CH508829A - Graft polymers from hydrocarbyl elastomer silicone - Google Patents
Graft polymers from hydrocarbyl elastomer siliconeInfo
- Publication number
- CH508829A CH508829A CH352568A CH352568A CH508829A CH 508829 A CH508829 A CH 508829A CH 352568 A CH352568 A CH 352568A CH 352568 A CH352568 A CH 352568A CH 508829 A CH508829 A CH 508829A
- Authority
- CH
- Switzerland
- Prior art keywords
- elastomer
- pref
- ethylene
- hydrocarbon
- gas
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 23
- 239000000806 elastomer Substances 0.000 title claims abstract description 23
- 229920001296 polysiloxane Polymers 0.000 title claims abstract description 8
- 229920000578 graft copolymer Polymers 0.000 title 1
- 125000001183 hydrocarbyl group Chemical group 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 10
- 229920001577 copolymer Polymers 0.000 claims abstract description 6
- -1 polysiloxane Polymers 0.000 claims abstract description 5
- 229920001897 terpolymer Polymers 0.000 claims abstract description 4
- 239000005062 Polybutadiene Substances 0.000 claims abstract description 3
- 229920002857 polybutadiene Polymers 0.000 claims abstract description 3
- 229920001195 polyisoprene Polymers 0.000 claims abstract description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 229920002379 silicone rubber Polymers 0.000 claims description 11
- 230000006837 decompression Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 claims description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 3
- 238000004073 vulcanization Methods 0.000 abstract description 8
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 abstract description 5
- 238000003795 desorption Methods 0.000 abstract description 4
- 150000002978 peroxides Chemical class 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 abstract 1
- 238000012856 packing Methods 0.000 abstract 1
- 239000003566 sealing material Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011872 intimate mixture Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- LVWHWTDKFFKTTH-UHFFFAOYSA-N o-butyl butylsulfanylmethanethioate;nickel Chemical compound [Ni].CCCCOC(=S)SCCCC LVWHWTDKFFKTTH-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/18—Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
- F16J15/20—Packing materials therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/06—Sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/372—Sulfides, e.g. R-(S)x-R'
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
- C09K3/1018—Macromolecular compounds having one or more carbon-to-silicon linkages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/102—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Sealing Material Composition (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Gasket Seals (AREA)
Abstract
Grafting is pref. carried out in the presence of a peroxide, such as dicumyl peroxide. (I) is pref. an ethylene-propylene copolymer, an acrylonitrile-butadiene copolymer, polybutadiene, polyisoprene, or an ethylene-propylene terpolymer. (II) is pref. a polysiloxane. The elastomer pref. contains approx. equal amounts of (I) and (II). Vulcanisation can be carried out at elevated temp., this pref. being followed by irradiation with gamma rays in a close of 15-30 megarad. The elastomer material is intended for use as a sealing material at gas pressures, which can vary rapidly between high pressures, at which considerable gas absorption in the material occurs, and low pressures, at which considerable gas desorption occurs. The elastomer is esp. useful as a packing for gas-cooled nuclear reactors.
Description
Dispositif comportant une enceinte contenant des gaz
La présente invention a pour objet un dispositif comportant une enceinte contenant des gaz subissant des décompressions rapides et importantes au moment de démontages et un joint assurant l'étanchéité de ladite enceinte.
La réalisation des joints destinés à travailler normalement sous une pression gazeuse élevée et devant résister à des variations de pression, telles que des cyclages, sans déchirures et sans gonflement excessif ou résiduel après décompression pose de nombreux problèmes.
Les matériaux couramment utilisés (copolymères butandiène acrylonitril ou éthylène-propylène, butyl) ont une vitesse de désorption trop lente, surtout le butyl. D'autres matériaux, dont la vitesse de désorption serait satisfaisante, ont des propriétés mécaniques qui les rendent inacceptables.
Ce procédé se rencontre en particulier pour la réalisation des joints d'étanchéité destinés à être utilisés dans les réacteurs nucléaires refroidis par un gaz pour isoler l'intérieur d'une enceinte de résistance à la pression, occupée par exemple par du gaz carbonique sous une pression de 60 bars, et l'extérieur; les élastomères commerciaux actuels, et en particulier les copolymères butadiène acrylonitrile présentent lors de leur décompression un gonflement important, pouvant aller jusqu'à 1000/o, et un temps de retour à leur côte initiale de plusieurs heures, incompatible avec les impératifs de fonctionnement du réacteur.
