Cette invention concerne la préparation des composés imidazoles tétracycliques, et plus particulièrement une série de dibenzo[b,futhiépin[4,5-d3- et dibenzo[3,4,7,8j cycloocta[1 ,2-d]imi dazoles substitués en position 2 et leurs sels d'addition d'acide pharmaceutiquement acceptables en tant que nouvelle famille d'agents anti-inflammatoires. Selon le procédé de l'invention, on effectue la synthèse de ces composés par condensation de ra-dicétone appropriée, et d'un aldéhyde et d'acétate d'ammonium.
Il n'est pas courant de trouver dans la littérature chimique des références relatives aux imidazoles polycycliques; Steck et Day,
J. Am. Chem. Soc., 65, 452 (1943), essayant de déterminer le cours de la réaction mise en jeu dans la formation d'imidazoles ont synthétisé une série de phénanthrimidazoles. Toutefois, aucune utilité n'a été décrite pour ces composés.
Les agents anti-mflammatoires tétracycliques obtenus par le procédé de cette invention sont représentés par la formule:
EMI1.1
de même que leurs sels d'addition d'acide pharmaceutiquement acceptables, formule où:
Z est un groupement - CH2CH2 - ou un atome S;
chacun de X et Y est un atome d'hydrogène ou un groupement méthyle, méthoxy, un atome de fluor, de chlore, de brome ou un groupement méthylthio; et
R est un groupement trifluorométhyle, pyridyle, naphtyle, phényle ou phényle substitué où le substituant est un groupement méthyle, mèthoxy, ou un atome de fluor, de chlore ou de brome, ou un groupement diméthylamine, carboxy ou méthylthio.
Les composés particulièrement intéressants sont ceux dans lesquels Z est un groupement éthylène, X et Y sont des atomes d'hydrogène et R est un groupement phényle, 3-pyridyle ou trifluorométhyle et ceux dans lesquels Z est un atome de soufre,
X et Y sont des atomes d'hydrogène et R est un groupement p-méthoxyphényle, 3wpyridyle, trilluorométhyle ou p-carboxyphényle. La préparation des imidazoles tétracycliques par le procédé selon la présente invention, ayant la formule I:
EMI1.2
dans laquelle Z, X, Y et R sont définis comme précédemment, peut être illustré par le schéma suivant:
EMI1.3
La réaction illustrée cidessus est effectuée dans des conditions réactionnelles qui sont pratiquement celles utilisées par Davidson et al., J. Org.
Chem., 2, 319 (1937), et cette réaction consiste à chauffer un mélange d'r-dicétone, d'aldéhyde ou de dérivés de ceux-ci et d'acétate d'ammonium dans un solvant qui est l'acide acétique glacial. On peut utiliser un excès d'acétate d'ammonium cinq à dix fois. La quantité d'aldéhyde utilisée par rapport à celle de dicétone peut varier depuis une quantité équimolaire jusqu'à un excès de 100%.
Généralement, on considère les températures de reflux comme appropriées bien que des températures plus basses avec des durées de réaction plus longues en conséquence puissent être utilisées.
Lorsqu'on utilise lesdites températures de reflux, des durées de réaction de 1-12 heures conviennent pour donner le produit désiré.
Une méthode commode pour isoler le produit consiste à dilue le mélange de réaction avec de l'eau puis à neutraliser par l'hydroxyde d'ammonium jusqu'à un pH d'approximativement 7.
Le précipité résultant est alors filtré, séché et recristallisé dans un solvant approprié.
Les a-dicétones requises, dans lesquelles X et Y sont tels que définis et Z est un groupement éthylène, sont synthétisées selon le procédé préconisé par Leonard et al., J. Am. Chem. Soc., 77, 5078 (1955). En outre, les -dicétones, dans lesquelles X et Y sont tels qu'il a été indiqué et Z est le soufre, sont préparées par oxydation par l'anhydride sélénieux des monocétones correspondantes qui, de leur côté, sont préparées selon le mode opératoire Jilek et al.,
Monatsh. Chem. 96, 201 (1965). Les aldéhydes appropriés sont soit disponibles dans le commerce soit aisément préparés par l'homme de l'art selon les procédés indiqués par Carnduff, Quart. Rev., 20, 169 (1966).
Une caractéristique des composés de formule (I) est la nature acide de l'hydrogène de l'imidazole et la propriété de former des sels avec les réactifs basiques tels que les hydroxydes, les alkylates ou les hydrures des métaux alcalins et les hydroxydes des métaux alcalino-terreux.
Comme il a été indiqué antérieurement, les composés de formule (I), outre le pouvoir de former des sels avec les réactifs basiques, ont également, comme il a été indiqué antérieurement, le pouvoir de former des sels d'addition d'acide. Lesdits composés obtenus selon le procédé de l'invention peuvent être transformés en sels d'addition d'acide par interaction de la base avec un acide soit dans un milieu aqueux soit dans un milieu non aqueux.
De la même manière, le traitement des sels d'addition d'acide par une quantité équivalente d'une solution aqueuse de base, par exemple d'hydroxydes de métaux alcalins, de carbonates de métaux alcalins et de bicarbonates de métaux alcalins, ou par une quantité équivalente d'un cation métallique qui forme un précipité insoluble avec l'anion de l'acide, a pour résultat une régénération de la forme base libre. Pour effectuer ces transformations, le mieux est d'opérer aussi rapidement que possible et dans des conditions de température et par une méthode dictées par la stabilité desdits produits basiques. Les bases ainsi régénérées peuvent être retransformées en sel d'addition d'acide identique ou différent.
Dans l'utilisation de l'activité chimiothérapeutique des composés obtenus selon le procédé de l'invention qui forment des sels, il est préférable naturellement d'utiliser les sels pharmaceutiquement acceptables. Bien que leur insolubilité dans Peau, leur toxicité élevée, ou leur manque de cristallinité puissent rendre certaines espèces salines particulières inappropriées ou moins appropriées à être utilisées en tant que telles dans une application pharmaceutique donnée, il est possible de transformer les sels insolubles dans l'eau ou toxiques en bases correspondantes pharmaceutiquement acceptables en décomposant le sel comme il a été décrit précédemment ou sinon en les transformant en un quelconque sel d'addition d'acide désiré pharmaceutiquement acceptable.
Les exemples d'acides qui donnent des anions pharmaceutiquement acceptables sont les acides chlorhydrique, bromhydrique, iodhydrique, nitrique, sulfurique ou sulfureux, phosphorique, acétique, lactique, citrique, tartrique, succinique, maléique et gluconique.
Comme il a été indiqué précédemment, les imidazoles tétracycliques obtenus selon le procédé de l'invention sont tous aisément adaptés à un usage thérapeutique comme agents antiinflammatoires chez les mammifères. Les composés suivants sont remarquables pour leur efficacité de ce point de vue: 8,9-dihydro 2-phényldibenzo[3,4,7,8]-cycloocta[1,2-d]imidazole (I:
Z = - CH2CH2 - ; X, Y = H et R = Z); 8,9-dihydro-2-(3-pyridyl dibenzo[3,4,7,8]cycloocta[1 ,2-d]imidazole (I :Z = - CH2CH2 -;
X, Y = H et R = 3-pyridyl); 8,9-dihydro-2-trifluorométhyl- dibenzo[3,4,7,Sjcycloocta[1 ,2-d]imidazole (I :Z = - CH2CH2 -;
X, Y = H et R = CF3); 2-trifluorométhyldibenzo[b,Qthiépin[4,5-d]- imidazole (I:Z=S; X, Y=H et R=CF3); 2-(p-méthoxyphénylS dibenzo[b,Qthiépin[4,5-d]imidazole (I:Z=S; X, Y=H et R=p-CH30C6H4); 2-(3-pyridyl > dibenzo[b,f]-thiépin[4,5-d]-
imidazole (I: Z = S; X, Y = H et R = 3-pyridyl) et 2-(p-carboxy phényl)dibenzo[b,flthiépinC4,5-dlimidazo (I:
Z = S; X, Y = H et R=p-HO2CC6H4).
Un mode opératoire habituel de détection et de comparaison des activités anti-inflammatoires des composés de cette série et dans lequel il existe une excellente corrélation avec l'efficacité chez l'homme est le test de l'oedéme de la patte de rat induit par la carraghénine [Winter, et al., Proc. Soc. Exp. Biol., 111, 544(1962)]; dans ce test, on numérote des rats albinos adultes non anesthésiés dont le poids corporel est de 150-190 g, on les pèse et on les marque à l'encre sur la malléole latérale droite. Une heure après avoir administré le médicament par gavage, on induit un oedème en injectant 0,05 ml de solution à 1% de carraghénine dans le tissu plantaire des pattes marquées. Immédiatement après, on mesure le volume de la patte ayant reçu l'injection.
L'augmentation de volume, trois heures après l'injection de la carraghénine, représente la réponse du rat. Les composés sont considérés actifs si la différence entre la réponse d'un témoin et celle donnée par le médicament
à l'essai est significative. Les composés de référence sont la phényl
butazone à 33 mg/kg et l'acide acétylsalicylique à 100 mg/kg, tous deux administrés par voie orale.
Les imidazoles tétracycliques et leurs sels pharmaceutiquement
acceptables, qui sont des agents anti-inflammatoires utiles, peuvent
être administrés soit sous forme d'agents thérapeutiques séparés,
soit sous forme de mélanges d'agents thérapeutiques. Ils peuvent
être administrés seuls, mais sont généralement administrés avec
un porteur pharmaceutique choisi en fonction de la voie d'admi
nistration choisie et de la pratique pharmaceutique habituelle. Par exemple, ils peuvent être administrés par voie orale sous la forme de comprimés ou de capsules contenant des excipients tels que amidon, lactose ou certains types d'argile, etc. Ils peuvent être administrés par voie orale sous la forme d'élixirs ou de suspensions orales avec les ingrédients actifs associés à des agents émulsionnants et/ou de mise en suspension.
Ils peuvent être injectés par voie parentérale, et dans ce cas ils peuvent, ainsi d'ailleurs que des dérivés appropriés, être préparés sous forme de solutions aqueuses stériles. Ces solutions aqueuses doivent être convenablement tamponnées, si nécessaire, et doivent contenir d'autres solutés tels que composés salins ou glucose qui les rendent isotoniques.
Lorsqu'il s'agit de déterminer une dose efficace en thérapeutique humaine, on extrapole fréquemment les résultats obtenus dans les essais sur animaux et on considère qu'il existe une corrélation entre le comportement de l'animal dans l'essai sur animal et la dose posologique proposée pour l'homme. Lorsqu'on dispose d'une référence utilisée commercialement, on détermine fréquemment la dose du produit à examiner cliniquement chez l'homme en comparant sa performance avec le produit de référence dans un essai sur animal. Par exemple, on utilise la phénylbutazone comme agent anti-inflammatoire de référence et on l'administre à l'homme à raison de 100 à 400 mg par jour. On suppose alors que si les composés obtenus selon le procédé de l'invention ont une activité comparable à celle de la phénylbutazone dans l'essai, des doses similaires donneront des réponses comparables chez l'homme.
C'est évidemment le médecin qui déterminera finalement la dose posologique qui sera la mieux appropriée à un individu donné, et cette dose variera avec l'âge, le poids et la réponse du patient donné de même qu'avec la nature et le degré des symptômes ainsi que les caractéristiques pharmacodynamiques de l'agent particulier à administrer. Généralement, on administre initialement des petites doses, en augmentant progressivement la dose posologique jusqu'à ce que l'on ait déterminé le niveau optimal. On verra souvent que lorsque la composition est administrée par voie orale il est nécessaire d'utiliser de plus grandes quantités de l'ingrédient actifpour obtenir le même niveau que celui produit par une petite quantité administrée par voie parentérale.
Compte tenu de tous les facteurs précédents, une dose posologique quotidienne efficace des composés obtenus selon le procédé de l'invention, chez l'homme, est approximativement de 0,1 à 1,0 g par jour, avec une gamme préférée et d'environ 0,2 à 0,8 g par jour en une seule dose ou en doses fractionnées, ou encore d'environ 3 à 10 mg/kg de poids corporel, et allège efficacement l'in- flammation chez les sujets humains enclins à ces troubles. Ces valeurs sont illustratives et il peut naturellement exister des cas individuels où des doses supérieures ou inférieures soient nécessaires.
Les exemples suivants sont donnés à titre d'illustration du procédé selon l'invention.
Exemple 1: 8,9-dihydrn-2-(p-méthoxyphényl)dibenw[3,4,7',8]cyclo
octa[1 ,2-d]imidazole
(I:Z= -CH2CH2-; X, Y=H et R=p-CH3OC6H4).
A une solution de 1,5 g (6,4 mmoles) de 11,12-dihydrocycloocta[a,e]dibenzène-5,6-dione dans 50 ml d'acide acétique glacial sec contenu dans un ballon à trois tubulures et sous atmosphère d'azote, on ajoute 3,0 g d'acétate d'ammonium. On ajoute goutte à goutte à la solution jaune foncé résultante 1,1 g (7,7 mmoles) de p-méthoxybenzaldéhyde dans 10 ml d'acide acétique glacial sec.
On chauffe à reflux pendant une nuit le mélange réactionnel et ensuite on le refroidit, on le verse dans 300 ml d'eau glacée et on ajuste le pH à 7,0 en ajoutant une solution d'hydroxyde d'ammonium. On filtre le précipité résultant, on le sèche et on le recristallise dans le benzène, 385 mg, p.f. 318-320"C. Une seconde recristallisation dans le benzène donne l'échantillon analytique, p.f.
321-323 C.
