CH529516A - Synthetic flavour - modifying agents for coffee and other beverages and foods - Google Patents

Synthetic flavour - modifying agents for coffee and other beverages and foods

Info

Publication number
CH529516A
CH529516A CH625166A CH625166A CH529516A CH 529516 A CH529516 A CH 529516A CH 625166 A CH625166 A CH 625166A CH 625166 A CH625166 A CH 625166A CH 529516 A CH529516 A CH 529516A
Authority
CH
Switzerland
Prior art keywords
denotes
alkyl
radical
furfuryl
methyl
Prior art date
Application number
CH625166A
Other languages
German (de)
Inventor
Max Dr Winter
Fritz Dr Gautschi
Ivon Dr Flament
Max Dr Stoll
M Dr Goldman Ivring
Original Assignee
Firmenich & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firmenich & Cie filed Critical Firmenich & Cie
Priority to CH1341970A priority Critical patent/CH563725A5/en
Priority to CH1341770A priority patent/CH566111A5/xx
Priority to CH1341870A priority patent/CH564317A5/xx
Publication of CH529516A publication Critical patent/CH529516A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/333Radicals substituted by oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/46Coffee flavour; Coffee oil; Flavouring of coffee or coffee extract
    • A23F5/465Flavouring with flavours other than natural coffee flavour or coffee oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/56Flavouring or bittering agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2054Heterocyclic compounds having nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2056Heterocyclic compounds having at least two different hetero atoms, at least one being a nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/12Ketones containing more than one keto group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/32Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/06Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/12Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/18Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/36Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/64Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/80Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/18Radicals substituted by singly bound hetero atoms other than halogen by sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/22Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than halogen singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/28Halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D333/40Thiophene-2-carboxylic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Seasonings (AREA)
  • Tea And Coffee (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Fats And Perfumes (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

Soluble coffee material containing as flavour modifying agent a cpd. selected from substituted pyrazines, substd. pyridines, subst. furans, and subst. phenols. The agents are readily synthesized and may also be added to fruit juices tea, cocoa, etc., and to cereals, flours, confections and meats. Typical cpds. are of formula (I): (where n = 0, 1 or 2; R1 = H, alkyl; acyl or furfuryl and R2 = H or CH3, but R1 is not = R2 = CH3 if n = o).

Description

  

  
 



  Verwendung von schwefelhaltigen Verbindungen als geschmacksverändernde Zusätze zu Nahrungsmitteln und Getränken
Die vorliegende Erfindung betrifft die Verwendung von schwefelhaltigen Verbindungen der nachstehend definierten Gruppen I bis VI als geschmacksverändernde Zusätze zu Nahrungsmitteln und Getränken mit dem Zweck, einen gebrannten oder Röstgeschmack zu erzeugen bzw. zu verstärken.



   Unter  geschmacksverändernd  sind alle Vorgänge oder Behandlungen zu verstehen, durch welche geschmacksfreien bzw. geschmacksarmen Nahrungsmitteln und Getränken ein bestimmter Geschmack oder ein bestimmtes Aroma verliehen wird oder durch welche der Geschmack von Nahrungsmitteln und Getränken verstärkt, verbessert, überdeckt, unterdrückt oder sonstwie in einer bestimmten Geschmacksrichtung ver ändert wird.



   Die der vorliegenden Erfindung zu grunde liegende Aufgabe bestand darin, die Auswahl der bisher zur Verfügung stehenden Geschmacksstoffe zu erweitern und dem Lebensmitteltechniker neue und verfeinerte Mittel in die Hand zu geben, um die von der Natur erzeugten Aromen auf synthetischem Wege besser nachahmen zu können. Die Veränderung oder Verbesserung der geschmacklichen Eigenschaften von Nahrungsmitteln und Getränken durch Verwendung von künstlichen Aromen mit genau reproduzierbaren Geschmackseigenschaften und -qualitäten nimmt in der Lebens   mittelindustrie    mehr und mehr an Bedeutung zu, seitdem für die Ernährung des Menschen neue, bisher nicht verwendete Rohstoffe erschlossen werden, um der drohenden Verknappung der Nahrungsmittel in gewissen Gebieten des Erdballs entgegenzutreten.



   Es wurde gefunden, dass die Verbindungen der nachstehenden definierten Gruppen I bis VI, die teils bekannte, teils neue Stoffe beinhalten, einzeln oder in Form zweckentsprechender Mischungen von mindestens zwei Komponenten dazu geeignet sind, die Geschmackseigenschaften verschiedenster fester oder flüssiger Nahrungs- und Genussmittel oder Getränke im gewünschten Sinne zu verändern. So können beispielsweise Produkte wie Fruchtsäfte, Gemüsesäfte, Milchprodukte, Kaffee-, Tee-, Kakao- und Schokoladeprodukte, Getreideflocken, Mehle, Konfiseriewaren, Fleischprodukte, Backwaren, Speiseeis, usw., geschmacklich verändert werden.



  Man kann auch den Geschmack von konservierten Lebensmitteln verbessern oder verstärken.



   Gemische von Verbindungen der Gruppen I bis VI eignen sich beispielsweise besonders gut zur Veränderung, Verbesserung oder Verstärkung der Geschmackseigenschaften von sogenannten löslichen Kaffeeprodukten (im englischen Sprachgebrauch als    instant coffee     bezeichnet).



   Die in Frage stehenden Verbindungen gehören den folgenden Gruppen an:
I.- Aromatische Schwefelverbindungen
II. - Schwefelhaltige Furanverbindungen
III. -   Thiophen-Schwefelverbindungen   
IV. - Schwefelhaltige Pyridinverbindungen
V. - Schwefelhaltige Pyrrolverbindungen
VI. - Schwefelhaltige Pyrazinverbindungen
Im ersten Teil der nachfolgenden Beschreibung sind die Gruppen I bis VI durch Struckturformeln definiert und durch Beispiele belegt. Im zweiten Teil ist die Beschreibung der geschmacklichen und geschmacksverändernden Eigenschaften der Verbindungen der Gruppen I bis VI in den Tabellen I bis VI zusammengefasst. Der dritte Teil enthält Beispiele für die Verwendung der geschmacksverändernden Mittel zur Behandlung von Nahrungs- und Genussmitteln.



   1. Teil
Für jede Gruppe ist zuerst die allgemeine Formel mit der Definition der Symbole wiedergegeben. Es folgen dann Beispiele von unter die allgemeine Formel fallenden Verbindungen. Neben dem chemischen Namen jeder Verbindung ist die Bezugsquelle oder ein Literaturhinweis betreffend ein Herstellungsverfahren angegeben. Im Handel erhältliche Produkte sind mit der Abkürzung i. H. bezeichnet und können beispielsweise von den folgenden Firmen bezogen werden: Fluka AG, Buchs (SG, Schweiz), Aldrich Chem. Co., Milwaukee (Wisc., USA), Dr. F. Raschig GmbH, Ludwigshafen  a. Rh. (Deutsche Bundesrepublik) odet K  & K Laboratories Inc., Plainview (NY. 11803, USA).



   Für alle neuen Verbindungen (abgekürzt n. V.) sind im Anschluss an die Aufzählung der Einzelverbindungen Herstellungsmethoden angegeben oder beschrieben.



   I. Aromatische Schwefelverbindungen
EMI2.1     
 worin R1 Wasserstoff oder eine Hydroxy-, Alkoxy- oder Alkylgruppe und R2 Wasserstoff oder einen Alkylrest bezeichnen;
EMI2.2     
 worin R1Wasserstoff oder eine Hydroxy-, Alkyl- oder Alkoxygruppe, R2 Wasserstoff oder einen Alkylrest, R3 einen Alkyl- oder Benzylrest und n die Zahl 0, 1 oder 2 bezeichnen, und
EMI2.3     
 worin R einen Alkyl- oder Phenylrest bezeichnet.



  Beispiele:   (1)    a. 2-Methoxy-benzolthiol Ber. 39, 1348 (1906) b.   Benzolthiol    i. H.



   c. 2-Hydroxy-thiolphenol Beilstein 6, 793 d. 2-Methyl-benzolthiol i. H.



   e.   3-Methyl-benzolthiol    i. H.



   f. 4-Methyl-benzolthiol i. H.



   g. 2,4-Dimethyl-benzolthiol   Ber. 32,    1147 h.   3,4-Dimethyl-benzolthiol    J. Org.   Chem. 26,    4047 (1961) i.   2-Sithyl-benzolthiol    Ber. 59, 349 j.   2-Ätlioxy-benzolthiol    J. pr. Ch. 114, 231, 235 k.   4-Methoxy-benzoithiol    i. H.



  (2) a. Methyl-phenyl-sulfid i. H.



   b. Dibenzyl-sulfid J. Chem.   Soc. 1922,    1404 (3) a. Phenyl-methyl-disulfid J.A.C.S. 85, 1618 (1963) b. Diphenyl-disulfid Ber. 56, 1929 (1923) II. Schwefelhaltige Furanverbindungen
EMI2.4     
 worin R Wasserstoff oder einen Alkyl- oder Alkenylrest und n die Zahl 1 oder 2 bezeichnen;
EMI2.5     
 worin R1 Wasserstoff oder einen   Alkenylrest,    R2 Wasserstoff oder einen Alkyl-, Furfuryl- oder alkyl-substituierten Phenylrest und n die Zahl 0, 1 oder 2 bezeichnen, mit der Einschränkung, dass R2 weder Methyl noch Furfuryl sein kann, wenn R1 Wasserstoff und n = 1 ist;
EMI2.6     
 worin R einen Alkyl- oder Furfurylrest bezeichnet;
EMI2.7     
 worin R1 Wasserstoff oder einen Alkylrest und R2 einen Alkyl- oder Furfurylrest bezeichnen, und
EMI2.8     
 worin R eine Alkyl- oder Acylgruppe bezeichnet.  



  Beispiele:   (1)    a. Essigsäure-furfurylthiolester n. V.



   b. Propionsäure-furfurylthiolester n. V.



   c. Buttersäure-furfurylthiolester n. V.



   d. a-Furancarbonsäure-furfurylthiolester n. V.



   e.   ss,ss'-Dimethylacrylsäure-furfurylthiolester    n. V.



   f. Tiglinsäure-furfurylthiolester n. V.



   g.   Ameisensäure-furfurylthiolester    n. V.



   h.   Essigsäure-2- [furyl-(2)] -äthanthiolester    n. V.



  (2) a. 5-Methylfurfuryl-methylsulfid n. V.



   b. Furfuryl-propyl-sulfid n. V.



   c. Furfuryl-isopropyl-sulfid n. V.



   d. Furfuryl-(5-methylfuryl)-sulfid n. V.



   e. (5-Methylfuryl)-methyl-sulfid n. V.



   f. 2-[Furyl-(2)]-äthanthiol n. V.



   (3) a. a-Furancarbonsäure-methylthiolester n. V.



   (4) a. Difurfuryl-disulfid J.A.C.S. 52, 2141 (1930)  (5) a.   (Benzolfurfuryl-2)-methyl-sulfid    n. V.



   b. Essigsäure-(benzofurfuryl-2)-thiolester n. V.



   (1) a. Essigsäure-furfurylthiolester wurde durch Umsetzung von Furfurylmercaptan mit Acetylchlorid oder Acetanhydrid nach der in Houben-Weyl, 4. Aufl., Band 9, 753 (1955) beschriebenen Methode hergestellt und wies einen Sdp. von   90-92     C/12 mm Hg auf.



   Nach der gleichen Methode, jedoch unter Verwendung der entsprechenden Säurechloride oder -anhydride, wurden die folgenden Verbindungen erhalten:  (1) b.   Propionsäure-furfurylthiolester,    Sdp.   95-97     C/ 10 mm Hg.



   (1) c. Buttersäure-furfurylthiolester, Sdp. 105,5 bis   106,5     C/10 mm Hg.



   (1) d.   a -Furancarbonsäure-furfurylthiolester,    Sdp.



     110     C/0,01 mm Hg.



   (1) e.   ss,p'-Dimethylacryl säure-furfuryl thiolester,    Sdp.



  850 C/0,015 mm Hg.



   (1) f. Tiglinsäure-furfurylthiolester, Sdp. 84,5 bis   87,5       C"0,03    mm Hg.



   (1) g.   Ameisensäure-furfurylthiolester    wurde nach der für die Synthese von   Ameisensäure-furfurylester    angewendeten und in J. A. C. S. 64, 1583 (1942) beschriebenen Methode hergestellt. Das Produkt wies einen Sdp. von 77 bis   78"    C/8 mm Hg auf.



   (1) h. Essigsäure-2-[furyl-(2)]-äthanthiolester wurde durch Umsetzung von Thioessigsäure mit 2-Vinyl-furan unter Einwirkung von UV-Licht und in Gegenwart von Benzoylperoxyd nach der in J. Org. Chem. 27, 2853 (1962) beschriebenen Methode hergestellt. Der Thioester wies einen Sdp. von   100-103     C/0,05 mm Hg auf.



   (2) a. 5-Methylfurfuryl-methyl-sulfid wurde durch Umsetzung von 5-Methylfurfuryl-mercaptan mit Dimethylsulfat in alkalischer Lösung nach bekannten Methoden hergestellt und wies einen Sdp. von   71-72"    C/11 mm Hg auf. Das 5-Methylfurfuryl-mercaptan wurde aus dem entsprechenden Alkohol nach der in Org. Syn. 35, 67 (1955) beschriebenen Methode erhalten.



   (2) b. Furfuryl-propyl-sulfid wurde durch Umsetzung von Natriumfurfurylmercaptid mit n-Propylbromid nach der in Houben-Weyl, 4. Aufl., Band 9, 97 (1955) beschriebenen Methode hergestellt und wies einen Sdp. von   91     C/15 mm Hg auf.



   (2) c. Furfuryl-isopropyl-sulfid wurde in der gleichen Weise wie die Verbindung (2) b., jedoch unter Verwendung von Isopropylbromid anstelle von n-Propylbromid, hergestellt und wies einen Sdp. von   84"    C/16 mm Hg auf.