Quant aux joints constitués de mélanges à base d'élastomère silicone, ils reviennent assez rapidement aux côtes initiales mais ils sont inutilisables car leurs propriétés mécaniques sont insuffisantes et se traduisent par des décollements et des déchirures au sein du matériau constituant le joint.
La presente invention a pour but de remédier à ces inconvénients.
Le dispositif suivant l'invention est caractérisé par le fait que le matériau constitutif dudit joint comporte au ravins un élastomère de silicone et un élastomère hydrocarboné, lesdits élastomères étant greffés et réticulés.
L'élastomère hydrocarboné peut être choisi dans le groupe constitué par un copolymère éthylène-propylène, un butadiène acrylonitrile, le polybutadiène, le polyisoprène et un terpolymère à base d'éthylène et de propylène.
L'élastomère silicone peut être un polysiloxane, les élastomères silicone et hydrocarboné sont greffés chimiquement en présence d'un accélérateur permettant également la réticulation conjuguée desdits élastomères. Cela peut être un peroxyde, par exemple le peroxyde de dicumyle.
Toutefois, on pourrait également envisager un greffage par irradiation.
Un procédé de fabrication du joint entrant dans la constitution du présent dispositif est le suivant:
On réalise d'abord un mélange intime des élastomères silicone et hydrocarboné, après quoi on ajoute au mélange un accélérateur destiné à provoquer le greffage chimique desdits élastomères et diverses charges. Le choix entre les différents élastomères hydrocarbonés susceptibles d'être utilisés est fait en fonction des conditions d'emploi du joint; en particulier si l'atmosphère dans laquelle le joint devra travailler contient des vapeurs d'huile, il sera préférable d'utiliser un copolymère butadiène acrylonitrile.
Le mélange des élastomères peut être effectué par brassage dans un mélangeur; I'élastomère hydrocarboné se présente généralement sous forme d'une masse gélatineuse à laquelle est ajouté l'élastomère silicone
A ce mélange doit être ajouté un accélérateur de prise, dont le rôle est essentiel pour provoquer le greffage et la réticulation conjuguée des élastomères hydrocarboné et silicone. Parmi les accélérateurs susceptibles de remplir ces rôles on peut faire appel à des peroxydes appropriés, comme par exemple le peroxyde de dicumyle, additionnés éventuellement de carbanate de calcium comme diluant.
Le peroxyde de dicumyle, ajouté sous forme de poudre, est également mélangé intimement avec les constituants principaux.
Diverses charges peuvent encore être ajoutées au mélange. Elles peuvent notamment comprendre; du noir de carbone, destiné essentiellement à améliorer la dureté du mélange terminal; du sulfure en faible proportion, ou des accélérateurs donneurs de soufre, ainsi que de l'oxyde de zinc et des anti-oxygènes appropriés choisis parmi ceux qui n'interviennent pas ou qui n'in teniennent que sur les peroxydes.
A titre d'exemple on peut citer la composition suivante:
Parties
Composition pondérales
Terpolymère à base
d'éthylène et de propylène 100
Noir de carbone 40
Soufre 1,5
Oxyde de zinc 5
Dibutyldithiocarbonate de nickel 0,25
Mercaptobensimidazolate de zinc 0,25
Disulfure de pentaméthylènethilurame 1,5
Polysiloxane 100
Peroxyde de dicumyle 1,2
Disulfure de benzothiazyle 0,5
Bien entendu les proportions relatives d'élastomère silicone et hydrocarboné qui, dans la composition précitée, sont dans le rapport 100/100, peuvent être utilisées dans d'autres proportions et tendre vers une prédominance d'élastomère silicone ou vers une prédominance d'élastomère hydrocarboné, selon les résultats recherchés.
