CH700344B1 - Control device for at least two hydraulic drives. - Google Patents

Control device for at least two hydraulic drives. Download PDF

Info

Publication number
CH700344B1
CH700344B1 CH01229/07A CH12292007A CH700344B1 CH 700344 B1 CH700344 B1 CH 700344B1 CH 01229/07 A CH01229/07 A CH 01229/07A CH 12292007 A CH12292007 A CH 12292007A CH 700344 B1 CH700344 B1 CH 700344B1
Authority
CH
Switzerland
Prior art keywords
pressure
control
valve
valves
line
Prior art date
Application number
CH01229/07A
Other languages
German (de)
Inventor
Franz-Peter Salz
Original Assignee
Bucher Hydraulics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bucher Hydraulics Ag filed Critical Bucher Hydraulics Ag
Priority to CH01229/07A priority Critical patent/CH700344B1/en
Priority to EP08772899A priority patent/EP2171289A1/en
Priority to PCT/CH2008/000328 priority patent/WO2009015502A1/en
Publication of CH700344B1 publication Critical patent/CH700344B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/166Controlling a pilot pressure in response to the load, i.e. supply to at least one user is regulated by adjusting either the system pilot pressure or one or more of the individual pilot command pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/465Flow control with pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6052Load sensing circuits having valve means between output member and the load sensing circuit using check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/67Methods for controlling pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft eine Steuervorrichtung für mindestens zwei hydraulische Antriebe, die durch Steuerblöcke (3.1; 3.2) ansteuerbar sind. Die hydraulischen Antriebe sind mittels Wegeventilen (11.1; 11.2) steuerbar, die ihrerseits mittels als Vorsteuerventile wirkenden Proportional-Druckminderventilen (13.1, 14.1; 13.2, 14.2) ansteuerbar sind. Erfindungsgemäss enthalten die Steuerblöcke (3.1; 3.2) eine vorgeschaltete Druckwaage (12.1; 12.2) und einen steuerbaren Druckteiler. Zwischen die Proportional-Druckminderventile (13.1, 14.1; 13.2, 14.2) und die hydraulischen Steuereingänge des Wegeventils (11.1; 11.2) ist ein hydraulisch angesteuertes 2/2-Wege-Proportionalventil (15.1; 15.2) geschaltet, das zusammen mit Drosselstellen (30.1, 40.1; 30.2, 40.2) den Druckteiler bildet. Mehrere solcher Steuerblöcke zur Ansteuerung mehrerer Verbraucher sind aneinanderreihbar. Dadurch wird erreicht, dass nachteilige Wirkungen einer Unterversorgung vermieden werden, ohne dass es weiterer externer Bauteile bedarf.The invention relates to a control device for at least two hydraulic drives, which can be controlled by control blocks (3.1, 3.2). The hydraulic drives can be controlled by means of directional control valves (11.1, 11.2), which in turn can be actuated by means of proportional pressure reducing valves (13.1, 14.1, 13.2, 14.2) acting as pilot control valves. According to the invention, the control blocks (3.1, 3.2) contain an upstream pressure compensator (12.1, 12.2) and a controllable pressure divider. Between the proportional pressure reducing valves (13.1, 14.1, 13.2, 14.2) and the hydraulic control inputs of the directional control valve (11.1; 11.2) is a hydraulically controlled 2/2-way proportional valve (15.1, 15.2) connected, which together with throttle bodies (30.1, 40.1, 30.2, 40.2) forms the pressure divider. Several such control blocks for controlling a plurality of consumers can be lined up. This ensures that adverse effects of an undersupply are avoided without the need for further external components.

Description

       

  [0001]    Die Erfindung bezieht sich auf eine Steuervorrichtung für mindestens zwei hydraulische Antriebe gemäss dem Oberbegriff des Anspruchs 1.

  

[0002]    Solche Steuervorrichtungen eignen sich beispielsweise zur Steuerung der hydraulischen Antriebe eines Arbeitsgerätes mit mehreren Funktionen. Ein solches Arbeitsgerät kann beispielsweise ein mobiler Kran mit einem Teleskoparm sein, der ausfahrbar, in der Höhe verstellbar und drehbar ist. Für jede der Funktionen ist ein hydraulischer Antrieb vorgesehen, also einer zum Aus- und Einfahren des Teleskoparms, einer für die Verstellung der Neigung des Auslegers und einer zum Drehen des Auslegers.

  

[0003]    Es ist üblich, alle Antriebe aus einer gemeinsamen Pumpe oder einer Gruppe von Pumpen zu speisen, wobei der Pumpendruck durch jenen Antrieb bestimmt wird, der die höchste Last aufweist. Weil im Normalfall nicht alle Antriebe gleichzeitig mit maximaler Geschwindigkeit betätigt werden, ist es ausserdem üblich, die Pumpe so auszulegen, dass die maximale Pumpenfördermenge kleiner ist als die Summe der maximalen Förderströme, die für die einzelnen Antriebe benötigt werden. Deshalb kann es beim Betrieb vorkommen, dass eine Unterversorgung der Antriebe eintritt, nämlich dann, wenn mehrere Antriebe gemäss den Bedienungshandlungen mit einer Geschwindigkeit betrieben werden sollten, die insgesamt einen Förderstrom ergeben, der höher ist als der, den die Pumpe zu liefern in der Lage ist.

   Im Falle einer solchen Unterversorgung würde dann der Antrieb mit der höchsten Last in seiner Geschwindigkeit verringert oder könnte gar stehen bleiben. Das soll verhindert werden, weil sonst die Bedienperson nicht in der Lage ist, das Arbeitsgerät zweckdienlich zu betätigen.

  

[0004]    Es sind mehrere Lösungen bekannt, wie eine solche Unterversorgung vermieden werden kann.

  

[0005]    Aus DE-A1-3 603 630 ist eine Steuervorrichtung dieser Art bekannt, bei der für den Fall des Auftretens einer Unterversorgung ein separates externes Druckregelventil vorgesehen ist, mit dessen Hilfe der Steuerdruck für die den Antrieben zugeordneten Proportionalventile verringert wird. Hier wird bei nicht ausreichender Pumpenfördermenge von diesem zusätzlichen externen Druckregelventil der Steuerdruck für die Vorsteuergeräte der Antriebe verringert und mittels der daraus resultierenden Hubverringerung an den den Antrieben zugeordneten Wegeventilen eine Mengenreduzierung an allen Verbrauchern erzielt. Damit laufen alle Antriebe langsamer. Diese Lösung erfordert auch einen zusätzlichen externen Servozylinder.

  

[0006]    Ein anderer Lösungsvorschlag ist in WO-A1-2004/104 426 enthalten. Hier wird im Falle einer Unterversorgung eines Verbrauchers die Druckwaage nicht mit dem Lastdruck im Zulauf mit einem höheren Druck beaufschlagt, so dass die Regeldruckdifferenz an der Zulaufsteuerkante, die bei Unterversorgung fallen würde, angehoben wird. Benötigt wird dazu ein ablaufseitiger Sperrblock.

  

[0007]    In "O+P", Heft 10/2004, Seiten 635 bis 640 sind neue Lösungen für mobile Arbeitsmaschinen angeführt. Hier ist auf Seite 638 besonders daraufhingewiesen, dass Lösungen mit vorgeschalteten Druckwaagen bei Unterversorgung problematisch sind, weil hier der höchstbelastete Verbraucher benachteiligt ist, weil seine Druckwaage nicht mehr regelt. Dadurch kann der höchstbelastete Verbraucher zum Stillstand kommen.

  

[0008]    Der Erfindung liegt die Aufgabe zugrunde, einen Steuerventilblock zu schaffen, der aus aneinanderreihbaren Steuerventileinheiten besteht, wobei jedem zu steuernden Antrieb eine solche Steuerventileinheit zugeordnet ist, wobei die einzelnen Steuerventileinheiten so beschaffen sind, dass es keiner weiteren externen Bauteile zur Verhinderung der unerwünschten Wirkungen einer Unterversorgung bedarf.

  

[0009]    Dadurch wird erreicht, dass je nach Zahl der zu steuernden Antriebe, also zwei, drei oder mehr, eine entsprechende Anzahl von Steuerventileinheiten aneinandergereiht werden kann, dass aber keine zusätzlichen Aggregate zur Verhinderung der nachteiligen Wirkung einer Unterversorgung montiert werden müssen.

  

[0010]    Die genannte Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.

  

[0011]    Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert.

