CH497541A - Bath for autocatalytic plating - Google Patents

Bath for autocatalytic plating

Info

Publication number
CH497541A
CH497541A CH628667A CH628667A CH497541A CH 497541 A CH497541 A CH 497541A CH 628667 A CH628667 A CH 628667A CH 628667 A CH628667 A CH 628667A CH 497541 A CH497541 A CH 497541A
Authority
CH
Switzerland
Prior art keywords
metal
bath
solution
chloride
substrate
Prior art date
Application number
CH628667A
Other languages
German (de)
Inventor
J Zeblisky Rudolph
F Mccormack John
W Schneble Frederick
Original Assignee
Photocircuits Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photocircuits Corp filed Critical Photocircuits Corp
Publication of CH497541A publication Critical patent/CH497541A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50

Abstract

1,145,578. Printed circuits. PHOTOCIRCUITS CORP. 4 May, 1967 [6 May, 1966], No. 20684/67. Heading H1R. [Also in Division C7] Portions of an insulating substrate, such as a plastics material, of which many suitable examples are listed, are sensitized in the form of a desired printed circuit form, e.g. by treatment with an acidic aqueous solution of stannous chloride followed by a dilute acid aqueous solution of Pd chloride, or by treatment with a single acidic solution containing stannous chloride and a precious metal chloride such as Pd chloride. Cu or other metal is then deposited on one or more surfaces of the substrate, and on the walls of holes through it, by electroless deposition from a solution on to the sensitized parts of the substrate, said solution including a compound containing a cyanide radical complexed with a metal from Group VIII of the Periodic Table.

Description

  

  
 



  Bad zum autokatalytischen Metallisieren
Die Erfindung betrifft ein Bad zum autokatalytischen Metallisieren, das mindestens Ionen des abzuscheidenden Metalles, einen Komplexbildner für dieselben, ein Reduktionsmittel und einen Bestandteil zum
Einstellen des pH-Wertes der Badlösung enthält.



   Solche Bäder enthalten beispielsweise zumindest ein Lösungsmittel, ein Metallsalz, einen Komplexbildner für die Metallionen, ein Reduktionsmittel, ein Mittel zum Einstellen des pH-Wertes und oftmals ein Netzmittel.



     Sie dieneni    insbesondere zum Metallisieren von entsprechend vorbehandelten Nichtleitern; die Vorbehandlung kann, beispielsweise durch Einwirkung einer Zinnsalzlösung gefolgt von einer Palladiumlösung erfolgen.



  Es sind Materialien vorgeschlagen worden, die entweder auf ihrer   -ganzen    oder auf Teilen ihrer Oberfläche oder überhaupt eine Substanz enthalten, welche imstande ist, die stromlose Metallabscheidung auf den sie enthaltenden Flächen katalytisch in Gang zu setzen.



   Ein wesentlicher Nachteil der bekannten Bäder zur autokatalytischen Metallabscheidung ist die geringe Me   tallisierungsgeschwindigkeit.   



   Das hat zur Folge, dass die Herstellung dickerer Metall schichten Behandlungszeiten von langer Dauer erforderlich miacht; bekannte Vorschläge zur Beschleunigung der Metallisierung sind nur wenig wirksam gewesen; sie bewirken zudem eine starke Tendenz der Bandlösung zur Instabilität und führen in der Regel zu Metallschichten mit unerwünschten Eigenschaften. Aufgabe der vorliegenden Erfindung ist es diese Nachteile zu vermeiden.



   Im folgenden wird die Erfindung im wesentlichen anhand von Beispielen für stromlos arbeitende Kupferbäder beschrieben; sie ist jedoch nicht auf solche Bäder beschränkt, sondern auf alle autokatalytisch arbeitenden   Metaliisierungsbäder    anwendbar.



   Der Verbrauch an Reduktionsmittel ist ein wesentlicher Faktor in der Kostenstruktur von autokatalytisch arbeitenden Bädern. Bäder nach der Erfindung lassen sich mit gleicher oder sogar höherer Abscheidungsgeschwindigkeit betreiben, selbst wenn ihr Reduktionsmittelgehalt gering ist.



   Das erfindungsgemässe Bad ist nun gekennzeichnet durch einen Gehalt an einer weiteren Verbindung, die ein Metall der VIII. Gruppe des Periodischen Systems oder Rhenium und die Cyangruppe enthält.