Analyse:
Calculé pour C24H20N20
C 81,8 H 5,7 N 8,0%
Trouvé: C 81,2 H 5,9 N 7,6%
Exemple II:
En partant de la 11,12-dihydrocycloocta[a,e]dibenzène-5,6
dione et de l'aldéhyde nécessaire, et en reprenant le mode opé
ratoire de l'exemple I, on prépare les composés suivants:
:
8,9-dihydro-2-phényldibenzo[3,4,7,8]cycloocta[1,2-d]imida
zole, p.f. 334-335 C;
8,9-dihydro-2-(p-bromophényl)dibezo[3,4,7,8]cyclo
octa[1,2-d]imidazole, p.f. 358-360 C; 8,9-dihydro-2-(p-chlorophényl)dibenzo[3,4-7-8]cyclo-
octa [1,2-d]-imidazole, p.f. 347-348 C;
8,9-dihydro-2-(3-pyridyl)dibenzo[3,4,7,8]cyclo
octa[1,2-d]-imidazole, p.f. 285-286 C; 8,9-dihydro-2-(p-méthylthiophényl)dibenzo[3,4,7,8]cyclo-
octa[1,2-d]imidazole,p.f. 329-331 C;
8,9-dihydro-2-trifluorométhyldibenzo[3,4,7,8]cyclo
octa[1,2-d]imidazole, p.f. 290-292 C;
X Y R
H H 2-C5H4N
H H 4-C5H4N
H H α
;-C10H7
H H ss-C10H7
H H o-CH3C6H4
H H m-CH3C6H4
H H p-CH3C6H4
H H m-CH3OC6H4
H H o-FC6H4
H H p-FC6H4
H H m-ClC6H4
H H m-BrC6H4
H H o-CH3SC6H4
H H m-(CH3)2NC6H4
H 5-CH3 C6H5
H 5-CH3 CF3
H 5-CH3 p-ClC6H4
H 5-CH3 p-CH3C6H4
H 6-CH3 3-C5H4N
H 6-CH3 p-CH30C6H4
H 6-CH3 p-FC6H4
H 6-CH3 m-FC6H4
H 6-CHa p-HO2CC6H4
H 4- CH3 3-C5H4N
H 4- CH3 p-CH30C6H4
H 4-CH3 p-FC6H4
H 4-CH3 m-FC6H4
H 4-CH3 p-HO2CC6H4
H 7-CH3 α
;-C10H7
H 7-CH3 2-C5H4N
H 7-CH30 p-ClC6H4
H 7-CH30 p-BrC6H4
H 7-CH30 o-CH3SC6H4
H 7-CH30 3-C5H4N
H 7-CH30 o-HO2CC6H4
H 4-F CF3
8,9-dihydro-2-(p-carboxyphényl)dibenzo[3,4,7,8]cycloocta[1,2-d]imidazole, p.f. 340-342 C, et
8,9-dihydro-2-(p-diméthylaminophényl)dibenzo[3 4 7 8]cyclo- octa[1,2-d]imidazole, p.f.308-311 C.
Exemple III:
On répète encore le mode opératoire de l'exemple I, en partant de l'aldéhyde et de l'ot-dicétone convenablement substitués, pour obtenir les composés suivants:
EMI3.1
X Y R
H 4-F p-(CH3)2NC6H4
H 4-F p-CH3C6H4
H 4-F m-CH3C6H4
H 4-F C6H5
H 5-F C6H5
H 5-F CF3
H 5-F 3-C5H4N
H 5-F o-CH3OC6H4
H 5-F p-CH3OC6H4
H 5-F m-CH3OC6H4
H 5-F p-BrC6H4
H 5-F p-ClC6H4
H 5-F p-FC6H4
H 6-F CF3
H 6-F p-(CH3)2NC6H4
H 6-F p-CH3C6H4
H 6-F m-CH3C6H4
H 6-F C6H5
H 7-F α-C10H7
H 7-F ss-C10H7
H 7-F C6H5
H 7-F m-CH3SC6H4
H 7-F p-CH30C6H4
H 7-F o-FC6H4
H 7-F p-FC6H4
H 7-Br -GF3
H 7-Br 3-C5H4N
H 7-Br 4-C5H4N
H 7-Br C6H5
H 7-Br p-ClC6H4
H 4-CH3S CF3
H 4-CH3S α
;-C10H7
H 4-CH3S ss-C10H7
H 4-CH3S p-CH3SC6H4
H 4-CH3S p-CH30C6H4
H 5-CH3S C6H5
X Y R
H 5-CH3S o-FC6H4
H 5-CH3S m-FC6H4
H 5-CH3S p-FC6H4
H 5-CH3S m-HO2CC6H4
H 5-CH3S p-(CH3)2NC6H4
H 6-CH3S CF3
H 6-CH3S α
;-C10H7
H 6-CH3S ss-C10H7
H 6-CH3S p-CH3SC6H4
H 7-CH3 m-BrC6H4
H 7-CH3 p-CH3SC6H4
H 7-CH3 m-CH3SC6H4
H 7-CH3 C5H5
H 7-CH3 m-CH3OC6H4
H 7-CH3 o-FC6H4
H 7-CH3 p-FC6H4
H 4-CH30 C6H5
H 4-CH30 p-CH3C6H4
H 4-CH3O o-CH3OC6H4
H 4-CH3O p-CH3OC6H4
H 4-CH3O p-HO2CC6H4
H 5-CH3O C6H5
H 5-CH3O -CH3C6H4
H 5-CH3O o-FC6H4
H 5-CH3O m-FC6H4
H 5-CH3O m-CIC6H4
H 5-CH30 p-ClC6H4
H 5-CH30 p-BrC6H4
H 5-CH30 p-(CH3)2NC6H4
H 5-CH3O o-CH3SC6H4
H 5-CH3O CF3
H 6-CH30 C6H5
H 6-CH30 p-CH3C6H4
H 6-CH30 o-CH3OC6H4
H 6-CH3O p-CH30C6H4
H 6-CH3O p-HO2CC6H4
H 7-CH30 CF3
H 7-CH30
o-FC6H4
H 7-CH3O m-FC6H4
H 7-CH3O ss-C10H7
Exemple IV:
8,9-dihydro-2-trifluorométhyl-5,12-dichlorodibenzo[3,4,7,8]
cycloocta[1,2-d]imidozole
(I:Z=-CH2CH2-; X,Y=Cl;R=CF3).
On traite une solution de 3,04 g (10 mmoles) de 11,12-dihydro3,8-dichlorocycloocta[a,e]dibenzène-5,6-dione dans 100 ml d'acide acétique glacial anhydre, sous atmofphère d'azote, par 4,7 g d'acétate d'ammonium puis par 4,3 g (30 mmoles) d'hémiacétal éthylique de trifluoroacétaldéhyde dans 50 ml du même solvant.
On chauffe la solution résultante à reflux pendant 3 heures, on y ajoute encore 4,3 g de l'hémiacétal et on continue à chauffer pen dantencore 3 heures. On refroidit le mélange de réaction, on le verse dans un mélange d'eau et de glace et on ajuste le pH à 7 à l'aide d'une solution d'hydroxyde d'ammonium concentrée. On filtre le produit brut, on le sèche et on le purifie par recristallisation en plusieurs fois dans le toluène.
X Y R
H 4-Cl CF3
H 4-Cl C6H5
H 4-Cl p-HO2CC6H4
H 4-Cl p-CH3OC6H4
H 5-Cl o-ClC6H4
H 5-Cl m-ClC6H4
H 5-Cl o-FC6H4
H 5-Cl p-CH3OC6H4
H 5-Cl p-CH3SC6H4
H 6-Cl CF3
H 6-Cl C6H5
H 6-Cl p-HO2CC6H4
H 6-Cl p-CH3OC6H4
H 7-Cl CF3
H 7-Cl o-BrC6H4
H 7-Cl m-BrC6H4
H 7-Cl p-HO2CC6H4
H 7-Cl C6H5
H 4-Br CF3
H 4-Br C6H5
H 4-Br p-CH3OC6H4
H 5-Br CF3
H 5-Br o-CH3SC6H4
H 5-Br o-CH3OC6H4
H 5-Br p-CH30C6H4
H 5-Br p-(CH3)2NC6H4
H 5-Br p-FC6H4
H 6-Br CF3
H 6-Br C6H5
H 6-Br p-CH3OC6H4
H 6-CH3S p-CH3OC6H4
H 7-CH3S CF3
H 7-CH3S o-ClC6H4
H 7-CH3S p-ClC6H4
H 7-CH3S p-BrC6H4
H 7-CH3S p-CH3C6H4
H 7-CH3S 2-C5H4N
H 7-CH3S 3-C5H4N
H 7-CH3S 4-C5H4N
Exemple V:
:
En partant de la 11,12-dihydrocycloocta[a,e]dibenzène-5,6- dione et de l'aldéhyde nécessaires, et en suivant le mode opératoire de l'exemple IV, on synthétise les composés imidazoles tétra
EMI4.1
X Y R 13-CH3 5-CH3 CF3 13-CH3 5-CH3 p-CH3C6H4 13-CH3 5-CH3 p-CH30C6H4 13-CH3 5-CH3 o-CH3OC6H4 13-CH3 5-CH3 p-FC6H4 13-CH3O 5-CH3 m-FC6H4 13-CH3O 5-CH3 3-C5H4N 13-CH3O 5-CH3 4-C5H4N 13-CH30 5-CH3 C6H5 13-CH3O 7-CH3 C6H5 13-CH3O 7-CH3 CF3 13-CH3O 7-CH3 p-(CH3)2NC6H4 12-CH3O 7-CH3 p-HO2CC6H4 12-CH3O 7-CH3 α
;-C10H7 12-CH3O 5-F CF3 12-CH3O 5-F C6H5 11-CHO3 5-F 2-C5H4N 11-CHO3 5-F 4-C5H4N 11-CHO3 5-F p-BrC6H4 11-CHO3 5-F p-CH3SC6H4 11-CHO3 6-F p-CH2OC6H4 12-CHO3 6-F o-FC6H4 13-F 6-F o-CIC6H4 13-F 6-F p-ClC6H4 13-F 6-Cl p-ClC6H4 13-F 6-Cl m-ClC6H4 13-F 6-Cl p-CH3C6H4 11-F 6-Cl ss-C10H7 11-F 6-Cl o-(CH3)NC6H4 11-F 6-Cl o-HO2CC6H4 11-F 6-Cl m-CH3OC6H4 13-CH3 5-Cl p-ClC6H4 13-CH3 5-Cl p-FC6H4 12-CH3 5-Cl CF3 13-CH3 5-Cl C6H5 13-CH3S 5-Cl C6H5 13-CH3S 5-Cl CF3 13-CH3S 5-Cl p-(CH3)2NC6H4 13-CH3S 5-CH3S α-C10H7 13-CH3S 5-CH3S ss-C10H7 13-CH3S 5-CH3S CF3 10-Br 5-CH3S CF3 10-Br 5-CH3S 2-C5H4N 10-Br 5-CH3S 4-C5H4N 10-Br 7-Br C6H5 10-Br 7-Br m-HO2CC6H4
Exemple VI:
2-Trifluoromèthyldibenzo[bf]thiépin[4,5-d]imidazole
(I:Z=S; X, Y=H et R=CF3).
On chauffe à la température de reflux pendant une heure un mélange de 170 mg (0,7 mmole) de 10,11-dihydrodibenzo[b,f]- thiépin-10,11-dione, 300 mg (2,1 mmoles) d'hémiacétal éthylique de trifluoroacétaldéhyde et 4,0 g d'acétate d'ammonium dans 40 ml d'acide acétique glacial anhydride. On ajoute 170 mg supplémen
X Y R 10-Br 7-Br p-HO2CC6H4 11-F 7-Br p-CH3SC6H4 10-F 6-Cl p-CH3C6H4 10-F 6-Cl o-CH3C6H4 10-F 6-Cl α
;-C10H7 10-F 6-Cl CF3 13-Cl 6-Cl CF3 13-Cl 6-Cl 3-C5H4N 13-Cl 5-Br o-CH3C6H4 13-Cl 5-Br m-CH3C6H4 13-Cl 5-Br p-CH3C6H4 11-Cl 5-Br p-CH3OC6H4 11-Cl 5-Br CF3 11-Cl 5-CH3O CF3 11-Cl 5-CH3O C6H4 11-Cl 5-CH3O m-CH3SC6H4 11-Cl 5-CH3O p-CH3SC6H4 10-Br 5-CH3O p-HO2CC6H4 10-Br 5-CH3O CF3 10-Br 5-CH3O p-(CH3)2NC6H4 10-Br 5-CH2 p-(CH3)2NC6H4 10-Br 5-CH3 CF3 10-Br 5-CH3 m-BrC6H4 10-Br 5-CH3 m-ClC6H4 13-CH3S 5-CH3 p-CH3SC6H4 13-CH3S 5-CH3 m-CH3SC6H4 13-CH3S 5-CH3 CF3 13-CH3S 7-F CF3 13-CH3S 7-F C6H5 13-CH3 7-F ss-C10H7 13-CH3 7-F 3-C5H4N 13-CH3 7-F 4-C5H4N 13-CH3 7-F p-BrC6H4 11-CH3O 7-Br o-BrC6H4 11-CH3O 7-Br p-BrC6H4 11-CH3O 7-Br CF3 11-CH3O 5-CH3S CF3 11-CH3O 5-CH3S C6H5 11-CH3O 5-CH3S p-ClC6H4 11-CH30 5-CH3S p-CH30C6H4 11-CH30 7-CH30 p-CH30C6H4 11-CH3O 7-CH3O m-CH3C6H4 11-CH3O 7-CH3O o-CH3C6H4 11-CH30 7-CH30
o-CH30C6H4 11-F 7-Br o-FC6H4 11-F 7-Br p-FC6H4 taires de dicétone et 300 mg d'hémiacétal dans 5 ml du même solvant et l'on continue à chauffer au reflux pendant encore une heure. On répète une nouvelle fois cette addition, et on chauffe le mélange à la température de reflux pendant 3 heures. On refroidit le mélange réactionnel, on le verse dans un mélange glace-eau et on ajuste le pH à 7 avec de l'hydroxyde d'ammonium. On filtre le produit brut, on le sèche et on le recristallise dans le benzène, 300 mg, p.f.