  

[0012]    Es zeigen:
<tb>Fig. 1<sep>Ein vereinfachtes hydraulisches Schema,


  <tb>Fig. 2<sep>das gleiche Schema in einem bestimmten Zustand bei der Ansteuerung von Verbrauchern,


  <tb>Fig. 3<sep>ein Schema eines Druckteilers,


  <tb>Fig. 4<sep>ein Schema mit einer Schaltungsergänzung und


  <tb>Fig. 5<sep>ein Schema eines Druckteilers mit der Schaltungsergänzung.

  

[0013]    In der Fig. 1 sind Verbraucher 1, nämlich ein erster Verbraucher 1.1 und ein zweiter Verbraucher 1.2, dargestellt, die von einer Steuervorrichtung 2 steuerbar sind. Die Steuervorrichtung 2 besteht aus einzelnen Steuerblöcken 3, nämlich einem ersten Steuerblock 3.1, der dem Verbraucher 1.1 zugeordnet ist, und einem zweiten Steuerblock 3.2, der dem Verbraucher 1.2 zugeordnet ist. Sind weitere Verbraucher 1 zu steuern, so enthält die Steuervorrichtung 2 zusätzlich weitere Steuerblöcke 3, was in der Fig. 1 nicht gezeigt ist. Der Verbraucher 1.1 ist beispielsweise ein doppeltwirkender Antriebszylinder, der Verbraucher 1.2 ein Hydromotor, was in der Fig. 1 durch entsprechende Symbole gekennzeichnet ist.

  

[0014]    Die Verbraucher 1 werden aus einer Pumpe 4 mit Druckmittel, beispielsweise Hydrauliköl, versorgt. Die Pumpe 4 ist eine Verstellpumpe mit einem Förderstromregler, was symbolisch dargestellt ist. Wie beim Stand der Technik kann anstelle einer einzigen Pumpe 4 auch eine Gruppe von Pumpen 4 vorhanden sein. Die Pumpe 4 saugt das Druckmittel aus einem Tank 5 und liefert das Druckmittel durch eine Pumpenleitung 6 an die Steuervorrichtung 2. Von der Steuervorrichtung 2 führt eine Tankleitung 7 das von den Verbrauchern 1 zurückgeführte Druckmittel in den Tank 5 ab. Die Bezugszahl 8 bezeichnet eine Lastdruckleitung, die der Steuerung der Pumpe 4 dient. Gezeigt ist auch eine Steuerölrücklaufleitung 9, die in den Tank 5 geführt ist.

   Weil durch die Tankleitung 7 durchaus grosse Mengen des Druckmittels fliessen können, was zu Druckverlusten im Verlaufe der Tankleitung 7 führen kann, ist es sinnvoll, den Rücklauf des Druckmittels von den Vorsteuerventilen, die noch beschrieben werden, separat zu führen, um eine Beeinflussung der Vorsteuerventile durch entsprechende Druckschwankungen zu vermeiden.

  

[0015]    Die Steuerblöcke 3.1 und 3.2, allenfalls auch weitere solche Steuerblöcke 3.n, sind vollkommen gleich aufgebaut. Der Steuerblock 3.1 weist ein Wegeventil 11.1 auf, das in bekannter Weise den Druckmittelfluss zum und vom Verbraucher 1.1 steuert. Dem Wegeventil 11.1 ist erfindungsgemäss eine Druckwaage 12.1 vorgeschaltet, obwohl dies den einleitend beschriebenen Nachteil hat. Erfindungsgemäss ist dieser Nachteil durch eine weitere erfindungsgemässe Massnahme beseitigt, was noch beschrieben werden wird.

  

[0016]    Das Wegeventil 11.1 wird mittels eines ersten Proportional-Druckminderventils 13.1 und eines zweiten Proportional-Druckminderventils 14.1 hydraulisch gesteuert. Die Proportional-Druckminderventile 13.1 und 14.1 besitzen elektromagnetische Antriebe, wie dies symbolisch gezeigt ist. Sie werden von nicht dargestellten Aktuatoren betätigt, mit deren Hilfe die Bedienperson den entsprechenden Antrieb 1.1 steuert. Die Proportional-Druckminderventile 13.1 und 14.1 sind also Vorsteuerventile für das Wegeventil 11.1. Erfindungsgemäss ist nun aber zwischen die Proportional-Druckminderventile 13.1 und 14.1 und die hydraulischen Steuereingänge des Wegeventils 11.1 ein hydraulisch angesteuertes 2/2-Wege-Proportionalventil 15.1 geschaltet, das zusammen mit Drosselstellen einen Druckteiler bildet.

   Durch diesen Druckteiler wird der Nachteil der vorgeschalteten Druckwaage 12.1 eliminiert, was noch beschrieben wird.

  

[0017]    Funktionswesentlich ist ein Wechselventil 16.1. Dieses steht mit den beiden Lastdruck-Anschlüssen des Wegeventils 11.1 in Verbindung und liefert den höheren der beiden Lastdruckwerte an eine Lastdruck-Meldeleitung 17.1, die auf ein Rückschlagventil 18.1 wirkt, dessen zweiter Anschluss an der Lastdruckleitung 8 liegt.

  

[0018]    Wie schon erwähnt, ist der rechts neben dem Steuerblock 3.1 gezeigte zweite Steuerblock 3.2 genau gleich aufgebaut. Er enthält also die gleichen Elemente, die aber hier zur Unterscheidung mit dem Suffix.2 anstelle von.1 versehen sind. Es wurde auch schon erwähnt, dass ein dritter Steuerblock und allenfalls auch weitere Steuerblöcke vorhanden sein können, die jeweils rechts an den Steuerblock 3.2 anschliessen würden, wenn sie vorhanden sind. Auf jeden Fall sind die durch die einzelnen Steuerblöcke 3 hindurchführenden Leitungen, nämlich die Pumpenleitung 6, die Tankleitung 7, die Lastdruckleitung 8 und die Steuerölrücklaufleitung 9, durch ein Abschlussorgan verschlossen. Dies ist eine bei aneinanderreihbaren Steuerblöcken bekannte Technik und deshalb nicht dargestellt.

  

[0019]    Bei Steuervorrichtungen 2 dieser Art wird die Leistung der Pumpe 4 durch den herrschenden Lastdruck bestimmt. Dabei kommt es auf den maximalen Lastdruck an. Die Verbraucher 1.1 bzw. 1.2 weisen in der Regel unterschiedliche Lastdrücke auf. Sie werden in bekannter Weise an den Wegeventilen 11.1 und 11.2 abgefühlt und von den Wechselventilen 16.1 und 16.2 auf die Lastdruck-Meldeleitungen 17.1 bzw. 17.2 geleitet. Wäre der Druck in der Lastdruckmeldeleitung 17.1 höher als in der Lastdruckleitung 8, so würde dieser höhere Druck das Rückschlagventil 18.1 öffnen, so dass in der Lastdruckleitung 8 dann der höhere Druck herrscht. Das gilt analog für die Lastdruckmeldeleitung 17.2 und das Rückschlagventil 18.2. Das ist bekannte Technik.

  

[0020]    Das 2/2-Wege-Proportionalventil 15.1 ist einerseits mit der Pumpenleitung 6 verbunden, wird also vom in der Pumpenleitung 6 herrschenden Pumpendruck angesteuert, und ist andererseits mit der Lastdruckleitung 8 verbunden, so dass es vom in der Lastdruckleitung 8 herrschenden maximalen Lastdruck der Verbraucher 1 angesteuert wird. Dabei wirkt der Pumpendruck gegen eine Steuerfeder 20.1. In Steuerleitungen für das Wegeventil 11.1 sind Drosselstellen angeordnet.

   So befinden sich in einer Steuerleitung 23.1 zum linken Steueranschluss des Wegeventils 11.1 und in einer Steuerleitung 24.1 zum rechten Steueranschluss des Wegeventils 11.1 in Reihe geschaltet hintereinander jeweils zwei Drosselstellen, nämlich in der Steuerleitung 23.1 eine erste Druckteiler-Drosselstelle 30.1 und eine erste Dämpfungs-Drosselstelle 31.1 und in der Steuerleitung 24.1 eine zweite Druckteiler-Drosselstelle 40.1 und eine zweite Dämpfungs-Drosselstelle 41.1.

  

[0021]    Zwischen den Drosselstellen 30.1 und 31.1 einerseits und den Drosselstellen 40.1 und 41.1 andererseits, ist als weitere wirksame Drosselstelle der Schieber des 2/2-Wege-Proportionalventils 15.1 mit seinen Steuerkanten angeordnet. Von der Verbindung zwischen den Drosselstellen 30.1 und 31.1 zum einen Anschluss des 2/2-Wege-Proportionalventils 15.1 führt eine erste Verbindungsleitung 42.1 und von der Verbindung zwischen den Drosselstellen 40.1 und 41.1 zum 2/2-Wege-Proportionalventil 15.1 führt eine zweite Verbindungsleitung 43.1 zum anderen Anschluss des 2/2-Wege-Proportionalventils 15.1.

