichnet, dass zwischen dem metallischen Flächengebilde und der benachbarten ersten Halbleiterschicht eine elektrische Isolationsschicht aus einem Glaslot ausgebildet ist.8. thin-film solar cell, comprising a substrate with a metallic fabric, a metallic rear contact, acting as an absorber first semiconductor layer, a second semiconductor layer and a transparent front side contact, characterized in that between the metallic sheet and the adjacent first semiconductor layer, an electrical insulation layer of a glass solder is trained.
CH00927/11A 2011-05-31 2011-05-31 Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range CH705061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00927/11A CH705061A1 (en) 2011-05-31 2011-05-31 Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00927/11A CH705061A1 (en) 2011-05-31 2011-05-31 Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range

Publications (1)

Publication Number Publication Date
CH705061A1 true CH705061A1 (en) 2012-12-14

Family

ID=47320648

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00927/11A CH705061A1 (en) 2011-05-31 2011-05-31 Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range

Country Status (1)

Country Link
CH (1) CH705061A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2983211A4 (en) * 2013-04-03 2016-05-04 Solar Frontier Kk Thin-film solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2023435A1 (en) * 2006-05-19 2009-02-11 Fujikura, Ltd. Method for producing electrode substrate, electrode substrate, photoelectric converter and dye-sensitized solar cell
US20090293934A1 (en) * 2005-11-10 2009-12-03 Kyocera Corporation Photoelectric Conversion Device
DE102008030816A1 (en) * 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Organic light emitting component, has two substrates mechanically connected with each other by insulating region of connecting unit, and electrically connected with each other by conducting region of connecting unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090293934A1 (en) * 2005-11-10 2009-12-03 Kyocera Corporation Photoelectric Conversion Device
EP2023435A1 (en) * 2006-05-19 2009-02-11 Fujikura, Ltd. Method for producing electrode substrate, electrode substrate, photoelectric converter and dye-sensitized solar cell
DE102008030816A1 (en) * 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Organic light emitting component, has two substrates mechanically connected with each other by insulating region of connecting unit, and electrically connected with each other by conducting region of connecting unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
test *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2983211A4 (en) * 2013-04-03 2016-05-04 Solar Frontier Kk Thin-film solar cell

Similar Documents

Publication Publication Date Title
DE4132882C2 (en) Process for the production of pn CdTe / CdS thin-film solar cells
EP0715358B1 (en) Process for fabricating a solar cell with a chalcopyrite absorbing layer and solar cell so produced
EP2539942B1 (en) Process and apparatus for fabrication of a semiconductor layer
DE102012103243B4 (en) Method for changing the laser intensity over time during the scribing of a photovoltaic device
DE102012100795B4 (en) Superstrate solar cell and process for its manufacture
DE4225385C2 (en) Process for the inexpensive production of a layer of a ternary compound semiconductor
DE102008051921B4 (en) Layer system and method for creating a contact element for a layer system
WO2001057932A1 (en) Flexible metal substrate for cis solar cells, and method for producing the same
DE112011102890T5 (en) Kesterite layer production for thin-film solar cells
DE102011054716A1 (en) Mixed sputtering target of cadmium sulfide and cadmium telluride and method of use
DE102012108901A1 (en) Method and system for producing chalcogenide semiconductor materials using sputtering and evaporation functions
DE102011056639A1 (en) Method for producing a transparent conductive oxide layer and a photovoltaic device
DE102012216026B4 (en) Process for the production of a flexible photovoltaic thin-film cell with an iron diffusion barrier layer and flexible photovoltaic thin-film cell with an iron diffusion barrier layer
DE102012100259A1 (en) Method for producing a semiconducting film and photovoltaic device
EP2028695A1 (en) Method for creating a transparent conductible oxide coating
DE2016211C3 (en) A method of manufacturing a semiconductor device
DE102014225862B4 (en) Process for forming a gradient thin film by spray pyrolysis
DE19917758C2 (en) Process for the production of a CuInSe2 (CIS) solar cell
DE102012104616B4 (en) A method of forming a window layer in a cadmium telluride based thin film photovoltaic device
CH705061A1 (en) Substrate for thin-film solar cell, has glass solder exhibiting thermal expansion coefficients adapted to thermal expansion coefficients of metallic sheet such that excessive mechanical stresses do not occur in preset temperature range
DE10055636C2 (en) Transparent conductive film and method of making the film
DE102011055618A1 (en) Process for producing a cadmium sulfide layer
DE10006823C2 (en) Process for producing a flexible metallic substrate for a CIS solar cell and CIS solar cell
WO2019034574A1 (en) Method for producing ultra-thin layers on substrates
DE102004016313A1 (en) Method and equipment for manufacturing individual solar cells from flexible metal band, previously coated with solar cell layer, with edge regions separated in band longitudinal direction by slitting and cut positions of band by double slit

Legal Events

Date Code Title Description
AZW Rejection (application)