Verfahren zur Herstellung von reinem /')-Siliciumearbid in feinteiliger Form Die Erfindung betrifft ein Verfahren zur Herstellung von reinem /3-Siliciumcarbid in feinteiliger Form durch Umsetzung von gasförmigen Organosiliciumverbindun- gen in einem Wasserstoffplasma.
Es ist bekannt, Carbide von Metallen oder Metalloi- den der dritten bis vierten Gruppe des periodischen Systems durch Umsetzung der entsprechenden Metallha- logenide mit Kohlenwasserstoffen in einem Wasserstoff plasma herzustellen (Schweizer Patent 424 738). Bei der Anwendung von Siliciumtetrachlorid als Ausgangsmate rial entsteht jedoch ein a-Siliciumcarbid, das stark verunreinigt ist. Je nach angewendeten Temperaturen bzw. Versuchsbedingungen kann diese Verunreinigung entweder aus freiem Kohlenstoff oder halogenhaltigen Podukten bestehen.
Es ist auch bekannt, Siliciumcarbid durch Erhitzen von in Gaszustand übergeführten alkylierten Silanen oder alkylierten Halogensilanen auf 600 bis 1100 C herzustellen. Nach dieser Methode wird ein Siliciumcar- bid erhalten, das mit metallischem Silicium verunreinigt ist (DAS 1 047 180). Ausserdem liegt die Raum-Zeit- Ausbeute nach diesem Verfahren niedrig; das bedeutet, dass dieses Verfahren wirtschaftlich unbefriedigend ist.
Der Erfindung liegt die Aufgabe zugrunde, reines, von metallischem Silicium freies ss-Siliciumcarbid in feinteiliger Form herzustellen, unter Umgehung der Schwierigkeiten der bekannten Verfahren.
Erfindungsgemäss wird dies dadurch erreicht, dass man die Umsetzung der gasförmigen Ausgangsprodukte bei einer Temperatur von 1600 bis 3000 C und in Gegenwart von Kohlenwasserstoffen durchführt, wobei das Molverhältnis Kohlenwasserstoff zu Organosili- ciumverbindung bei 0,45 bis 1,0 liegt und die Zufuhr der Ausgangsverbindungen in das Wasserstoffplasma durch eine Ringdüse erfolgt. Als Ausgangsverbindungen können Organosilicium- verbindungen verwendet werden, die auch Halogen enthalten können.
Insbesondere werden die Verbindun gen der Formel R,R,Si R3R4 eingesetzt, worin R1, R2, Rs und R, identisch oder verschieden sein können und Wasserstoff, Alkyl, Arylreste, substituierte Alkyl- oder Arylreste, Silyl- oder Silanylreste und Halogen bedeuten können. Mindestens eines der R muss jedoch ein organischer Rest sein. Vorzugsweise werden die Verbin dungen CH.jSiHC12 und CH3SiC13 verwendet.
Die genannten Ausgangsverbindungen können einzeln oder als Gemische eingesetzt werden.
Als Kohlenwasserstoffe werden zweckmässig solche mit ein bis zehn Kohlenstoffatomen, wie Propan, Butan, Hexan, Acetylen, Äthylen, Benzol, Xylol, Decan, Chlor methan, Chloräthan angewendet. Vorzugsweise wird Methan eingesetzt.
Die Ausgangsverbindungen können z. B. durch Ver dampfen in gasförmigen Zustand übergeführt und an- schliessend mit Hilfe eines Trägergases, wie Wasserstoff, Argon, Helium dem Wasserstoffplasma zugeführt wer den. Als besonders vorteilhaft hat es sich erwiesen, als Trägergas für die Organosiliciumverbindung bei deren Zufuhr zum Plasma die anzuwendenden Kohlenwasser stoffe selbst zu verwenden.
Von besonderer Bedeutung ist die Zuführung der Ausgangsmaterialien durch eine Ringdüse. Dadurch wird vermieden, dass das entstehende Siliciumcarbid durch chlorhaltige Produkte verunreinigt wird. Es wurde nämlich gefunden, dass, wenn die Zuführung der Aus gangsmaterialien durch eine Düse tangential zum Was serstoffplasma durchgeführt wird, das entstehende Sili- ciumcarbid stark durch chlorhaltige Produkte verunrei nigt ist. Der Abstand der Ringdüse zum erzeugten Plasmastrahl muss so eingestellt werden, dass Tempera- turen von 1600 bis 3000 C erreicht werden.
Höhere Temperaturen sind zu vermeiden.
Das Wasserstoffplasma kann auch durch Intergase, wie Argon, Helium, Kohlenmonoxid verdünnt sein.
Zur Herstellung von dotiertem Siliciumcarbid kön nen Verbindungen, die Elemente der zweiten bis siebten Gruppe des periodischen Systems enthalten, eingesetzt werden, z. B. Trimethylsilylmethylmagnesium, Silylphos- phin, y-Trimethylsilylpropylphosphin, Phosphorchlorid, Borbromid oder Borchlorid.