  

[0022]    Vorteilhaft sind in den Ansteuerleitungen des 2/2-Wege-Proportionalventils 15.1, also in der Verbindung zur Pumpenleitung 6 einerseits und in der Verbindung zur Lastdruckleitung 8, je eine weitere Drosselstelle angeordnet. Im Zuge der Pumpenleitung 6 ist dies eine erste Steuerkolben-Dämpfungsdrosselstelle 45.1, im Zuge der Lastdruckleitung 8 eine zweite Steuerkolben-Dämpfungsdrosselstelle 46.1. Das gilt in gleicher Weise für das 2/2-Wege-Proportionalventil 15.2, bei dem die Steuerkolben-Dämpfungsdrosselstellen 45.2 und 46.2 vorhanden sind. Mit Hilfe dieser Drosselstellen 45.1 und 46.1 bzw. 45.2 und 46.2 lässt sich das Ansprechverhalten der 2/2-Wege-Proportionalventile 15.1 bzw. 15.2 optimieren. Damit lassen sich beispielsweise Regelschwingungen unterbinden.

  

[0023]    Nachfolgend ist die Funktion beschrieben. Dies geschieht anhand der Fig. 2, die hinsichtlich ihres Aufbaus der Fig. 1entspricht mit dem Unterschied, dass der Antrieb 1.2 hier wie der Antrieb 1.1 als doppeltwirkender Antriebszylinder dargestellt ist. Der Unterschied zwischen den Fig. 1 und 2 besteht weiter darin, dass in der Fig. 1 die Grundstellung der Ventile dargestellt ist, während die Fig. 2 einen bestimmten Betriebszustand zeigt.

  

[0024]    Wird das erste Proportional-Druckminderventil 13.1 durch den Bediener angesteuert, um den Antrieb 1.1 zu bewegen, so öffnet dieses Ventil und ermöglicht den Fluss des Druckmittels von der Pumpenleitung 6 in die Steuerleitung 23.1 und weiter über die Drosselstellen 30.1 und 31.1 zum linken Steueranschluss des Wegeventils 11.1, das somit aufgesteuert wird und den Antrieb 1.1 bewegt. Die Ansteuerung des Proportional-Druckminderventils 13.1 ist durch einen Pfeil A1 auf dessen elektromagnetischen Antrieb gekennzeichnet.

  

[0025]    Das in der Steuerleitung 23.1 fliessende Druckmittel wirkt auf den linken hydraulischen Antrieb des Wegeventils 11.1. Dieses nimmt nun die gezeigte Stellung ein, bei der Druckmittel von der Pumpenleitung 6 durch das Wegeventil 11.1 zur Stangenseite des Antriebs 1.1 fliessen kann. Gleichzeitig kann vom Kolbenraum des Antriebs 1.1 Druckmittel über das Wegeventil 11.1 in die Tankleitung 7 abfliessen. Der Kolben des Antriebs 1.1 bewegt sich folglich nach links.

  

[0026]    Das 2/2-Wege-Proportionalventil 15.1 besitzt nun eine Stellung, die sich aus dem Verhältnis von Pumpendruck und maximalem Lastdruck ergibt. Entsprechend hat das 2/2-Wege-Proportionalventil 15.1 eine bestimmte Drosselwirkung, die auch mitbestimmt wird durch die Feder 20.1. Somit kann ein Teil des vom Proportional-Druckminderventil 13.1 in die Steuerleitung 23.1 fliessenden Druckmittels vom Verbindungspunkt zwischen den Drosselstellen 30.1 und 31.1 durch die Verbindungsleitung 42.1 zum eine steuerbare Drosselstelle darstellenden 2/2-Wege-Proportionalventil 15.1 und von dort durch die Verbindungsleitung 43.1 zum vom Verbindungspunkt zwischen den Drosselstellen 40.1 und 41.1 und dann über die Druckteiler-Drosselstelle 40.1 und den Schieber des nicht angesteuerten Proportional-Druckminderventils 14.1 in die Steuerölrücklaufleitung 9 und somit in den Tank 5 abfliessen.

   Auf diese Weise wird der Steuerdruck für das Wegeventil 11.1 vermindert und zwar in Funktion des Verhältnisses von Pumpendruck und maximalem Lastdruck. Je höher der maximale Lastdruck im Vergleich zum Pumpendruck ist, desto stärker wird der Steuerdruck für das Wegeventil 11.1 vermindert. Bei dem jetzt geöffneten 2/2-Wege-Proportionalventil 15.1 findet nun eine Druckteilung über die erste Druckteiler-Drosselstelle 30.1, die interne Drosselstelle des 2/2-Wege-Proportionalventils 15.1 und die zweite Druckteiler-Drosselstelle 40.1 statt.

  

[0027]    Ist der Pumpendruck höher als der maximale Lastdruck, beispielsweise um 25 bar höher, ist das 2/2-Wege-Proportionalventil 15.1 geschlossen, so dass der Abfluss von Druckmittel in den Tank 5 unterbunden ist, so dass der Steuerdruck des ersten Proportional-Druckminderventils 13.1 voll auf das Wegeventil 11.1 wirkt. Das ist der Fall bei genügender Pumpenfördermenge.

  

[0028]    Unterschreitet der Pumpendruck aber einen bestimmten Wert, was dann vorkommt, wenn die Pumpe 4 den geforderten Druckmittelstrom nicht liefern kann, so fliesst Druckmittel in der zuvor geschilderten Weise in den Tank 5 ab.

  

[0029]    Um die Wirkung der Erfindung leichter verstehen zu können, ist in der Fig. 3 ein Schema des wirksamen Druckteilers gezeigt. Aus der Schaltung der Fig. 1 und 2 sind also jene Teile separat herausgezeichnet, die die Wirkung der Druckteilerkette ausmachen. Von links nach rechts sind die drei wirksamen Komponenten des Druckteilers dargestellt, nämlich die erste Druckteiler-Drosselstelle 30.1, die Drosselstelle X15.1, die die Drosselwirkung des 2/2-Wege-Proportionalventils 15.1 bezeichnet, und die zweite Druckteiler-Drosselstelle 40.1. Links an dieser Komponentenkette liegt der Ausgangssteuerdruck des ersten Proportional-Druckminderventils 13.1 an, was sich aus der Fig. 2bei angesteuertem Proportional-Drucksteuerventil 13.1 leicht erkennen lässt. Dieser Ausgangssteuerdruck beträgt beispielsweise maximal 20 bar.

  

[0030]    Rechts an dieser Komponentenkette liegt der in der Steuerölrücklaufleitung 9 herrschende Druck an, was sich ebenfalls aus der Fig.2 erkennen lässt. Der Druck in der Steuerölrücklaufleitung 9 ist identisch mit dem Druck in der Tankleitung 7, beträgt also bei drucklosem Tank 5 (Fig. 2) 0 bar.

  

[0031]    Zum besseren Verständnis sind unterhalb der ersten Druckteiler-Drosselstelle 30.1, der Drosselstelle x15.1und der zweiten Druckteiler-Drosselstelle 40.1 im Sinne eines Bemessungsbeispiels die wirksamen Drosselquerschnitte gezeigt, die der Einfachheit halber auf einen bestimmten Durchmesser in mm umgerechnet sind. Der wirksame Drosseldurchmesser der ersten Druckteiler-Drosselstelle 30.1 betrage beispielsweise 0,45 mm, jener der Drosselstelle x15.10,40 mm und derjenige der zweiten Druckteiler-Drosselstelle 40.1 0,35 mm. Daraus lässt sich nun berechnen, welche Druckabfälle über den einzelnen Drosselstellen entstehen. Die beispielhaften Zahlenwerte für die Drücke zeigen links der ersten Druckteiler-Drosselstelle 30.1 einen Druck von 20 bar und rechts davon einen Druck von 16 bar.

   Für die zweite Druckteiler-Drosselstelle 40.1 gilt, dass links davon ein Druck von 10 bar herrscht, rechts davon, wie zuvor erläutert 0 bar. Somit ergibt sich ein Druckabfall von 10 bar. Daraus resultiert nun, dass über der Drosselstelle x15.1ein Druck von 6 bar abfällt.