Une fois le mélange intime de tous les constituants réalisé, le matériau doit être de préférence utilisé dans un délai de quelques jours, pour éviter un début de vulcanisation en place qui se produit même en l'absence de chauffage. Le matériau est mis en forme et placé dans un moule puis chauffé pour provoquer une pré-vulcanisation: cette opération est effectuée généralement pour les élastomères hydrocarbonés cités cidessus à une température comprise entre 150 et 160"C (c'est-à-dire à une température qui est celle généralement utilisée pour la pré-vulcanisation des élastomères silicone) pendant une durée qui dépend évidemment de la dimension du joint. La pré-vulcanisation est arrêtée dès que la température de 150 à 1600 C est atteinte à coeur.
Les joints sont alors démoulés et subissent ensuite un traitement final de polymérisation. Celui-ci peut constituer:
( - soit en une vulcanisation en étuve, à une température du même ordre que la pré-vulcanisation pendant une durée qui peut être de l'ordre de 36 heures,
(B) - soit en une irradiation aux rayons gamma à une dose comprise entre 15 et 30 mégarads,
((,) - soit - et cette solution apparaît comme la meilleure - en une vulcanisation en étuve suivie d'une irradiation dans les conditions définies ci-dessus.
Par application du procédé ci-dessus et en utilisant le mélange dont la composition a été donnée ci-dessus on a réalisé des joints présentant les caractères mécaniques suivants: Propriétés mécaniques Traitement final A Traitement final B Traitement final C
Dureté Shore 62 65 69
Résistance à la rupture 62 kg/cm2 97 kg/cm2 109 kg/cm2
Allongement à la rupture 400 oxo 380 /o 300 O/o
Test AFNOR de compression 13,2 13,2 9
Les joints ainsi réalisés présentent un faible gonflement lors d'une décompression brutale de 60 bars à la pression atmosphérique et reprennent leur dimension initiale avec un gonflement résiduel très réduit (O,20/o après 15 minutes).
On peut probablement attribuer les propriétés favorables des matériaux obtenus à l'association des bonnes propriétés de désorption de l'élastomère silicone avec les propriétés mécaniques des élastomères hydrocarbonés envisagés, dont les coefficients de diffusion sont par contre relativement faibles.
Device comprising an enclosure containing gases
The present invention relates to a device comprising an enclosure containing gases undergoing rapid and significant decompression at the time of dismantling and a seal ensuring the tightness of said enclosure.
The production of seals intended to work normally under a high gas pressure and to withstand variations in pressure, such as cycling, without tearing and without excessive or residual swelling after decompression poses numerous problems.
The materials currently used (acrylonitril or ethylene-propylene butandiene copolymers, butyl) have a too slow desorption rate, especially butyl. Other materials, the desorption rate of which would be satisfactory, have mechanical properties which make them unacceptable.
This process is found in particular for the production of seals intended for use in nuclear reactors cooled by a gas to insulate the interior of a pressure resistance enclosure, occupied for example by carbon dioxide under a pressure. pressure of 60 bars, and the outside; the current commercial elastomers, and in particular the acrylonitrile butadiene copolymers, during their decompression, exhibit significant swelling, which can go up to 1000 / o, and a return time to their initial level of several hours, incompatible with the operating requirements of the reactor.
As for the gaskets made up of mixtures based on silicone elastomer, they return fairly quickly to the initial dimensions but they are unusable because their mechanical properties are insufficient and result in detachment and tears within the material constituting the gasket.
The object of the present invention is to remedy these drawbacks.
The device according to the invention is characterized in that the material constituting the said seal comprises in the gully a silicone elastomer and a hydrocarbon elastomer, said elastomers being grafted and crosslinked.
The hydrocarbon elastomer can be chosen from the group consisting of an ethylene-propylene copolymer, an acrylonitrile butadiene, polybutadiene, polyisoprene and a terpolymer based on ethylene and propylene.
The silicone elastomer can be a polysiloxane, the silicone and hydrocarbon elastomers are chemically grafted in the presence of an accelerator also allowing the conjugate crosslinking of said elastomers. It can be a peroxide, for example dicumyl peroxide.
However, it would also be possible to envisage grafting by irradiation.