   Besonders geeignet erwiesen sich Eisen- und   In-    diumverbindungen beispielsweise Cyanoeisenverbindungen, wie Hexycyanoferrat- (II) und Hexacyanoferrat
Typische, geeignete Verbindungen sind beispielsweise die Ferricyanide und Ferrocyanide   ider    Metalle der Gruppen IA und IIA des Periodischen Systems. In alkalischer Lösung wird zwangsläufig das Ferri- zu Ferrocyanid reduziert, so dass dann letzteres als Beschleuniger wirkt.



   Als geeignete Menge für die Beschleunigung wurden solche von 0,0075 bis   50 g/Liter    gefunden, wobei günstigste Arbeitsbedingungen beispielsweise im Bereich von 0,150 bis 2,5 g/Liter gefunden werden. Dies entspricht dem Bereich von 1 bis 300 ppm und vorzugsweise 1 bis 50 ppm, berechnet auf den Gehalt an Metall der VIII. Gruppe bzw. an Rhenium im Bad.



   Als typisches Ausführungsbeispiel für Badlösungen mag dienen:   Metallsalz 0,01 bis 1,0   Mol    Reduktionsmittel 0,01 bis 4,0 Mol/l Komplexbildner für die die 0,7 bis 40 fache Menge Metallionen der Metallionenkonzentra tion Beschleuniger 1-300 ppm, ber. auf den
Gehalt an Metall in der    B eschleunigerverbindung    pH-Regler in für den gewünschten pH-Wert ausreichender
Menge Wasser auf 1 Liter auffüllen
Eine typische Rahmenrezeptur für autokatalytische Kupferbäder ist folgende: Kupersalz 0,01 bis 1,0 Mol/l Formaldehid 0,01 bis 4,0   Molll    Komplexbildner für die 0,7 bis 40 fache Menge Cu-Ionen der Metallionenkonzentra tion Beschleuniger 1 bis 300 ppm, bezogen auf ,den Metallgehalt des
Beschleunigers Alkalimetallhydroxyd genügend um einen pH
Wert 10-14 einzustellen Wasser auffüllen auf 1 Liter.



   Badlösungen nach der Erfindung enthalten vorteilhafterweise geeignete Netzmittel in geringen Mengen beispielsweise  Triton QS-15  (Roehm  & Haas)
Ferner hat es sich als vorteilhaft erwiesen, den erfindungsgemässen Badlösungen einfache, wasserlösliche Cyanide in geringen Mengen, beispielsweise von 0,00001 bis   0,06 Mol/l    zuzusetzen. Geeignete Cyanide sind, z. B. Alkalimetall- und Erdalkalimetallcyanide sowie Nitrile.



   Ebenso hat es sich als vorteilhaft erwiesen, der Lösung geringe Mengen einer Schwefelverbindung zuzusetzen in der Regel weniger als   100 ppm,    die stabile, jedoch dissoziierende Chelate mit dem Metallion zu bilden vermögen. Geeignet sind beispielsweise die Thioderivate des Alkylglycols, aliphatische Schwefelstickstoffverbindungen, Alkalisulfide, Thiocyanate und andere mehr. In der Regel wird die optimale Arbeitskonzentration weniger als 1 ppm beispielsweise 0,01 bis 0,02 betragen.



   Die Bäder können bei Temperaturen zwischen   15     und   100 0C    verwendet werden, vorzugsweise wird im Bereich zwischen   20     und 80   OC    gearbeitet. In der Regel wächst die Abscheidungsgeschwindigkeit mit der Temperatur; innerhalb des angegebenen Arbeitsbereichs zeigt sich jedoch kein Einfluss der Badtemperatur auf die Beschaffenheit des abgeschiedenen Metallniederschlages.



   Tabelle   7    Lösung   CuSO4.5HeO    Tetranatrium HCHO NaCN Kalium- Stabilität Farbe Schichtd. Dukti Nr äthylendiamin ferrocyanid   cm/Std. x 1 0    lität tetraacetat ppm (Biegungen) g/l 1 15 50 6 0.03 0 stabil glänzend 18 5.5 2 15 50 6 0.03 20 stabil glänzend 24 3 3 15 50 6 0.03 40 stabil glänzend 27 3 4 15 50 6 0.03 80 stabil glänzend 27 3 5 15 50 6 0.03 160 stabil glänzend 27 3 6 15 50 6 0.03 320 stabil glänzend 27 3.5
Wie sich aus Tabelle I ergibt ist die Abscheidungsbeschleunigung ohne Verschlechterung des   Metallnieder-    schlages erzielbar.