  

[0032]    Der Druckabfall über der Drosselstelle x15.1 ist nun aber identisch mit dem auf das Wegeventil 11.1 wirkenden Steuerdruck. So wird also deutlich, dass der auf die linke Seite des Wegeventils 11.1 wirkende Steuerdruck durch die vorerwähnte Komponentenkette auf 16 bar reduziert wird, und dass auf der rechten Seite des Wegeventils 11.1 ein Druck von 10 bar wirkt. Das Wegeventil 11.1 nimmt daher eine Stellung entsprechend der Druckdifferenz von 6 bar ein, was einem reduzierten Öffnungsquerschnitt entspricht und was eine reduzierte Fördermenge zum Verbraucher 1.1 (Fig. 2) ergibt.

  

[0033]    Die Reduktion des Förderstroms geschieht im zweiten Steuerblock 3.2 (Fig.2) auf die gleiche Weise. Durch die Reduktion der Förderströme wird nun erreicht, dass die Pumpe 4 weniger Druckmittel fördern muss, so dass die nachteilige Wirkung einer Unterversorgung behoben wird.

  

[0034]    Liegt der maximale Lastdruck aller Verbraucher 1 deutlich unter dem Pumpendruck, so ist das 2/2-Wege-Proportionalventil 15.1 in seiner Schliessstellung. Dabei fliesst also aus der Steuerleitung 23.1 kein Druckmittel in den Tank 5 ab. Der von den Proportional-Druckminderventilen 13.1 oder 14.1 bzw. 13.2 oder 14.2 generierte Steuerdruck wirkt also jeweils in voller Grösse auf die entsprechende Seite der Wegeventile 11.1 bzw. 11.2.

  

[0035]    Üblicherweise ist die Steuervorrichtung 2 so ausgelegt, dass der Pumpendruck 25 bar höher ist als der maximale Lastdruck. Sinkt nun aber der Pumpendruck wegen der Anforderung eines Druckmittelstroms durch die Verbraucher, der höher ist als die Leistung der Pumpe, so wird das 2/2-Wege-Proportionalventil 15.1 so angesteuert, dass ein Teil des Steuerölstroms für das Wegeventil 11.1 in den Tank 5 abfliesst. Dadurch vermindert sich der Ansteuerdruck des Wegeventils 11.1, was zur Folge hat, dass sich die Geschwindigkeit des Antriebs 1.1 so weit vermindert, dass nun die von der Pumpe 4 zu liefernde Druckmittelmenge so verringert wird, dass die auslegungsgemässe Differenz zwischen Pumpendruck und maximalem Lastdruck von 25 bar wieder erreicht wird.

  

[0036]    Analoges gilt für die Ansteuerung des Proportional-Druckminderventils 14.1. Durch dessen Ansteuerung öffnet dieses Ventil und ermöglicht den Fluss des Druckmittels von der Pumpenleitung 6 in die Steuerleitung 24.1 und weiter über die Druckteiler-Drosselstelle 40.1 und die Dämpfungs-Drosselstelle 41.1 zum rechten Steueranschluss des Wegeventils 11.1, das somit aufgesteuert wird und den Antrieb 1.1 in der anderen Richtung bewegt.

  

[0037]    Das 2/2-Wege-Proportionalventil 15.1 besitzt auch jetzt eine Stellung, die sich aus dem Verhältnis von Pumpendruck und maximalem Lastdruck ergibt. Entsprechend hat das 2/2-Wege-Proportionalventil 15.1 eine bestimmte Drosselwirkung. Somit fliesst ein Teil des vom Proportional-Druckminderventils 14.1 in die Steuerleitung 24.1 fliessenden Druckmittels über die Druckteiler-Drosselstelle 30.1 und den Schieber des nicht angesteuerten Proportionalventils 13.1 in die Steuerölrücklaufleitung 9 und somit in den Tank 5 ab. Auf diese Weise wird die Ansteuerung des Wegeventils 11.1 vermindert und zwar in Funktion des Verhältnisses von Pumpendruck und maximalem Lastdruck. Dabei wirkt die Druckteilerkette wie zuvor beschrieben. Je höher der maximale Lastdruck im Vergleich zum Pumpendruck ist, desto stärker wird die Ansteuerung des Wegeventils 11.1 vermindert.

  

[0038]    Im zweiten Steuerblock 3.2 geschieht Analoges bei Ansteuerung des Proportional-Druckminderventils 13.2 oder des Proportional-Druckminderventils 14.2, um den Antrieb 1.2 zu bewegen. Hier ist durch einen Pfeil A2 dargestellt, dass vom Bediener das Proportional-Druckminderventil 14.2 angesteuert wird.

  

[0039]    In der Folge wird der rechts dargestellte hydraulische Antrieb des Wegeventils 11.2 angesteuert, was dazu führt, dass von der Pumpenleitung 6 Druckmittel durch das Wegeventil 11.2 zum Kolbenraum des Antriebs 1.2 fliesst, während gleichzeitig Druckmittel vom Stangenraum des Antriebs 1.2 über das Wegeventil 11.2 zum Tank 5 abfliesst. Die Wirkung des 2/2-Wege-Proportionalventils 15.2 ist prinzipiell die gleiche wie sie für das 2/2-Wege-Proportionalventils 15.1 zuvor beschrieben worden ist.

  

[0040]    Die Reduktion des Druckmittelstroms erfolgt somit in beiden Steuerblöcken 3.1 und 3.2 auf die gleiche Weise, was auch dann gilt, wenn weitere Steuerblöcke 3.n vorhanden sind. Dabei erfolgt diese Reduktion autonom innerhalb des jeweiligen Steuerblocks 3.1, 3.2 bzw. 3.n. Ein zusätzliches externes Druckregelventil ist deshalb nicht nötig.

  

[0041]    Es wurde erwähnt, dass die Drosselwirkung des 2/2-Wege-Proportionalventils 15.1 mitbestimmt wird durch die Feder 20.1. Das gilt ebenso für das 2/2-Wege-Proportionalventil 15.2 und die Feder 20.2. Haben die Federn 20.1 und 20.2 die gleiche Federrate, so ist die Drosselwirkung der beiden 2/2-Wege-Proportionalventile 15.1 und 15.2 gleich. Sind die Federraten unterschiedlich, so ist die Drosselwirkung nicht gleich. Dies eröffnet die Möglichkeit, auf einfache Art und Weise durch die Wahl unterschiedlicher Federraten oder durch die Einstellbarkeit der Federrate der Federn 20.1 und/oder 20.2 einen Vorrang, also eine Priorität, für einen der Verbraucher zu verwirklichen.

  

[0042]    In der Fig. 4 ist ein Schema mit einer Schaltungsergänzung gezeigt. Dieses Schema zeigt einen Ausschnitt aus den Fig. 1und 2, nämlich den Teil mit dem Wegeventil 11.1, dem 2/2-Wege-Proportionalventil 15.1 und den Drosselstellen 30.1, 31.1, 40.1 und 41.1. Die Schaltungsergänzung besteht darin, dass in der Steuerleitung, die vom Verbindungspunkt der Drosselstellen 30.1/31.1 über das 2/2-Wege-Proportionalventil 15.1 zum Verbindungspunkt der Drosselstellen 40.1/41.1 führt, eine Antiparallelschaltung 50 von zwei vorgespannten Rückschlagventilen 51.1 und 52.1 angeordnet ist.

  

[0043]    Die vorgespannten Rückschlagventile 51.1 und 52.1 sind vorteilhaft so ausgelegt, dass sie bei einer Druckdifferenz von 5 bar öffnen. Nur dann, wenn der Steuerdruck für das Wegeventil 11 um mehr als 5 bar über dem Tankdruck liegt, kann somit die zuvor beschriebene Verminderung der Ansteuerung des Wegeventils 11 wirksam werden. Das wird nun wiederum anhand einer Figur dargestellt, die die Kette der wirksamen Drosselstellen zeigt. Dies ist in der Fig. 5dargestellt. Die Fig. 5entspricht der Fig. 3, enthält aber zusätzlich die Antiparallelschaltung 50 der beiden vorgespannten Rückschlagventile 51.1 und 52.1 (Fig. 4).

  

[0044]    Über der Antiparallelschaltung 50 fallen immer dann 5 bar Druck ab, wenn das 2/2-Wege-Proportionalventil 15.1 nicht geschlossen ist. Entsprechend fallen über den übrigen Komponenten der Druckteilerkette nur 15 bar ab, nämlich 3 bar über der ersten Druckteiler-Drosselstelle 30.1, 4,5 bar über der Drosselstelle x15.1 und 7,5 bar über der zweiten Druckteiler-Drosselstelle 40.1. Bei diesem Beispiel wirkt also auf das Wegeventil 11.1 eine Druckdifferenz von 9,5 bar.