A method of manufacturing the seal forming part of the present device is as follows:
First, an intimate mixture of the silicone and hydrocarbon elastomers is produced, after which an accelerator intended to cause chemical grafting of said elastomers and various fillers is added to the mixture. The choice between the different hydrocarbon elastomers that can be used is made according to the conditions of use of the seal; in particular if the atmosphere in which the seal will have to work contains oil vapors, it will be preferable to use a butadiene acrylonitrile copolymer.
The mixing of the elastomers can be carried out by stirring in a mixer; The hydrocarbon elastomer is generally in the form of a gelatinous mass to which the silicone elastomer is added
To this mixture must be added a setting accelerator, the role of which is essential for causing the grafting and the conjugated crosslinking of the hydrocarbon and silicone elastomers. Among the accelerators capable of fulfilling these roles, use may be made of appropriate peroxides, such as, for example, dicumyl peroxide, optionally added with calcium carbanate as diluent.
Dicumyl peroxide, added in powder form, is also thoroughly mixed with the main constituents.
Various fillers can still be added to the mixture. They can in particular include; carbon black, intended primarily to improve the hardness of the end mixture; sulphide in small proportion, or sulfur-donor accelerators, as well as zinc oxide and suitable anti-oxygenates chosen from those which do not intervene or which only affect the peroxides.
By way of example, the following composition may be cited:
Parts
Weight composition
Terpolymer based
ethylene and propylene 100
Carbon black 40
Sulfur 1.5
Zinc oxide 5
Nickel dibutyldithiocarbonate 0.25
Zinc mercaptobensimidazolate 0.25
Pentamethylenethiluram disulfide 1,5
Polysiloxane 100
Dicumyl peroxide 1,2
Benzothiazyl disulfide 0.5
Of course the relative proportions of silicone and hydrocarbon elastomer which, in the aforementioned composition, are in the ratio 100/100, can be used in other proportions and tend towards a predominance of silicone elastomer or towards a predominance of elastomer. hydrocarbon, depending on the desired results.
Once the intimate mixture of all the constituents has been made, the material should preferably be used within a few days, to avoid the onset of vulcanization in place which occurs even in the absence of heating. The material is shaped and placed in a mold and then heated to cause a pre-vulcanization: this operation is generally carried out for the hydrocarbon elastomers mentioned above at a temperature between 150 and 160 "C (that is to say at a temperature which is that generally used for the pre-vulcanization of silicone elastomers) for a period which obviously depends on the size of the joint The pre-vulcanization is stopped as soon as the temperature of 150 to 1600 ° C. is reached in the core.
The joints are then demolded and then undergo a final polymerization treatment. This can constitute:
(- either by vulcanization in an oven, at a temperature of the same order as the pre-vulcanization for a period which may be of the order of 36 hours,
(B) - either by irradiation with gamma rays at a dose between 15 and 30 megarads,
((,) - either - and this solution appears to be the best - by vulcanization in an oven followed by irradiation under the conditions defined above.
By applying the above process and using the mixture whose composition was given above, joints were produced having the following mechanical characteristics: Mechanical properties Final treatment A Final treatment B Final treatment C
Shore hardness 62 65 69
Breaking strength 62 kg / cm2 97 kg / cm2 109 kg / cm2
Elongation at break 400 oxo 380 / o 300 O / o
AFNOR compression test 13.2 13.2 9
The seals thus produced exhibit low swelling during a sudden decompression of 60 bars at atmospheric pressure and return to their initial dimension with a very reduced residual swelling (0.220 / o after 15 minutes).