255-257 C.
Analyse:
Calculé pour C,6HgN2SF3
C60,4 H2,8 N8,8%
Trouvé: C 60,4 H 3,1 N8.6%
Exemple VII:
En partant de la 10,11-dihydrodibenzo[b,f]thiépin-10,11-dione
et de l'aldéhyde approprié, et en répétant le mode opératoire de
l'exemple VI, on prépare les composés suivants:
:
2-ph6nyldibenzo[b,f]thiépin[4,5-d]imidazole, p.f.312 C avec
'décomposition; 2-(p-méthoxyphényl)dibenzo [b,flthiépin [4,5-d]imidazole,
p.f. 300 C avec décomposition;
2-(p-bromophényl)dibenzo[b,f]thiépin[4,5-d]imidazole,
p.f. 334 C avec décomposition; 2-(p-chlorophényl)dibenzo [b,f]thiépin [4, 5-d]imidazole,
p.f. 323 C avec décomposition;
2-(3-pyridyl)dibenzol[b,f]thiépin[4,5-d]imidazole, p.f.230 C
avec décomposition;
;
2-(p-carboxyphényl)dibenzo[b,f]thiépin[4,5-d]imidazole,
p.f. 360 C, et
X Y R
H H -C10H7
H H -C10H7
H H 2-C5H4N
H H p-FC6H4
H H o-FC6H4
H H m-HO2CC6H4
H H o-CH3C6H4
H H o-CH3OC6H4
H H m-CH30C6H4
H H p-CH3SC6H4
H 4-CH3 p-CH3SC6H4
H 4-CH3 CF3 H H 4-CH3
H 4-CH3 p-(CH3)2NC6H4
H 4-CH3 o-FC6H4
H 5-CH3 p-FC6H4
H 5-CH3 p-ClC6H4
H 5-CH3 p-BrC6H4
H 5-CH3 o-CH30C6H4
H 5-CH3 m-CH3C6H4
H 7-CH3 m-HO2CC6H4
H 7-CH3 p-HO2CC6H4
H 7-CH3 p-CH3SC6H4
H 7-CH3 α
;-C10H7
H 5-CH3O CF3
H 5-CH3O C6H5
H 7-Cl o-FC6H4
H 7-Cl m-FC6H4
H 7-Cl p-FC6H4
H 7-Cl p-(CH3)2N6H4
H 7-Cl m-(CH3)2NC6H4
H 4-Br o-HO2CC6H4
H 4-Br m-HO2CC6H4
H 4-Br CF3
H 4-Br C6H5
H 5-Br C6H5
2-(p-diméthylaminophényl)dibenzo[b,f]thiépin[4,5-d]imidazole, p.f 321 C avec décomposition.
Exemple VIII:
En partant de la 10,11-dihydrodibenzo[b,f]thiépin-10,11-dione substituée de façon appropriée et l'aldéhyde nécessaire, et en utilisant le mode opératoire de l'exemple VI, on prépare les composés suivants:
EMI6.1
X Y R
H 5-Br p-CH3OC6H4
H 5-Br m-CH3OC6H4
H 5-Br CF3
H 5-Br p-(CH3)2NC6H4
H 6-Br p-(CH3)2NC6H4
H 6-Br CF3
H 6-Br o-ClC6H4
H 6-Br p-ClC6H4
H 5-CH3S p-FC6H4
H 5-CH3S 2-C5H4N
H 5-CH3O 2-C5H4N
H 5-CH3O 4-C5H4N
H 5-CH3O m-CH3C6H4
H 5-CH3O p-CH3C6H4
H 5-CH3O -C10H7
H 7-CH30 ' CF3
H 7-CH3O m-BrC6H4
H 7-CH3O p-BrC6H4
H 7-CH30 o-ClC6H4
H 7-CH3O o-FC6H4
H 4-F CF3
H 4-F C6H5
H 4-F 3-C5H4N
H 4-F 4-C5H4N
H 4-F p-CH3SC6H4
H 6-F CF3
H 6-F o-CH3OC6H4
H 6-F m-CH30C6H4
H 6-F p-CH30C6H4
H 6-F p-HO2CC6H4
H 5-Cl p-H2OCC6H4
H
5-Cl α-C10H7
H 5-Cl ss-C10H7
H 5-Cl C6H5
H 5-Cl CF3
H 7-Cl CF3
X Y R
H 5-CH3S α-C10H7
H 5-CH3S ss-C10H7
H 5-CH3S 3-C5H4N
H 5-CH3S 4-C5H4N
H 5-CH3S CF3
H 5-CH3S o-CH3SC6H4
H 5-CH3S o-bRC6H4
H 6-CH3S m-BrC6H4
H 6-CH3S m-(CH3)2NC6H4
H 6-CH3S p-HO2CC6H4
H 7-CH3S p-H2OCC6H4
H 7-CH3S CF3
H 7-CH3S C6H5
H 7-CH3S o-ClC6H4
H 7-CH3S p-ClC6H4
H 7-CH3S p-CH3C6H4
Exemple IX:
2-phényl-5,11-dichlorodibenzo[b,f]thiépin[4,5-d]imidazole
(I:Z=S; X, Y=CI; R=C6H5).
X Y R 12-CH3 4-CH3 CF3 12-CH3 4-CH3 C6H5 12-CH3 4-CH3 3-C5H4N 12-CH3 4-CH3 4-C5H4N 10-CH3 4-CH3 p-HO2CC6H4 10-CH3 4-CH3 p-CH3OC6H4 10-CH3 5-CH3 p-CH3OC6H4 10-CH3 5-CH3 CF3 10-CH3 5-CH3 p-(CH3)2NC6H4 10-OCH3 5-CH3 α-C10H7 10-OCH3 5-CH3 ss-C10H7 10-OCH3 5-CH3 p-CH3OC6H4 10-OCH3 5-F m-CH3OC6H4 10-OCH3 5-F m-CH3C6H4 10-OCH3 5-F o-FC6H4 10-OCH3 5-F m-ClC6H4 11-F 5-F p-BrC6H4 il-F 5-F CF3 11-F 5-CH3O CF3 11-F 5-CH3O C6H5 11-F 5-CH3O p-FC6H4 11-F 5-CH3O o-HO2CC6H4 11-F 5-CH3O o-(CH3)2NC6H4 9-F 5-CH3O 2-C5H4N 9-F 5-CH3O 4-C5H4N 9-F 7-CH3O m-CH3OC6H4 9-F 7-CH30 p-CH3SC6H4 9-F 7-CH3O p-BrC6H4 12-CI 7-CH30 m-BrC6H4 12-Cl 7-CH3O ss-C10H7 12-Cl 7-CH3O CF3 il-CH3 5-F CF3
On chauffe à reflux pendant 12 heures un mélange de 3,08 g (0,01 mole) de
2,8-dichloro-10,11-dihydrobenzo[b,f]thiépin-10, 11dione, 7,0 g d'acétate d'ammonium et 1,28 g (0,012 mole) de benzaldéhyde dans 85 ml d'acide acétique glacial anhydre. On refroidit le mélange réactionnel, on le verse dans un mélange eauglace et on ajoute de l'hydroxyde d'ammonium jusqu'à un pH de 7.
On filtre sous vide le précipité et on le sèche. La recristallisation dans le benzène fournit le produit désiré purifié.
Exemple X:
En suivant le mode opératoire décrit précédemment de l'exemple 1X et en partant de la cétone et de l'aldéhyde nécessaires, on synthétise les homologues suivants:
EMI7.1
X Y R 11-CH3 5-F C6H5 il-CH3 5-F p-CH3SC6H4 il-CH3 5-F p-CH30C6H4 11-CH3 5-Cl CF3 11-CH3 5-Cl p-(CH3)2NC6H4 11-CH3 5-Cl m-BrC6H4 12-F 5-Cl p-BrC6H4 12-F 5-Cl 2-C5H4N 12-F 5-Cl 3-C5H4N 10-CH3S 5-Cl 2-C5H4N 10-CH3S 5-Cl CF3 10-CH3S 5-Cl C6H5 10-CH3S 7-CH3S C6H5 10-CH3S 7-CH3S CF3 10-CH3S 7-CH3S p-FC6H4 12-Cl 4-Cl p-ClC6H4 12-Cl 4-Cl p-FC6H4 12-Cl 4-Cl o-BrC6H4 10-Cl 4-Cl 3-C5H4N 10-Cl 4-Cl C6H5 10-Cl 5-Cl C6H5 10-Cl 5-Cl m-HO2CC6H4 10-Cl 5-Cl p-HO2CC6H4 10-Br 5-Cl p-(CH3)2NC6H4 10-Br 5-Cl m-BrC6H4 10-Br 5-Cl CF3 10-Br 5-CH3O CF3 10-Br 5-CH30 C6H, 9-Br 5-CH3O m-FC6H4 9-Br 5-CH3O p-FC6H4 9-Br 5-CH30
p-CH3SC6H4 9-Br 7-CH3 CF3
X Y R 9-Br 7-CH3 o-CH3SC6H4 10-CH3S 7-CH3 3-C5H4N 10-CH3S 7-CH3 4-C5H4N 10-CH3S 7-CH3 α-C10H7 10-CH3S 5-Br α-C10H7 10-CH3S 5-Br CF3 10-CH3S 5-Br m-CH3OC6H4 10-CH3S 5-Br o-CH3SC6H4 9-F 5-Br p-CH3C6H4 9-F 5-Br p-BrC6H4 9-F 5-CH3S m-FC6H4 9-F 5-CH3S p-FC6H4
X Y R 9-F 5-CH3S p-HO2CC6H4 9-F 5-CH3S p-CH3C6H4 10-CH3O 7-CH3S p-CH3OC6H4 10-CH3O 7-CH3S m-CH3SC6H4 10-CH30 7-CH3S p-CH3SC6H4 10-CH3O 7-CH3S o-HO2CC6H4 10-CH30 6-Br p-HO2CC6H4 10-Br 6-Br CF3 10-Br 6-Br o-CH3C6H4 10-Br 6-Br m-CH3C6H4 10-Br 6-Br o-BrC6H4 10-Br 6-Br m-CIC6H4
Exemple XI:
:
En utilisant le test de l'oedème de la patte de rat induit par la carraghénine comme mesure de l'activité anti4nflammatoire, on trouve que les imidazoles tétracycliques représentatifs suivants ont l'activité indiquée à la dose indiquée:
EMI8.1
Activité
X Y Z R % inhibition Dose mg/kg P.O.
H H -CH2CH2- C6H5 46 33
H H -CH2CH2- p-ClC6H4 19 33
H H -CH2CH2- 3-C5H4N 21 33
H H -CH2CH2- p-CH3SC6H4 20 33
H H -CH2CH2- CF3 20 33
H H -CH2CH2- 11 33
H H S C6H5 19 33
H H S p-CH30C6H4 35 33
H H S p-BrC6H4 13 33
H H S 3-C5H4N 25 33
H S S CF3 36 33
H S S CF3 15 10
H S S p-HO2CC6H4 28 33
Phénylbutazone 55 33
Exemple XII:
Chlorhydrate de 8,9-dihydro-2-(p-méthoxyphényl)dibenzo-
[3,4,7,8]cycloocta[1,2-d]imidazole.
A une solution chaude de 3,5 g (0,01 mole) de 8,9-dihydro2-(p-méthoxyphényl)dibenzo[3,4,7,8]cycloocta[1,2-d]imidazole dans 40 ml de méthanol absolu, on ajoute de l'acide chlorhydrique gazeux jusqu'à la fin de la formation du précipité résultant de chlorhydrate. On refroidit la suspension dans de la glace et on filtre le précipité et on le sèche. On ajoute au filtrat un volume égal d'éther diéthylique, ce qui entraîne la précipitation d'une seconde récolte du chlorhydrate désiré. On réunit les deux fractions et on les recristallise das l'éthanol.
D'une manière analogue, on transforme les composés obtenus selon le procédé de l'invention en leurs sels d'addition pharmaceutiquement acceptables.
Préparation A.
(a) 5,6,11,12-tétrahydrodibenzo[a,e]cyclooctène-5,6-dione.
EMI9.1
A une suspension de 23,2 g (0,209 mole) d'anhydride sélénieux dans 500 ml d'acide acétique glacial sec, sous atmosphère d'azote et chauffée à 80 C, on ajoute goutte à goutte 42,0 g (0,19 mole) de 5,6,11,12-tétrahydrobenzo[a,e]cyclooctène-5-one dans 250 ml du même solvant. On élève la température de réaction à 110 C et on maintient cette température pendant 5 à 6 heures. On refroidit le mélange, on le verse lentement dans 2.500 ml d'un mélange glaceeau et on l'extrait plusieurs fois avec de l'acétate d'éthyle. On lave de nouveau la couche organique avec une solution saturée de bicarbonate de sodium et on sèche sur sulfate de calcium.
On filtre le sulfate de calcium et on évapore le filtrat à sec, ce qui laisse un semi-solide jaune, qui par cristallisation dans l'éthanol fournit le produit désiré en trois fractions de cristallisation, 3,8 g, 21,3 g et 3,5 g de points de fusion respectifs 130-132 C, 126-129 C et 130-131 C On réunit ces trois récoltes et on les utilise sans autre purification.