  

[0045]    Die zuvor erwähnte Druckdifferenz von 5 bar, bei der die Rückschlagventile 51.1 und 52.1 öffnen, ist nicht zufällig so gewählt. Diese Bemessung steht im Zusammenhang damit, dass Wegeventile 11.1, 11.2 auf den Steuerkolben wirkende Federn enthalten, die den Steuerkolben in einer neutralen Mittellage halten, weshalb diese Federn auch als Zentrierfedern bezeichnet werden. Diese Zentrierfedern der Wegeventile 11.1, 11.2 sind beispielsweise so bemessen, dass erst ab einem wirksamen Steuerdruck von 5 bar ein Druckmittelfluss zu den Verbrauchern zustande kommt. Es ist also vorteilhaft, wenn die Vorspannung der Rückschlagventile 51.1 und 52.1 damit korreliert. Damit wird erreicht, dass die beschriebene Reduzierung der Druckmittelmenge proportional der Grösse der Unterversorgung ist.

   Es erfolgt also eine verhältnisgleiche Mengenreduzierung des Druckmittelflusses in den Steuerblöcken 3.1 und 3.2 und allenfalls vorhandenen weiteren Steuerblöcken 3.n.

  

[0046]    Der allgemeine Erfindungsgedanke besteht darin, die Steuerblöcke 3 so zu gestalten, dass diese eine vorgeschaltete Druckwaage enthalten und ausserdem einen steuerbaren Druckteiler, mit dessen Hilfe ein Teil des Steuerstroms für das Wegeventil 11.1 bzw. 11.2 in den Tank ableitbar ist, falls der höchste Lastdruck grösser ist als die Summe von Pumpendruck und einer Minimaldifferenz von beispielsweise 25 bar, was mittels des 2/2-Wege-Proportionalventils 15.1 bzw. 15.2 detektier- und steuerbar ist.

  

[0047]    Die erfindungsgemässe Steuervorrichtung 2 mit ihren Steuerblöcken 3.1, 3.2 und gegebenenfalls weiteren Steuerblöcken 3.n gleicht also automatisch eine Unterversorgung aus. Sie kann deshalb vorteilhaft nicht nur dann eingesetzt werden, wenn bei einem Arbeitsgerät mit einer Unterversorgung zu rechnen ist, sondern grundsätzlich auch dann, wenn auslegungsmässig mit einer Unterversorgung nicht gerechnet werden muss. Sollte eine Unterversorgung bei widrigen Umständen dennoch vorkommen, dann wird die Unterversorgung automatisch ausgeglichen. Abnorme Betriebszustände des Arbeitsgeräts werden so sicher vermieden.



  The invention relates to a control device for at least two hydraulic drives according to the preamble of claim 1.

  

Such control devices are suitable for example for controlling the hydraulic drives of a working device with a plurality of functions. Such a working device may for example be a mobile crane with a telescopic arm, which is extendable, adjustable in height and rotatable. For each of the functions a hydraulic drive is provided, so one for extending and retracting the telescopic arm, one for the adjustment of the inclination of the boom and one for rotating the boom.

  

It is common to feed all drives from a common pump or a group of pumps, wherein the pump pressure is determined by that drive, which has the highest load. Because normally not all drives are operated simultaneously at maximum speed, it is also customary to design the pump such that the maximum pump delivery rate is smaller than the sum of the maximum delivery rates required for the individual drives. Therefore, during operation it may happen that the drives are undersupplied, namely when several drives should be operated according to the operating procedures at a speed which results in a total flow rate higher than that which the pump is able to deliver is.

   In the case of such a shortage then the drive with the highest load would be reduced in speed or could even stop. This is to be prevented because otherwise the operator will not be able to operate the implement expediently.

  

There are several known solutions, such as such a shortage can be avoided.

  

From DE-A1-3 603 630 a control device of this type is known in which in the event of the occurrence of an undersupply, a separate external pressure control valve is provided, by means of which the control pressure for the drives associated with the proportional valves is reduced. Here is reduced in insufficient pump delivery of this additional external pressure control valve, the control pressure for the pilot units of the drives and achieved by means of the resulting Hubverringerung to the drives associated directional valves, a reduction in quantity of all consumers. Thus all drives run slower. This solution also requires an additional external servo cylinder.

  

Another proposed solution is contained in WO-A1-2004 / 104 426. Here, in the case of a deficiency of a consumer, the pressure compensator is not acted upon by the load pressure in the inlet with a higher pressure, so that the control pressure difference at the inlet control edge, which would fall in the case of undersupply, is raised. What is needed is an outflow blocking block.

  

In "O + P", Issue 10/2004, pages 635 to 640 new solutions for mobile machines are listed. Here on page 638 is particularly pointed out that solutions with upstream pressure compensators are problematic in case of undersupply, because here the most heavily loaded consumer is disadvantaged, because his pressure compensator no longer regulates. This can cause the most heavily loaded consumer to come to a standstill.

  

The invention has for its object to provide a control valve block consisting of juxtaposed control valve units, each drive to be controlled is associated with such a control valve unit, wherein the individual control valve units are such that there are no other external components to prevent the unwanted Effects of an undersupply need.

  

This ensures that, depending on the number of drives to be controlled, so two, three or more, a corresponding number of control valve units can be strung together, but that no additional units to prevent the adverse effect of a shortage must be mounted.

  

The above object is achieved by the features of claim 1. Advantageous developments emerge from the dependent claims.

  

An embodiment of the invention will be explained in more detail with reference to the drawing.

  

[0012] FIG.
<Tb> FIG. 1 <sep> A simplified hydraulic scheme,


  <Tb> FIG. 2 <sep> the same scheme in a certain state when driving consumers,


  <Tb> FIG. 3 <sep> is a scheme of a pressure divider,


  <Tb> FIG. 4 <sep> a scheme with a circuit supplement and


  <Tb> FIG. 5 <sep> a scheme of a pressure divider with the circuit completion.

  

In FIG. 1, consumers 1, namely a first consumer 1.1 and a second consumer 1.2, are shown, which are controllable by a control device 2. The control device 2 consists of individual control blocks 3, namely a first control block 3.1, which is associated with the consumer 1.1, and a second control block 3.2, which is associated with the consumer 1.2. If further consumers 1 are to be controlled, then the control device 2 additionally contains further control blocks 3, which is not shown in FIG. The consumer 1.1, for example, a double-acting drive cylinder, the consumer 1.2 a hydraulic motor, which is indicated in Fig. 1 by corresponding symbols.

  

The consumers 1 are supplied from a pump 4 with pressure medium, such as hydraulic oil. The pump 4 is a variable displacement pump with a flow regulator, which is shown symbolically. As in the prior art, a group of pumps 4 may be present instead of a single pump 4. The pump 4 sucks the pressure medium from a tank 5 and supplies the pressure medium through a pump line 6 to the control device 2. From the control device 2, a tank line 7 carries the pressure medium returned by the consumers 1 into the tank 5. Reference numeral 8 denotes a load pressure line which serves to control the pump 4. Shown is also a control oil return line 9, which is guided in the tank 5.

   Because quite large amounts of the pressure medium can flow through the tank line 7, which can lead to pressure losses in the course of the tank line 7, it makes sense to guide the return of the pressure medium from the pilot valves, which will be described separately, to influence the pilot valves to avoid by appropriate pressure fluctuations.

  

The control blocks 3.1 and 3.2, possibly even more such control blocks 3.n are constructed completely the same. The control block 3.1 has a directional control valve 11.1, which controls the flow of pressure medium to and from the consumer 1.1 in a known manner. The directional control valve 11.1 according to the invention a pressure compensator 12.1 upstream, although this has the disadvantage described in the introduction. According to the invention, this disadvantage is eliminated by a further measure according to the invention, which will be described below.

  

The directional control valve 11.1 is hydraulically controlled by means of a first proportional pressure reducing valve 13.1 and a second proportional pressure reducing valve 14.1. The proportional pressure reducing valves 13.1 and 14.1 have electromagnetic drives, as shown symbolically. They are actuated by actuators, not shown, with the help of which the operator controls the corresponding drive 1.1. The proportional pressure reducing valves 13.1 and 14.1 are thus pilot valves for the directional control valve 11.1. According to the invention, however, a hydraulically actuated 2/2-way proportional valve 15.1 is connected between the proportional pressure reducing valves 13.1 and 14.1 and the hydraulic control inputs of the directional control valve 11.1, which forms a pressure divider together with throttle points.

   By this pressure divider, the disadvantage of the upstream pressure compensator 12.1 is eliminated, which will be described.

  

Functional essential is a shuttle valve 16.1. This communicates with the two load pressure connections of the directional control valve 11.1 and supplies the higher of the two load pressure values to a load pressure signaling line 17.1, which acts on a check valve 18.1 whose second connection is located on the load pressure line 8.