   (2) d. Furfuryl-(5-methylfuryl)-sulfid wurde nach der für die Synthese von Alkylthiofuranen angewendeten und in C. A. 59,8681d (1963) beschriebenen Methode hergestellt, indem 2-Methylfuran mit Butyllithium und dann mit Schwefel umgesetzt und das erhaltene Thiol ohne vorherige Reinigung mit Furfurylchlorid zur Reaktion gebracht wurde. Das erhaltene leicht gelbliche Öl wies einen Sdp. von   67"    C/ 0,04-0,05 mm Hg auf.



   (2) e. (5-Methylfuryl)-methyl-sulfid wurde in der gleichen Weise wie die Verbindung (2) d. hergestellt. Das Produkt war ein schwach-gelbliches   Ö1    vom Sdp.   80"    C/45 bis 50 mm Hg.



   (2) f. 2-[Furyl-(2)]-äthanthiol. 24 g Essigsäure-2 [furyl-(2)]-äthanthiolester wurden durch Kochen in wässrigalkoholischer Lösung während 90 Minuten in Gegenwart von Alkali verseift. Das Reaktionsgemisch wurde mit Essigsäure neutralisiert und dann mit Äther extrahiert. Durch Destillation wurden 14,4 g 2-[Furyl-(2)]-äthanthiol mit Sdp. 61 bis   62"    C/0,03 mm Hg,   und22,3    = 1,5653;   d42s,2    = 1,153, erhalten.

 

   (3) a.   o-Furancarbonsäure-methylthiolester    wurde durch Umsetzung von Methylmercaptan mit a-Furancarbonsäurechlorid nach der in Houben-Weyl, 4. Aufl., Band 9, 753 (1955) beschriebenen Methode hergestellt und wies einen Sdp. von   92-93     C/11 mm Hg auf.



   (5) a.   (Benzofurfuryl-2)-methyl-sulfid    wurde durch Umsetzung von (Benzofurfuryl-2)-mercaptan mit Dimethylsul  fat in alkalischer Lösung hergestellt und wies einen Sdp. von   108-109"    C/0,4 mm Hg auf.



   Das als Ausgangsmaterial verwendete (Benzofurfuryl2)-mercaptan   wurde    aus dem entsprechenden Alkohol nach der in Org. Synth. 35, 67 (1955) beschriebenen Methode erhalten.



   (5) b. Essigsäure-(benzofurfuryl-2)-thiolester wurde in der gleichen Weise wie die Verbindung (1) a. (Essigsäurefurfurylthiolester) hergestellt und wies einen Sdp. von 120 bis   122"    C/0,8 mm Hg auf.



  III. Thiophen-Schwefelverbindungen
EMI4.1     
 worin R Wasserstoff oder einen Alkyl-, Acetyl- oder Thenylrest und n die Zahl 1 oder 2 bezeichnen, und
EMI4.2     
 worin R einen Alkyl- oder Furfurylrest bezeichnet.



   Beispiele:  (1) a. Thenyl-mercaptan Compt. rend. 229, 1343 (1949) b. Thenyl-methyl-sulfid Compt. rend. 229, 1343 (1949) c. Essigsäure-thenylthiolester n. V.



   d.   2-[Thienyl-(2)]-äthanthiol    n. V.



   e.   Essigsäure-2-[thienyi-(2)] -äthanthiolester    n. V.



   f. Dithenylsulfid   n.V.   



   (2) a.   Thienyl-thiocarbonsäure-S-methylester    n. V.



   b.   Thienyl-thiocarbonsäure-S-äthylester    n. V.



   c. Thienyl-thiocarbonsäure-S-furfurylester n. V.



   Die neuen Verbindungen dieser Stoffklasse können wie folgt erhalten werden:  (1) c. Essigsäure-thenylthiolester wurde in der gleichen Weise wie die Verbindung XXXI (1) a. (Essigsäurefurfurylthiolester) hergestellt. Das Produkt war eine farblose Flüssigkeit mit Sdp. von   113-114     C.



   (1) d.   2-[Thienyl-(2)]-äthanthiol.    2-Vinyl-thiophen (erhalten nach der in Org. Synth. 38, 86 [1958] beschriebenen Methode) wurde nach der im J. Org. Chem. 27, 2853 (1962) beschriebenen Methode mit Thioessigsäure umgesetzt, worauf das erhaltene Additionsprodukt mit Säure hydrolysiert wurde. Das Produkt wies einen Sdp. von   55"      C/0,1    mm Hg auf.



   (1) e.   Essigsäure-2-[thienyl- (2)]-äthanthiolester    wurde als Zwischenprodukt bei der Herstellung der Verbindung (1) d. durch Umsetzung von 2-Vinyl-thiophen mit Thioessigsäure erhalten und wies einen Sdp. von   90"    C/0,07 mm Hg auf.



   (1) f. Dithenyl-sulfid wurde in der gleichen Weise wie die Verbindung X (1) b. hergestellt, indem Thenylmercaptan anstelle von Thenylalkohol verwendet wurde. Das Produkt wies einen Sdp. von   118     C/0,04 mm Hg auf.



   Die Verbindungen (2) a., (2) b, und (2) c, wurden durch Umsetzung von Thionylchlorid mit den Natriumsalzen der entsprechenden Mercaptane in alkoholischer Lösung nach der in J. A. C. S. 77, 6709 (1955) beschriebenen Methode hergestellt. Nach einstündigem Erhitzen unter Rückfluss wurde das Reaktionsgemisch filtriert und eingeengt. Der Rückstand wurde durch Chromatographie auf einer Kieselsäuregel-Kolonne unter Verwendung eines Benzol-Hexan Gemisches 8 :2 als Eluierungsmittel gereinigt. Die Struktur der erhaltenen Produkte wurde durch Massenspektrometrie bestätigt:  (2) a.   Thienyl-thiocarbonsäure-S -methylester:       Ionenspitzen    mit relativen Intensitäten: 111 (100%), 39 (22%) und 158 (12%).



   (2) b Thienyl-thiocarbonsäure-S-äthylester:
Iohnenspitzen mit relativen Intensitäten: 111 (100%), 39   (17%)    und 172 (10%).



   (2) c. Thienyl-thiocarbonsäure-S-furfurylester.



     Ionenspitzen    mit relativen Intensitäten:   111(100%),      81 (73,5No)    und 39   (20wo).   



   IV. Schwefelhaltige Pyridinverbindungen
EMI4.3     
 worin R Wasserstoff oder einen Alkyl-, Acyl-, Furfuryl- oder Pyridylrest und n die Zahl 0 oder 1 und 2 bezeichnen.  



  Beispiele:   (1)    a.   [Pyridyl-(2)l-methanthiol    C.A. 55, 4542b (1961) b. 2-Mercapto-pyridin i. H.



   c. 2-Methylthio-pyridin n. V.



   d.   2-Sithylthio-pyridin    n. V.



   e.   Essigsäure- [pyridyl-(2)] -thiolester    n. V.



   f.   Di-[pyndyl-(2)j-suffid    J. Chem. Soc. 1942, 239 g.   2-[PyAdyl-(2)]-äthanthiol    J. Org. Chem. 26, 82 (1961) h.   2-[Pyridyl-(2)J-äthyl-methyl-sulfid    siehe unten i.   2- [Pyridyl-(2)] -äthyl-äthyl-sulfid    n. V.



   j.   Essigsäure-2-[pyridyl-(2)]-äthanthiolester    siehe unten k.   2- Pyridyl-(211-äthyl-furfuryl-sulfid    n. V.



   1.   [Pyridyl-(2)]-methyl-methyl-sulfid    Helv. 47, 1754 (1964)    m.      [Pyridyl-(2)]-methyl-äthyl-sulfid    n. V.



   n.   Essigsäure- [pyridyl-(2)] -methanthiolester    n. V.



   Zur Herstellung der bekannten Verbindung (1) h.



  [2-[Pyridyl-(2)]-äthyl-methyl-sulfid] wurde die folgende Methode angewendet: 2-Vinyl-pyridin wurde durch UV-Belichtung in Gegenwart von Spurenmengen von Benzoylperoxyd und Diphenylsulfid mit Methylmercaptan zur Umsetzung gebracht. Das Produkt wies einen Sdp. von   48"    C/ 0,03 mm Hg auf.



   Nach der gleichen Methode wurde die bekannte Verbindung (1) j. hergestellt, indem Thioessigsäure anstelle von Methylmercaptan verwendet wurde. Das Produkt wies einen Sdp. von   80     C/0,02 mm Hg auf.



   Die neuen Verbindungen dieser Stoffklasse können wie folgt hergestellt werden:  (1) c. 2-Methylthio-pyridin wurde nach der in Houben Weyl, 4. Aufl., Band 9, 7 (1955) beschriebenen Methode durch Alkylierung von 2-Mercapto-pyridin mit Methylhalogenid und Neutralisierung des erhaltenen Pyridiniumsalzes mit NaOH hergestellt. Die entstandene Pyridinbase wurde extrahiert und destilliert. Sie wies einen Sdp. von   67-68"    C/
10 mm Hg auf.



   (1) d. 2-Äthylthio-pyridin wurde in der gleichen Weise wie die Verbindung (1) c. hergestellt, indem Äthylhalogenid anstelle von Methylhalogenid verwendet wurde. Das Produkt wies einen Sdp. von   77-77,5     C/8 mm Hg auf.



   (1) e.   Essigsäure-[pyridyl-(2)]-thiolester    wurde durch Umsetzung von 2-Mercaptopyridin mit Acetanhydrid in alkalischem Medium nach der in Houben-Weyl, 4. Aufl., Band 9, 753 (1955) und in J. A. C. S. 59, 1089 (1937) beschriebenen Methode hergestellt und wies einen Sdp. von   117-118     C/9 mm Hg auf.



   (1) i.   2-[Pyridyl-(2)j-äthyl-äthyl-sulfid    wurde in der gleichen Weise hergestellt wie die Verbindung (1) h., indem Äthylmercaptan anstelle von Methylmercaptan verwendet wurde. Das Produkt wies einen Sdp. von   62"    C/0,005 mm Hg auf.



   (1) m.   [Pyridyl-(2)j-methyl-äthyl-sulfid    wurde in der gleichen Weise hergestellt wie die Verbindung (1) 1. und wies einen Sdp. von   107-110     C/10 mm Hg auf.



   (1) n. Essigsäure-[pyridyl-(2)]-methanthiolester wurde durch Umsetzung von 2-Mercaptomethylpyridin mit Acetylchlorid in alkalischem Medium hergestellt und wies einen Sdp. von   102-103     C/ 9 mm Hg auf.



   V. Schwefelhaltige Pyrrolverbindungen
EMI5.1     
 worin R einen Alkyl-, Furfuryl- oder Acylrest bezeichnet.



  Beispiele: (1) a.   [N-Methyl-pyrryl-(2)]-methyl-sulfid    n. V.



   b.   [N-Methyl-pyrryl-(2)] -äthyl-sulfid    n. V.



   c.   [N-Methyl-pyrrol-(2)j-furfuryl-sulfid    n. V.



   d.   Essigsäure- [N-methyl-pyrryl-(2)] -methylthlolester    n. V.

 

   Die neuen Verbindungen dieser Stoffklasse können wie folgt hergestellt werden:  (1) a.   [N-Methyl-pyrryl-(2)]-methyl-sulfid    wurde durch Alkylierung von   [N-Methyl-pyrryl-(2)]-methylmercaptan    mit Methyljodid nach der in Houben-Weyl, 4. Aufl., Band 9, 97 (1955) beschriebenen Methode hergestellt und wies einen Sdp. von   90"    C/10 mm Hg auf.



   (1) b.   [N-Methyl-pyrryl-(2)j-äthyl-sulfid    wurde in der gleichen Weise hergestellt wie die Verbindung (1) a., indem jedoch Äthylbromid anstelle von Methyljodid verwendet wurde. Das Produkt wies einen Sdp. von   99"    C/10 mm Hg auf.



   (1) c.   [N-Methyl-pyrryl-(2)]-furfuryl-sulfid    wurde in der gleichen Weise hergestellt wie die Verbindung (1) a.,  indem jedoch Furfurylchlorid anstelle von Methyljodid verwendet wurde. Das Produkt wies einen Sdp. von   94"    C/ 0,01 mm Hg auf.



   (1) d. Essigsäure-[N-methyl-pyrryl-(2)]-methylthiolester wurde durch Acylierung von   [N-Methyl-pyrryl-(2)]    methylmercaptan nach der in Houben-Weyl, 4. Aufl., Band 9,   753    (1958) beschriebenen Methode hergestellt und wies einen Sdp. von   69"    C/0,05 mm Hg auf.



   VI. Schwefelhaltige Pyrazinverbindungen
EMI6.1     
 worin n die Zahl 0, 1 oder 2, R1 Wasserstoff oder einen Alkyl-, Acyl- oder Furfurylrest und R2 Wasserstoff oder Methyl bezeichnen, mit der Einschränkung, dass R1 und R2 nicht Methylreste sein können, wenn n = 0 ist, und
EMI6.2     
 worin R Wasserstoff oder einen Alkyl-, Furfuryl- oder Acylrest bezeichnet.



  Beispiele: (1) a. [2-Methylpyrazinyl-(3, -5 und -6)]-furfuryl-sulfid n. V.



   b. Pyrazinylmethyl-mercaptan n. V.



   c. Pyrazinylmethyl-methyl-sulfid n. V.



   d.   Pyrazinylmethyl-äthyl-sulfid    n. V.



   e. Pyrazinylmethyl-furfuryl-sulfid n. V.



   f. Essigsäure-pyrazinylmethylthiolester n. V.



   g. Pyrazinyläthyl-mercaptan n. V.



   h. (Pyrazinyläthyl)-methyl-sulfid n. V.



   i. (Pyrazinyläther)-äthyl-sulfid n. V.



   j. (Pyrazinyläthyl)-furfuryl-sulfid n. V.



   k. Essigsäure-(pyrazinyläthyl)-thiolester n. V.