 

   In geeigneter Badlösung ermöglicht der Zusatz eines Beschleunigers die Erzielung brauchbarer Abscheidungsgeschwindigkeiten schon bei Raumtemperatur.



   Eine Badlösung bestehend aus:
0,10 Mol/l Kupfersulaft
0,12   Molll      Tetranatriumäthylendiamintetraace-    tat
0,16 Mol/l HCHO
0,01    /o   Netzmittel
0,0003 Mol/l Lactonitrile pH Wert 12,8    Mit Wasser auf 1 1 auffüllen wurde bei 25 OC mit    verschiedenem Gehalt an Hexacyanoferrat-(II) betrieben, wobei folgende Abscheildungen erzielt wurden
K4Fe   (CN)6.3HZO    Kupferdicke nach 5 Std.

 

     0g/l    1,4    25 gel 5,1
50 g/I 5,5 ,   
Das folgende Beispiel zeigt Bäder, die als Beschleuniger Cyanoiridit enthalten:  
1 2 3   Kupfersuliat    0,1 0,1 0,1 Mol/l Aethylendiamin tetraessigsäure 0,1 0,1 0,1 Mol/l HCHO 0,12 0,12   0,12 Mol/l    Netzmittel 0,01 0,01 0,01   O/o    Lactonitrile 40 40 40 mg/l Kaliumcyanoiridit 0 0,1 1 mg/l pH 12,8 12,8 12,8 Temperatur 20 20 20   OC    Dicke der Cu Schicht nach 1 Std. 0,68 0,75 0,79   mg/cmn   
Andere Komplexverbindungen des Cyanorestes mit einem Metall der VIII Gruppe des periodischen Systems verhalten sich ähnlich. Alle diese Zusätze weisen ausserdem eine badstabilisierende Wirkung auch auf und erzeugen glänzende Metallniederschläge. 



  
 



  Bath for autocatalytic plating
The invention relates to a bath for autocatalytic metallizing, the at least ions of the metal to be deposited, a complexing agent for the same, a reducing agent and a component for
Adjusting the pH of the bath solution contains.



   Such baths contain, for example, at least one solvent, a metal salt, a complexing agent for the metal ions, a reducing agent, an agent for adjusting the pH and often a wetting agent.



     They serve in particular for metallizing appropriately pretreated non-conductors; the pretreatment can take place, for example, by the action of a tin salt solution followed by a palladium solution.



  Materials have been proposed which contain either all or part of their surface or a substance at all which is capable of catalytically starting the electroless metal deposition on the surfaces containing them.



   A major disadvantage of the known baths for autocatalytic metal deposition is the low metalization speed.



   As a result, the production of thicker metal layers makes treatment times of long duration necessary; known proposals for accelerating metallization have been ineffective; they also cause the strip looseness to have a strong tendency towards instability and generally lead to metal layers with undesirable properties. The object of the present invention is to avoid these disadvantages.



   In the following, the invention is essentially described by means of examples of electroless copper baths; however, it is not restricted to such baths, but can be applied to all autocatalytically operating metalizing baths.



   The consumption of reducing agent is an essential factor in the cost structure of autocatalytically operating baths. Baths according to the invention can be operated with the same or even higher deposition rate, even if their reducing agent content is low.



   The bath according to the invention is now characterized by a content of a further compound which contains a metal of group VIII of the Periodic Table or rhenium and the cyano group.



   Iron and indium compounds have proven to be particularly suitable, for example cyano iron compounds such as hexacyanoferrate (II) and hexacyanoferrate
Typical, suitable compounds are, for example, the ferricyanides and ferrocyanides ider metals of groups IA and IIA of the periodic table. In an alkaline solution, the ferric acid is inevitably reduced to ferrocyanide, so that the latter then acts as an accelerator.



   A suitable amount for the acceleration was found to be from 0.0075 to 50 g / liter, the most favorable working conditions being found, for example, in the range from 0.150 to 2.5 g / liter. This corresponds to the range from 1 to 300 ppm and preferably 1 to 50 ppm, calculated on the content of Group VIII metal or of rhenium in the bath.