  

As already mentioned, the second control block 3.2 shown to the right of the control block 3.1 is constructed exactly the same. It therefore contains the same elements, but here they are distinguished by the suffix 2 instead of 1. It has already been mentioned that a third control block and possibly also further control blocks can be present, which would each connect to the right of the control block 3.2, if they are present. In any case, passing through the individual control blocks 3 lines, namely the pump line 6, the tank line 7, the load pressure line 8 and the control oil return line 9, closed by a closure member. This is a technique known with stackable control blocks and therefore not shown.

  

In control devices 2 of this type, the power of the pump 4 is determined by the prevailing load pressure. It depends on the maximum load pressure. The consumers 1.1 or 1.2 generally have different load pressures. They are sensed in a known manner to the directional valves 11.1 and 11.2 and passed from the shuttle valves 16.1 and 16.2 to the load pressure signaling lines 17.1 and 17.2. If the pressure in the load pressure signaling line 17.1 higher than in the load pressure line 8, then this higher pressure would open the check valve 18.1, so that in the load pressure line 8 then the higher pressure prevails. This applies analogously to the load pressure signaling line 17.2 and the check valve 18.2. This is known technique.

  

The 2/2-way proportional valve 15.1 is on the one hand connected to the pump line 6, that is driven by the pressure prevailing in the pump line 6 pump pressure, and on the other hand connected to the load pressure line 8, so that it prevails in the load pressure line 8 maximum Load pressure of the consumer 1 is controlled. The pump pressure acts against a control spring 20.1. In control lines for the directional control valve 11.1 throttle bodies are arranged.

   Thus, in a control line 23.1 to the left control terminal of the directional control valve 11.1 and in a control line 24.1 connected in series to the right control port of the directional control valve 11.1 in series two throttling points, namely in the control line 23.1 a first pressure divider throttle body 30.1 and a first damping throttle body 31.1 and in the control line 24.1 a second pressure divider throttle 40.1 and a second damping throttle 41.1.

  

Between the throttle bodies 30.1 and 31.1 on the one hand and the throttle bodies 40.1 and 41.1 on the other hand, is arranged as a further effective throttle point, the slide of the 2/2-way proportional valve 15.1 with its control edges. From the connection between the throttle bodies 30.1 and 31.1 for a connection of the 2/2-way proportional valve 15.1 performs a first connection line 42.1 and from the connection between the throttle bodies 40.1 and 41.1 to 2/2-way proportional valve 15.1 performs a second connection line 43.1 to the other connection of the 2/2-way proportional valve 15.1.

  

Advantageously, in the control lines of the 2/2-way proportional valve 15.1, ie in the connection to the pump line 6 on the one hand and in the connection to the load pressure line 8, depending arranged a further throttle point. In the course of the pump line 6, this is a first control piston damping throttle 45.1, in the course of the load pressure line 8, a second control piston damping throttle 46.1. This applies in the same way to the 2/2-way proportional valve 15.2, in which the control piston damping throttles 45.2 and 46.2 are present. With the help of these throttles 45.1 and 46.1 or 45.2 and 46.2, the response of the 2/2-way proportional valves 15.1 and 15.2 can be optimized. Thus, for example, control vibrations can be prevented.

  

The function is described below. This is done with reference to FIG. 2, which in terms of their construction of Fig. 1 corresponds to the difference that the drive 1.2 is shown here as the drive 1.1 as a double-acting drive cylinder. The difference between Figs. 1 and 2 further consists in that in Fig. 1, the basic position of the valves is shown, while Fig. 2 shows a specific operating condition.

  

If the first proportional pressure reducing valve 13.1 actuated by the operator to move the drive 1.1, this valve opens and allows the flow of the pressure medium from the pump line 6 in the control line 23.1 and continue through the throttle bodies 30.1 and 31.1 to the left Control connection of the directional control valve 11.1, which is thus turned on and moves the drive 1.1. The control of the proportional pressure reducing valve 13.1 is indicated by an arrow A1 on the electromagnetic drive.

  

The flowing in the control line 23.1 pressure fluid acts on the left hydraulic drive of the directional control valve 11.1. This now assumes the position shown, can flow in the pressure fluid from the pump line 6 through the directional control valve 11.1 to the rod side of the drive 1.1. At the same time can flow from the piston chamber of the drive 1.1 pressure fluid via the directional control valve 11.1 in the tank line 7. The piston of the drive 1.1 thus moves to the left.

  

The 2/2-way proportional valve 15.1 now has a position resulting from the ratio of pump pressure and maximum load pressure. Correspondingly, the 2/2-way proportional valve 15.1 has a specific throttling effect, which is also determined by the spring 20.1. Thus, a part of the flowing from the proportional pressure reducing valve 13.1 in the control line 23.1 pressure medium from the connection point between the throttle bodies 30.1 and 31.1 through the connecting line 42.1 to a controllable throttle point performing 2/2-way proportional valve 15.1 and from there through the connecting line 43.1 from Connection point between the throttle bodies 40.1 and 41.1 and then flow via the pressure divider throttle 40.1 and the slide of the non-driven proportional pressure reducing valve 14.1 in the control oil return line 9 and thus in the tank 5.

   In this way, the control pressure for the directional control valve 11.1 is reduced, namely as a function of the ratio of pump pressure and maximum load pressure. The higher the maximum load pressure compared to the pump pressure, the stronger the control pressure for the directional control valve 11.1 is reduced. In the now open 2/2-way proportional valve 15.1 now takes place a pressure distribution over the first pressure divider throttle body 30.1, the internal throttle point of the 2/2-way proportional valve 15.1 and the second pressure divider throttle body 40.1 instead.

  

If the pump pressure is higher than the maximum load pressure, for example 25 bar higher, the 2/2-way proportional valve 15.1 is closed, so that the outflow of pressure medium into the tank 5 is prevented, so that the control pressure of the first proportional -Druckminderventils 13.1 fully acts on the directional control valve 11.1. This is the case with sufficient pump delivery.

  

However, if the pump pressure falls below a certain value, which occurs when the pump 4 can not deliver the required pressure medium flow, then pressure medium flows into the tank 5 in the previously described manner.

  

In order to understand the effect of the invention easier, a scheme of the effective pressure divider is shown in FIG. From the circuit of Fig. 1 and 2, therefore, those parts are drawn out separately, which make up the effect of the pressure divider chain. From left to right, the three effective components of the pressure divider are shown, namely the first pressure divider throttle point 30.1, the throttle point X15.1, which designates the throttling action of the 2/2-way proportional valve 15.1, and the second pressure divider throttle point 40.1. On the left side of this component chain is the output control pressure of the first proportional pressure reducing valve 13.1, which can easily be seen from FIG. 2 when the proportional pressure control valve 13.1 is actuated. This output control pressure is for example a maximum of 20 bar.

  

On the right side of this component chain is the ruling in the control oil return line 9 pressure, which can also be seen from Figure 2. The pressure in the control oil return line 9 is identical to the pressure in the tank line 7, that is to say 0 bar when the tank 5 is pressureless (FIG. 2).

  

For a better understanding below the first pressure divider throttle body 30.1, the throttle point x15.1und the second pressure divider throttle body 40.1 in the sense of a design example, the effective throttle cross-sections shown, which are converted for simplicity to a certain diameter in mm. The effective throttle diameter of the first pressure divider orifice 30.1 is for example 0.45 mm, that of the throttle point x15.10.40 mm and that of the second pressure divider throttle point 40.1 0.35 mm. From this, it is now possible to calculate which pressure drops occur across the individual throttle points. The exemplary numerical values for the pressures show on the left of the first pressure divider orifice 30.1 a pressure of 20 bar and on the right a pressure of 16 bar.

   For the second pressure divider orifice 40.1, on the left, there is a pressure of 10 bar, to the right, as explained above, 0 bar. This results in a pressure drop of 10 bar. This results in a pressure of 6 bar falling above the throttle point x15.1.

  

The pressure drop across the throttle point x15.1 is now identical to the control pressure acting on the directional control valve 11.1. So it is clear that the control pressure acting on the left side of the directional control valve 11.1 is reduced by the aforementioned component chain to 16 bar, and that acts on the right side of the directional valve 11.1, a pressure of 10 bar. The directional control valve 11.1 therefore assumes a position corresponding to the pressure difference of 6 bar, which corresponds to a reduced opening cross-section and which results in a reduced flow rate to the consumer 1.1 (FIG. 2).

  

The reduction of the flow rate is done in the second control block 3.2 (Figure 2) in the same manner. By reducing the flow rates is now achieved that the pump 4 must promote less pressure medium, so that the adverse effect of a shortage is corrected.