  (2) a. 2,5-Dimethyl-3-mercapto-pyrazin n. V.



   b. 2,5-Dimethyl-3 -methylthio-pyrazin n. V.



   c. 2,5-Dimethyl-3-äthylthio-pyrazin n. V.



   d. 2,5-Dimethyl-3 -furfurylthio-pyrazin n. V.



   e. 2,5-Dimethyl-3 -acetylthio-pyrazin n. V.



   Die neuen Verbindungen dieser Stoffklasse können wie folgt hergestellt werden:  (1) a. [-Methylpyrazinyl-(3, -5   und -6)]-furfurylsulfid    (Gemisch). Durch Chlorierung von 2-Methylpyrazin nach der in J. Org. Chem. 26, 2356, 2360 (1961) beschriebenen Methode wurde ein Gemisch von 2-Methyl-3(-5 und -6)chlorpyrazin hergestellt. 0,2 Mol dieses 2-Methylchlorpyrazingemisches wurde einer Suspension von 0,2 Mol Natriumfurfurylmercaptid in 250 ml Xylol zugegeben. Das Gemisch wurde während 6 Stunden gekocht. Nach dem Abkühlen wurden 250 ml Wasser zugefügt, worauf die organische Schicht eingeengt und destilliert wurde. Man erhielt auf diese Weise 13,5 g eines Gemisches von [2-Methylpyrazinyl (3, -5 und -6)]-furfuryl-sulfid; Sdp.   153-156"    C/10 Torr; nD20 = 1,5970; d420 = 1,2164.



   (1) b. Pyrazinylmethyl-mercaptan. Eine Lösung von 6,3 g (0,05 Mol) Chlormethylpyrazin (erhalten nach der in J. Org.



  Chem. 26, 2356 (1961) beschriebenen Methode) in 20 ml Äther wurde langsam unter Rühren einer Lösung von Natriumhydrogensulfid (60%) in 50 ml absolutem Methanol zugesetzt. Das Reaktionsgemisch wurde während 3 Stunden bei Raumtemperatur weitergerührt. Der Niederschlag, der sich gebildet hatte, wurde abfiltriert, worauf das Lösungsmittel abgedampft und der Rückstand in Wasser gelöst wurde.



  Die Lösung wurde zweimal mit Äther extrahiert. Die wässrige Phase wurde mit Essigsäure neutralisiert und mit Äther extrahiert. Der Extrakt wurde getrocknet, worauf das Lösungsmittel abgedampft und der Rückstand destilliert wurde.



  Man erhielt 0,25 g Pyrazinylmethylmercaptan mit Sdp. 44   bis 45" C/0,07 mm Hg.   



   (1) c. Pyrazinylmethyl-methyl-sulfid wurde nach der in Houben-Weyl, 4. Aufl., Band 9, 97 (1955) beschriebenen Methode durch Umsetzung von Chlormethylpyrazin (erhalten nach der in J. Org. Chem. 26, 2356 (1961) beschriebenen Methode) mit Natriummethylmercaptid hergestellt und wies einen Sdp. von   105-106"    C/12 mm Hg auf.



      (1) d. Pyrazinylmethyl-äthyl-sulfid wurde in der gleichen    Weise hergestellt wie die Verbindung (1) c., indem Natrium äthylmercaptid anstelle von Natriummethylmercaptid ver   wendet wurde. Das Produkt wies einen Sdp. von 114-116  C/    12 mm Hg auf.



   (1) e. Pyrazinylmethyl-furfuryl-sulfid wurde in der gleichen Weise hergestellt wie die Verbindung (1) c., indem Natriumfurfurylmercaptid anstelle von Natriummethylmer  captid verwendet wurde. Das Produkt wies einen Sdp. von   116     C/0,05 mm Hg auf.



   (1) f. Essigsäure-pyrazinylmethylthiolester wurde durch Acetylierung von Pyrazinylmethylthiol nach der in Houben Weyl, 4. Aufl., Band 9, 753 (1955) beschriebenen Methode hergestellt und wies einen Sdp. von   52"    C/0,02 mm Hg auf.



   (1) g. Pyrazinyläthyl-mercaptan wurde durch Umsetzung von Vinylpyrazin (erhalten nach der in J. Org. Chem. 27, 1363 [1962] beschriebenen Methode) mit Thioessigsäure und Hydrolyse des erhaltenen Thiolsäureesters nach der in J. Org. Chem. 22, 980 (1957) beschriebenen Methode hergestellt und wies einen Sdp. von   56,5-60       C 0,003    mm Hg auf.



   (1) h. (Pyrazinyläthyl)-methyl-sulfid wurde durch Umsetzung von Vinylpyrazin (siehe J. Org. Chem. 27, 1363 [1962]) mit Methylmercaptan unter UV-Belichtung und in Gegenwart von Benzoylperoxyd nach der in Acta Chem.



  Scand. 8, 295 (1954) beschriebenen Methode hergestellt.



  Das Produkt wurde durch Massenspektrometrie identifiziert und wies einen Sdp. von   57-69"    C/0,05 mm Hg auf.



     (1)1.    (Pyrazinyläthyl)-äthyl-sulfid wurde in der gleichen Weise hergestellt wie die Verbindung (1) h., jedoch unter Verwendung von Äthylmercaptan. Das Produkt wies einen Sdp. von   75"    C/0,03 mm Hg auf.



   (1) j. (Pyrazinyläthyl)-furfuryl-sulfid wurde in der gleichen Weise hergestellt wie die Verbindung (1) h., jedoch unter Verwendung von Furfurylmercaptan. Das Produkt wies einen Sdp. von   116-117     C/0,01 mm Hg auf.



   (1) k. Essigsäure-(2-pyrazinyläthyl)-thiolester wurde durch Umsetzung von Vinylpyrazin mit Thioessigsäure in Gegenwart von Benzoylperoxyd als Katalysator nach der in J. Org. Chem. 27, 2853 (1962) beschriebenen Methode hergestellt und wies einen Sdp. von   80"    C/0,02 mm Hg auf.



   (2) a. 2,5-Dimethyl-3-mercapto-pyrazin: Eine Lösung von 1,3 g (0,023 Mol) Natriumhydrogensulfid und 2,5 g (0,01 Mol) 2,5-Dimethyl-3-jod-pyrazin in 70 ml abs. Methanol wurde während 3 Stunden unter Rückfluss gekocht. Nach Abdampfen des Alkohols wurde der Rückstand in   1n    NaOH gelöst, die Lösung filtriert und das Filtrat mit Essigsäure neutralisiert. Das Reaktionsprodukt wurde in üblicher Weise isoliert und dann sublimiert. Man erhielt 0,81 g eines gelben Pulvers mit Smp.   182-185     C.



   (2) b. 2,5-Dimethyl-3-methylthio-pyrazin: 2,85 g (0,02 Mol) 2,5-Dimethyl-3-chlorpyrazin und 0,06 Mol Methylmercaptan wurden in einer Lösung von 0,7 g Natrium in 20 ml abs. Äthanol gelöst. Das Reaktionsgemisch wurde während 45 Minuten gekocht. Nach Abdampfen des Alkohols wurde der Rückstand in Wasser gelöst und das Sulfid mit Äther extrahiert. Das destillierte Produkt (Ausbeute 75,6%) wies einen Sdp. von   40-50"    C/11 mm Hg auf.



   (2) c. 2,5-Dimethyl-3-äthylthio-pyrazin wurde in der gleichen Weise hergestellt wie die Verbindung (2) b., jedoch unter Verwendung von 0,06 Mol Äthylmercaptan anstelle von Methylmercaptan. Das Produkt (Ausbeute 75 %) wies einen Sdp. von   128     C/9 mm Hg auf.



   (2) d. 2,5-Dimethyl-3-furfurylthio-pyrazin wurde in der gleichen Weise hergestellt wie die Verbindung (2) b., jedoch unter Verwendung von 0,06 Mol Furfurylmercaptan anstelle von Methylmercaptan. Das Produkt (Ausbeute 75 %) wies einen Sdp. von   115-120     C/0,02 mm Hg auf.



   (2) e. 2,5-Dimethyl-3-acetylthio-pyrazin wurde durch Acetylierung von 2,5-Dimethyl-3-mercapto-pyrazin [Verbindung (2) a. ] mit Essigsäureanhydrid in alkalischem Medium nach der in Houben-Weyl, 4. Aufl., Band 9, 753 (1955) beschriebenen Weise hergestellt und wies einen Smp. von   3642"    C auf.



   2. Teil
Die organoleptische Bewertung der Substanzen der Stoffgruppen I bis VI wurde mittels drei Prüfmethoden A, B und C durchgeführt. Die Methode A diente dazu, den Eigengeschmack der einzelnen Substanzen zu ermitteln. Die geschmacksverändernden Eigenschaften der Substanzen wurden mittels der Methoden B und C ermittelt. Es wurde insbesondere die geschmacksverändernde Wirkung der Prüfsubstanzen (im folgenden  Geschmacksstoffe  genannt) auf Kaffeeprodukte und speziell auf sprühgetrocknete lösliche Kaffeepulver geprüft.



   Methode A
Die Geschmacksstoffe wurden in einem aus einer 65 %igen Lösung von Rohrzucker in Leitungswasser bestehenden Zukkersirup gekostet. Die zu prüfenden Geschmacksstoffe wurden dem Sirup in Form von Lösungen von 1 Gew. % oder 1 Gew.   %O    in 96 %igem Alkohol zugegeben. Die Konzentration der Geschmacksstoffe im Zuckersirup schwankte entsprechend der Geschmacksintensität zwischen 0,005 und 5 g pro 100 Liter Sirup. Proben des aromatisierten Sirups wurden einer Gruppe von Geschmacksprüfern vorgelegt. Nach dem Kosten der Proben musste jeder Prüfer eine Beschreibung des Geschmackes der einzelnen Geschmacksstoffe abgeben.



   Methode B
Als Substrat für die Prüfung wurde ein Kaffeegetränk verwendet, das durch Auflösen eines im Handel erhältlichen, sprühgetrockneten Kaffeepulvers in siedendem Wasser im Verhältnis von 1 g Pulver auf 80 ml Wasser hergestellt wurde.



  Für jeden zu prüfenden Geschmacksstoff wurde ein Gefäss mit Kaffeegetränk bereitgestellt. Die Geschmacksstoffe wurden dem Kaffeegetränk in Form von Lösungen von 1 Gew. % oder 1   Gew. /OO    in 96 %igem Alkohol in Konzentrationen von 0,005 bis 5 g auf 100 Liter Getränk zugegeben. Nach Zugabe der abgemessenen Menge der Geschmacksstofflösung wurde das Kaffeegetränk gut gerührt und sofort in eine Reihe von Tassen für die organoleptische Prüfung gegossen. Das Kosten des Getränkes wurde so rasch als möglich, auf jeden Fall nicht später als 15 Minuten nach der Zubereitung vorgenommen.



   Die nur mit einer Kennzahl versehenen gefüllten Tassen wurden in einer Reihe aufgestellt, wobei die erste Tasse eine nicht aromatisierte Vergleichsprobe des Kaffeegetränkes enthielt. Die Geschmacksprüfer mussten feststellen, ob zwischen der Vergleichsprobe und den anderen Proben geschmacklich ein Unterschied bestand oder nicht. Die Prüfer mussten ferner die Geschmacksunterschiede beschreiben und charakterisieren.



   Methode C
Als Substrat für die Geschmacksprüfung wurde eine
1,35 %ige Lösung eines im Handel erhältlichen, sprühgetrock neten Kaffeepulvers mit verhältnismässig  flachem  Ge schmack und Aroma in Quellwasser verwendet. Die einzel nen Geschmacksstoffe wurden je einer Portion des Kaffee getränkes mittels einer Mikrospritze in Mengen von 2 bis
150 Mikroliter zugegeben. Alle für die Zubereitung des
Kaffeegetränkes, die Aromatisierung und die Prüfung ver wendeten Gefässe und sonstigen Geräte wurden peinlichst gesäubert. Für die Geschmacksprüfung wurden mindestens 5 erfahrene Geschmacksprüfer eingesetzt. Im übrigen wurde gleich wie bei Methode B gearbeitet.

 

   Die Resultate der organoleptischen Prüfungen sind in den nachfolgenden Tabellen I bis VI zusammengefasst. Die
Nummern der Tabellen entsprechen den im 1. Teil beschrie benen Gruppen. In der ersten Kolonne der Tabellen sind die Nummern der einzelnen Verbindungen innerhalb der   Gruppen angeführt. Die zweite Kolonne der Tabellen verweist auf die angewendete Prüfmethode. In der dritten Kolonne der Tabellen sind die verwendeten Mengen der Prüfsubstanzen in g pro 100 Liter Getränk (Zuckersirup oder Kaffeegetränk) angegeben.



   Tabellen betreffend die organoleptische Bewertung
Tabelle   l    Nummer Versuch Menge Organoleptische Bewertung (1) a. A 0,25 gerösteter Hopfen (1) a. B 0,06 Röstkaffee  (1) a. C 0,68 erdig; überrösteter Kaffee   (1)b.    A 0,1 verbrannt (1) b. B 0,01 geröstete Geschmacksnote   (1) b.    C 0,08 Kaffeesatz; toastähnlich; nussartige Note (1) c. A 0,5 verbrannt; leicht gummiartige Note (1) d. A 0,05 Fleischbouillon   (1) es    A 0,1 verbrannt (1)   f.    A 0,05 verbrannt; grün; fettig   (1) g. A A 0,5-1,0 verbrannt; phenolisch    (1) h. A 0,1 verbrannt   (1)h.    B 0,03 bitter; Röstnote (1) h. C 0,05 bitter; astringierend (1) i. A 0,01 verbrannt; fleischartig (1) i. B 0,03 bitter; astringierend (1) i.