   The following may serve as a typical embodiment for bath solutions: metal salt 0.01 to 1.0 mol reducing agent 0.01 to 4.0 mol / l complexing agent for the 0.7 to 40 times the amount of metal ions of the metal ion concentration accelerator 1-300 ppm, calc . to the
Content of metal in the accelerator compound pH regulator in sufficient for the desired pH value
Fill up the amount of water to 1 liter
A typical recipe for autocatalytic copper baths is as follows: Copper salt 0.01 to 1.0 mol / l formaldehyde 0.01 to 4.0 Molll complexing agent for 0.7 to 40 times the amount of Cu ions of the metal ion concentration accelerator 1 to 300 ppm , based on, the metal content of the
Accelerator alkali metal hydroxide sufficient to maintain a pH
Set the value 10-14. Fill up with water to 1 liter.



   Bath solutions according to the invention advantageously contain suitable wetting agents in small amounts, for example Triton QS-15 (Roehm & Haas)
It has also proven advantageous to add simple, water-soluble cyanides in small amounts, for example from 0.00001 to 0.06 mol / l, to the bath solutions according to the invention. Suitable cyanides are e.g. B. alkali metal and alkaline earth metal cyanides and nitriles.



   It has also proven to be advantageous to add small amounts of a sulfur compound to the solution, usually less than 100 ppm, which are capable of forming stable, but dissociating chelates with the metal ion. For example, the thio derivatives of alkyl glycol, aliphatic sulfur-nitrogen compounds, alkali sulfides, thiocyanates and others are suitable. As a rule, the optimal working concentration will be less than 1 ppm, for example 0.01 to 0.02.



   The baths can be used at temperatures between 15 and 100 ° C., preferably in the range between 20 and 80 ° C. As a rule, the rate of deposition increases with temperature; within the specified working range, however, the bath temperature does not have any influence on the nature of the deposited metal deposit.



   Table 7 Solution CuSO4.5HeO Tetrasodium HCHO NaCN Potassium stability Color Layer d. Dukti No. ethylenediamine ferrocyanide cm / h. x 1 0 lity tetraacetate ppm (bends) g / l 1 15 50 6 0.03 0 stable glossy 18 5.5 2 15 50 6 0.03 20 stable glossy 24 3 3 15 50 6 0.03 40 stable glossy 27 3 4 15 50 6 0.03 80 stable glossy 27 3 5 15 50 6 0.03 160 stable glossy 27 3 6 15 50 6 0.03 320 stable glossy 27 3.5
As can be seen from Table I, the acceleration of the deposition can be achieved without deterioration of the metal deposit.

 

   In a suitable bath solution, the addition of an accelerator enables usable deposition rates to be achieved even at room temperature.



   A bathroom solution consisting of:
0.10 mol / l copper sulphate
0.12 Molll tetrasodium ethylenediamine tetraacetate
0.16 mol / l HCHO
0.01 / o wetting agent
0.0003 mol / l lactonitrile pH value 12.8 Filling up to 1 liter with water was carried out at 25 ° C. with various contents of hexacyanoferrate (II), the following separations being achieved
K4Fe (CN) 6.3HZO copper thickness after 5 hours

 

     0g / l 1.4 25 gel 5.1
50 g / I 5.5,
The following example shows baths that contain cyanoiridite as an accelerator:
1 2 3 copper sulate 0.1 0.1 0.1 mol / l ethylenediamine tetraacetic acid 0.1 0.1 0.1 mol / l HCHO 0.12 0.12 0.12 mol / l wetting agent 0.01 0.01 0.01 O / o Lactonitrile 40 40 40 mg / l Potassium cyanoiridite 0 0.1 1 mg / l pH 12.8 12.8 12.8 Temperature 20 20 20 OC Thickness of the Cu layer after 1 hour 0.68 0, 75 0.79 mg / cmn
Other complex compounds of the cyano radical with a metal of group VIII of the periodic table behave similarly. All of these additives also have a bath stabilizing effect and generate shiny metal deposits.