Leonard, et al., J. Am. Chem. Soc., 77, 5078 (1955), indique un point de fusion de 131-132 C pour cette substance, préparée par un procédé différent.
(b) On synthétise les 5,6,11,12-tétrahydrodibenzo[a,e]cyclo- octène-5,6-diones, qui n'ont pas été indiquées jusqu'à présent dans la littérature chimique, par oxydation par l'anhydride sélénieux de la monocétone correspondante:
EMI9.2
X Y X Y
H 1-CH3 7-CH3 3-CH3
H 2-CH3 7-CH3O 3-CH3
H 3-CH3 7-CH30 1-CH3
H 4-CH3 8-CH30 1-CH3
H 1-CH3O 8-CH30 3-F
H 2-CH30 9-CH30 3-F
H 3-CH30 9-CH30 2-F
H 4-CH3O 8-CH30 2-F
H 1-F 7-F 2-F
H 2-F 7-F 2-Cl
H 3-F 9-F 2-Cl
H 4-F 10-F 2-Cl
H 1-Cl 7-Cl 2-Cl
X Y X Y
H 2-Cl 7-Cl 3-Br
H 3-Cl 9-Cl 3-Br
H 4-Cl 9-Cl 3-CH3O
H 1-Br 10-Br 3-CH3O
H 2-Br 10-Br 3-CH3
H 3-Br 7-CH3S 3-CH3
H 4-Br 7-CH3S 1-F
H 1-CH3S 7-CH3
1-F
H 2-CH3S 7-CH3 3-Cl
H 3-CH3S 7-CH3S 3-Cl
H 4-CH3S 7-CH3S 3-CH3S 10-Br 3-CH3S 9-CH3O 1-Br 10-Br 1-Br 9-CH3O 3-CH3S 9-F l-Br 9-CH30 1-CH30
Préparation B.
(a) 10,11-dihydrodibenzo[b,f]thiépin-10,11-dione.
EMI9.3
On chauffe à 80 C un mélange de 50 mg (0,22 mmole) de 10,11-dihydrodibenzo[b,f]thiépin-10-one et 27 mg (0,24 mmole)
d'anhydride sélénieux dans 15 ml d'acide acétique glacial anhydre, jusqu'à obtenir une solution. Puis on élève la température de réaction à 110 C et on la maintient pendant deux heures. On filtre
le mélange réactionnel, on le verse dans de l'eau et on l'extrait à l'acétate d'éthyle. On concentre la couche organique à sec et on
triture le semi-solide avec du benzène chaud. L'élimination du
benzène fournit le produit désiré sous forme d'un solide jaune,
38 mg, p.f. 116-126 C. On triture l'échantillon analytique avec de l'éther diéthylique, p.f. 120-126 C.
Analyse:
Calculé pour C14H802S
C70,0 H3,3%
Trouvé: C70,0 H3,5%
En suivant le mode opératoire d'oxydation décrit précédem
ment, on prépare les 10,11-dihydrodibezo[b,f]thiépin-10,11-
diones substituées suivantes qui n'ont pas été jusqu'à présent
décrites dans la littérature:
:
EMI9.4
X Y x Y
H 1-CH3 6-F 2-CH3O
H 2-CH3 9-Cl 2-CH3O
H 4-CH3 9-Cl t-Cl
H 2-CH3O 7-Cl t-Cl
H 4-CH3O 7-Cl 2-Cl
H 1-F 7-Br 2-Cl
H 3-F 7-Br 2-CH30
H 2-Cl 6-Br 2-CH30
H 4-Cl 6-Br 4-CH3
H 1-Br 7-CH3S 4-CH3
H 2-Br 7-CH3S 2-Br
H 3-Br 6-F 2-Br h 2-CH3S 6-F 2-CH3S
H 3-CH3S 8-CH3 2-F
H 4-CH3S 8-CH3 2-Cl 9-CH3 1-CH3 9-F 2-Cl 7-CH3 1-CH3 7-CH3S 2-Cl 7-CH3 2-CH3 7-CH3S 4-CH3S 7-CH30 2-CH3 7-CH30 4-CH3S 7-CH30 2-F 7-CH3O 3-Br 8-F 2-F 7-Br 3-Br 8-F 2-CH30
Préparation C.
11,12-dihydrocycloocta[a,e]dibenzèn-5(6H)-ones.
On prépare les cycloocta[a,e]dibenzèn-5(6H)-ones suivantes qui n'ont pas été décrites jusqu'à présent dans la littérature chimique, selon le mode opératoire tel que décrit par Leonard et al.,
J. Am. Chem. Soc., 77, 5078 (1955), qui comprend la cyclisation de l'acide 2-phényléthylphénylacétique approprié à l'aide de l'acide polyphosphorique aux températures du bain de vapeur pendant 5 à 6 heures:
:
EMI10.1
X Y X Y
H 1-CH3 H 1-Br
H 2-CH3 H 2-Br
H 3-CH3 H 3-Br
H 4-CH3 H 4-Br
H 1-CH3O H 1-CH3S
H 2-CH30 H 2-CH3S
H 3-CH30 H 3-CH3S
H 4-CH3O H 4-CH3S
H t-F 7-CH3 3-CH3
H 2-F 7-CH30 3-CH3
H 3-F 7-CH30 1-CH3
H 4-F 8-CH30 1-CH3
H 1-Cl 8-CH30 3-F x Y X Y
H 2-Cl 9-CH30 3-F
H 3-Cl 9-CH30 2-F
H 4-Cl 8-CH30 2-F 7-F 2-F 9-Cl 3-CH3O 7-F 2-Cl 10-Br 3-CH3O 9-F 2-Cl 10-Br 3-CH3 10-F 2-Cl 7-CH3S 3-CH3 7-Cl 2-Cl 7-CH3S 1-F 7-Cl 3-Br 7-CH3 1-F 9-Cl 3-Br 7-CH3 3-Cl 7-CH3S 3-CH3S 7-CH3S 3-Cl 10-Br 3-CH3S 9-CH3O 1-Br 10-Br 1-Br 9-CH30 3-CH3S 9-F 1-Br 9-CH30 1-CH3O
Préparation D.
10,11-dihydrodibenzo[b,f]thiépin-10-ones.
En utilisant le mode opératoire tel que décrit par Jilek et al.,
Monatsh. Chem., 96,201 (1965), on prépare les dibenzo[b,f]thiépin10-ones suivantes par cyclisation de l'acide 2-phénylthiophénylacétique nécessaire en utilisant l'acide polyphosphorique à 125 C pendant 1 à 2 heures:
EMI10.2
X Y X Y
H 9-CH3 4-F 8-CH3
H 8-CH3 1-Cl 8-CH3
H 8-CH3O 1-Cl 9-Cl
H 6-CH3O 3-Cl 9-Cl
H 9-F 3-Cl 8-Cl
H 7-F 3-Br 8-Cl 3-Br 8-CH30 4-Br 8-CH30
H 9-Br 4-Br 6-CH3 3-CH3S 6-CH3 3-CH3S 8-Br
H 7-Br- 4-F 8-Br
H 8-CH3S 4-F 8-CH3S
H 7-CH3S 2-CH3 8-F
H 6-CH3S 2-CH3 8-Cl 1-CH3 9-CH3 1-F 8-Cl 3-CH3 9-CH3 3-CH3S 8-Cl 3-CH3 8-CH3 3-CH3S 6-CH3S 3-CH3O 8-CH3 3-CH3O 6-CH3S 3-CH3O 8-F 3-CH3O 7-Br 2-F 8-F 3-Br 7-Br 2-F 8-CH30
Préparation E.
Acides 2-phényléthylphénylacétiques.
On synthétise les acides 2-phényléthylphénylacétiques susmentionnés selon la suite de réactions indiquée par Leonard et al.,
J. Am. Chem. Soc., 77, 5078 (1955), où en partant de l'acide 2-phényléthylbenzolque, on effectue les réactions suivantes:
EMI11.1
Pour des raisons de commodité, on ne purifie pas et on ne caractérise pas les produits intermédiaires, mais on les utilise directement dans l'étape suivante de la suite de réactions.
En utilisant la suite de réactions décrite précédemment, et en partant de l'acide benzoique nécessaire, on prépare les acides 2-phényléthylphénylacétiques suivants qui n'ont pas été reportés précédemment:
EMI11.2
X Y X Y
H 2-CH3 H 2-CH3S
H 3-CH3 H 3-CH3S
H 4-CH3 H 4-CH3S
H 2-CH30 6-CH3 4-CH3
X Y X Y
H 3-CH30 6-CH30 4-CH3
H 4-CH30 6-CH3O 2-CH3
H 2-F 5-CH3O 2-CH3
H 3-F 5-CH30 4-F
H 4-F 4-CH30 4-F
H 2-CI 4-CH3O 3-F
H 3-Cl 5-CH30 3-F
H 4-Cl 6-F 3-F
H 2-Br 6-F 3-Cl
H 3-Br 4-F 3-Cl
H 4-Br 2-F 3-Cl 6-Cl 3-Cl 6-CH3 4-Cl 6-Cl 4-Br 6-CH3S 4-Cl 4-Cl 4-Br 6-CH3S 4-CH3S 4-Cl 4-CH30 2-Br 4-CH3S 2-Br 4-CH3O
2-Br 2-Br 2-Br 4-CH3 4-F 2-Br 6-CH3S 4-CH3 4-CH3O 2-Br 6-CH3S 2-F 4-CH3O 4-CH3S 6-CH3 2-F 4-CH30 2-CH3O
Préparation F.
Acides 2-phénylthiophénylacétiques.
On prépare les acides 2-phénylthiophénylacétiques nécessaires comme intermédiaires conduisant aux produits de la présente invention, par la suite de réactions indiquée par Jilek et al., Monatsh. Chem., 96, 201 (1965) et Protiva et aL, brevet tchécoslovaque
N 121337 (C.A. 68, 105247t (1968)), qui comporte la transformation d'un acide 2-phénylthiobenzoïque en acide phénylacétique correspondant décrit ci-dessous.
EMI12.1
On ne purifie pas et on ne caractérise pas les produits intermédiaires mais on les utilise directement par la réaction suivante
On synthétise de la manière décrite précédemment les acides 2-phénylthiophénylacétiques suivants, qui n'ont pas été décrits précédemment dans la littérature chimique:
EMI12.2
X Y X Y
H 3-CH3 3-F 4-CH30
H 4- CH3 6-Cl 4-CH30
H 2-CH3 6-Cl 3-Cl
H 4-CH3O 4-Cl 3-Cl
H 2-CH3O 4-Cl 4-Cl
H 3-F 4-Br 4-CL
H 4-CH3S 4-Br 4-CH30 3-Br 4-CH3O 3-Br 2-CH3
H 3-Br 4-CH3S 2-CH3
H 3-CH3S 4-CH3S 4-Br
H 2-CH3S 3-F 4-Br
X Y X Y 06-CH3 3-CH3 3-F 4-CH3S¯
4-CH3 3-CH3 <RTI
ID=12.12> 5-CH3 4-F
4- CH3 4- CH3 5-CH3 4-Cl
4-CH3O 4-CH3 6-F 4-Cl
4-CH3O 4-F 4-CH3S 4-Cl
5-F 4-F 4-CH2S 2-CH3S
5-F 4-CH3O 4-CH3O 2-CH3S 4-CH3O 3-Br 4-Br 3-Br
Préparation G.
Acides 2-phényléthylbenzoïques.
On prépare les acides 2-phényléthylbenzoiques suivants qui n'ont pas été indiqués précédemment dans la littérature chimique, selon le mode opératoire de Cope et aL, J. Am. Chem. Soc., 73, 1676 (1951) qui comporte la réduction par le mélange phosphore rouge - acide iodhydrique du benzalphtalide correspondant:
:
EMI12.3
X Y X Y
H 2-CH3 H 2-CH3
H 3-CH3 H 3-CH3S
H 4-CH3 H 4-CH3S
H 2-CH30 6-CH3 4-CH3
H 3-CH3O 6-CH3O 4-CH3
H 4-CH3O 6-CH3O 2-CH3
H 3-F 5-CH3O 2-CH3
H 4-F 5-CH3O 4-F
H 2-Cl 4-CH3O 4-F
H 3-Cl 4-CH3O 3-F
H 4-Cl 5-CH30 3-F
H 2-Br 6-F 3-F
H 3-Br 6-F 3-Cl
H 4-Br 4-F 3-Cl 6-Cl 3-Cl 3-F 3-Cl 6-Cl 4-Br 6-CH3S 2-F 4-Cl 4-Br 6-CH3 2-F 6-CH3S 4-CH3S 6-CH3 4-Cl 3-Br 4-CH3S 6-CH3 4-Cl 3-Br 2-Br 4-CH3O 2-Br 4-F 2-Br 4-CH3O 4-CH3S 4-Cl 4-CH3O 4-CH3O 2-CH3O 3-Br 4-CH3O 3-Br 4-CH3 6-CH3S 4-CH3
Préparation H.
Acides 2-phénylthiobenzoïques.
On synthétise les acides 2-phénylthiobenzoiques suivants qui n'ont pas été indiqués auparavant dans la littérature chimique, à partir des thiophénols et des acides o-halobenzoïques disponibles dans le commerce ou connus, selon le procédé de Protiva et ai, brevet tchécoslovaque N 121337 (C.A. 68,105247t; 1968), et de
Mahishi et al., J.