  C 0,01 schweflig; bouillonartig   (1) j.    A 1,0 gummiähnlich (1) k. B 0,08 Röstgeschmack (2) a. A 1,0 styrolähnlich (2) b. A 0,75 bitter; Röstgeschmack (3) a. A 0,05 verbrannt; blumige Note (3) b. B 0,05 schweflig; erdige Note (3) b. C 0,13 nussartig; Mercaptannote
Tabelle II Nummer Versuch Menge Organoleptische Bewertung (1)-a. A 0,03 Kaffeegeschmack (1) a. B 0,04 Kaffeegeschmack (1) a. C 0,02 schwefliger- mercaptanartiger
Geschmack   (1)    b. A 0,25 kaffeeähnlich; zwiebel- und knoblauchartige Note (1) c. A 0,25 kaffeeähnlich   (1)    d. A 1,0 knoblauchartig  
Tabelle II (Fortsetzung) Nummer Versuch Menge Organoleptische Bewertung (1) e. A 0,25 kaffeeähnlich    (1) e.    C 0,03 schweflig, sauer, karamellenartig, nussartig (1)   f.    A 1,0 kaffeeartig, pilzartig (1) g.

  A 0,1 kaffeeartig (1)   g.    C 0,01 verbrannt, kornartig, nussartig (1) h. A 0,01 verbrannt, zwiebelartig, pilzartig (2) a. A 0,01-0,03 senfartig, zwiebelähnlich (2) a. B 0,004 fader Kaffeegeschmack (2) a. C 0,005 geraniumartig (2) b. A 0,05 zwiebelartig (2) c. A 0,05 zwiebelartig (2) c. B 0,02 astringierend (2) c. C 0,02 nussartig; astringierend; bittere
Note (2) d. B 0,015 fettig, erdig (2) d. C 0,013 blumig; Mercaptangeschmack (2) e. B 0,002 metallisch; Röstnote (2) e. C 0,000 holzig, bitter, nussartig (2) f. A 0,001 verbrannt, zwiebelartig, karamellenartig (3) a. A 0,2-0,5 Kohlgeschmack (3) a. C 0,067 schweflig, mercaptanartig   (4) a.    A 0,3 verbrannter Kaffee; metallische
Note (5) a. B 0,03 metallische, schweflige Note (5) b.

  B 0,06 metallische, astringierende, erdige Note
Tabelle   111   
Nummer Versuch Menge Organoleptische Bewertung  (1) a. A 0,01 kaffeeartig (1) a. C 0,007 schweflig, mercaptanartig  (1) b. A 0,01 knoblauchartig    (1)c.    A 0,1 kaffeeartig (1) c. B 0,01 aromatische Note (1) c. C 0,005 geraniumartig, mercaptanartig, nussartige Note (1) d. A 0,001 verbrannt; Kaffeesatz; Zwiebel geschmack (1) e. A 0,10 verbrannt; Zwiebelgeschmack (2) a. A 1,0 gekochtes Gemüse (2) b. A 1,0 verbrannt, kaffeeartig (2) c. A 1,0 kaffeeartig  
Tabelle IV Nummer Versuch Menge Organoleptische Bewertung (1) a. A 5,0 verstärkt den bitteren Geschmack    (1)a. a. c 0,093 Popcorn, nussartig, karamellenartig,    kornartig (1) b. A 0,25 verstärkt die verbrannte Note (1) c. A 0,25 verstärkt die phenolische Note (1) d.

  A 5,0 verstärkt die verbrannte Note   (1) d.    C 0,025 grün, sauer, kornartig, bitter   (1)    e. A 0,2 verstärkt die Röstnote (1)   f.    A 6,0 schwach verbrannte Note (1) g.   13    0,30 Röstnote; astringierend; erdig (1) h. B 0,12 pilzartig, bitter, grün (1) i.   13    0,25 astringierend, fettig, grün   (1)    j. B 0,40 astringierend; Röstgeschmack  (1) k. B 0,40 astringierend, grün   (1)1.    B 0,30 bittere, grün, erdige Note (1) m. B 0,12 metallische Note (1) n. B 0,40 bittere, fettige Note
Tabelle V Nummer Versuch Menge Organoleptische Bewertung (1) a.   13    0,03 metallische, verbrannte Note (1) b. B 0,01 metallische, erdige, verbrannte Note (1) c. B 0,60 astringierende, schweflige, grüne Note (1) d.

  B 0,03 metallische, schweflige, verbrannte
Note
Tabelle VI Nummer Versuch Menge Organoleptische Bewertung (1) a. A 0,1 gerösteter Kaffee (1) a.   13    0,1 Röstgeschmack; Kaffeesatz (1) b. A 2,0 gebratenes Fleisch (1) c. A 0,1 kohlartig (1) c.   13    0,01-0,02 strohige, schwere Geschmacksnote (1) d. A 0,2-0,3 kohlartig, zwiebelartig (1) e. A 2,0 kaffeeartig   (1)    e: C 0,135 schweflig, toastartig, nussartig verbrannt, kornartig (2) a. A 1,0 kaffeeartig (2) a. C 0,135 verbrannt, schweflig, gummiartig  
Tabelle VI (Fortsetzung) Nummer Versuch Menge Organoleptische Bewertung (2) b. C 0,5 weisse Rüben (2) c. A 3,0 verbrannt (2) d. A 1,0 kaffeeartig (2) e. A 5,0 schweflig; leberartig (3) a. B 1,0 erdig, schweflig, papierartig (3) a. C 1,08 sauer, schweflig (3) b. B 0,12 bitter, erdnussartig (3) b.

  C 0,135 überrösteter Kaffee; Jodoform (3) c. B 0,20 haselnussartig, erdig (3) c. C 0,22 verbranntes Korn (3) d. B 1,9 erdig (3) d. C 2,96 verbranntes Korn; bitter gewürzartig (3) e. B 1,0 lederig, blumig
3. Teil
Verwendungsbeispiele
Obschon mehrere der in den vorangehenden Tabellen aufgezählten Stoffe einen mehr oder weniger unnatürlichen Eigengeschmack oder zumindest einen Geschmack aufweisen, der nicht unbedingt für die Verwendung dieser Stoffe als Aromatisierungsmittel in Nahrungsmitteln und Getränken spricht, haben sich diese Stoffe dennoch als durchaus brauchbar erwiesen, wenn sie als Mischbestandteile zusammen mit anderen Geschmacksstoffen in geeigneten Mischverhältnissen verwendet werden. In den wenigsten Fällen wird man mit einer einzigen Verbindung der Gruppen I bis VI den gewünschten geschmacksverändernden Effekt erzielen können.



  In den meisten Fällen wird man zur Erzielung einer bestimmten geschmacklichen Veränderung von Lebensmitteln oder Getränken Gemische aus mehreren der in den vorangehenden Tabellen gekennzeichneten Verbindungen verwenden.



   Die nachfolgenden Beispiele sollen zeigen, wie man durch zweckmässige Auswahl von Verbindungen aus den Gruppen I bis VI bestimmte Geschmacksnoten von Nahrungs-, und Genussmitteln oder Getränken verändern, z. B. verstärken oder verbessern kann.

 

   Die folgende Tabelle fasst Beispiele von Aromatisiermitteln zusammen, die von aromatischen Materien aus hergestellt wurden, und sie umfasst eine oder mehrere Verbindungen, welche in dieser Erfindung beschrieben wurden.



   Tabelle VII
Verbindung Gewichtsteile Nummer Name Beisp. 1 Beisp. 2 Beisp. 3
2-Methyl-3-äthyl-pyrazin - 40 20
2,3-Diäthyl-pyrazin - - 0,5
2-Methyl-3-isopropyl-pyrazin 5 5 7,5
2-Acetyl-pyrazin - 30 10
2-Methyl-3-methylthio-pyrazin 2 - 2   11(1)    a. Essigsäure-furfurylthiolester 2 2 3
Furfuryl-methyl-sulfid - 1     2-Acetyl-thiophen    - 80  II (2) b.

  Furfuryl-propyl-sulfid - 3 1
2,6-Dimethyl-thio-y-pyron 4 4 4    1 (1) a.    2-Methoxybenzolthiol - 12 6
2-Hydroxyphenyl-methyl-sulfid 1 2 1,5
3,4-Xylenol 4 4 2
2-Hydroxyacetophenon - - 5  
Tabelle VII (Fortsetzung)
Verbindung Gewichtsteile Nummer Name Beisp. 1 Beisp. 2 Beisp. 3    4-Athyl-2-methoxy-phenol    - 5 2,5    4-Athyl-phenol    - - 0,5
Pyridin 20 30 20
2-Vinyl-benzofuran - 3 4
4-Vinyl-1,2-dimethoxy-benzol - 40 
Propionsäure-furfurylester - 50 
Furfural - 100 
Diese geschmackgebenden Mittel wurden einem Aufguss eines im Handel erhältlichen Pulverkaffees zugesetzt. Dadurch wurden dem Kaffeegetränk Geschmacksnoten verliehen, die in der Richtung des Geschmackes und Aromas eines aus frisch gemahlenem geröstetem Kaffee zubereiteten Kaffeegetränks lagen.



   Um den geschmacksverändernden bzw. -verstärkenden Effekt der erfindungsgemäss zu verwendenden Verbindungen zu zeigen, wurde ein Aromatisierungsmittel folgender Zusammensetzung verwendet.



   Verbindung Gewichtsteile
3-Methyl-cyclopentandion-(1,2) 50
Furfurylalkohol 50
Furfural 10
Diacetyl 5
Acetylmethylcarbinol 30
Benzylalkohol 100
Propylenglykol 755
1000
Diesem   Aromatisierungsmittei    wurden Verbindungen der Gruppe VI (schwefelhaltige Pyrazinverbindungen) in unterschiedlichen Mengen zugesetzt. Die so erhaltenen modifizierten Aromatisierungsmittel wurden verwendet, um den Geschmack der folgenden Lebensmittel und Getränke zu verändern bzw. zu verbessern und zu verstärken: a) Mit Zucker gesüsste Milch. Zusatz im Verhältnis von 10 g Aromatisierungsmittel pro 100 kg Getränk.



   b) Speiseeismasse. Zusatz im Verhältnis von 10-15 g Aromatisierungsmittel pro 100 kg Masse.



   c)  Cake-mix  (gebrauchsfertiges Kuchenpulver). Zusatz im Verhältnis von 20 g Aromatisierungsmittel pro 100 kg fertigen Kuchens.



   d) Milchpudding. Zusatz im Verhältnis von 10-15 g Aromatisierungsmittel pro 100 kg Puddingmasse.



   e) Milchschokolade. Zusatz im Verhältnis von 25 g Aromatisierungsmittel pro 100 kg Schokoladenmasse.



   Die Zusammensetzung der modifizierten Aromatisierungsmittel ist der nachstehenden Tabelle VIII zu entnehmen.



   Tabelle VIII
Verbindung Gewichtsteile Nummer Name Beisp. 4 Beisp. 5 Beisp. 6 Beisp. 7 Beisp. 8 Beisp. 9 VI (1) g. 2-Pyrazinyläthyl-mercaptan 100 - - - 50 50 VI (1) h. (2-Pyrazinyläthyl)-methyl-sulfid - 30 - - - 5 VI (1) i. (2-Pyrazinyläthyl)-äthyl-sulfid - - 125 - - 20 VI (1) j. (2-Pyrazinyläthyl)-furfuryl-sulfid - - - 100 50 35    3-Methylocyclopentandion-(1,2)    50 50 50 50 50 50
Furfurylalkohol 50 50 50 50 50 50
Furfural 10 10 10 10 10 10
Diacetyl 5 5 5 5 5 5
Acetylmethylcarbinol 30 30 30 30 30 30
Benzylalkohol 100 100 100 100 100 100
Propylenglykol 655 725 630 655 655 655
1000 1000 1000 1000 1000 1000  
Alle modifizierten Aromatisierungsmittel der Beispiele 4 bis 9 verliehen den Nahrungs- und Genussmitteln (a) bis (e) eine Geschmacksnote, die von den Geschmacksprüfern als ausgesprochen röstkaffeeartig charakterisiert wurde.



   Es wurden weitere Aromatisierungsmittel hergestellt, indem Verbindungen der Gruppe VI mit andern aromatischen Substanzen zugesetzt   wurden,    wie dies aus der nachstehenden Tabelle IX hervorgeht.



   Tabelle IX
Verbindung Gewichtsteile
Beispiele Nummer Name 10 11 12 13 VI   (log.    2-Pyrazinyläthyl-mercaptan 20 20 20 20 VI (1) j. (2-Pyrazinyläthyl)-furfurylsulfid 20 20 20 20
2-Methyl-3-äthyl-pyrazin - - 10 10
2-Methyl-3-propyl-pyrazin - - 20 5
2,3-Diäthyl-pyrazin (10 % Lös.) - 10 - 5
3-Methyl-cyclopentandion-(1,2) 50 50 50 50
Furfurylalkohol 50 50 50 50
Furfural 10 10 10 10
Diacetyl 5 5 5 5
Acetylmethylcarbinol 30 30 30 30
Benzylalkohol 100 100 100 100
Propylenglykol 715 705 685 695
1000 1000 1000 1000
Die Aromatisierungsmittel gemäss den Beispielen 10 bis 13 wurden wiederum den Nahrungs- und Genussmitteln (a) bis (e) in der oben angegebenen Dosierung einverleibt. Die auf diese Weise behandelten Nahrungs- und Genussmittel wiesen ein ausgesprochen kaffeeartiges Aroma mit schachem kaffeesatzartigem Beigeschmack auf.



   Die geschmacksverändernden Mittel gemäss der Erfindung werden zweckmässigerweise in verdünnter Form, z. B.



  als verdünnte Lösungen in Alkohol, Triacetin oder in anderen geniessbaren Lösungsmitteln, verwendet, um die genaue Dosierung und die gleichmässige Verteilung in den Lebensmitteln zu erleichtern.



   Da die Geschmacksstoffe der Gruppen I bis VI sehr unterschiedliche Geschmacksintensitäten aufweisen, ist auch deren Dosierung in Nahrungsmitteln und Getränken beträchtlichen Schwankungen unterworfen. Die zur Erzielung eines bestimmten Geschmackseffektes geeignete Dosierung muss man von Fall zu Fall durch Experimentieren ermitteln.