 

Claims (1)

PATENTANSPRUCH PATENT CLAIM Bad zum autokatalytischen Metallisieren, das mindestens Ionen des abzuscheidenden Metalles, einen Komplexbildner für dieselben, ein Reduktionsmittel, und einen Bestandteil zum Einstellen des pH-Wertes der Badlösung enthält, gekennzeichnet durch einen Gehalt an einer weiteren Verbindung, die ein Metall der VIII. Bath for autocatalytic plating, which contains at least ions of the metal to be deposited, a complexing agent for the same, a reducing agent and a component for adjusting the pH of the bath solution, characterized by a content of another compound which is a metal of VIII. Gruppe des Periodischen Systems oder Rhenium und die Cyangruppe enthält. Contains group of the periodic table or rhenium and the cyano group. UNTERANSPRÜCHE 1. Bad nach Patentanspruch, dadurch gekennzeichnet, dass die Ionen des abzuscheidenden Metalles Kupferionen sind. SUBCLAIMS 1. Bath according to claim, characterized in that the ions of the metal to be deposited are copper ions. 2. Bad nach Patentanspruch, dadurch gekennzeichnet, dass die Menge der Verbindung im Bad zwischen 1 und 300 ppm, berechnet auf den Gehalt an Metall der VIII. Gruppe bzw. an Rhenium. 2. Bath according to claim, characterized in that the amount of the compound in the bath is between 1 and 300 ppm, calculated on the content of metal of Group VIII or of rhenium. 3. Bad nach Patentanspruch, dadurch gekennzeichnet, dass die Verbindung an die Cyangruppe komplexgebundenes Eisen, Iridium oder Rhenium enthält und vorzugsweise Hexacyanoferrat- (II) und/oder Hexacyanoferrat- (III) ist. 3. Bath according to claim, characterized in that the compound to the cyano group contains complex-bound iron, iridium or rhenium and is preferably hexacyanoferrate (II) and / or hexacyanoferrate (III).
CH628667A 1966-05-06 1967-05-03 Bath for autocatalytic plating CH497541A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54807166A 1966-05-06 1966-05-06

Publications (1)

Publication Number Publication Date
CH497541A true CH497541A (en) 1970-10-15

Family

ID=24187280

Family Applications (1)

Application Number Title Priority Date Filing Date
CH628667A CH497541A (en) 1966-05-06 1967-05-03 Bath for autocatalytic plating

Country Status (9)

Country Link
US (1) US3485643A (en)
JP (1) JPS5113734B1 (en)
AT (1) AT268811B (en)
CH (1) CH497541A (en)
DE (1) DE1621311C3 (en)
ES (1) ES340230A1 (en)
GB (1) GB1145578A (en)
NL (1) NL152299B (en)
SE (1) SE340738B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1621235A1 (en) * 1967-10-13 1971-04-22 Dynamit Nobel Ag Process for the metallization of shaped structures made of thermoplastics
BE757573A (en) * 1969-10-16 1971-04-15 Philips Nv FLEXIBLE COPPER CURRENT FREE DEPOSIT
US3902907A (en) * 1973-08-17 1975-09-02 Kazutaka Kishita System for electroless plating of copper and composition
US4167601A (en) * 1976-11-15 1979-09-11 Western Electric Company, Inc. Method of depositing a stress-free electroless copper deposit
US4170461A (en) * 1976-12-29 1979-10-09 Ppg Industries, Inc. Heat treatment of electrolessly deposited cuprous oxide coating
US4242369A (en) * 1977-06-07 1980-12-30 Whittaker Corporation Plating of substrates by jet printing
US4192764A (en) * 1977-11-03 1980-03-11 Western Electric Company, Inc. Stabilizing composition for a metal deposition process
US4133908A (en) * 1977-11-03 1979-01-09 Western Electric Company, Inc. Method for depositing a metal on a surface
US4228213A (en) * 1979-08-13 1980-10-14 Western Electric Company, Inc. Method of depositing a stress-free electroless copper deposit
US4464231A (en) * 1980-10-22 1984-08-07 Dover Findings Inc. Process for fabricating miniature hollow gold spheres
IT1157006B (en) * 1982-03-09 1987-02-11 Alfachimici Spa STABILIZING MIXTURE FOR A CHEMICAL COPPER BATH
US4525390A (en) * 1984-03-09 1985-06-25 International Business Machines Corporation Deposition of copper from electroless plating compositions
US4666858A (en) * 1984-10-22 1987-05-19 International Business Machines Corporation Determination of amount of anionic material in a liquid sample
US4908242A (en) * 1986-10-31 1990-03-13 Kollmorgen Corporation Method of consistently producing a copper deposit on a substrate by electroless deposition which deposit is essentially free of fissures
GB8812329D0 (en) * 1988-05-25 1988-06-29 Engelhard Corp Electroless deposition
US5965211A (en) * 1989-12-29 1999-10-12 Nippondenso Co., Ltd. Electroless copper plating solution and process for formation of copper film
US5256441A (en) * 1992-08-04 1993-10-26 Amp-Akzo Corporation Ductile copper
US5258200A (en) * 1992-08-04 1993-11-02 Amp-Akzo Corporation Electroless copper deposition
US6042889A (en) * 1994-02-28 2000-03-28 International Business Machines Corporation Method for electrolessly depositing a metal onto a substrate using mediator ions
CN101555612A (en) * 2008-04-11 2009-10-14 深圳富泰宏精密工业有限公司 Method for processing surface of shell
EP2672520B1 (en) 2012-06-06 2018-07-04 SEMIKRON Elektronik GmbH & Co. KG Method for electroless deposition of a copper layer, electroless deposited copper layer and semiconductor component comprising said electroless deposited copper layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326700A (en) * 1963-06-12 1967-06-20 Rudolph J Zeblisky Electroless copper plating
US3259559A (en) * 1962-08-22 1966-07-05 Day Company Method for electroless copper plating
US3310430A (en) * 1965-06-30 1967-03-21 Day Company Electroless copper plating