Karnatak Univ., 2, 50 (1957) (C.A., 53, 14101t;
EMI13.1
X Y X Y
H 3-CH3 3-F 4-CH30
H 4-CH3 6-Cl 4-CH3O
H 2-CH3 6-Cl 3-Cl
H 4-CH30 4-Cl 3-Ct
H 2-CH3O 4-Cl 4-Cl
H 3-F 4-Br 4-Cl 4-Br 4-CH3O 3-Br 4-CH30
H 3-Br 3-Br 2-CH3
H 4-CH3S 4-CH3S 2-CH3
H 3-CH3S 4-CH3S 4-Br
H 2-CH3S 3-F 4-Br 6-CH3 3-CH3 3-F 4-CH3S 4-CH3 3-CH3 5-CH3 4-F 4-CH3 4-CH3 5-CH3 4-Cl
X Y X y 4-CH3O 4-CH3 6-F 4-Cl 4-CH3O 4-F 4-CH3S 4-Cl 5-F 4-F 4-CH3S 2-CH3S 5-F 4-CH3O 4-CH3O 2-CH3S 4-CH3O 3-Br 3-Br 3-Br
Préparation I.
Benzalphtalides.
En utilisant les modes opératoires de Weiss, Organic
Syntheses , Coll. Vol. 2, John Wiley & Sons, Inc., New York, N.Y., 1948, page 61, de Hrnciar et al., Chem. Zvesti., 21, 267(1967)(C.A.
67, 73304v; 1967) et de Hrnciar, ibid., 16, 96 (1962) (C.A. 59, 2731; 1963), on synthétise les benzalphtalides suivants, qui n'ont pas été indiqués précédemment dans la littérature, par condensation d'acides phénylacétiques et d'anhydrides phtaliques ou de benzaldéhydes et de phtalides disponibles dans le commerce ou connus:
EMI13.2
X Y X Y
H 2-CH3S H 3-CH3S 7-CH3 4-CH3 7-Cl 3-CI 7-CH3O 4-CH3 7-Cl 4-Br 7-CH30 2-CH3 5-Cl 4-Br 6-CH3O 2-CH3 7-CH3S 4-CH3S 6-CH3O 4-F 4-Br 4-CH3S 5-CH3O 4-F 4-Br 2-Br 5-CH30 3-F 5-F 2-Br 6-CH3O 3-F 5-Cl 4-CH3O 7-F 3-F 4-Br 4-CH30 7-F 3-Cl 4-Br 4-CH3 5-F 3-Cl 7-CH3S 4-CH3 4-F 3-Cl 7-CH3S 2-F 7-CH3 2-F 7-CH3 4-Cl 7-CH3S 4-Cl 5-CH3O 2-Br 5-CH3O 4-CH3S 5-CH3O 2-CH3O
This invention relates to the preparation of the tetracyclic imidazole compounds, and more particularly to a series of dibenzo [b, futhiepin [4,5-d3- and dibenzo [3,4,7,8j cycloocta [1, 2-d] imi dazoles substituted in position 2 and their pharmaceutically acceptable acid addition salts as a new family of anti-inflammatory agents. According to the process of the invention, the synthesis of these compounds is carried out by condensation of an appropriate ra-diketone, and of an aldehyde and ammonium acetate.
It is not common to find in the chemical literature references relating to polycyclic imidazoles; Steck and Day,
J. Am. Chem. Soc., 65, 452 (1943), trying to determine the course of the reaction involved in the formation of imidazoles, synthesized a series of phenanthrimidazoles. However, no utility has been described for these compounds.
The tetracyclic anti-inflammatory agents obtained by the process of this invention are represented by the formula:
EMI1.1
as well as their pharmaceutically acceptable acid addition salts, formula in which:
Z is a group - CH2CH2 - or an S atom;
each of X and Y is a hydrogen atom or a methyl, methoxy group, a fluorine, chlorine, bromine atom or a methylthio group; and
R is a trifluoromethyl, pyridyl, naphthyl, phenyl or substituted phenyl group where the substituent is a methyl, methoxy group, or a fluorine, chlorine or bromine atom, or a dimethylamine, carboxy or methylthio group.
The particularly interesting compounds are those in which Z is an ethylene group, X and Y are hydrogen atoms and R is a phenyl, 3-pyridyl or trifluoromethyl group and those in which Z is a sulfur atom,
X and Y are hydrogen atoms and R is a p-methoxyphenyl, 3wpyridyl, trilluoromethyl or p-carboxyphenyl group. The preparation of tetracyclic imidazoles by the process according to the present invention, having the formula I:
EMI1.2
in which Z, X, Y and R are defined as above, can be illustrated by the following diagram:
EMI1.3
The reaction illustrated above is carried out under reaction conditions which are substantially those used by Davidson et al., J. Org.
Chem., 2, 319 (1937), and this reaction consists in heating a mixture of r-diketone, aldehyde or derivatives thereof and ammonium acetate in a solvent which is acetic acid glacial. Five to ten times excess ammonium acetate can be used. The amount of aldehyde used relative to that of diketone can vary from an equimolar amount up to a 100% excess.
Generally, reflux temperatures are considered suitable although lower temperatures with correspondingly longer reaction times can be used.
When using said reflux temperatures, reaction times of 1-12 hours are suitable to give the desired product.
A convenient method of isolating the product is to dilute the reaction mixture with water and then neutralize with ammonium hydroxide to a pH of approximately 7.
The resulting precipitate is then filtered, dried and recrystallized in a suitable solvent.
The required α-diketones, in which X and Y are as defined and Z is an ethylene group, are synthesized according to the method recommended by Leonard et al., J. Am. Chem. Soc., 77, 5078 (1955). In addition, the -diketones, in which X and Y are as indicated and Z is sulfur, are prepared by oxidation with selenious anhydride of the corresponding monocetones which, in turn, are prepared according to the procedure Jilek et al.,
Monatsh. Chem. 96, 201 (1965). Suitable aldehydes are either commercially available or readily prepared by those skilled in the art according to the methods given by Carnduff, Quart. Rev., 20, 169 (1966).
A characteristic of the compounds of formula (I) is the acidic nature of the hydrogen of the imidazole and the property of forming salts with basic reactants such as hydroxides, alkylates or hydrides of alkali metals and hydroxides of metals. alkaline earth.
As indicated previously, the compounds of formula (I), in addition to the power to form salts with basic reactants, also have, as indicated previously, the power to form acid addition salts. Said compounds obtained according to the process of the invention can be converted into acid addition salts by interaction of the base with an acid either in an aqueous medium or in a non-aqueous medium.
Likewise, the treatment of acid addition salts with an equivalent amount of an aqueous solution of base, for example, of alkali metal hydroxides, alkali metal carbonates and alkali metal bicarbonates, or by an equivalent amount of a metal cation which forms an insoluble precipitate with the anion of the acid, results in regeneration of the free base form. To carry out these transformations, it is best to operate as quickly as possible and under temperature conditions and by a method dictated by the stability of said basic products. The bases thus regenerated can be converted back to the same or different acid addition salt.
In the use of the chemotherapeutic activity of the compounds obtained according to the process of the invention which form salts, it is naturally preferable to use the pharmaceutically acceptable salts. Although their insolubility in water, their high toxicity, or their lack of crystallinity may make certain particular salt species unsuitable or less suitable for use as such in a given pharmaceutical application, it is possible to transform the insoluble salts in the water. water or toxic into corresponding pharmaceutically acceptable bases by decomposing the salt as previously described or otherwise converting them into any desired pharmaceutically acceptable acid addition salt.
Examples of acids which give pharmaceutically acceptable anions are hydrochloric, hydrobromic, hydriodic, nitric, sulfuric or sulfurous, phosphoric, acetic, lactic, citric, tartaric, succinic, maleic and gluconic acids.
As indicated above, the tetracyclic imidazoles obtained according to the process of the invention are all easily suitable for therapeutic use as anti-inflammatory agents in mammals. The following compounds are notable for their efficacy from this point of view: 8,9-dihydro 2-phenyldibenzo [3,4,7,8] -cycloocta [1,2-d] imidazole (I:
Z = - CH2CH2 -; X, Y = H and R = Z); 8,9-dihydro-2- (3-pyridyl dibenzo [3,4,7,8] cycloocta [1, 2-d] imidazole (I: Z = - CH2CH2 -;
X, Y = H and R = 3-pyridyl); 8,9-dihydro-2-trifluoromethyl-dibenzo [3,4,7, Sjcycloocta [1, 2-d] imidazole (I: Z = - CH2CH2 -;
X, Y = H and R = CF3); 2-trifluoromethyldibenzo [b, Qthiepin [4,5-d] - imidazole (I: Z = S; X, Y = H and R = CF3); 2- (p-methoxyphenylS dibenzo [b, Qthiépin [4,5-d] imidazole (I: Z = S; X, Y = H and R = p-CH30C6H4); 2- (3-pyridyl> dibenzo [b, f] -thiepin [4,5-d] -
imidazole (I: Z = S; X, Y = H and R = 3-pyridyl) and 2- (p-carboxy phenyl) dibenzo [b, flthiepinC4,5-dlimidazo (I:
Z = S; X, Y = H and R = p-HO2CC6H4).
A usual procedure for the detection and comparison of the anti-inflammatory activities of the compounds of this series and in which there is an excellent correlation with the efficacy in humans is the test for rat paw edema induced by carrageenan [Winter, et al., Proc. Soc. Exp. Biol., 111, 544 (1962)]; in this test, non-anesthetized adult albino rats with a body weight of 150-190 g were numbered, weighed and ink marked on the right lateral malleolus. One hour after administration of the drug by gavage, edema is induced by injecting 0.05 ml of 1% solution of carrageenan into the plantar tissue of the marked paws. Immediately afterwards, the volume of the injected paw is measured.
The increase in volume, three hours after the injection of carrageenan, represents the response of the rat. Compounds are considered active if the difference between the response of a control and that given by the drug
on trial is significant. The reference compounds are phenyl
butazone 33 mg / kg and acetylsalicylic acid 100 mg / kg, both administered orally.
Tetracyclic imidazoles and their pharmaceutical salts
acceptable, which are useful anti-inflammatory agents, may
be administered either as separate therapeutic agents,
or in the form of mixtures of therapeutic agents. They can
be administered alone, but are usually administered with
a pharmaceutical carrier chosen according to the route of administration
chosen administration and usual pharmaceutical practice. For example, they can be administered orally in the form of tablets or capsules containing excipients such as starch, lactose or certain types of clay, etc. They can be administered orally in the form of elixirs or oral suspensions with the active ingredients combined with emulsifying and / or suspending agents.
They can be injected parenterally, and in this case they can, as well as suitable derivatives, be prepared in the form of sterile aqueous solutions. These aqueous solutions should be properly buffered, if necessary, and should contain other solutes such as saline compounds or glucose which make them isotonic.
When it comes to determining an effective dose in human therapy, the results obtained in animal tests are frequently extrapolated and it is considered that there is a correlation between the behavior of the animal in the animal test and the proposed dosage dose for humans. When a commercially used reference is available, the dose of the product to be examined clinically in humans is frequently determined by comparing its performance with the reference product in an animal test. For example, phenylbutazone is used as the standard anti-inflammatory agent and is administered to humans at a rate of 100 to 400 mg per day. It is then assumed that if the compounds obtained according to the process of the invention have an activity comparable to that of phenylbutazone in the test, similar doses will give comparable responses in humans.
It is of course the physician who will ultimately determine the dosage dose that will be most appropriate for a given individual, and this dose will vary with the age, weight and response of the given patient as well as with the nature and degree of the effects. symptoms as well as the pharmacodynamic characteristics of the particular agent to be administered. Usually small doses are given initially, gradually increasing the dosage until the optimum level has been determined. It will often be seen that when the composition is administered orally it is necessary to use larger amounts of the active ingredient to achieve the same level as that produced by a small amount parenterally.
In view of all the foregoing factors, an effective daily dosage dose of the compounds obtained according to the process of the invention, in humans, is approximately 0.1 to 1.0 g per day, with a preferred range and about 0.2 to 0.8 g per day in a single dose or in divided doses, or about 3 to 10 mg / kg of body weight, and effectively alleviates inflammation in human subjects prone to these troubles. These values are illustrative and there may of course be individual cases where higher or lower doses are required.
The following examples are given by way of illustration of the process according to the invention.
Example 1: 8,9-dihydrn-2- (p-methoxyphenyl) dibenw [3,4,7 ', 8] cyclo
octa [1, 2-d] imidazole
(I: Z = -CH2CH2-; X, Y = H and R = p-CH3OC6H4).
To a solution of 1.5 g (6.4 mmol) of 11,12-dihydrocycloocta [a, e] dibenzene-5,6-dione in 50 ml of dry glacial acetic acid contained in a three-necked flask and under nitrogen atmosphere, 3.0 g of ammonium acetate are added. To the resulting dark yellow solution, 1.1 g (7.7 mmol) of p-methoxybenzaldehyde in 10 ml of dry glacial acetic acid are added dropwise.
The reaction mixture was refluxed overnight and then cooled, poured into 300 ml of ice water and the pH adjusted to 7.0 by adding ammonium hydroxide solution. The resulting precipitate is filtered, dried and recrystallized from benzene, 385 mg, m.p. 318-320 ° C. A second recrystallization from benzene gives the analytical sample, m.p.
321-323 C.