   Die erfindungsgemässen geschmacksverändernden Mittel eigenen sich insbesondere zur geschmacksverändernden Behandlung von sog. löslichem Pulverkaffee. Bei der Herstellung solcher Kaffeepulver aus gemahlenem geröstetem Kaffee gehen viele Geschmacks- und Aromastoffe verloren.

 

  Die auf dem Markt angebotenen löslichen Kaffeeprodukte liefern Getränke, die, verglichen mit einem aus frisch gemahlenem geröstetem kaffeegebrauten Kaffeegetränk, geschmacks- und aromaarm sind. Durch Verwendung der geschmacksverändernden Mittel gemäss der Erfindung ist es nun möglich, die geschmackliche Qualität der löslichen Kaffeepulver wesentlich zu verbessern und ein Aroma zu erzeugen, das dem natürlichen Kaffeearoma viel näher kommt.



  Die geschmacksverändernden Mittel können dem löslichen Pulverkaffee beispielsweise durch Aufsprühen einverleibt werden.



   Die geschmacksverändernden Mittel gemäss der Erfindung sind nicht nur zur Verbesserung des Geschmacks und Aromas von löslichem Pulverkaffee verwendbar, sondern eignen sich auch zur Herstellung von künstlichen Kaffee Essenzen und zur Erzeugung von anderen Aromen. 



  
 



  Use of sulfur-containing compounds as flavor-changing additives to food and beverages
The present invention relates to the use of sulfur-containing compounds of groups I to VI defined below as taste-changing additives for foods and beverages with the purpose of producing or enhancing a burnt or roasted taste.



   Flavor-modifying is to be understood as meaning all processes or treatments by which tasteless or poor-flavored foods and beverages are given a certain taste or aroma, or through which the taste of foods and beverages is enhanced, improved, masked, suppressed or otherwise in a certain direction is changed.



   The object on which the present invention is based was to expand the selection of the flavors available hitherto and to provide food technicians with new and refined means in order to be able to better imitate the aromas produced by nature in a synthetic way. The change or improvement of the taste properties of food and beverages through the use of artificial flavors with precisely reproducible taste properties and qualities is becoming more and more important in the food industry, since new raw materials that have not been used previously have been developed for human nutrition, to counter the threat of food shortages in certain areas of the globe.



   It has been found that the compounds of groups I to VI defined below, some of which are known, some of which contain new substances, individually or in the form of appropriate mixtures of at least two components, are suitable for enhancing the taste properties of a wide variety of solid or liquid foods and beverages to change in the desired sense. For example, products such as fruit juices, vegetable juices, dairy products, coffee, tea, cocoa and chocolate products, cereal flakes, flours, confectionery products, meat products, baked goods, ice cream, etc. can be changed in taste.



  You can also improve or enhance the taste of canned foods.



   Mixtures of compounds from groups I to VI are particularly suitable, for example, for changing, improving or enhancing the taste properties of so-called soluble coffee products (referred to as instant coffee in English usage).



   The compounds in question belong to the following groups:
I.- Aromatic sulfur compounds
II. - Sulphurous furan compounds
III. - Thiophene-sulfur compounds
IV. - Sulfur-containing pyridine compounds
V. - Sulfur-containing pyrrole compounds
VI. - Sulfur-containing pyrazine compounds
In the first part of the following description, groups I to VI are defined by structural formulas and supported by examples. In the second part, the description of the taste and taste-changing properties of the compounds of groups I to VI is summarized in Tables I to VI. The third part contains examples for the use of the taste-changing agents for the treatment of food and luxury goods.



   1st chapter
For each group, the general formula with the definition of the symbols is given first. Examples of compounds falling under the general formula then follow. In addition to the chemical name of each compound, the source of supply or a literature reference relating to a manufacturing process is given. Commercially available products are indicated by the abbreviation i. H. and can be obtained, for example, from the following companies: Fluka AG, Buchs (SG, Switzerland), Aldrich Chem. Co., Milwaukee (Wisc., USA), Dr. F. Raschig GmbH, Ludwigshafen a. Rh. (German Federal Republic) or K & K Laboratories Inc., Plainview (NY. 11803, USA).



   For all new compounds (abbreviated as new), production methods are given or described following the listing of the individual compounds.



   I. Aromatic sulfur compounds
EMI2.1
 where R1 denotes hydrogen or a hydroxy, alkoxy or alkyl group and R2 denotes hydrogen or an alkyl radical;
EMI2.2
 where R1 denotes hydrogen or a hydroxy, alkyl or alkoxy group, R2 denotes hydrogen or an alkyl radical, R3 denotes an alkyl or benzyl radical and n denotes the number 0, 1 or 2, and
EMI2.3
 where R denotes an alkyl or phenyl radical.



  Examples: (1) a. 2-methoxy-benzenethiol Ber. 39, 1348 (1906) b. Benzene thiol i. H.



   c. 2-Hydroxy-thiolphenol Beilstein 6, 793 d. 2-methylbenzenethiol i. H.



   e. 3-methylbenzenethiol i. H.



   f. 4-methylbenzenethiol i. H.



   G. 2,4-dimethylbenzenethiol Ber. 32, 1147 h. 3,4-dimethyl-benzenethiol J. Org. Chem. 26, 4047 (1961) i. 2-sithyl-benzenethiol Ber. 59, 349 j. 2-Ätlioxy-benzenethiol J. pr. Ch. 114, 231, 235 k. 4-methoxy-benzoithiol i. H.



  (2) a. Methyl phenyl sulfide i. H.



   b. Dibenzyl sulfide J. Chem. Soc. 1922, 1404 (3) a. Phenyl-methyl-disulfide J.A.C.S. 85, 1618 (1963) b. Diphenyl disulfide Ber. 56, 1929 (1923) II. Sulfur-containing furan compounds
EMI2.4
 wherein R denotes hydrogen or an alkyl or alkenyl radical and n denotes the number 1 or 2;
EMI2.5
 where R1 denotes hydrogen or an alkenyl radical, R2 denotes hydrogen or an alkyl, furfuryl or alkyl-substituted phenyl radical and n denotes the number 0, 1 or 2, with the restriction that R2 can be neither methyl nor furfuryl when R1 is hydrogen and n = 1;
EMI2.6
 wherein R denotes an alkyl or furfuryl radical;
EMI2.7
 where R1 denotes hydrogen or an alkyl radical and R2 denotes an alkyl or furfuryl radical, and
EMI2.8
 where R denotes an alkyl or acyl group.



  Examples: (1) a. Acetic acid furfurylthiol ester n.V.



   b. Propionic acid furfurylthiol ester n.V.



   c. Butyric acid furfuryl thiol ester n.V.



   d. a-furancarboxylic acid furfurylthiol ester n.V.



   e. ss, ss'-dimethylacrylic acid furfurylthiol ester n.V.



   f. Tiglic acid furfurylthiol ester n.V.



   G. Formic acid furfurylthiol ester n.V.



   H. Acetic acid 2- [furyl- (2)] -ethanthiolester n. V.



  (2) a. 5-methylfurfuryl-methylsulfide n.V.



   b. Furfuryl-propyl-sulfide n.V.



   c. Furfuryl isopropyl sulfide n.V.



   d. Furfuryl (5-methylfuryl) sulfide n.V.



   e. (5-Methylfuryl) -methyl-sulfide n.V.



   f. 2- [Furyl- (2)] ethanethiol n.v.



   (3) a. a-furancarboxylic acid methylthiol ester n.V.



   (4) a. Difurfuryl disulfide J.A.C.S. 52, 2141 (1930) (5) a. (Benzolfurfuryl-2) -methyl-sulfide n. V.



   b. Acetic acid (benzofurfuryl-2) thiol ester n.V.



   (1) a. Furfuryl thiol ester was prepared by reacting furfuryl mercaptan with acetyl chloride or acetic anhydride according to the method described in Houben-Weyl, 4th edition, Volume 9, 753 (1955) and had a boiling point of 90-92 ° C./12 mm Hg.



   By the same method but using the appropriate acid chlorides or anhydrides, the following compounds were obtained: (1) b. Furfurylthiol propionate, bp 95-97 C / 10 mm Hg.



   (1) c. Butyric acid furfuryl thiol ester, bp 105.5 to 106.5 C / 10 mm Hg.



   (1) d. a -Furancarboxylic acid furfurylthiol ester, bp.



     110 C / 0.01 mm Hg.



   (1) e. ss, p'-dimethylacrylic acid furfuryl thiolester, bp.



  850 C / 0.015 mm Hg.



   (1) f. Furfurylthiol tiglic acid, b.p. 84.5-87.5 ° C "0.03 mm Hg.



   (1) g. Furfurylthiol formate was prepared according to the method used for the synthesis of furfuryl formate and described in J.A.C. S. 64, 1583 (1942). The product had a bp 77 to 78 "C / 8 mm Hg.



   (1) h. Acetic acid 2- [furyl- (2)] -ethanthiol ester was prepared by reacting thioacetic acid with 2-vinyl-furan under the action of UV light and in the presence of benzoyl peroxide according to the method described in J. Org. Chem. 27, 2853 (1962) method described. The thioester had a bp 100-103 C / 0.05 mm Hg.



   (2) a. 5-Methylfurfuryl-methyl-sulfide was prepared by reacting 5-methylfurfuryl-mercaptan with dimethyl sulfate in an alkaline solution according to known methods and had a boiling point of 71-72 "C / 11 mm Hg. The 5-methylfurfuryl-mercaptan was eliminated the corresponding alcohol according to the method described in Org. Syn. 35, 67 (1955).



   (2 B. Furfuryl propyl sulfide was prepared by reacting sodium furfuryl mercaptide with n-propyl bromide according to the method described in Houben-Weyl, 4th edition, Volume 9, 97 (1955) and had a boiling point of 91 ° C./15 mm Hg.



   (2) c. Furfuryl isopropyl sulfide was prepared in the same way as compound (2) b., But using isopropyl bromide instead of n-propyl bromide, and had a bp of 84 "C / 16 mm Hg.



   (2) d. Furfuryl (5-methylfuryl) sulfide was prepared according to the method used for the synthesis of alkylthiofurans and described in CA 59,8681d (1963) by reacting 2-methylfuran with butyllithium and then with sulfur and the thiol obtained with without prior purification Furfuryl chloride was reacted. The slightly yellowish oil obtained had a bp of 67 "C / 0.04-0.05 mm Hg.



   (2) e. (5-Methylfuryl) methyl sulfide was prepared in the same manner as the compound (2) d. manufactured. The product was a pale yellowish oil with a boiling point of 80 "C / 45 to 50 mm Hg.



   (2) f. 2- [furyl (2)] ethanethiol. 24 g of acetic acid 2 [furyl (2)] ethane thiol ester were saponified by boiling in an aqueous alcoholic solution for 90 minutes in the presence of alkali. The reaction mixture was neutralized with acetic acid and then extracted with ether. Distillation gave 14.4 g of 2- [furyl- (2)] -ethanethiol with bp 61 to 62 "C / 0.03 mm Hg, and 22.3 = 1.5653; d42s, 2 = 1.153.

 

   (3) a. o-Furancarboxylic acid methylthiol ester was prepared by reacting methyl mercaptan with a-furancarboxylic acid chloride according to the method described in Houben-Weyl, 4th edition, Volume 9, 753 (1955) and had a boiling point of 92-93 ° C./11 mm Hg on.



   (5) a. (Benzofurfuryl-2) methyl sulfide was produced by reacting (benzofurfuryl-2) mercaptan with dimethyl sulfate in an alkaline solution and had a boiling point of 108-109 "C / 0.4 mm Hg.



   The (benzofurfuryl2) mercaptan used as the starting material was made from the corresponding alcohol according to the method described in Org. Synth. 35, 67 (1955) described method.



   (5) b. Acetic acid (benzofurfuryl-2) thiol ester was prepared in the same manner as the compound (1) a. (Acetic acid furfurylthiolester) and had a bp of 120 to 122 "C / 0.8 mm Hg.



  III. Thiophene sulfur compounds
EMI4.1
 wherein R is hydrogen or an alkyl, acetyl or thenyl radical and n denotes the number 1 or 2, and
EMI4.2
 where R denotes an alkyl or furfuryl radical.



   Examples: (1) a. Thenyl-mercaptan Compt. rend. 229, 1343 (1949) b. Thenyl methyl sulfide Compt. rend. 229, 1343 (1949) c. Thenyl thiol ester n.V.



   d. 2- [Thienyl- (2)] -ethanthiol n.V.



   e. Acetic acid 2- [thienyi- (2)] -ethanthiolester n. V.



   f. Dithenyl sulfide n.V.



   (2) a. Thienyl thiocarboxylic acid S-methyl ester n.V.



   b. Thienyl thiocarboxylic acid S-ethyl ester n.V.



   c. Thienyl thiocarboxylic acid S-furfuryl ester n.V.



   The new compounds of this class of substances can be obtained as follows: (1) c. Thenyl thiol ester was prepared in the same manner as the compound XXXI (1) a. (Acetic acid furfurylthiol ester). The product was a colorless liquid with a bp of 113-114 C.



   (1) d. 2- [thienyl- (2)] ethanethiol. 2-vinyl-thiophene (obtained by the method described in Org. Synth. 38, 86 [1958]) was reacted with thioacetic acid by the method described in J. Org. Chem. 27, 2853 (1962), whereupon the addition product obtained was reacted with Acid has been hydrolyzed. The product had a bp of 55 "C / 0.1 mm Hg.



   (1) e. Acetic acid 2- [thienyl- (2)] - ethanthiolester was used as an intermediate in the preparation of the compound (1) d. obtained by reacting 2-vinyl-thiophene with thioacetic acid and had a bp of 90 "C / 0.07 mm Hg.



   (1) f. Dithenyl sulfide was prepared in the same manner as the compound X (1) b. made using thenyl mercaptan instead of thenyl alcohol. The product had a bp of 118 C / 0.04 mm Hg.