Also Published As

Publication number Publication date
US3485643A (en) 1969-12-23
DE1621311A1 (en) 1970-07-23
DE1621311B2 (en) 1972-06-29
ES340230A1 (en) 1968-06-01
SE340738B (en) 1971-11-29
GB1145578A (en) 1969-03-19
DE1621311C3 (en) 1974-10-31
JPS5113734B1 (en) 1976-05-01
AT268811B (en) 1969-02-25
NL6706434A (en) 1967-11-07
NL152299B (en) 1977-02-15

Similar Documents

Publication Publication Date Title
CH497541A (en) Bath for autocatalytic plating
DE1696312C2 (en) Bath for the electroless deposition of copper coatings
DE3210268C2 (en) Aqueous alkaline bath for the electroless deposition of gold coatings
DE1521446C3 (en) Bath for the electroless deposition of copper
DE1521440B2 (en) Process for stabilizing baths for electroless reductive metal deposition. Aren: Photocircuits Corp., Glen Cove, N.Y. (V.St.A.)
DE2049061B2 (en) Alkaline aqueous bath and its use for electroless copper plating
DE2040930C3 (en) Process for electroless copper deposition and bath for carrying out the process
DE4021681C2 (en)
DE1621352C3 (en) Stabilized alkaline copper bath for the electroless deposition of copper
DE1247804B (en) Alkaline bath for the chemical deposition of firmly adhering palladium coatings
DE3329958A1 (en) A METHOD AND SOLUTION FOR DEFLECTED COPPER DEPOSITION ON A SUBSTRATE
DE3238921C2 (en) Bath for the electroless deposition of copper on a substrate and method for electroless deposition
DE2057757C3 (en) Bath solution for the electroless deposition of metals
DE1817355A1 (en) Bath for depositing metallic copper without external power supply
DE1278188B (en) Process for the production of base metals on more noble metals by chemical reduction of metal salts dissolved in water
DE1521512B1 (en) Alkaline bath for electroless copper deposition
DE19733991A1 (en) Reductive Ni bath
AT225492B (en) Process for electroless copper plating
DE2005032C3 (en) Bath for electroless copper plating of suitable surfaces
DE2232277A1 (en) Electroless copper -plating bath - stabilised by addn of a sulphite
DE1521512C (en) Alkaline bath for electroless copper deposition
DE1521440C (en) Process for stabilizing baths for electroless reductive metal deposition
DE2053830A1 (en) Autocatalytic plating bath - contg cyanide ions for electroless deposition of silver and gold
DE1621207C3 (en) Aqueous bath and process for the germination of plastic surfaces with palladium
DE3504150A1 (en) AQUEOUS ALKALINE BATH FOR ELECTRICAL COUPLING AND A METHOD FOR ELECTRIC COPPERING USING THIS BATH

Legal Events

Date Code Title Description
PL Patent ceased