Analysis:
Calculated for C24H20N20
C 81.8 H 5.7 N 8.0%
Found: C 81.2 H 5.9 N 7.6%
Example II:
Starting from 11,12-dihydrocycloocta [a, e] dibenzene-5,6
dione and the necessary aldehyde, and resuming the operating mode
ratory of Example I, the following compounds are prepared:
:
8,9-dihydro-2-phenyldibenzo [3,4,7,8] cycloocta [1,2-d] imida
zole, m.p. 334-335 C;
8,9-dihydro-2- (p-bromophenyl) dibezo [3,4,7,8] cyclo
octa [1,2-d] imidazole, m.p. 358-360 C; 8,9-dihydro-2- (p-chlorophenyl) dibenzo [3,4-7-8] cyclo-
octa [1,2-d] -imidazole, m.p. 347-348 C;
8,9-dihydro-2- (3-pyridyl) dibenzo [3,4,7,8] cyclo
octa [1,2-d] -imidazole, m.p. 285-286 C; 8,9-dihydro-2- (p-methylthiophenyl) dibenzo [3,4,7,8] cyclo-
octa [1,2-d] imidazole, m.p. 329-331 C;
8,9-dihydro-2-trifluoromethyldibenzo [3,4,7,8] cyclo
octa [1,2-d] imidazole, m.p. 290-292 C;
X Y R
H H 2-C5H4N
H H 4-C5H4N
H H α; -C10H7
H H ss-C10H7
H H o-CH3C6H4
H H m-CH3C6H4
H H p-CH3C6H4
H H m-CH3OC6H4
H H o-FC6H4
H H p-FC6H4
H H m-ClC6H4
H H m-BrC6H4
H H o-CH3SC6H4
H H m- (CH3) 2NC6H4
H 5-CH3 C6H5
H 5-CH3 CF3
H 5-CH3 p-ClC6H4
H 5-CH3 p-CH3C6H4
H 6-CH3 3-C5H4N
H 6-CH3 p-CH30C6H4
H 6-CH3 p-FC6H4
H 6-CH3 m-FC6H4
H 6-CHa p-HO2CC6H4
H 4- CH3 3-C5H4N
H 4- CH3 p-CH30C6H4
H 4-CH3 p-FC6H4
H 4-CH3 m-FC6H4
H 4-CH3 p-HO2CC6H4
H 7-CH3 α; -C10H7
H 7-CH3 2-C5H4N
H 7-CH30 p-ClC6H4
H 7-CH30 p-BrC6H4
H 7-CH30 o-CH3SC6H4
H 7-CH30 3-C5H4N
H 7-CH30 o-HO2CC6H4
H 4-F CF3
8,9-dihydro-2- (p-carboxyphenyl) dibenzo [3,4,7,8] cycloocta [1,2-d] imidazole, m.p. 340-342 C, and
8,9-dihydro-2- (p-dimethylaminophenyl) dibenzo [3 4 7 8] cyclocta [1,2-d] imidazole, mp 308-311 C.
Example III:
The procedure of Example I is further repeated, starting with the suitably substituted aldehyde and α-diketone, to obtain the following compounds:
EMI3.1
X Y R
H 4-F p- (CH3) 2NC6H4
H 4-F p-CH3C6H4
H 4-F m-CH3C6H4
M 4-F C6H5
M 5-F C6H5
M 5-F CF3
H 5-F 3-C5H4N
H 5-F o-CH3OC6H4
H 5-F p-CH3OC6H4
H 5-F m-CH3OC6H4
H 5-F p-BrC6H4
H 5-F p-ClC6H4
M 5-F p-FC6H4
M 6-F CF3
H 6-F p- (CH3) 2NC6H4
H 6-F p-CH3C6H4
H 6-F m-CH3C6H4
M 6-F C6H5
H 7-F α -C10H7
M 7-F ss-C10H7
M 7-F C6H5
H 7-F m-CH3SC6H4
H 7-F p-CH30C6H4
M 7-F o-FC6H4
M 7-F p-FC6H4
H 7-Br -GF3
H 7-Br 3-C5H4N
H 7-Br 4-C5H4N
H 7-Br C6H5
H 7-Br p-ClC6H4
H 4-CH3S CF3
H 4-CH3S α; -C10H7
H 4-CH3S ss-C10H7
H 4-CH3S p-CH3SC6H4
H 4-CH3S p-CH30C6H4
H 5-CH3S C6H5
X Y R
H 5-CH3S o-FC6H4
H 5-CH3S m-FC6H4
H 5-CH3S p-FC6H4
H 5-CH3S m-HO2CC6H4
H 5-CH3S p- (CH3) 2NC6H4
H 6-CH3S CF3
H 6-CH3S α; -C10H7
H 6-CH3S ss-C10H7
H 6-CH3S p-CH3SC6H4
H 7-CH3 m-BrC6H4
H 7-CH3 p-CH3SC6H4
H 7-CH3 m-CH3SC6H4
H 7-CH3 C5H5
H 7-CH3 m-CH3OC6H4
H 7-CH3 o-FC6H4
H 7-CH3 p-FC6H4
H 4-CH30 C6H5
H 4-CH30 p-CH3C6H4
H 4-CH3O o-CH3OC6H4
H 4-CH3O p-CH3OC6H4
H 4-CH3O p-HO2CC6H4
H 5-CH3O C6H5
H 5-CH3O -CH3C6H4
H 5-CH3O o-FC6H4
H 5-CH3O m-FC6H4
H 5-CH3O m-CIC6H4
H 5-CH30 p-ClC6H4
H 5-CH30 p-BrC6H4
H 5-CH30 p- (CH3) 2NC6H4
H 5-CH3O o-CH3SC6H4
H 5-CH3O CF3
H 6-CH30 C6H5
H 6-CH30 p-CH3C6H4
H 6-CH30 o-CH3OC6H4
H 6-CH3O p-CH30C6H4
H 6-CH3O p-HO2CC6H4
H 7-CH30 CF3
H 7-CH30
o-FC6H4
H 7-CH3O m-FC6H4
H 7-CH3O ss-C10H7
Example IV:
8,9-dihydro-2-trifluoromethyl-5,12-dichlorodibenzo [3,4,7,8]
cycloocta [1,2-d] imidozole
(I: Z = -CH2CH2-; X, Y = Cl; R = CF3).
A solution of 3.04 g (10 mmol) of 11,12-dihydro3,8-dichlorocycloocta [a, e] dibenzene-5,6-dione in 100 ml of anhydrous glacial acetic acid is treated under a nitrogen atmosphere. , with 4.7 g of ammonium acetate then with 4.3 g (30 mmoles) of ethyl hemiacetal of trifluoroacetaldehyde in 50 ml of the same solvent.
The resulting solution was heated under reflux for 3 hours, a further 4.3 g of the hemiacetal was added thereto and the heating continued for a further 3 hours. The reaction mixture is cooled, poured into a mixture of water and ice, and the pH is adjusted to 7 using concentrated ammonium hydroxide solution. The crude product is filtered, dried and purified by recrystallization several times from toluene.
X Y R
H 4-Cl CF3
H 4-Cl C6H5
H 4-Cl p-HO2CC6H4
H 4-Cl p-CH3OC6H4
H 5-Cl o-ClC6H4
H 5-Cl m-ClC6H4
H 5-Cl o-FC6H4
H 5-Cl p-CH3OC6H4
H 5-Cl p-CH3SC6H4
H 6-Cl CF3
H 6-Cl C6H5
H 6-Cl p-HO2CC6H4
H 6-Cl p-CH3OC6H4
H 7-Cl CF3
H 7-Cl o-BrC6H4
H 7-Cl m-BrC6H4
H 7-Cl p-HO2CC6H4
H 7-Cl C6H5
H 4-Br CF3
H 4-Br C6H5
H 4-Br p-CH3OC6H4
H 5-Br CF3
H 5-Br o-CH3SC6H4
H 5-Br o-CH3OC6H4
H 5-Br p-CH30C6H4
H 5-Br p- (CH3) 2NC6H4
H 5-Br p-FC6H4
H 6-Br CF3
H 6-Br C6H5
H 6-Br p-CH3OC6H4
H 6-CH3S p-CH3OC6H4
H 7-CH3S CF3
H 7-CH3S o-ClC6H4
H 7-CH3S p-ClC6H4
H 7-CH3S p-BrC6H4
H 7-CH3S p-CH3C6H4
H 7-CH3S 2-C5H4N
H 7-CH3S 3-C5H4N
H 7-CH3S 4-C5H4N
Example V:
:
Starting from the 11,12-dihydrocycloocta [a, e] dibenzene-5,6-dione and the necessary aldehyde, and following the procedure of Example IV, the imidazole tetra compounds are synthesized.
EMI4.1
XYR 13-CH3 5-CH3 CF3 13-CH3 5-CH3 p-CH3C6H4 13-CH3 5-CH3 p-CH30C6H4 13-CH3 5-CH3 o-CH3OC6H4 13-CH3 5-CH3 p-FC6H4 13-CH3O 5-CH3 m-FC6H4 13-CH3O 5-CH3 3-C5H4N 13-CH3O 5-CH3 4-C5H4N 13-CH30 5-CH3 C6H5 13-CH3O 7-CH3 C6H5 13-CH3O 7-CH3 CF3 13-CH3O 7-CH3 p- (CH3) 2NC6H4 12-CH3O 7-CH3 p-HO2CC6H4 12-CH3O 7-CH3 α; -C10H7 12-CH3O 5-F CF3 12-CH3O 5-F C6H5 11-CHO3 5-F 2-C5H4N 11-CHO3 5-F 4-C5H4N 11-CHO3 5-F p-BrC6H4 11-CHO3 5-F p-CH3SC6H4 11-CHO3 6-F p-CH2OC6H4 12-CHO3 6-F o-FC6H4 13-F 6-F o-CIC6H4 13-F 6-F p-ClC6H4 13-F 6-Cl p-ClC6H4 13- F 6-Cl m-ClC6H4 13-F 6-Cl p-CH3C6H4 11-F 6-Cl ss-C10H7 11-F 6-Cl o- (CH3) NC6H4 11-F 6-Cl o-HO2CC6H4 11-F 6 -Cl m-CH3OC6H4 13-CH3 5-Cl p-ClC6H4 13-CH3 5-Cl p-FC6H4 12-CH3 5-Cl CF3 13-CH3 5-Cl C6H5 13-CH3S 5-Cl C6H5 13-CH3S 5-Cl CF3 13-CH3S 5-Cl p- (CH3) 2NC6H4 13-CH3S 5-CH3S α -C10H7 13-CH3S 5-CH3S ss-C10H7 13-CH3S 5-CH3S CF3 10-Br 5-CH3S CF3 10-Br 5 -CH3S 2-C5H4N 10-Br 5-CH3S 4-C5H4N 10-Br 7-Br C6H5 10-Br 7-Br m-HO2CC6H4
Example VI:
2-Trifluoromethyldibenzo [bf] thiepin [4,5-d] imidazole
(I: Z = S; X, Y = H and R = CF3).
A mixture of 170 mg (0.7 mmol) of 10,11-dihydrodibenzo [b, f] - thiepin-10,11-dione, 300 mg (2.1 mmol) d is heated at reflux temperature for one hour. trifluoroacetaldehyde ethyl hemiacetal and 4.0 g of ammonium acetate in 40 ml of glacial acetic acid anhydride. Add 170 mg more
X Y R 10-Br 7-Br p-HO2CC6H4 11-F 7-Br p-CH3SC6H4 10-F 6-Cl p-CH3C6H4 10-F 6-Cl o-CH3C6H4 10-F 6-Cl α; -C10H7 10-F 6-Cl CF3 13-Cl 6-Cl CF3 13-Cl 6-Cl 3-C5H4N 13-Cl 5-Br o-CH3C6H4 13-Cl 5-Br m-CH3C6H4 13-Cl 5-Br p-CH3C6H4 11-Cl 5-Br p-CH3OC6H4 11-Cl 5-Br CF3 11-Cl 5-CH3O CF3 11-Cl 5-CH3O C6H4 11-Cl 5-CH3O m-CH3SC6H4 11-Cl 5-CH3O p- CH3SC6H4 10-Br 5-CH3O p-HO2CC6H4 10-Br 5-CH3O CF3 10-Br 5-CH3O p- (CH3) 2NC6H4 10-Br 5-CH2 p- (CH3) 2NC6H4 10-Br 5-CH3 CF3 10- Br 5-CH3 m-BrC6H4 10-Br 5-CH3 m-ClC6H4 13-CH3S 5-CH3 p-CH3SC6H4 13-CH3S 5-CH3 m-CH3SC6H4 13-CH3S 5-CH3 CF3 13-CH3S 7-F CF3 13- CH3S 7-F C6H5 13-CH3 7-F ss-C10H7 13-CH3 7-F 3-C5H4N 13-CH3 7-F 4-C5H4N 13-CH3 7-F p-BrC6H4 11-CH3O 7-Br o-BrC6H4 11-CH3O 7-Br p-BrC6H4 11-CH3O 7-Br CF3 11-CH3O 5-CH3S CF3 11-CH3O 5-CH3S C6H5 11-CH3O 5-CH3S p-ClC6H4 11-CH30 5-CH3S p-CH30C6H4 11- CH30 7-CH30 p-CH30C6H4 11-CH3O 7-CH3O m-CH3C6H4 11-CH3O 7-CH3O o-CH3C6H4 11-CH30 7-CH30
o-CH30C6H4 11-F 7-Br o-FC6H4 11-F 7-Br p-FC6H4 silences of diketone and 300 mg of hemiacetal in 5 ml of the same solvent and heating is continued under reflux for a further hour. This addition is repeated once more, and the mixture is heated at reflux temperature for 3 hours. The reaction mixture is cooled, poured into an ice-water mixture and the pH is adjusted to 7 with ammonium hydroxide. The crude product is filtered, dried and recrystallized from benzene, 300 mg, m.p.
255-257 C.