The favorable properties of the materials obtained can probably be attributed to the association of the good desorption properties of the silicone elastomer with the mechanical properties of the hydrocarbon elastomers envisaged, the diffusion coefficients of which are on the other hand relatively low.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR98412A FR1547392A (en) | 1967-03-10 | 1967-03-10 | Process for preparing seals and products conforming to those obtained by applying the process |
Publications (1)
Publication Number | Publication Date |
---|---|
CH508829A true CH508829A (en) | 1971-06-15 |
Family
ID=8626770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH352568A CH508829A (en) | 1967-03-10 | 1968-03-07 | Graft polymers from hydrocarbyl elastomer silicone |
Country Status (10)
Country | Link |
---|---|
BE (1) | BE711776A (en) |
CH (1) | CH508829A (en) |
DE (1) | DE1694496A1 (en) |
ES (1) | ES351445A1 (en) |
FI (1) | FI46511C (en) |
FR (1) | FR1547392A (en) |
GB (1) | GB1197522A (en) |
LU (1) | LU55636A1 (en) |
NL (1) | NL6803423A (en) |
NO (1) | NO121750B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2470149A2 (en) * | 1979-11-21 | 1981-05-29 | Celtite Sa | IMPROVEMENTS IN METHODS OF SEALING BOLTS OF MINES AND THE LIKE |
-
1967
- 1967-03-10 FR FR98412A patent/FR1547392A/en not_active Expired
-
1968
- 1968-03-06 BE BE711776D patent/BE711776A/xx unknown
- 1968-03-07 CH CH352568A patent/CH508829A/en not_active IP Right Cessation
- 1968-03-07 NO NO0876/68A patent/NO121750B/no unknown
- 1968-03-08 GB GB11560/68A patent/GB1197522A/en not_active Expired
- 1968-03-08 LU LU55636D patent/LU55636A1/xx unknown
- 1968-03-09 FI FI680651A patent/FI46511C/en active
- 1968-03-09 ES ES351445A patent/ES351445A1/en not_active Expired
- 1968-03-11 NL NL6803423A patent/NL6803423A/xx unknown
- 1968-03-11 DE DE19681694496 patent/DE1694496A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
NO121750B (en) | 1971-04-05 |
FI46511C (en) | 1973-04-10 |
FI46511B (en) | 1973-01-02 |
BE711776A (en) | 1968-09-06 |
LU55636A1 (en) | 1969-10-02 |
GB1197522A (en) | 1970-07-08 |
DE1694496A1 (en) | 1971-09-16 |
NL6803423A (en) | 1968-09-11 |
ES351445A1 (en) | 1969-12-01 |
FR1547392A (en) | 1968-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hansen et al. | Effect of atomic oxygen on polymers | |
CN101691437A (en) | Rubber composition and method for producing the same, seal member by using the same and apparatus having the same, and a rubber composition for resistance to dme | |
JP2015206002A (en) | Rubber composition and seal member for high pressure hydrogen device | |
EP2895536B1 (en) | Primary mixture of crosslinking initiator and promoter | |
FR2461731A1 (en) | PROCESS FOR MODIFYING THE SURFACE PROPERTIES OF POLYMERIC FIBERED PRODUCTS USING LOW TEMPERATURE PLASMA | |
JPH03210383A (en) | Sealing part for hydraulic cylinder | |
EP1818377A1 (en) | Composition of sheath material for a power and/or telecommunications cable | |
CN102029744B (en) | Gasket material | |
CN107201044A (en) | One kind expansion can porcelain silicon rubber composite material and preparation method thereof | |
CH508829A (en) | Graft polymers from hydrocarbyl elastomer silicone | |
FR2749018A1 (en) | THERMOPLASTIC TRANSFORMATION RETICLE ELASTOMER, PROCESS FOR PRODUCING THE SAME AND USES THEREOF | |
US3733295A (en) | Fluorocarbon filled carboxynitroso polybutadiene vulcanizate | |
EP1806379A1 (en) | Method for the crosslinking of a filled polymer based on polyethylene | |
US10167382B2 (en) | Sealing material | |
EP0002418B1 (en) | Process for the manufacture of extrusion products from compositions based on polyolefins | |
JP2002161264A (en) | Plasma-resistant seal | |
JP2005113035A (en) | Method of manufacturing fluororubber sealing material | |
EP0337374B1 (en) | Compact electrical insulating material for insulating coatings | |
CN111675857A (en) | Sealing material for fuel cell and preparation method thereof | |
JP3979845B2 (en) | Method for producing surface-modified fluororubber, obtained surface-modified fluororubber and use thereof | |
US3759868A (en) | Carboxynitroso polybutadiene vulcanizate | |
JP7625122B1 (en) | Manufacturing method of rubber products | |
JPH08148171A (en) | Gasket for phosphoric acid fuel cell and manufacture thereof | |
JPS5854274A (en) | Gasket and manufacture thereof | |
JPH066634B2 (en) | Method for producing surface-modified fluorinated elastomer vulcanized molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PL | Patent ceased |