  

If the maximum load pressure of all consumers 1 is significantly below the pump pressure, then the 2/2-way proportional valve 15.1 is in its closed position. Thus, no pressure medium flows from the control line 23.1 into the tank 5. The control pressure generated by the proportional pressure reducing valves 13.1 or 14.1 or 13.2 or 14.2 thus acts in each case in full size on the corresponding side of the directional control valves 11.1 and 11.2.

  

Usually, the control device 2 is designed so that the pump pressure is 25 bar higher than the maximum load pressure. But now the pump pressure drops because of the requirement of a pressure medium flow through the consumer, which is higher than the power of the pump, the 2/2-way proportional valve 15.1 is controlled so that a part of the control oil flow for the directional control valve 11.1 in the tank. 5 flows away. This reduces the control pressure of the directional control valve 11.1, which has the consequence that the speed of the drive 1.1 is reduced so much that now the pressure medium to be supplied by the pump 4 is reduced so that the interpretative difference between the pump pressure and maximum load pressure of 25 bar is reached again.

  

The same applies to the control of the proportional pressure reducing valve 14.1. By controlling this opens this valve and allows the flow of the pressure medium from the pump line 6 in the control line 24.1 and further via the pressure divider choke point 40.1 and the damping throttle 41.1 to the right control port of the directional control valve 11.1, which is thus turned on and the drive 1.1 in the other direction moves.

  

The 2/2-way proportional valve 15.1 now also has a position resulting from the ratio of pump pressure and maximum load pressure. Accordingly, the 2/2-way proportional valve 15.1 has a specific throttle effect. Thus, a portion of the flowing from the proportional pressure reducing valve 14.1 in the control line 24.1 pressure fluid flows through the pressure divider throttle body 30.1 and the slide of the non-actuated proportional valve 13.1 in the control oil return line 9 and thus in the tank 5 from. In this way, the control of the directional control valve 11.1 is reduced and indeed as a function of the ratio of pump pressure and maximum load pressure. The pressure divider chain acts as described above. The higher the maximum load pressure compared to the pump pressure, the stronger the control of the directional control valve 11.1 is reduced.

  

In the second control block 3.2 is analogous to the control of the proportional pressure reducing valve 13.2 or the proportional pressure reducing valve 14.2 to move the drive 1.2. Here it is shown by an arrow A2 that the operator controls the proportional pressure reducing valve 14.2.

  

As a result, the hydraulic drive of the directional control valve 11.2 shown on the right is driven, resulting in that pressure fluid from the pump line 6 through the directional control valve 11.2 flows to the piston chamber of the drive 1.2, while pressure medium from the rod space of the drive 1.2 via the directional control valve 11.2 to the tank 5 drains. The effect of the 2/2-way proportional valve 15.2 is in principle the same as that described above for the 2/2-way proportional valve 15.1.

  

The reduction of the pressure medium flow thus takes place in both control blocks 3.1 and 3.2 in the same manner, which also applies if further control blocks 3.n are present. This reduction takes place autonomously within the respective control block 3.1, 3.2 or 3.n. An additional external pressure control valve is therefore not necessary.

  

It has been mentioned that the throttling action of the 2/2-way proportional valve 15.1 is codetermined by the spring 20.1. This also applies to the 2/2-way proportional valve 15.2 and the spring 20.2. If the springs 20.1 and 20.2 have the same spring rate, then the throttling action of the two 2/2-way proportional valves 15.1 and 15.2 is the same. If the spring rates are different, the throttling effect is not the same. This opens up the possibility, in a simple manner by the choice of different spring rates or by the adjustability of the spring rate of the springs 20.1 and / or 20.2 a priority, so a priority to realize for one of the consumers.

  

FIG. 4 shows a scheme with a circuit supplement. This diagram shows a detail of FIGS. 1 and 2, namely the part with the directional control valve 11.1, the 2/2-way proportional valve 15.1 and the throttle bodies 30.1, 31.1, 40.1 and 41.1. The circuit supplement is that in the control line, which leads from the connection point of the throttle bodies 30.1 / 31.1 via the 2/2-way proportional valve 15.1 to the connection point of the throttle bodies 40.1 / 41.1, an anti-parallel circuit 50 of two biased check valves 51.1 and 52.1 is arranged.

  

The biased check valves 51.1 and 52.1 are advantageously designed so that they open at a pressure difference of 5 bar. Only when the control pressure for the directional control valve 11 is more than 5 bar above the tank pressure, thus, the previously described reduction of the control of the directional control valve 11 can be effective. This will now be shown again with reference to a figure showing the chain of effective throttle points. This is shown in FIG. 5. FIG. 5 corresponds to FIG. 3, but additionally contains the anti-parallel circuit 50 of the two preloaded check valves 51.1 and 52.1 (FIG. 4).

  

Above the antiparallel circuit 50, 5 bar pressure will always fall off when the 2/2-way proportional valve 15.1 is not closed. Accordingly fall over the other components of the pressure divider chain only 15 bar, namely 3 bar above the first pressure divider throttle body 30.1, 4.5 bar above the throttle point x15.1 and 7.5 bar above the second pressure divider throttle 40.1. In this example, therefore acts on the directional control valve 11.1 a pressure difference of 9.5 bar.

  

The aforementioned pressure difference of 5 bar, at which the check valves 51.1 and 52.1 open, is not chosen by chance. This design is related to the fact that directional control valves 11.1, 11.2 contain springs acting on the control piston, which hold the control piston in a neutral center position, which is why these springs are also referred to as centering springs. These centering springs of the directional control valves 11.1, 11.2 are, for example, so dimensioned that only from an effective control pressure of 5 bar, a pressure medium flow to the consumers comes about. It is therefore advantageous if the bias of the check valves 51.1 and 52.1 correlates with it. This ensures that the described reduction of the pressure medium quantity is proportional to the size of the undersupply.

   So there is a proportional reduction in the flow of pressure medium in the control blocks 3.1 and 3.2 and possibly existing further control blocks 3.n.

  

The general idea of the invention is to make the control blocks 3 so that they contain an upstream pressure compensator and also a controllable pressure divider, by means of which a portion of the control current for the directional control valve 11.1 or 11.2 is derivable into the tank, if the highest load pressure is greater than the sum of pump pressure and a minimum difference of 25 bar, for example, which can be detected and controlled by means of the 2/2-way proportional valve 15.1 or 15.2.

  

The inventive control device 2 with its control blocks 3.1, 3.2 and optionally further control blocks 3.n so automatically compensates for a shortage. It can therefore be used advantageously not only when it is to be reckoned with a working device with a shortage, but in principle even when interpretation moderately with a shortage does not have to be expected. Should a deficiency occur in adverse circumstances nevertheless, then the shortage is automatically compensated. Abnormal operating conditions of the implement are thus safely avoided.


    

Claims (5)