   The compounds (2) a., (2) b, and (2) c, were prepared by reacting thionyl chloride with the sodium salts of the corresponding mercaptans in alcoholic solution by the method described in J.A.C. p. 77, 6709 (1955). After refluxing for one hour, the reaction mixture was filtered and concentrated. The residue was purified by chromatography on a silica gel column using a benzene-hexane mixture 8: 2 as the eluent. The structure of the products obtained was confirmed by mass spectrometry: (2) a. Thienyl-thiocarboxylic acid S-methyl ester: ion peaks with relative intensities: 111 (100%), 39 (22%) and 158 (12%).



   (2) b Thienyl thiocarboxylic acid S-ethyl ester:
Iohnpeaks with relative intensities: 111 (100%), 39 (17%) and 172 (10%).



   (2) c. S-furfuryl thienyl thiocarboxylate.



     Ion peaks with relative intensities: 111 (100%), 81 (73.5No) and 39 (20wo).



   IV. Sulfur-containing pyridine compounds
EMI4.3
 where R denotes hydrogen or an alkyl, acyl, furfuryl or pyridyl radical and n denotes the number 0 or 1 and 2.



  Examples: (1) a. [Pyridyl- (2) 1-methanethiol C.A. 55, 4542b (1961) b. 2-mercapto-pyridine i. H.



   c. 2-methylthio-pyridine n.V.



   d. 2-sithylthio-pyridine n.V.



   e. Acetic acid [pyridyl (2)] thiol ester n.v.



   f. Di- [pyndyl- (2) j-suffid J. Chem. Soc. 1942, 239 g. 2- [PyAdyl- (2)] -ethanthiol J. Org. Chem. 26, 82 (1961) h. 2- [Pyridyl- (2) I-ethyl-methyl-sulfide see i below. 2- [Pyridyl- (2)] -ethyl-ethyl-sulfide n. V.



   j. Acetic acid 2- [pyridyl (2)] ethanethiol ester, see below k. 2- pyridyl- (211-ethyl-furfuryl-sulfide n. V.



   1. [Pyridyl- (2)] -methyl-methyl-sulfide Helv. 47, 1754 (1964) m. [Pyridyl- (2)] -methyl-ethyl-sulfide n. V.



   n. Acetic acid- [pyridyl- (2)] -methanethiolester n. V.



   To prepare the known compound (1) h.



  [2- [Pyridyl- (2)] - ethyl-methyl-sulfide] the following method was used: 2-vinyl-pyridine was caused to react with methyl mercaptan by UV exposure in the presence of trace amounts of benzoyl peroxide and diphenyl sulfide. The product had a bp of 48 "C / 0.03 mm Hg.



   By the same method, the known compound (1) j. made by using thioacetic acid instead of methyl mercaptan. The product had a bp of 80 ° C / 0.02 mm Hg.



   The new compounds of this class of substances can be produced as follows: (1) c. 2-Methylthiopyridine was prepared according to the method described in Houben Weyl, 4th edition, Volume 9, 7 (1955), by alkylating 2-mercaptopyridine with methyl halide and neutralizing the pyridinium salt obtained with NaOH. The resulting pyridine base was extracted and distilled. She had a bdp of 67-68 "C /
10 mm Hg.



   (1) d. 2-ethylthio-pyridine was prepared in the same manner as the compound (1) c. prepared by using ethyl halide in place of methyl halide. The product had a bp 77-77.5 C / 8 mm Hg.



   (1) e. Acetic acid [pyridyl (2)] thiol ester was prepared by reacting 2-mercaptopyridine with acetic anhydride in an alkaline medium according to the method in Houben-Weyl, 4th edition, Volume 9, 753 (1955) and in JACS 59, 1089 (1937 ) and had a bp of 117-118 C / 9 mm Hg.



   (1) i. 2- [pyridyl- (2) j-ethyl-ethyl sulfide was prepared in the same manner as the compound (1) h., By using ethyl mercaptan instead of methyl mercaptan. The product had a bp of 62 "C / 0.005 mm Hg.



   (1) m. [Pyridyl- (2) j-methyl-ethyl-sulfide was prepared in the same way as the compound (1) 1. and had a bp of 107-110 ° C./10 mmHg.



   (1) n. Acetic acid [pyridyl (2)] methanethiol ester was prepared by reacting 2-mercaptomethylpyridine with acetyl chloride in an alkaline medium and had a bp 102-103 C / 9 mm Hg.



   V. Sulfur-containing pyrrole compounds
EMI5.1
 where R denotes an alkyl, furfuryl or acyl radical.



  Examples: (1) a. [N-methyl-pyrryl- (2)] -methyl-sulfide n.V.



   b. [N-methyl-pyrryl- (2)] -ethyl-sulfide n. V.



   c. [N-methyl-pyrrole- (2) j-furfuryl sulfide n.V.



   d. Acetic acid [N-methyl-pyrryl- (2)] -methylthlol ester n.V.

 

   The new compounds of this class of substances can be prepared as follows: (1) a. [N-methyl-pyrryl- (2)] -methyl-sulfide was obtained by alkylating [N-methyl-pyrryl- (2)] -methyl mercaptan with methyl iodide according to the method in Houben-Weyl, 4th edition, Volume 9, 97 (1955) and had a bp of 90 "C / 10 mm Hg.



   (1) b. [N-methyl-pyrryl- (2) j-ethyl sulfide was prepared in the same manner as the compound (1) a., Except that ethyl bromide was used instead of methyl iodide. The product had a bp of 99 "C / 10 mm Hg.



   (1) c. [N-methyl-pyrryl- (2)] -furfuryl-sulfide was prepared in the same manner as the compound (1) a., Except that furfuryl chloride was used instead of methyl iodide. The product had a bp 94 "C / 0.01 mm Hg.



   (1) d. Acetic acid [N-methyl-pyrryl- (2)] -methylthiol ester was obtained by acylation of [N-methyl-pyrryl- (2)] methyl mercaptan according to the method described in Houben-Weyl, 4th edition, Volume 9, 753 (1958) method described and had a bp of 69 "C / 0.05 mm Hg.



   VI. Sulfur-containing pyrazine compounds
EMI6.1
 where n denotes the number 0, 1 or 2, R1 denotes hydrogen or an alkyl, acyl or furfuryl radical and R2 denotes hydrogen or methyl, with the restriction that R1 and R2 cannot be methyl radicals when n = 0, and
EMI6.2
 where R denotes hydrogen or an alkyl, furfuryl or acyl radical.



  Examples: (1) a. [2-methylpyrazinyl- (3, -5 and -6)] furfuryl sulfide n.V.



   b. Pyrazinylmethyl-mercaptan n.V.



   c. Pyrazinylmethyl-methyl-sulfide n.V.



   d. Pyrazinylmethyl-ethyl-sulfide n.V.



   e. Pyrazinylmethyl-furfuryl-sulfide n. V.



   f. Pyrazinylmethylthiol acetate n.V.



   G. Pyrazinylethyl mercaptan n.V.



   H. (Pyrazinylethyl) methyl sulfide n.V.



   i. (Pyrazinyl ether) ethyl sulfide n.V.



   j. (Pyrazinylethyl) -furfuryl-sulfide n.V.



   k. Acetic acid (pyrazinylethyl) thiol ester n.V.



  (2) a. 2,5-dimethyl-3-mercapto-pyrazine n.V.



   b. 2,5-dimethyl-3-methylthio-pyrazine n.V.



   c. 2,5-dimethyl-3-ethylthio-pyrazine n.V.



   d. 2,5-dimethyl-3-furfurylthio-pyrazine n.V.



   e. 2,5-dimethyl-3-acetylthio-pyrazine n.V.



   The new compounds of this class of substances can be prepared as follows: (1) a. [-Methylpyrazinyl- (3, -5 and -6)] furfuryl sulfide (mixture). A mixture of 2-methyl-3 (-5 and -6) chloropyrazine was prepared by chlorinating 2-methylpyrazine by the method described in J. Org. Chem. 26, 2356, 2360 (1961). 0.2 mol of this 2-methylchloropyrazine mixture was added to a suspension of 0.2 mol of sodium furfuryl mercaptide in 250 ml of xylene. The mixture was boiled for 6 hours. After cooling, 250 ml of water was added, and the organic layer was concentrated and distilled. In this way, 13.5 g of a mixture of [2-methylpyrazinyl (3, -5 and -6)] furfuryl sulfide were obtained; 153-156 "C / 10 Torr; nD20 = 1.5970; d420 = 1.2164.



   (1) b. Pyrazinylmethyl mercaptan. A solution of 6.3 g (0.05 mol) of chloromethylpyrazine (obtained according to the method described in J. Org.



  Chem. 26, 2356 (1961)) in 20 ml of ether was slowly added with stirring to a solution of sodium hydrogen sulfide (60%) in 50 ml of absolute methanol. The reaction mixture was further stirred for 3 hours at room temperature. The precipitate that formed was filtered off, the solvent was evaporated and the residue was dissolved in water.



  The solution was extracted twice with ether. The aqueous phase was neutralized with acetic acid and extracted with ether. The extract was dried, the solvent was evaporated and the residue was distilled.



  0.25 g of pyrazinylmethyl mercaptan with a boiling point of 44 to 45 "C / 0.07 mm Hg were obtained.



   (1) c. Pyrazinylmethyl-methyl-sulfide was obtained according to the method described in Houben-Weyl, 4th edition, Volume 9, 97 (1955) by reacting chloromethylpyrazine (obtained according to the method described in J. Org. Chem. 26, 2356 (1961) ) with sodium methyl mercaptide and had a bp of 105-106 "C / 12 mm Hg.



      (1) d. Pyrazinylmethyl ethyl sulfide was prepared in the same manner as the compound (1) c. By using sodium ethyl mercaptide instead of sodium methyl mercaptide. The product had a bp 114-116 C / 12 mm Hg.



   (1) e. Pyrazinylmethyl furfuryl sulfide was prepared in the same manner as the compound (1) c. By using sodium furfuryl mercaptide in place of sodium methyl mercaptide. The product had a bp of 116 ° C / 0.05 mm Hg.



   (1) f. Pyrazinylmethylthiol acetate was prepared by acetylating pyrazinylmethylthiol according to the method described in Houben Weyl, 4th edition, Volume 9, 753 (1955) and had a bp of 52 "C / 0.02 mm Hg.



   (1) g. Pyrazinylethyl mercaptan was obtained by reacting vinyl pyrazine (obtained by the method described in J. Org. Chem. 27, 1363 [1962]) with thioacetic acid and hydrolyzing the thiolic acid ester obtained by the method described in J. Org. Chem. 22, 980 (1957). method described and had a bp of 56.5-60 ° C. 0.003 mm Hg.



   (1) h. (Pyrazinylethyl) methyl sulfide was obtained by reacting vinyl pyrazine (see J. Org. Chem. 27, 1363 [1962]) with methyl mercaptan under UV exposure and in the presence of benzoyl peroxide according to the method described in Acta Chem.



  Scand. 8, 295 (1954) described method.



  The product was identified by mass spectrometry and had a bp 57-69 "C / 0.05 mm Hg.



     (1) 1. (Pyrazinylethyl) ethyl sulfide was prepared in the same manner as the compound (1) h., But using ethyl mercaptan. The product had a bp of 75 "C / 0.03 mm Hg.



   (1) j. (Pyrazinylethyl) furfuryl sulfide was prepared in the same manner as compound (1) h., But using furfuryl mercaptan. The product had a bp 116-117 C / 0.01 mm Hg.



   (1) k. Acetic acid (2-pyrazinylethyl) thiol ester was prepared by reacting vinylpyrazine with thioacetic acid in the presence of benzoyl peroxide as a catalyst according to the method described in J. Org. Chem. 27, 2853 (1962) and had a boiling point of 80 "C / 0.02 mm Hg.



   (2) a. 2,5-dimethyl-3-mercapto-pyrazine: A solution of 1.3 g (0.023 mol) of sodium hydrogen sulfide and 2.5 g (0.01 mol) of 2,5-dimethyl-3-iodo-pyrazine in 70 ml of abs . Methanol was refluxed for 3 hours. After evaporation of the alcohol, the residue was dissolved in 1N NaOH, the solution was filtered and the filtrate was neutralized with acetic acid. The reaction product was isolated in the usual manner and then sublimed. 0.81 g of a yellow powder with a melting point of 182-185 ° C. were obtained.



   (2 B. 2,5-dimethyl-3-methylthio-pyrazine: 2.85 g (0.02 mol) of 2,5-dimethyl-3-chloropyrazine and 0.06 mol of methyl mercaptan were in a solution of 0.7 g of sodium in 20 ml Section. Dissolved ethanol. The reaction mixture was boiled for 45 minutes. After evaporation of the alcohol, the residue was dissolved in water and the sulfide was extracted with ether. The distilled product (yield 75.6%) had a bp of 40-50 "C / 11 mm Hg.



   (2) c. 2,5-dimethyl-3-ethylthio-pyrazine was prepared in the same manner as the compound (2) b., But using 0.06 mol of ethyl mercaptan instead of methyl mercaptan. The product (yield 75%) had a bp of 128 C / 9 mm Hg.



   (2) d. 2,5-dimethyl-3-furfurylthio-pyrazine was prepared in the same manner as compound (2) b., But using 0.06 mol of furfuryl mercaptan instead of methyl mercaptan. The product (yield 75%) had a bp 115-120 C / 0.02 mm Hg.



   (2) e. 2,5-Dimethyl-3-acetylthio-pyrazine was obtained by acetylation of 2,5-dimethyl-3-mercapto-pyrazine [Compound (2) a. ] with acetic anhydride in an alkaline medium according to the manner described in Houben-Weyl, 4th edition, Volume 9, 753 (1955) and had a melting point of 3642 "C.