Analysis:
Calculated for C, 6HgN2SF3
C60.4 H2.8 N8.8%
Found: C 60.4 H 3.1 N8.6%
Example VII:
Starting from 10,11-dihydrodibenzo [b, f] thiepin-10,11-dione
and the appropriate aldehyde, and repeating the procedure of
Example VI, the following compounds are prepared:
:
2-ph6nyldibenzo [b, f] thiepin [4,5-d] imidazole, m.p. 312 C with
'decomposition; 2- (p-methoxyphenyl) dibenzo [b, flthiepin [4,5-d] imidazole,
m.p. 300 C with decomposition;
2- (p-bromophenyl) dibenzo [b, f] thiepin [4,5-d] imidazole,
m.p. 334 C with decomposition; 2- (p-chlorophenyl) dibenzo [b, f] thiepin [4, 5-d] imidazole,
m.p. 323 C with decomposition;
2- (3-pyridyl) dibenzol [b, f] thiepin [4,5-d] imidazole, m.p. 230 C
with decomposition;
;
2- (p-carboxyphenyl) dibenzo [b, f] thiepin [4,5-d] imidazole,
m.p. 360 C, and
X Y R
H H -C10H7
H H -C10H7
H H 2-C5H4N
H H p-FC6H4
H H o-FC6H4
H H m-HO2CC6H4
H H o-CH3C6H4
H H o-CH3OC6H4
H H m-CH30C6H4
H H p-CH3SC6H4
H 4-CH3 p-CH3SC6H4
H 4-CH3 CF3 H H 4-CH3
H 4-CH3 p- (CH3) 2NC6H4
H 4-CH3 o-FC6H4
H 5-CH3 p-FC6H4
H 5-CH3 p-ClC6H4
H 5-CH3 p-BrC6H4
H 5-CH3 o-CH30C6H4
H 5-CH3 m-CH3C6H4
H 7-CH3 m-HO2CC6H4
H 7-CH3 p-HO2CC6H4
H 7-CH3 p-CH3SC6H4
H 7-CH3 α; -C10H7
H 5-CH3O CF3
H 5-CH3O C6H5
H 7-Cl o-FC6H4
H 7-Cl m-FC6H4
H 7-Cl p-FC6H4
H 7-Cl p- (CH3) 2N6H4
H 7-Cl m- (CH3) 2NC6H4
H 4-Br o-HO2CC6H4
H 4-Br m-HO2CC6H4
H 4-Br CF3
H 4-Br C6H5
H 5-Br C6H5
2- (p-dimethylaminophenyl) dibenzo [b, f] thiepin [4,5-d] imidazole, mp 321 C with decomposition.
Example VIII:
Starting from the appropriately substituted 10,11-dihydrodibenzo [b, f] thiepin-10,11-dione and the necessary aldehyde, and using the procedure of Example VI, the following compounds are prepared:
EMI6.1
X Y R
H 5-Br p-CH3OC6H4
H 5-Br m-CH3OC6H4
H 5-Br CF3
H 5-Br p- (CH3) 2NC6H4
H 6-Br p- (CH3) 2NC6H4
H 6-Br CF3
H 6-Br o-ClC6H4
H 6-Br p-ClC6H4
H 5-CH3S p-FC6H4
H 5-CH3S 2-C5H4N
H 5-CH3O 2-C5H4N
H 5-CH3O 4-C5H4N
H 5-CH3O m-CH3C6H4
H 5-CH3O p-CH3C6H4
H 5-CH3O -C10H7
H 7-CH30 'CF3
H 7-CH3O m-BrC6H4
H 7-CH3O p-BrC6H4
H 7-CH30 o-ClC6H4
H 7-CH3O o-FC6H4
H 4-F CF3
M 4-F C6H5
H 4-F 3-C5H4N
H 4-F 4-C5H4N
H 4-F p-CH3SC6H4
M 6-F CF3
H 6-F o-CH3OC6H4
M 6-F m-CH30C6H4
M 6-F p-CH30C6H4
M 6-F p-HO2CC6H4
H 5-Cl p-H2OCC6H4
H
5-Cl α -C10H7
H 5-Cl ss-C10H7
H 5-Cl C6H5
H 5-Cl CF3
H 7-Cl CF3
X Y R
H 5-CH3S α -C10H7
H 5-CH3S ss-C10H7
H 5-CH3S 3-C5H4N
H 5-CH3S 4-C5H4N
H 5-CH3S CF3
H 5-CH3S o-CH3SC6H4
H 5-CH3S o-bRC6H4
H 6-CH3S m-BrC6H4
H 6-CH3S m- (CH3) 2NC6H4
H 6-CH3S p-HO2CC6H4
H 7-CH3S p-H2OCC6H4
H 7-CH3S CF3
H 7-CH3S C6H5
H 7-CH3S o-ClC6H4
H 7-CH3S p-ClC6H4
H 7-CH3S p-CH3C6H4
Example IX:
2-phenyl-5,11-dichlorodibenzo [b, f] thiepin [4,5-d] imidazole
(I: Z = S; X, Y = CI; R = C6H5).
XYR 12-CH3 4-CH3 CF3 12-CH3 4-CH3 C6H5 12-CH3 4-CH3 3-C5H4N 12-CH3 4-CH3 4-C5H4N 10-CH3 4-CH3 p-HO2CC6H4 10-CH3 4-CH3 p- CH3OC6H4 10-CH3 5-CH3 p-CH3OC6H4 10-CH3 5-CH3 CF3 10-CH3 5-CH3 p- (CH3) 2NC6H4 10-OCH3 5-CH3 α -C10H7 10-OCH3 5-CH3 ss-C10H7 10- OCH3 5-CH3 p-CH3OC6H4 10-OCH3 5-F m-CH3OC6H4 10-OCH3 5-F m-CH3C6H4 10-OCH3 5-F o-FC6H4 10-OCH3 5-F m-ClC6H4 11-F 5-F p -BrC6H4 il-F 5-F CF3 11-F 5-CH3O CF3 11-F 5-CH3O C6H5 11-F 5-CH3O p-FC6H4 11-F 5-CH3O o-HO2CC6H4 11-F 5-CH3O o- ( CH3) 2NC6H4 9-F 5-CH3O 2-C5H4N 9-F 5-CH3O 4-C5H4N 9-F 7-CH3O m-CH3OC6H4 9-F 7-CH30 p-CH3SC6H4 9-F 7-CH3O p-BrC6H4 12- CI 7-CH30 m-BrC6H4 12-Cl 7-CH3O ss-C10H7 12-Cl 7-CH3O CF3 il-CH3 5-F CF3
A mixture of 3.08 g (0.01 mol) of
2,8-dichloro-10,11-dihydrobenzo [b, f] thiepin-10, 11dione, 7.0 g of ammonium acetate and 1.28 g (0.012 mole) of benzaldehyde in 85 ml of acetic acid icy anhydrous. The reaction mixture is cooled, poured into a water-ice mixture and ammonium hydroxide is added to a pH of 7.
The precipitate is filtered off under vacuum and dried. Recrystallization from benzene provides the desired purified product.
Example X:
By following the procedure described above of Example 1X and starting with the ketone and the aldehyde required, the following homologs are synthesized:
EMI7.1
XYR 11-CH3 5-F C6H5 il-CH3 5-F p-CH3SC6H4 il-CH3 5-F p-CH30C6H4 11-CH3 5-Cl CF3 11-CH3 5-Cl p- (CH3) 2NC6H4 11-CH3 5- Cl m-BrC6H4 12-F 5-Cl p-BrC6H4 12-F 5-Cl 2-C5H4N 12-F 5-Cl 3-C5H4N 10-CH3S 5-Cl 2-C5H4N 10-CH3S 5-Cl CF3 10-CH3S 5-Cl C6H5 10-CH3S 7-CH3S C6H5 10-CH3S 7-CH3S CF3 10-CH3S 7-CH3S p-FC6H4 12-Cl 4-Cl p-ClC6H4 12-Cl 4-Cl p-FC6H4 12-Cl 4- Cl o-BrC6H4 10-Cl 4-Cl 3-C5H4N 10-Cl 4-Cl C6H5 10-Cl 5-Cl C6H5 10-Cl 5-Cl m-HO2CC6H4 10-Cl 5-Cl p-HO2CC6H4 10-Br 5- Cl p- (CH3) 2NC6H4 10-Br 5-Cl m-BrC6H4 10-Br 5-Cl CF3 10-Br 5-CH3O CF3 10-Br 5-CH30 C6H, 9-Br 5-CH3O m-FC6H4 9-Br 5-CH3O p-FC6H4 9-Br 5-CH30
p-CH3SC6H4 9-Br 7-CH3 CF3
XYR 9-Br 7-CH3 o-CH3SC6H4 10-CH3S 7-CH3 3-C5H4N 10-CH3S 7-CH3 4-C5H4N 10-CH3S 7-CH3 α -C10H7 10-CH3S 5-Br α -C10H7 10- CH3S 5-Br CF3 10-CH3S 5-Br m-CH3OC6H4 10-CH3S 5-Br o-CH3SC6H4 9-F 5-Br p-CH3C6H4 9-F 5-Br p-BrC6H4 9-F 5-CH3S m-FC6H4 9-F 5-CH3S p-FC6H4
XYR 9-F 5-CH3S p-HO2CC6H4 9-F 5-CH3S p-CH3C6H4 10-CH3O 7-CH3S p-CH3OC6H4 10-CH3O 7-CH3S m-CH3SC6H4 10-CH30 7-CH3S p-CH3SC6H4 10-CH3O 7 -CH3S o-HO2CC6H4 10-CH30 6-Br p-HO2CC6H4 10-Br 6-Br CF3 10-Br 6-Br o-CH3C6H4 10-Br 6-Br m-CH3C6H4 10-Br 6-Br o-BrC6H4 10- Br 6-Br m-CIC6H4
Example XI:
:
Using the carrageenin-induced rat paw edema test as a measure of anti-inflammatory activity, the following representative tetracyclic imidazoles were found to have the indicated activity at the indicated dose:
EMI8.1
Activity
X Y Z R% inhibition Dose mg / kg P.O.
H H -CH2CH2- C6H5 46 33
H H -CH2CH2- p-ClC6H4 19 33
H H -CH2CH2- 3-C5H4N 21 33
H H -CH2CH2- p-CH3SC6H4 20 33
H H -CH2CH2- CF3 20 33
H H -CH2CH2- 11 33
H H S C6H5 19 33
H H S p-CH30C6H4 35 33
H H S p-BrC6H4 13 33
H H S 3-C5H4N 25 33
H S S CF3 36 33
H S S CF3 15 10
H S S p-HO2CC6H4 28 33
Phenylbutazone 55 33
Example XII:
8,9-Dihydro-2- (p-methoxyphenyl) dibenzo-hydrochloride
[3,4,7,8] cycloocta [1,2-d] imidazole.
To a hot solution of 3.5 g (0.01 mole) of 8,9-dihydro2- (p-methoxyphenyl) dibenzo [3,4,7,8] cycloocta [1,2-d] imidazole in 40 ml of absolute methanol, gaseous hydrochloric acid is added until the formation of the resulting hydrochloride precipitate is complete. The suspension is cooled in ice and the precipitate is filtered off and dried. An equal volume of diethyl ether is added to the filtrate, resulting in precipitation of a second crop of the desired hydrochloride. The two fractions are combined and recrystallized in ethanol.
In an analogous manner, the compounds obtained according to the process of the invention are converted into their pharmaceutically acceptable addition salts.
Preparation A.
(a) 5,6,11,12-tetrahydrodibenzo [a, e] cyclooctene-5,6-dione.
EMI9.1
To a suspension of 23.2 g (0.209 mol) of selenious anhydride in 500 ml of dry glacial acetic acid, under a nitrogen atmosphere and heated to 80 ° C., is added dropwise 42.0 g (0.19 mole) of 5,6,11,12-tetrahydrobenzo [a, e] cyclooctene-5-one in 250 ml of the same solvent. The reaction temperature is raised to 110 ° C. and this temperature is maintained for 5 to 6 hours. The mixture is cooled, poured slowly into 2,500 ml of an ice-water mixture and extracted several times with ethyl acetate. The organic layer is washed again with saturated sodium bicarbonate solution and dried over calcium sulfate.
The calcium sulfate is filtered off and the filtrate is evaporated to dryness, leaving a yellow semi-solid, which on crystallization from ethanol gives the desired product in three crystallization fractions, 3.8 g, 21.3 g and 3.5 g of respective melting points 130-132 C, 126-129 C and 130-131 C These three crops are combined and used without further purification.
Leonard, et al., J. Am. Chem. Soc., 77, 5078 (1955), indicates a melting point of 131-132 C for this substance, prepared by a different process.
(b) The 5,6,11,12-tetrahydrodibenzo [a, e] cycloctene-5,6-diones, which have not been indicated so far in the chemical literature, are synthesized by oxidation with the selenious anhydride of the corresponding monocetone:
EMI9.2
X Y X Y
H 1-CH3 7-CH3 3-CH3
H 2-CH3 7-CH3O 3-CH3
H 3-CH3 7-CH30 1-CH3
H 4-CH3 8-CH30 1-CH3
H 1-CH3O 8-CH30 3-F
H 2-CH30 9-CH30 3-F
H 3-CH30 9-CH30 2-F
H 4-CH3O 8-CH30 2-F
M 1-F 7-F 2-F
H 2-F 7-F 2-Cl
M 3-F 9-F 2-Cl
M 4-F 10-F 2-Cl
H 1-Cl 7-Cl 2-Cl
X Y X Y
H 2-Cl 7-Cl 3-Br
H 3-Cl 9-Cl 3-Br
H 4-Cl 9-Cl 3-CH3O
H 1-Br 10-Br 3-CH3O
H 2-Br 10-Br 3-CH3
H 3-Br 7-CH3S 3-CH3
H 4-Br 7-CH3S 1-F
H 1-CH3S 7-CH3
1-F
H 2-CH3S 7-CH3 3-Cl
H 3-CH3S 7-CH3S 3-Cl
H 4-CH3S 7-CH3S 3-CH3S 10-Br 3-CH3S 9-CH3O 1-Br 10-Br 1-Br 9-CH3O 3-CH3S 9-F l-Br 9-CH30 1-CH30
Preparation B.