Nach dem Verfahren der Erfindung fällt ss-Silicium- carbid in sehr feiner Form an. In der Regel beträgt die mittlere Teilchengrösse 0,01 bis 1,0,u. Dieses feinpulvri ge Siliciumcarbid kann nachträglich einer Nachbehand lung, z. B. zur Kornvergrösserung, unterworfen wer den.
Die Herstellung des Plasmastrahls erfolgt z. B. unter Verwendung eines stromstarken elektrischen Bogens in einem sogenannten Plasmagenerator, der zweckmässig nach dem an sich bekannten Prinzip aufgebaut ist und eine mit Wasser gekühlte durchbohrte Kupferanode und eine gekühlte Wolframkathode aufweist. Das tangential eingeführte Plasmagas bildet einen Wirbel, der den Bogen stabilisiert. Weiter dient ein ringförmiger Elektro magnet zur Rotation des Plasmas. Durch eine Expan sionsdüse tritt der Plasmastrahl in den Reaktionskessel, wo durch schnelle Durchmischung mit der Kesselatmo sphäre eine Abschreckung erreicht wird.
Zum Zuführen der gas- bzw. dampfförmigen Ausgangsprodukte dient eine ringförmige Düse, welche konzentrisch um den austretenden Plasmastrahl angeordnet ist. Durch Variie ren der Distanz von der Austrittsöffnung kann die Temperatur geändert werden.
<I>Beispiele</I> 1. Der Plasmagenerator wird unter folgenden Bedin gungen betrieben:
EMI0002.0029
Strom <SEP> 200 <SEP> Ampere
<tb> Bogenspannung <SEP> 120 <SEP> Volt
<tb> H#,-Durchflussmenge <SEP> 721 <SEP> pro <SEP> Minute. Im Abstand von 103 cm von der Anode wird pro Minute ein gasförmiges Gemisch aus 0,1 Mol CH3 SiHCl2 und 0,09 Mol CH.4 (als Kohlenwasserstoff und zugleich Trägergas) durch eine Ringdüse mit Durchmes ser von 40 mm in den Plasmastrahl eingeführt.
Mit einer Ausbeute von 71 % wurde ss-Siliciumcarbid als hellgel- bes Pulver gewonnen. Die Röntgenanalyse ergab, dass dieses Produkt kein Si-Metall enthielt.
2. Es wurde wie in Beispiel 1 vorgegangen mit der Ausnahme, dass Methyldichlorsilan zusammen mit To luol als Kohlenwasserstoff gemischt wurde und als Trägergas Argon verwendet wurde.
Mit einer Ausbeute von 80 /o wurde ss-Siliciumcar- bid als hellgelbes Pulver erhalten. Die Röntgenanalyse ergab, dass dieses Produkt kein Si-Metall enthielt.
3. Wie in Beispiel 1 wurde als Vergleichsbeispiel in einem Plasmastrahl 0,1 Mol pro Minute CH3SiHC12 und 0,025 Mol pro Minute CH-4 als Trägergas einge- bracht. In einer Ausbeute von 68 % wurde ss-Silicium- carbid als hellgelbes Produkt erhalten.
Die Röntgenana lyse ergab, dass dieses Produkt mit Si-Metall verunrei nigt war. Diese Menge Kohlenwasserstoff liegt hier unter der erfindungsgemäss anzuwendenden Menge, wodurch die Bildung des Si-Metalles nicht verhindert werden konnte.
Das Verfahren der Erfindung gestattet eine grosse Raum-Zeit-Ausbeute, das die Reaktionszeit, je nach Wahl der Bedingungen, bei 10-z bis 10-4 Sek. liegt und die Materialausbeute hoch ist. Ausserdem ist die Wahl der Temperatur innerhalb des beanspruchten Bereiches nicht kritisch.
Die nach dem Verfahren der Erfindung anfallenden ss-Siliciumcarbidpulver können verwendet werden zur Herstellung von dichten Körpern (durch Heisspressen) und als optische Schleifmittel. Weiter kann dieses Pro dukt in der Elektrotechnik angewendet werden, z. B. in der Halbleiterindustrie.
Process for the production of pure / 3-silicon carbide in finely divided form The invention relates to a process for the production of pure / 3-silicon carbide in finely divided form by reaction of gaseous organosilicon compounds in a hydrogen plasma.
It is known to produce carbides of metals or metalloids of the third to fourth group of the periodic system by reacting the corresponding metal halides with hydrocarbons in a hydrogen plasma (Swiss patent 424 738). When using silicon tetrachloride as a starting material, however, an α-silicon carbide is formed which is heavily contaminated. Depending on the temperatures used or the test conditions, this contamination can either consist of free carbon or halogen-containing products.
It is also known to produce silicon carbide by heating gasified alkylated silanes or alkylated halosilanes to 600 to 1100.degree. According to this method, a silicon carbide is obtained which is contaminated with metallic silicon (DAS 1 047 180). In addition, the space-time yield by this process is low; this means that this process is economically unsatisfactory.