   Part 2
The organoleptic evaluation of the substances from substance groups I to VI was carried out using three test methods A, B and C. Method A was used to determine the taste of the individual substances. The taste-changing properties of the substances were determined using methods B and C. In particular, the taste-modifying effect of the test substances (hereinafter referred to as flavorings) on coffee products and especially on spray-dried, soluble coffee powder was tested.



   Method a
The flavors were tasted in a sugar syrup consisting of a 65% solution of cane sugar in tap water. The flavorings to be tested were added to the syrup in the form of solutions of 1% by weight or 1% by weight of O in 96% alcohol. The concentration of the flavoring substances in the sugar syrup fluctuated between 0.005 and 5 g per 100 liters of syrup, depending on the flavor intensity. Samples of the flavored syrup were presented to a panel of tasters. After tasting the samples, each tester had to give a description of the taste of the individual flavors.



   Method B.
As a substrate for the test, a coffee beverage was used which was prepared by dissolving a commercially available, spray-dried coffee powder in boiling water in a ratio of 1 g of powder to 80 ml of water.



  A vessel with coffee drink was provided for each flavor substance to be tested. The flavorings were added to the coffee drink in the form of solutions of 1% by weight or 1% by weight in 96% alcohol in concentrations of 0.005 to 5 g per 100 liters of drink. After adding the measured amount of the flavoring solution, the coffee beverage was stirred well and immediately poured into a series of cups for organoleptic examination. The drink was tasted as quickly as possible, in any case not later than 15 minutes after preparation.



   The filled cups, provided only with an identification number, were placed in a row, the first cup containing a non-flavored comparison sample of the coffee beverage. The taste testers had to determine whether or not there was a difference in taste between the comparison sample and the other samples. The examiners also had to describe and characterize the differences in taste.



   Method c
The substrate for the taste test was a
1.35% solution of a commercially available, sprühgetrock Neten coffee powder with a relatively flat Ge taste and aroma used in spring water. The individual flavors were each a serving of the coffee drink using a microsyringe in amounts of 2 to
150 microliters added. All for the preparation of the
Coffee drinks, the flavoring and the test vessels and other equipment were cleaned meticulously. At least 5 experienced taste testers were used for the taste test. Otherwise, the same procedure as in method B was used.

 

   The results of the organoleptic tests are summarized in Tables I to VI below. The
Numbers in the tables correspond to the groups described in Part 1. The numbers of the individual compounds within the groups are listed in the first column of the tables. The second column of the tables refers to the test method used. In the third column of the tables, the quantities of test substances used are given in g per 100 liters of drink (sugar syrup or coffee drink).



   Organoleptic evaluation tables
Table 1 Number Trial Amount Organoleptic Evaluation (1) a. A 0.25 roasted hops (1) a. B 0.06 roasted coffee (1) a. C 0.68 earthy; roasted coffee (1) b. A 0.1 burned (1) b. B 0.01 roasted flavor note (1) b. C 0.08 coffee grounds; toast-like; nutty note (1) c. A 0.5 burned; slightly rubbery note (1) d. A 0.05 meat bouillon (1) it A 0.1 burnt (1) f. A 0.05 burned; green; greasy (1) g. A A 0.5-1.0 burned; phenolic (1) h. A 0.1 burned (1) h. B 0.03 bitter; Toasted note (1) h. C 0.05 bitter; astringent (1) i. A 0.01 burned; meaty (1) i. B 0.03 bitter; astringent (1) i.

  C 0.01 sulfurous; bouillon-like (1) j. A 1.0 rubber-like (1) k. B 0.08 roasted taste (2) a. A 1.0 styrene-like (2) b. A 0.75 bitter; Roasted taste (3) a. A 0.05 burned; floral note (3) b. B 0.05 sulphurous; earthy note (3) b. C 0.13 nutty; Mercaptan note
Table II Number Trial Amount Organoleptic Rating (1) -a. A 0.03 coffee flavor (1) a. B 0.04 coffee flavor (1) a. C 0.02 sulfur-mercaptan-like
Taste (1) b. A 0.25 coffee-like; onion and garlic-like note (1) c. A 0.25 similar to coffee (1) d. A 1.0 garlic-like
Table II (continued) Number Trial Amount Organoleptic Rating (1) e. A 0.25 coffee-like (1) e. C 0.03 sulphurous, sour, caramel-like, nutty (1) f. A 1.0 coffee-like, mushroom-like (1) g.

  A 0.1 coffee-like (1) g. C 0.01 burnt, grain-like, nut-like (1) h. A 0.01 burnt, onion-like, mushroom-like (2) a. A 0.01-0.03 mustard-like, onion-like (2) a. B 0.004 bland coffee taste (2) a. C 0.005 geranium-like (2) b. A 0.05 onion-like (2) c. A 0.05 onion-like (2) c. B 0.02 astringent (2) c. C 0.02 nutty; astringent; bitter
Grade (2) d. B 0.015 greasy, earthy (2) d. C 0.013 floral; Mercaptan flavor (2) e. B 0.002 metallic; Roast note (2) e. C 0.000 woody, bitter, nutty (2) f. A 0.001 burnt, onion-like, caramel-like (3) a. A 0.2-0.5 cabbage flavor (3) a. C 0.067 sulphurous, mercaptan-like (4) a. A 0.3 burnt coffee; metallic
Note (5) a. B 0.03 metallic, sulphurous note (5) b.

  B 0.06 metallic, astringent, earthy note
Table 111
Number Attempt Amount Organoleptic Evaluation (1) a. A 0.01 coffee-like (1) a. C 0.007 sulphurous, mercaptan-like (1) b. A 0.01 garlic-like (1) c. A 0.1 coffee-like (1) c. B 0.01 aromatic note (1) c. C 0.005 geranium-like, mercaptan-like, nutty note (1) d. A 0.001 burned; Coffee grounds; Onion flavor (1) e. A 0.10 burned; Onion Flavor (2) a. A 1.0 cooked vegetables (2) b. A 1.0 burnt, coffee-like (2) c. A 1.0 coffee-like
Table IV Number Trial Amount Organoleptic Evaluation (1) a. A 5.0 increases the bitter taste (1) a. a. c 0.093 Popcorn, nutty, caramel-like, grain-like (1) b. A 0.25 increases the burned grade (1) c. A 0.25 increases the phenolic rating (1) d.

  A 5.0 increases the burned grade (1) d. C 0.025 green, sour, grainy, bitter (1) e. A 0.2 increases the roasted note (1) f. A 6.0 slightly burned grade (1) g. 13 0.30 toasted note; astringent; earthy (1) h. B 0.12 mushroom-like, bitter, green (1) i. 13 0.25 astringent, fatty, green (1) j. B 0.40 astringent; Roasted taste (1) k. B 0.40 astringent, green (1) 1. B 0.30 bitter, green, earthy note (1) m. B 0.12 metallic note (1) n. B 0.40 bitter, greasy note
Table V Number Trial Amount Organoleptic Evaluation (1) a. 13 0.03 metallic, burnt note (1) b. B 0.01 metallic, earthy, burnt note (1) c. B 0.60 astringent, sulphurous, green note (1) d.

  B 0.03 metallic, sulphurous, burnt
grade
Table VI Number Trial Amount Organoleptic Evaluation (1) a. A 0.1 roast coffee (1) a. 13 0.1 toasted taste; Coffee grounds (1) b. A 2.0 fried meat (1) c. A 0.1 cabbage-like (1) c. 13 0.01-0.02 straw-like, heavy taste note (1) d. A 0.2-0.3 cabbage-like, onion-like (1) e. A 2.0 coffee-like (1) e: C 0.135 sulphurous, toast-like, burnt nutty, grain-like (2) a. A 1.0 coffee-like (2) a. C 0.135 burnt, sulphurous, rubbery
Table VI (continued) Number Trial Amount Organoleptic Rating (2) b. C 0.5 white beets (2) c. A 3.0 burned (2) d. A 1.0 coffee-like (2) e. A 5.0 sulphurous; liver-like (3) a. B 1.0 earthy, sulphurous, paper-like (3) a. C 1.08 acidic, sulphurous (3) b. B 0.12 bitter, peanut-like (3) b.

  C 0.135 roasted coffee; Iodoform (3) c. B 0.20 hazelnut-like, earthy (3) c. C 0.22 burnt grain (3) d. B 1.9 earthy (3) d. C 2.96 burnt grain; bitter spicy (3) e. B 1.0 leathery, flowery
3rd part
Usage examples
Although several of the substances listed in the preceding tables have a more or less unnatural taste of their own or at least a taste that does not necessarily speak for the use of these substances as flavoring agents in food and beverages, these substances have nevertheless proven to be quite useful when they are used as Mixing ingredients can be used together with other flavorings in suitable mixing proportions. In very few cases will it be possible to achieve the desired taste-changing effect with a single compound from groups I to VI.



  In most cases, mixtures of several of the compounds identified in the preceding tables will be used to achieve a specific change in the taste of foods or beverages.



   The following examples are intended to show how, by appropriate selection of compounds from groups I to VI, certain flavors of foods and luxury foods or beverages can be changed, e.g. B. can strengthen or improve.

 

   The following table summarizes examples of flavoring agents made from aromatic materials, and it includes one or more compounds described in this invention.



   Table VII
Compound parts by weight Number Name Example 1 Example 2 Example 3
2-methyl-3-ethyl-pyrazine - 40 20
2,3-diethylpyrazine - - 0.5
2-methyl-3-isopropyl-pyrazine 5 5 7.5
2-acetylpyrazine - 30 10
2-methyl-3-methylthio-pyrazine 2-2 11 (1) a. Acetic acid furfuryl thiol ester 2 2 3
Furfuryl methyl sulfide - 1 2-acetyl thiophene - 80 II (2) b.

  Furfuryl propyl sulfide - 3 1
2,6-dimethyl-thio-y-pyrone 4 4 4 1 (1) a. 2-methoxybenzenethiol - 12 6
2-hydroxyphenyl methyl sulfide 1 2 1.5
3,4-xylenol 4 4 2
2-hydroxyacetophenone - - 5
Table VII (continued)
Compound Part by weight Number Name Ex. 1 Ex. 2 Ex. 3 4-Ethyl-2-methoxy-phenol - 5 2.5 4-Ethyl-phenol - - 0.5
Pyridine 20 30 20
2-vinyl-benzofuran - 3 4
4-vinyl-1,2-dimethoxy-benzene - 40
Furfuryl propionate - 50
Furfural - 100
These flavoring agents were added to an infusion of a commercially available powder coffee. This gave the coffee beverage flavor notes that were in the direction of the taste and aroma of a coffee beverage prepared from freshly ground roast coffee.



   In order to show the flavor-changing or flavor-enhancing effect of the compounds to be used according to the invention, a flavoring agent of the following composition was used.



   Compound parts by weight
3-methyl-cyclopentanedione- (1,2) 50
Furfuryl alcohol 50
Furfural 10
Diacetyl 5
Acetylmethylcarbinol 30
Benzyl alcohol 100
Propylene glycol 755
1000
Group VI compounds (sulfur-containing pyrazine compounds) were added in varying amounts to this flavoring agent. The modified flavoring agents thus obtained were used to change or improve and enhance the taste of the following foods and beverages: a) Milk sweetened with sugar. Addition in the proportion of 10 g of flavoring agent per 100 kg of drink.



   b) ice cream mass. Addition in the proportion of 10-15 g of flavoring agent per 100 kg of mass.



   c) Cake-mix (ready-to-use cake powder). Addition in the proportion of 20 g of flavoring agent per 100 kg of finished cake.



   d) milk pudding. Addition in the proportion of 10-15 g of flavoring agent per 100 kg of pudding mixture.



   e) milk chocolate. Addition in the proportion of 25 g of flavoring agent per 100 kg of chocolate mass.



   The composition of the modified flavoring agents is shown in Table VIII below.



   Table VIII
Compound Part by weight Number Name Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9 VI (1) g. 2-pyrazinylethyl mercaptan 100 - - - 50 50 VI (1) h. (2-Pyrazinylethyl) methyl sulfide - 30 - - - 5 VI (1) i. (2-pyrazinylethyl) ethyl sulfide - - 125 - - 20 VI (1) j. (2-Pyrazinylethyl) -furfuryl-sulfide - - - 100 50 35 3-Methylocyclopentanedione- (1,2) 50 50 50 50 50 50
Furfuryl alcohol 50 50 50 50 50 50
Furfural 10 10 10 10 10 10
Diacetyl 5 5 5 5 5 5
Acetylmethylcarbinol 30 30 30 30 30 30
Benzyl alcohol 100 100 100 100 100 100
Propylene glycol 655 725 630 655 655 655
1000 1000 1000 1000 1000 1000
All of the modified flavoring agents of Examples 4 to 9 gave the foodstuffs and luxury foods (a) to (e) a flavor note which was characterized by the taste testers as being distinctly roasted coffee-like.



   Additional flavoring agents were prepared by adding Group VI compounds with other aromatic substances as shown in Table IX below.



   Table IX
Compound parts by weight
Examples Number Name 10 11 12 13 VI (log. 2-pyrazinylethyl-mercaptan 20 20 20 20 VI (1) j. (2-pyrazinylethyl) -furfuryl sulfide 20 20 20 20
2-methyl-3-ethyl-pyrazine - - 10 10
2-methyl-3-propyl-pyrazine - - 20 5
2,3-diethylpyrazine (10% sol.) - 10 - 5
3-methyl-cyclopentanedione- (1,2) 50 50 50 50
Furfuryl alcohol 50 50 50 50
Furfural 10 10 10 10
Diacetyl 5 5 5 5
Acetylmethyl carbinol 30 30 30 30
Benzyl alcohol 100 100 100 100
Propylene glycol 715 705 685 695
1000 1000 1000 1000
The flavoring agents according to Examples 10 to 13 were again incorporated into the foodstuffs and luxury foods (a) to (e) in the dosage indicated above. The foodstuffs and luxury items treated in this way had a distinctly coffee-like aroma with a coffee grounds-like aftertaste.



   The taste-modifying agents according to the invention are conveniently in diluted form, for. B.



  used as diluted solutions in alcohol, triacetin or in other edible solvents, in order to facilitate the exact dosage and the even distribution in the food.