(a) 10,11-dihydrodibenzo [b, f] thiepin-10,11-dione.
EMI9.3
A mixture of 50 mg (0.22 mmol) of 10,11-dihydrodibenzo [b, f] thiepin-10-one and 27 mg (0.24 mmol) is heated to 80 ° C.
of selenious anhydride in 15 ml of anhydrous glacial acetic acid, until a solution is obtained. Then the reaction temperature is raised to 110 ° C. and maintained for two hours. We filter
The reaction mixture is poured into water and extracted with ethyl acetate. The organic layer is concentrated to dryness and
triturates the semi-solid with hot benzene. The elimination of
benzene provides the desired product as a yellow solid,
38 mg, m.p. 116-126 C. The analytical sample is triturated with diethyl ether, m.p. 120-126 C.
Analysis:
Calculated for C14H802S
C70.0 H3.3%
Found: C70.0 H3.5%
By following the oxidation procedure described above
ment, we prepare 10,11-dihydrodibezo [b, f] thiepin-10,11-
The following substituted diones which have not been heretofore
described in the literature:
:
EMI9.4
X Y x Y
H 1-CH3 6-F 2-CH3O
H 2-CH3 9-Cl 2-CH3O
H 4-CH3 9-Cl t-Cl
H 2-CH3O 7-Cl t-Cl
H 4-CH3O 7-Cl 2-Cl
H 1-F 7-Br 2-Cl
H 3-F 7-Br 2-CH30
H 2-Cl 6-Br 2-CH30
H 4-Cl 6-Br 4-CH3
H 1-Br 7-CH3S 4-CH3
H 2-Br 7-CH3S 2-Br
H 3-Br 6-F 2-Br h 2-CH3S 6-F 2-CH3S
H 3-CH3S 8-CH3 2-F
H 4-CH3S 8-CH3 2-Cl 9-CH3 1-CH3 9-F 2-Cl 7-CH3 1-CH3 7-CH3S 2-Cl 7-CH3 2-CH3 7-CH3S 4-CH3S 7-CH30 2 -CH3 7-CH30 4-CH3S 7-CH30 2-F 7-CH3O 3-Br 8-F 2-F 7-Br 3-Br 8-F 2-CH30
Preparation C.
11,12-dihydrocycloocta [a, e] dibenzen-5 (6H) -ones.
The following cycloocta [a, e] dibenzen-5 (6H) -ones which have not been described heretofore in the chemical literature are prepared according to the procedure as described by Leonard et al.,
J. Am. Chem. Soc., 77, 5078 (1955), which comprises cyclization of the appropriate 2-phenylethylphenylacetic acid using polyphosphoric acid at steam bath temperatures for 5 to 6 hours:
:
EMI10.1
X Y X Y
H 1-CH3 H 1-Br
H 2-CH3 H 2-Br
H 3-CH3 H 3-Br
H 4-CH3 H 4-Br
H 1-CH3O H 1-CH3S
H 2-CH30 H 2-CH3S
H 3-CH30 H 3-CH3S
H 4-CH3O H 4-CH3S
H t-F 7-CH3 3-CH3
H 2-F 7-CH30 3-CH3
H 3-F 7-CH30 1-CH3
H 4-F 8-CH30 1-CH3
H 1-Cl 8-CH30 3-F x Y X Y
H 2-Cl 9-CH30 3-F
H 3-Cl 9-CH30 2-F
H 4-Cl 8-CH30 2-F 7-F 2-F 9-Cl 3-CH3O 7-F 2-Cl 10-Br 3-CH3O 9-F 2-Cl 10-Br 3-CH3 10-F 2 -Cl 7-CH3S 3-CH3 7-Cl 2-Cl 7-CH3S 1-F 7-Cl 3-Br 7-CH3 1-F 9-Cl 3-Br 7-CH3 3-Cl 7-CH3S 3-CH3S 7-CH3S 3-Cl 10-Br 3-CH3S 9-CH3O 1-Br 10-Br 1-Br 9-CH30 3-CH3S 9-F 1-Br 9-CH30 1-CH3O
Preparation D.
10,11-dihydrodibenzo [b, f] thiepin-10-ones.
Using the procedure as described by Jilek et al.,
Monatsh. Chem., 96,201 (1965), the following dibenzo [b, f] thiepin10-ones are prepared by cyclization of the required 2-phenylthiophenylacetic acid using polyphosphoric acid at 125 C for 1 to 2 hours:
EMI10.2
X Y X Y
H 9-CH3 4-F 8-CH3
H 8-CH3 1-Cl 8-CH3
H 8-CH3O 1-Cl 9-Cl
H 6-CH3O 3-Cl 9-Cl
H 9-F 3-Cl 8-Cl
H 7-F 3-Br 8-Cl 3-Br 8-CH30 4-Br 8-CH30
H 9-Br 4-Br 6-CH3 3-CH3S 6-CH3 3-CH3S 8-Br
H 7-Br- 4-F 8-Br
H 8-CH3S 4-F 8-CH3S
H 7-CH3S 2-CH3 8-F
H 6-CH3S 2-CH3 8-Cl 1-CH3 9-CH3 1-F 8-Cl 3-CH3 9-CH3 3-CH3S 8-Cl 3-CH3 8-CH3 3-CH3S 6-CH3S 3-CH3O 8 -CH3 3-CH3O 6-CH3S 3-CH3O 8-F 3-CH3O 7-Br 2-F 8-F 3-Br 7-Br 2-F 8-CH30
Preparation E.
2-Phenylethylphenylacetic acids.
The aforementioned 2-phenylethylphenylacetic acids are synthesized according to the reaction sequence indicated by Leonard et al.,
J. Am. Chem. Soc., 77, 5078 (1955), where starting from 2-phenylethylbenzolque acid, the following reactions are carried out:
EMI11.1
For convenience, the intermediates are not purified and characterized, but are used directly in the next step of the reaction sequence.
Using the series of reactions described above, and starting with the necessary benzoic acid, the following 2-phenylethylphenylacetic acids are prepared which have not been reported previously:
EMI11.2
X Y X Y
H 2-CH3 H 2-CH3S
H 3-CH3 H 3-CH3S
H 4-CH3 H 4-CH3S
H 2-CH30 6-CH3 4-CH3
X Y X Y
H 3-CH30 6-CH30 4-CH3
H 4-CH30 6-CH3O 2-CH3
H 2-F 5-CH3O 2-CH3
H 3-F 5-CH30 4-F
H 4-F 4-CH30 4-F
H 2-CI 4-CH3O 3-F
H 3-Cl 5-CH30 3-F
H 4-Cl 6-F 3-F
H 2-Br 6-F 3-Cl
H 3-Br 4-F 3-Cl
H 4-Br 2-F 3-Cl 6-Cl 3-Cl 6-CH3 4-Cl 6-Cl 4-Br 6-CH3S 4-Cl 4-Cl 4-Br 6-CH3S 4-CH3S 4-Cl 4 -CH30 2-Br 4-CH3S 2-Br 4-CH3O
2-Br 2-Br 2-Br 4-CH3 4-F 2-Br 6-CH3S 4-CH3 4-CH3O 2-Br 6-CH3S 2-F 4-CH3O 4-CH3S 6-CH3 2-F 4- CH30 2-CH3O
Preparation F.
2-Phenylthiophenylacetic acids.
The 2-phenylthiophenylacetic acids necessary as intermediates leading to the products of the present invention are prepared, following the reactions indicated by Jilek et al., Monatsh. Chem., 96, 201 (1965) and Protiva et al, Czechoslovak patent
No. 121337 (C.A. 68, 105247t (1968)), which involves the conversion of a 2-phenylthiobenzoic acid to the corresponding phenylacetic acid described below.
EMI12.1
We do not purify and we do not characterize the intermediates but we use them directly by the following reaction
The following 2-phenylthiophenylacetic acids, which have not been described previously in the chemical literature, are synthesized in the manner described above:
EMI12.2
X Y X Y
H 3-CH3 3-F 4-CH30
H 4- CH3 6-Cl 4-CH30
H 2-CH3 6-Cl 3-Cl
H 4-CH3O 4-Cl 3-Cl
H 2-CH3O 4-Cl 4-Cl
H 3-F 4-Br 4-CL
H 4-CH3S 4-Br 4-CH30 3-Br 4-CH3O 3-Br 2-CH3
H 3-Br 4-CH3S 2-CH3
H 3-CH3S 4-CH3S 4-Br
H 2-CH3S 3-F 4-Br
X Y X Y 06-CH3 3-CH3 3-F 4-CH3S¯
4-CH3 3-CH3 <RTI
ID = 12.12> 5-CH3 4-F
4- CH3 4- CH3 5-CH3 4-Cl
4-CH3O 4-CH3 6-F 4-Cl
4-CH3O 4-F 4-CH3S 4-Cl
5-F 4-F 4-CH2S 2-CH3S
5-F 4-CH3O 4-CH3O 2-CH3S 4-CH3O 3-Br 4-Br 3-Br
Preparation G.
2-Phenylethylbenzoic acids.
The following 2-phenylethylbenzoic acids, which have not been previously indicated in the chemical literature, are prepared according to the procedure of Cope et al, J. Am. Chem. Soc., 73, 1676 (1951) which comprises the reduction by the mixture of red phosphorus - hydriodic acid of the corresponding benzalphthalide:
:
EMI12.3
X Y X Y
H 2-CH3 H 2-CH3
H 3-CH3 H 3-CH3S
H 4-CH3 H 4-CH3S
H 2-CH30 6-CH3 4-CH3
H 3-CH3O 6-CH3O 4-CH3
H 4-CH3O 6-CH3O 2-CH3
H 3-F 5-CH3O 2-CH3
H 4-F 5-CH3O 4-F
H 2-Cl 4-CH3O 4-F
H 3-Cl 4-CH3O 3-F
H 4-Cl 5-CH30 3-F
H 2-Br 6-F 3-F
H 3-Br 6-F 3-Cl
H 4-Br 4-F 3-Cl 6-Cl 3-Cl 3-F 3-Cl 6-Cl 4-Br 6-CH3S 2-F 4-Cl 4-Br 6-CH3 2-F 6-CH3S 4 -CH3S 6-CH3 4-Cl 3-Br 4-CH3S 6-CH3 4-Cl 3-Br 2-Br 4-CH3O 2-Br 4-F 2-Br 4-CH3O 4-CH3S 4-Cl 4-CH3O 4-CH3O 2-CH3O 3-Br 4-CH3O 3-Br 4-CH3 6-CH3S 4-CH3
Preparation H.
2-Phenylthiobenzoic acids.
The following 2-phenylthiobenzoic acids, which have not been previously indicated in the chemical literature, are synthesized from thiophenols and o-halobenzoic acids available commercially or known, according to the method of Protiva et al, Czechoslovak patent No. 121337 (CA 68.105247t; 1968), and
Mahishi et al., J.
Karnatak Univ., 2, 50 (1957) (C.A., 53, 14101t;
EMI13.1
X Y X Y
H 3-CH3 3-F 4-CH30
H 4-CH3 6-Cl 4-CH3O
H 2-CH3 6-Cl 3-Cl
H 4-CH30 4-Cl 3-Ct
H 2-CH3O 4-Cl 4-Cl
H 3-F 4-Br 4-Cl 4-Br 4-CH3O 3-Br 4-CH30
H 3-Br 3-Br 2-CH3
H 4-CH3S 4-CH3S 2-CH3
H 3-CH3S 4-CH3S 4-Br
H 2-CH3S 3-F 4-Br 6-CH3 3-CH3 3-F 4-CH3S 4-CH3 3-CH3 5-CH3 4-F 4-CH3 4-CH3 5-CH3 4-Cl
XYX y 4-CH3O 4-CH3 6-F 4-Cl 4-CH3O 4-F 4-CH3S 4-Cl 5-F 4-F 4-CH3S 2-CH3S 5-F 4-CH3O 4-CH3O 2-CH3S 4-CH3O 3-Br 3-Br 3-Br
Preparation I.
Benzalphthalides.
Using the procedures of Weiss, Organic
Syntheses, Coll. Flight. 2, John Wiley & Sons, Inc., New York, N.Y., 1948, page 61, by Hrnciar et al., Chem. Zvesti., 21, 267 (1967) (C.A.
67, 73304v; 1967) and Hrnciar, ibid., 16, 96 (1962) (CA 59, 2731; 1963), the following benzalphthalides, which have not been previously indicated in the literature, are synthesized by condensation of phenylacetic acids and d 'phthalic anhydrides or of benzaldehydes and phthalides available commercially or known:
EMI13.2
X Y X Y
H 2-CH3S H 3-CH3S 7-CH3 4-CH3 7-Cl 3-CI 7-CH3O 4-CH3 7-Cl 4-Br 7-CH30 2-CH3 5-Cl 4-Br 6-CH3O 2-CH3 7-CH3S 4-CH3S 6-CH3O 4-F 4-Br 4-CH3S 5-CH3O 4-F 4-Br 2-Br 5-CH30 3-F 5-F 2-Br 6-CH3O 3-F 5- Cl 4-CH3O 7-F 3-F 4-Br 4-CH30 7-F 3-Cl 4-Br 4-CH3 5-F 3-Cl 7-CH3S 4-CH3 4-F 3-Cl 7-CH3S 2 -F 7-CH3 2-F 7-CH3 4-Cl 7-CH3S 4-Cl 5-CH3O 2-Br 5-CH3O 4-CH3S 5-CH3O 2-CH3O