The invention is based on the object of producing pure β-silicon carbide free of metallic silicon in finely divided form while avoiding the difficulties of the known processes.
According to the invention, this is achieved by carrying out the reaction of the gaseous starting materials at a temperature of 1600 to 3000 C and in the presence of hydrocarbons, the molar ratio of hydrocarbon to organosilicon compound being 0.45 to 1.0 and feeding in the starting compounds into the hydrogen plasma through an annular nozzle. Organosilicon compounds which can also contain halogen can be used as starting compounds.
In particular, the compounds of the formula R, R, Si R3R4 are used, in which R1, R2, Rs and R, can be identical or different and can represent hydrogen, alkyl, aryl radicals, substituted alkyl or aryl radicals, silyl or silanyl radicals and halogen . However, at least one of the R must be an organic residue. The compounds CH.jSiHC12 and CH3SiC13 are preferably used.
The starting compounds mentioned can be used individually or as mixtures.
The hydrocarbons used are suitably those with one to ten carbon atoms, such as propane, butane, hexane, acetylene, ethylene, benzene, xylene, decane, chlorine methane, chloroethane. Methane is preferably used.
The starting compounds can, for. B. converted into a gaseous state by evaporation and then supplied to the hydrogen plasma with the aid of a carrier gas such as hydrogen, argon or helium. It has proven to be particularly advantageous to use the hydrocarbons to be applied themselves as the carrier gas for the organosilicon compound when it is supplied to the plasma.
The feeding of the starting materials through an annular nozzle is of particular importance. This prevents the silicon carbide produced from being contaminated by products containing chlorine. It has been found that if the starting materials are fed in through a nozzle tangentially to the hydrogen plasma, the silicon carbide formed is heavily contaminated by products containing chlorine. The distance between the ring nozzle and the plasma jet generated must be set so that temperatures of 1600 to 3000 C are reached.
Avoid higher temperatures.
The hydrogen plasma can also be diluted by inter gases such as argon, helium, carbon monoxide.
For the production of doped silicon carbide, compounds containing elements of the second to seventh groups of the periodic table can be used, e.g. B. trimethylsilylmethylmagnesium, silylphosphine, γ-trimethylsilylpropylphosphine, phosphorus chloride, boron bromide or boron chloride.
According to the process of the invention, β-silicon carbide is obtained in very fine form. As a rule, the mean particle size is 0.01 to 1.0, u. This feinpulvri ge silicon carbide can be used after treatment, z. B. for grain enlargement, subject to who the.
The plasma jet is produced, for. B. using a high-current electric arc in a so-called plasma generator, which is suitably constructed according to the principle known per se and has a copper anode cooled with water and a cooled tungsten cathode. The tangentially introduced plasma gas forms a vortex that stabilizes the arc. A ring-shaped electro magnet is also used to rotate the plasma. The plasma jet enters the reaction vessel through an expansion nozzle, where it is quenched through rapid mixing with the vessel atmosphere.
An annular nozzle, which is arranged concentrically around the emerging plasma jet, is used to supply the gaseous or vaporous starting products. The temperature can be changed by varying the distance from the outlet opening.
<I> Examples </I> 1. The plasma generator is operated under the following conditions:
EMI0002.0029
Current <SEP> 200 <SEP> amps
<tb> arc voltage <SEP> 120 <SEP> volts
<tb> H #, - flow rate <SEP> 721 <SEP> per <SEP> minute. At a distance of 103 cm from the anode, a gaseous mixture of 0.1 mol CH3 SiHCl2 and 0.09 mol CH.4 (as a hydrocarbon and at the same time carrier gas) is introduced into the plasma jet through an annular nozzle with a diameter of 40 mm.
Β-silicon carbide was obtained as a light yellow powder with a yield of 71%. The X-ray analysis showed that this product did not contain any Si metal.
2. The procedure was as in Example 1 with the exception that methyldichlorosilane was mixed together with toluene as a hydrocarbon and argon was used as the carrier gas.
SS-silicon carbide was obtained as a light yellow powder with a yield of 80%. The X-ray analysis showed that this product did not contain any Si metal.
3. As in Example 1, 0.1 mol per minute of CH3SiHC12 and 0.025 mol per minute of CH4 were introduced as a carrier gas as a comparative example in a plasma jet. In a yield of 68%, β-silicon carbide was obtained as a pale yellow product.
The X-ray analysis showed that this product was contaminated with Si metal. This amount of hydrocarbon is below the amount to be used according to the invention, so that the formation of the Si metal could not be prevented.
The process of the invention allows a large space-time yield, the reaction time, depending on the choice of conditions, is from 10-z to 10-4 seconds and the material yield is high. In addition, the choice of temperature within the claimed range is not critical.
The β-silicon carbide powders obtained by the process of the invention can be used for the production of dense bodies (by hot pressing) and as optical abrasives. Next, this pro product can be used in electrical engineering, for. B. in the semiconductor industry.