1. Steuervorrichtung für mindestens zwei hydraulische Antriebe, die durch Steuerblöcke (3.1; 3.2) ansteuerbar sind, bei denen die hydraulischen Antriebe mittels Wegeventilen (11.1; 11.2) steuerbar sind, die ihrerseits mittels als Vorsteuerventile wirkenden Proportional-Druckminderventilen (13.1, 14.1; 13.2, 14.2) ansteuerbar sind, dadurch gekennzeichnet, dass 1. Control device for at least two hydraulic drives, which are controllable by control blocks (3.1, 3.2), in which the hydraulic drives by means of directional control valves (11.1, 11.2) are controllable, which in turn acting as pilot valves proportional pressure reducing valves (13.1, 14.1, 13.2 , 14.2) are controllable, characterized in that - die Steuerblöcke (3.1; 3.2) je eine vorgeschaltete Druckwaage (12.1; 12.2) - the control blocks (3.1, 3.2) each an upstream pressure compensator (12.1, 12.2) - und je einen steuerbaren Druckteiler enthalten, - and each contain a controllable pressure divider, - wobei zwischen die Proportional-Druckminderventile (13.1, 14.1; 13.2, 14.2) und die hydraulischen Steuereingänge jedes Wegeventils (11.1; 11.2) je ein hydraulisch angesteuertes 2/2-Wege-Proportionalventil (15.1; 15.2) geschaltet ist, das zusammen mit Drosselstellen (30.1, 40.1; 30.2, 40.2) den Druckteiler bildet. - Wherein, between the proportional pressure reducing valves (13.1, 14.1, 13.2, 14.2) and the hydraulic control inputs of each directional control valve (11.1, 11.2) each have a hydraulically controlled 2/2-way proportional valve (15.1, 15.2) is connected, which together with throttle points (30.1, 40.1, 30.2, 40.2) forms the pressure divider. 2. Steuervorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in den Ansteuerleitungen jedes 2/2-Wege-Proportionalventils (15.1; 15.2) je eine weitere Drosselstelle angeordnet ist, nämlich in einer Verbindung zu einer Pumpenleitung (6) je eine erste Steuerkolben-Dämpfungsdrosselstelle (45.1; 45.2) und in einer Verbindung zu einer Lastdruckleitung (8) je eine zweite Steuerkolben-Dämpfungsdrosselstelle (46.1; 46.2). 2. Control device according to claim 1, characterized in that in the control lines of each 2/2-way proportional valve (15.1, 15.2) each have a further throttle point is arranged, namely in a connection to a pump line (6) each have a first control piston Dämpfungsdrosselstelle (45.1; 45.2) and in a connection to a load pressure line (8) each have a second control piston damping throttle point (46.1; 46.2). 3. Steuervorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Drosselwirkung der 2/2-Wege-Proportionalventile (15.1; 15.2) durch je eine einstellbare Feder (20.1; 20.2) veränderbar ist. 3. Control device according to claim 2, characterized in that the throttling effect of the 2/2-way proportional valves (15.1, 15.2) by an adjustable spring (20.1, 20.2) is variable. 4. Steuervorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass in einer Steuerleitung, die von einem Verbindungspunkt von ersten der jeweiligen Drosselstellen (30.1.31.1; 30.2, 31.2) über das jeweilige 2/2-Wege-Proportionalventil (15.1; 15.2) zu einem Verbindungspunkt von zweiten der jeweiligen Drosselstellen (40.1, 41.1: 40.2. 41.2) führt, eine Antiparallelschaltung (50) von zwei vorgespannten Rückschlagventilen (51.1, 52.1) angeordnet ist. 4. Control device according to claim 3, characterized in that in a control line from a connection point of the first of the respective throttle bodies (30.1.31.1; 30.2, 31.2) via the respective 2/2-way proportional valve (15.1, 15.2) to a Connection point of the second of the respective throttle bodies (40.1, 41.1: 40.2 41.2) leads, an anti-parallel circuit (50) of two biased check valves (51.1, 52.1) is arranged. 5. Steuervorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die vorgespannten Rückschlagventile (51.1, 52.1) so ausgelegt sind, dass sie bei einer Druckdifferenz von 5 bar öffnen. 5. Control device according to claim 4, characterized in that the prestressed check valves (51.1, 52.1) are designed so that they open at a pressure difference of 5 bar.
CH01229/07A 2007-08-02 2007-08-02 Control device for at least two hydraulic drives. CH700344B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CH01229/07A CH700344B1 (en) 2007-08-02 2007-08-02 Control device for at least two hydraulic drives.
EP08772899A EP2171289A1 (en) 2007-08-02 2008-07-23 Control device for at least two hydraulic drives
PCT/CH2008/000328 WO2009015502A1 (en) 2007-08-02 2008-07-23 Control device for at least two hydraulic drives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01229/07A CH700344B1 (en) 2007-08-02 2007-08-02 Control device for at least two hydraulic drives.

Publications (1)

Publication Number Publication Date
CH700344B1 true CH700344B1 (en) 2010-08-13

Family

ID=38780790

Family Applications (1)

Application Number Title Priority Date Filing Date
CH01229/07A CH700344B1 (en) 2007-08-02 2007-08-02 Control device for at least two hydraulic drives.

Country Status (3)

Country Link
EP (1) EP2171289A1 (en)
CH (1) CH700344B1 (en)
WO (1) WO2009015502A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216034A1 (en) * 2014-08-13 2016-02-18 Robert Bosch Gmbh Valve arrangement with adjustable load feedback
DE102023205767B3 (en) 2023-06-20 2024-06-20 Hawe Hydraulik Se Hydraulic valve assembly and mobile hydraulics

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103062140B (en) * 2013-01-17 2014-01-08 江苏恒立高压油缸股份有限公司 Hydraulic device on basis of confluence control mode
DE102015122930A1 (en) 2015-12-29 2017-06-29 Xcmg European Research Center Gmbh Control for a hydraulically operated valve
DE102015122929A1 (en) 2015-12-29 2017-06-29 Xcmg European Research Center Gmbh Control for a hydraulically operated valve
DE102016215214A1 (en) 2016-08-16 2018-02-22 Zf Friedrichshafen Ag Transmission device with several adjustable via hydraulically actuated piston-cylinder devices shift rails and interpretable translations
CN106382271B (en) * 2016-10-18 2017-12-26 浙江大学 The double spool PLC technology hydraulic valve and its method of a kind of high-speed switch valve pilot control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192899A1 (en) * 1983-10-17 1986-09-03 Poclain Stalling control for a hydraulic system
DE3603630A1 (en) * 1986-02-06 1987-08-13 Rexroth Mannesmann Gmbh Control arrangement for at least two hydraulic consumers fed by at least one pump
US4858649A (en) * 1986-09-09 1989-08-22 Hitachi Construction Machinery Co., Ltd. Valve apparatus
DE3890121C2 (en) * 1987-02-20 1996-08-08 Hitachi Construction Machinery Hydraulic quick-exhaust control valve
JP2002005109A (en) * 2000-06-16 2002-01-09 Hitachi Constr Mach Co Ltd Operation control device
US20030000374A1 (en) * 2000-11-20 2003-01-02 Makoto Iga Hydraulic circuit for working machine
WO2004104426A1 (en) * 2003-05-15 2004-12-02 Bosch Rexroth Ag Hydraulic control arrangement
EP1813821A1 (en) * 2004-09-29 2007-08-01 Kobelco Construction Machinery Co., Ltd. Hydraulic circuit for construction machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192899A1 (en) * 1983-10-17 1986-09-03 Poclain Stalling control for a hydraulic system
DE3603630A1 (en) * 1986-02-06 1987-08-13 Rexroth Mannesmann Gmbh Control arrangement for at least two hydraulic consumers fed by at least one pump
US4858649A (en) * 1986-09-09 1989-08-22 Hitachi Construction Machinery Co., Ltd. Valve apparatus
DE3890121C2 (en) * 1987-02-20 1996-08-08 Hitachi Construction Machinery Hydraulic quick-exhaust control valve
JP2002005109A (en) * 2000-06-16 2002-01-09 Hitachi Constr Mach Co Ltd Operation control device
US20030000374A1 (en) * 2000-11-20 2003-01-02 Makoto Iga Hydraulic circuit for working machine
WO2004104426A1 (en) * 2003-05-15 2004-12-02 Bosch Rexroth Ag Hydraulic control arrangement
EP1813821A1 (en) * 2004-09-29 2007-08-01 Kobelco Construction Machinery Co., Ltd. Hydraulic circuit for construction machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216034A1 (en) * 2014-08-13 2016-02-18 Robert Bosch Gmbh Valve arrangement with adjustable load feedback
DE102023205767B3 (en) 2023-06-20 2024-06-20 Hawe Hydraulik Se Hydraulic valve assembly and mobile hydraulics

Also Published As

Publication number Publication date
EP2171289A1 (en) 2010-04-07
WO2009015502A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
EP1915538B1 (en) Circuit for controlling a double-action hydraulic drive cylinder
EP1355065B1 (en) Hydraulic control
DE102004050294B3 (en) Hydraulic valve arrangement
EP2855945B2 (en) Method for operating a hydraulic system
DE102006003414B3 (en) Hydraulic circuit arrangement
EP1450048A1 (en) Valve arrangement
DE102004063044B4 (en) Hydraulic control
DE10330869A1 (en) Hydraulic system
EP0016719B1 (en) Hydraulic motor control device
CH700344B1 (en) Control device for at least two hydraulic drives.
DE4106845C2 (en)
DE4137963A1 (en) Valve arrangement for load-independent control of several hydraulic user units - involves ratio of adjusted part flows remaining the same in supply of system with pressure medium
EP2142808B1 (en) Hydraulic control arrangement
EP2126371B1 (en) Valve arrangement
DE19653810A1 (en) Hydraulic unit controlling lifting machine
AT413927B (en) PLOW
DE112004002768B4 (en) Hydraulic control system
DE102012006551B4 (en) Hydraulic circuit arrangement
DE9111569U1 (en) Control device for at least one hydraulic motor
EP3135924B1 (en) Hydraulic device
DE102013207299A1 (en) Hydraulic directional control valve for the hoist of an agricultural vehicle
EP2600011A2 (en) Hydraulic directional valve for the lifting gear of an agricultural vehicle
EP0297401B1 (en) Hydraulic control device
EP2597209B1 (en) Electronic-hydraulic hoisting gear regulation system
EP1253327B1 (en) Hydraulic control circuit

Legal Events

Date Code Title Description
PL Patent ceased