   Since the flavors of groups I to VI have very different taste intensities, their dosage in food and beverages is also subject to considerable fluctuations. The appropriate dosage to achieve a certain taste effect must be determined on a case-by-case basis through experimentation.



   The taste-modifying agents according to the invention are particularly suitable for the taste-modifying treatment of so-called soluble powder coffee. Many flavors and aromas are lost in the production of such coffee powder from ground roast coffee.

 

  The soluble coffee products offered on the market provide beverages that are poor in taste and aroma compared to a coffee beverage made from freshly ground, roasted coffee-brewed coffee. By using the taste-modifying agents according to the invention, it is now possible to significantly improve the taste quality of the soluble coffee powder and to produce an aroma that is much closer to the natural coffee aroma.



  The flavor-modifying agents can be incorporated into the soluble powder coffee, for example by spraying it on.



   The taste-modifying agents according to the invention can not only be used to improve the taste and aroma of instant instant coffee, but are also suitable for the production of artificial coffee essences and for the production of other aromas.

 

Claims (1)

PATENTANSPRUCH PATENT CLAIM Verwendung von schwefelhaltigen Verbindungen der nachstehend definierten Gruppen I bis VI als geschmacksverändernde Zusätze zu Nahrungsmitteln und Getränken mit dem Zweck, einen gebrannten oder Röstgeschmack zu erzeugen bzw. zu verstärken: I. Aromatische Schwefelverbindungen EMI13.1 worin R1 Wasserstoff oder eine Hydroxy-, Alkoxy- oder Alkylgruppe und R2 Wasserstoff oder einen Alkylrest bezeichnen; EMI13.2 worin R1 Wasserstoff oder eine Hydroxy-, Alkyl- oder Alkoxygruppe, R2 Wasserstoff oder einen Alkylrest, R3 einen Alkyl- oder Benzylrest und n die Zahl 0,1 oder 2 bezeichnen, und EMI14.1 worin R einen Alkyl- oder Phenylrest bezeichnet; II. Use of sulfur-containing compounds from groups I to VI defined below as flavor-changing additives to foods and beverages with the purpose of creating or enhancing a burnt or roasted taste: I. Aromatic sulfur compounds EMI13.1 where R1 denotes hydrogen or a hydroxy, alkoxy or alkyl group and R2 denotes hydrogen or an alkyl radical; EMI13.2 where R1 denotes hydrogen or a hydroxy, alkyl or alkoxy group, R2 denotes hydrogen or an alkyl radical, R3 denotes an alkyl or benzyl radical and n denotes the number 0, 1 or 2, and EMI14.1 wherein R denotes an alkyl or phenyl radical; II. Schwefelhaltige Furanverbindungen EMI14.2 worin R Wasserstoff oder einen Alkyl- oder Alkenylrest und n die Zahl 1 oder 2 bezeichnen; EMI14.3 worin R1 Wasserstoff oder einen Alkylrest, R2 Wasserstoff oder einen Alkyl-, Furfuryl- oder alkyl-substituierten Phenylrest und n die Zahl 0, 1 oder 2 bezeichnen, mit der Einschränkung, dass R2 weder Methyl noch Furfuryl sein kann, wenn R1 Wasserstoff und n = 1 ist; EMI14.4 worin R einen Alkyl- oder Furfurylrest bezeichnet; EMI14.5 worin R1 Wasserstoff oder einen Alkylrest und R2 einen Alkyl- oder Furfurylrest bezeichnen, und EMI14.6 worin R eine Alkyl- oder Acylgruppe bezeichnet; III. Thiophen-Schwefelverbindungen EMI14.7 worin R Wasserstoff oder einen Alkyl-, Acetyl- oder Thenylrest und n die Zahl 1 oder 2 bezeichnen, und EMI14.8 worin R einen Alkyl- oder Furfurylrest bezeichnet; IV. Sulphurous furan compounds EMI14.2 wherein R denotes hydrogen or an alkyl or alkenyl radical and n denotes the number 1 or 2; EMI14.3 where R1 denotes hydrogen or an alkyl radical, R2 denotes hydrogen or an alkyl, furfuryl or alkyl-substituted phenyl radical and n denotes the number 0, 1 or 2, with the restriction that R2 can be neither methyl nor furfuryl when R1 is hydrogen and n = 1; EMI14.4 wherein R denotes an alkyl or furfuryl radical; EMI14.5 where R1 denotes hydrogen or an alkyl radical and R2 denotes an alkyl or furfuryl radical, and EMI 14.6 wherein R denotes an alkyl or acyl group; III. Thiophene sulfur compounds EMI 14.7 wherein R is hydrogen or an alkyl, acetyl or thenyl radical and n denotes the number 1 or 2, and EMI14.8 wherein R denotes an alkyl or furfuryl radical; IV. Schwefelhaltige Pyridinverbindungen EMI14.9 worin R Wasserstoff oder einen Alkyl-, Acyl- oder Pyridylrest und n die Zahl 0, 1 oder 2 bezeichnen; V. Schwefelhaltige Pyrrolverbindungen EMI14.10 worin R einen Alkyl-, Furfuryl- oder Acylrest bezeichnet; VI. Schwefelhaltige Pyrazinverbindungen EMI14.11 worin n die Zahl 0, 1 oder 2, R1 Wasserstoff oder einen Alkyl-, Acyl- oder Furfurylrest und R2 Wasserstoff oder Methyl bezeichnen, mit der Einschränkung, dass R1 und R2 nicht Methylreste sein können, wenn n = 0 ist, und EMI14.12 worin R Wasserstoff oder einen Alkyl-, Furfuryl- oder Acylrest bezeichnet. Sulfur-containing pyridine compounds EMI14.9 where R denotes hydrogen or an alkyl, acyl or pyridyl radical and n denotes the number 0, 1 or 2; V. Sulfur-containing pyrrole compounds EMI14.10 wherein R denotes an alkyl, furfuryl or acyl radical; VI. Sulfur-containing pyrazine compounds EMI14.11 where n denotes the number 0, 1 or 2, R1 denotes hydrogen or an alkyl, acyl or furfuryl radical and R2 denotes hydrogen or methyl, with the restriction that R1 and R2 cannot be methyl radicals when n = 0, and EMI14.12 where R denotes hydrogen or an alkyl, furfuryl or acyl radical.
CH625166A 1965-04-30 1966-04-29 Synthetic flavour - modifying agents for coffee and other beverages and foods CH529516A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CH1341970A CH563725A5 (en) 1965-04-30 1966-04-29 Synthetic flavour - modifying agents for coffee and other beverages and foods
CH1341770A CH566111A5 (en) 1965-04-30 1966-04-29
CH1341870A CH564317A5 (en) 1965-04-30 1966-04-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45234265A 1965-04-30 1965-04-30
US54306966A 1966-04-18 1966-04-18

Publications (1)

Publication Number Publication Date
CH529516A true CH529516A (en) 1972-10-31

Family

ID=27036753

Family Applications (1)

Application Number Title Priority Date Filing Date
CH625166A CH529516A (en) 1965-04-30 1966-04-29 Synthetic flavour - modifying agents for coffee and other beverages and foods

Country Status (10)

Country Link
JP (6) JPS499747B1 (en)
BR (1) BR6679143D0 (en)
CH (1) CH529516A (en)
DE (12) DE1793851C2 (en)
DK (1) DK139012B (en)
ES (1) ES326503A1 (en)
GB (1) GB1156472A (en)
NL (1) NL150316B (en)
NO (1) NO134889C (en)
SE (9) SE373735B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172432A1 (en) * 1999-04-20 2002-01-16 Ajinomoto Co., Inc. Perfume precursor compositions and method for expressing perfume components

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767429A (en) * 1971-12-06 1973-10-23 Procter & Gamble Lard flavor concentrate
NL8403748A (en) * 1984-12-10 1986-07-01 Zaan Cacaofab Bv COCOA POWDER.
EP0545556B1 (en) * 1991-11-08 1997-07-23 Quest International B.V. Perfume composition
JP2008079545A (en) * 2006-09-28 2008-04-10 Sanei Gen Ffi Inc Milk-containing food-and-drink additive comprising kahweofuran or its relative body
JP5153195B2 (en) * 2007-04-13 2013-02-27 長谷川香料株式会社 Freshly brewed coffee sensitizer
CA2705109C (en) * 2007-11-13 2016-02-09 Nestec S.A. Use of thioester flavors to improve the flavor quality of ready-to-drink coffee upon retorting and storage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076818A (en) * 1963-02-05 Production of benzofurans
US3033875A (en) * 1959-09-28 1962-05-08 Hills Bros Coffee Condensed ring heterocyclic disulfides and sulfides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172432A1 (en) * 1999-04-20 2002-01-16 Ajinomoto Co., Inc. Perfume precursor compositions and method for expressing perfume components
EP1172432A4 (en) * 1999-04-20 2002-05-15 Ajinomoto Kk Perfume precursor compositions and method for expressing perfume components
US7011860B1 (en) 1999-04-20 2006-03-14 Ajinomoto Co., Inc. Flavor precursor composition and method for releasing the flavor component

Also Published As

Publication number Publication date
JPS499747B1 (en) 1974-03-06
GB1156472A (en) 1969-06-25
DE1793848B1 (en) 1980-04-30
DE1695505C3 (en) 1979-11-29
DE1793848C2 (en) 1981-01-15
JPS499746B1 (en) 1974-03-06
DE1793852B1 (en) 1980-01-24
SE373735B (en) 1975-02-17
DE1793850B1 (en) 1980-04-24
DE1793845C2 (en) 1980-08-07
DE1793851C2 (en) 1982-07-01
SE373733B (en) 1975-02-17
SE335463B (en) 1971-05-24
JPS5333667B1 (en) 1978-09-16
DE1793843B1 (en) 1980-04-30
SE373736B (en) 1975-02-17
DE1695505B2 (en) 1979-04-05
DK139012C (en) 1979-05-14
BR6679143D0 (en) 1973-09-11
SE373732B (en) 1975-02-17
JPS5231420B1 (en) 1977-08-15
DE1793847B1 (en) 1980-06-26
JPS5412552B1 (en) 1979-05-23
SE377270B (en) 1975-06-30
DE1695505A1 (en) 1970-12-23
DE1793852C2 (en) 1980-10-09
DE1793842B1 (en) 1980-06-26
DE1793850C2 (en) 1980-12-11
DE1793845B1 (en) 1979-10-31
DE1793842C3 (en) 1981-03-19
JPS4821509B1 (en) 1973-06-29
SE377269B (en) 1975-06-30
NL150316B (en) 1976-08-16
SE373734B (en) 1975-02-17
DE1793847C3 (en) 1981-04-02
DE1793843C2 (en) 1981-01-15
SE373731B (en) 1975-02-17
ES326503A1 (en) 1967-07-01
DE1793846B1 (en) 1980-04-30
NO134889C (en) 1977-01-05
NO134889B (en) 1976-09-27
DE1793846C2 (en) 1981-01-15
DE1793849C2 (en) 1982-07-01
DE1793844B1 (en) 1979-10-31
DK139012B (en) 1978-12-04
NL6605854A (en) 1966-10-31
DE1793844C2 (en) 1980-07-24

Similar Documents

Publication Publication Date Title
DE2157809C3 (en) Coffee, instant coffee, or coffee-flavored product that is not derived from natural coffee
MX2009002379A (en) Taste-improving agent and food or drink containing the same.
DE1792496C3 (en) Foods with particular taste and smell components and processes for the production of these foodstuffs
CH529516A (en) Synthetic flavour - modifying agents for coffee and other beverages and foods
DE60030090T2 (en) Flavoring foods with compounds containing a sulfur atom linked to two specific atoms or groups
DE69326426T2 (en) Use of flavone derivatives as a taste modifier and process for changing the taste
DE2354345B2 (en) Process for influencing the taste and aroma of food
DE2003525B2 (en) FURANDERIVATIVES AND THEIR USE AS ADDITIVES TO FOODS TO ACHIEVE THE TASTE OF FRIED MEAT
DE2804077C2 (en) Flavouring agent and its use
DE1921560C3 (en) 2-Phenyl-2-alkenals, their manufacture and use
DE69927501T2 (en) 2-Methyl-furan-3-thiol and / or a derivative and methylendithiol and / or a derivative containing savory flavor
DE2437890C3 (en) Use of certain thiofuran compounds as flavorings or seasonings for food
US3958029A (en) Novel flavoring compositions and products comprising 2,5-dimethyl-3-thioisovaleryl furan
DE2162720A1 (en) New alkoxynonanes and their use as aromatic substances
CH563725A5 (en) Synthetic flavour - modifying agents for coffee and other beverages and foods
DE2214540A1 (en) Heterocyclic sulfur compounds and processes for their preparation
DE2753971A1 (en) ALPHA-SUBSTITUTED ALKYLIDEN METHIONALS AND THEIR USE AS A FUEL IN FOOD
DE2742391A1 (en) 2-SUBSTITUTED 4,5-DIALKYL-DELTA HOCH 3 -THIAZOLINE, PROCESS FOR THEIR PRODUCTION AND THEIR USE AS ORGANOLEPTIC FUELS
DE2852783A1 (en) AROMATIC PREPARATION, ITS MANUFACTURING AND USE
DE2144074C3 (en) Process for the production of seasonings and flavorings and these agents as such
DE2604340C3 (en) 3-Furylalkyl disulfides, processes for their production and their use as condiments
DE2166323C3 (en) 2-Acetyl-3-ethylpyrazine, process for the preparation of the same and its use
DE2044781A1 (en) Food and luxury foods with an improved aroma
DE2600707A1 (en) NEW 3-FURYL-BETA-CHALCOGENALKYL SULFIDE, PROCESS FOR THEIR PRODUCTION AND USE TO MODIFY ORGANOLEPTIC PROPERTIES OF FOOD PRODUCTS
DE2124104A1 (en) Root products based on sulfur-containing compounds and their use

Legal Events

Date Code Title Description
PL Patent ceased