CH448346A - Process for the production of stoving enamels suitable for heat-resistant coatings - Google Patents

Process for the production of stoving enamels suitable for heat-resistant coatings

Info

Publication number
CH448346A
CH448346A CH431763A CH431763A CH448346A CH 448346 A CH448346 A CH 448346A CH 431763 A CH431763 A CH 431763A CH 431763 A CH431763 A CH 431763A CH 448346 A CH448346 A CH 448346A
Authority
CH
Switzerland
Prior art keywords
groups
stoving enamels
heat
resistant coatings
production
Prior art date
Application number
CH431763A
Other languages
German (de)
Inventor
Blaschke Franz Ing Dr
Nat Schade Gerhard Dr Rer
Original Assignee
Chemische Werke Witten Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemische Werke Witten Gmbh filed Critical Chemische Werke Witten Gmbh
Publication of CH448346A publication Critical patent/CH448346A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Insulating Materials (AREA)

Description

  

  
 



  Verfahren zur Herstellung von für wärmebeständige Überzüge geeigneten Einbrennlacken
Es ist bekannt, Einbrennlacke in der Weise herzustellen, dass man Terephthalsäure und/oder Isophthalsäure oder funktionelle Derivate dieser Säuren mit Gemischen aus Glykolen und höherwertigen Alkoholen, insbesondere Glycerin, zu im wesentlichen linearen oder gering verzweigten Polyestern umsetzt, die freie Hydroxylgruppen besitzen. Diese Produkte können durch bekannte Vernetzungsreaktionen, wie beispielsweise mit Diisocyanaten, oder Estern von Metallsäuren, wie zum Beispiel Alkyltitanaten, in den unlöslichen, unschmelzbaren Zustand überführt werden. Derartige Produkte werden insbesondere als Bindemittel für Drahtisolierlacke verwendet.

   Für diese Zwecke hat sich aber die Hitzeschockfestigkeit der in der   beschrie    benen Weise hergestellten   Uberzüge    als nicht immer ausreichend erwiesen.



   Es ist weiter bekannt, hochtemperaturbeständige Überzüge, insbesondere für elektrische Leiter, dadurch herzustellen, dass man Dianhydride aromatischer Tetracarbonsäuren, insbesondere Pyromellithsäuredianhydrid, mit aromatischen, gegebenenfalls mehrkernigen Diaminen, insbesondere 4,4'-Diaminodiphenyläther, in Gegenwart eines stark polaren Lösungsmittels, welches keine mit den Anhydridgruppen reagierenden Wasserstoffatome enthält, bei niedriger Temperatur umsetzt.



  Nach diesem Verfahren erhält man Lösungen linearer Polyamide, die den Carbonamidgruppen jeweils benachbarte freie Carboxylgruppen besitzen. Nach Verflüchtigung des Lösungsmittels gehen diese carboxylgruppenhaltigen Polyamide durch Erhitzen unter Abspaltung von Wasser in im wesentlichen lineare Polyimide über, die unlösliche, nur unter Zersetzung schmelzbare   Üb erzüge    von hervorragenden mechanischen und elektrischen Eigenschaften ergeben. Von Nachteil ist bei den ungehärteten Produkten jedoch der Umstand, dass diese auch bei niederer Temperatur nur beschränkte Lagerfähigkeit besitzen und nach unerwünscht kurzer Zeit durch Gelbildung unbrauchbar werden.

   Der naheliegende Gedanke, die freien Carboxylgruppen der gelösten Polyamide durch Salzbildung mit organischen Basen für die unerwünschte Gelbildungsreaktion zu blockieren, führte zu keiner wesentlichen Verbesserung der Lagerstabilität.



   Es wurde nun gefunden, dass man für wärmebeständige, hitzeschockfeste Überzüge, insbesondere für elektrische Leiter, geeignete Einbrennlacke erhält, wenn man   gemäss    der Kennzeichnung der Erfindung Gemische aus Dialkoholen   und ! oder    höherwertigen Alkoholen mit imidgruppenhaltigen Dicarbonsäuren der allgemeinen Formel
EMI1.1     
   m    aer    -Ar'    aromatische Radikale und
N-Ar"-N Radikale von Diaminen, deren Aminogruppen an einer oder verschiedenen Phenylengruppen stehen und deren gegebenenfalls mehrere Phenylengruppen anelliert, durch C-C-Bindungen, Alkylen- oder Cycloalkylengruppen oder durch Heteroatome oder Heteroatome enthaltende Gruppen miteinander verbunden sind, bedeuten, polykondensiert und in Lösungsmitteln löst.



   Die Verwendung der erfindungsgemäss hergestellten Einbrennlacke als Oberzugsmittel kann derart erfolgen, dass sie nach Zusatz vernetzend wirkender Stoffe durch Erhitzen ausgehärtet werden.



   Als Dialkohole können zum Beispiel Polymethylenglykole; cycloaliphatische Diole, z. B. Dimethylolcyclohexane, Chinite; aromatisch-aliphatische Diole, z. B.



  Xylylenglykole oder Oxyäthylierungsprodukte zweiwertiger Phenole, wie   Di-oxyäthoxy-diphenylprop an    oder   Di-oxyäthoxybenzole eingesetzt, während als höherwertige Alkohole beispielsweise Glycerin, Pentaerythrit, Trimethylolpropan, Hexandiol, Sorbit und dgl. in Frage kommen.



   Als Lösungsmittel für die beschriebenen Polykondensate können z. B. Kresole, Xylenole, Diacetonalkohol, Methylglykolacetat, eventuell im Gemisch mit aromatischen Kohlenwasserstoffen verwendet werden.



   Für die Härtung der Einbrennlacke können an sich bekannte vernetzend wirkende Stoffe, wie Alkyl- oder Aryl-titanate, öllösliche Salze von Al, Cr, Co, Cu, Fe, Mn, Ni, Sn, Ti, V,   Zn,    Cd, Pb, Ca, Polyisocyanate und   sogenannte    verkappte  Polyisocyanate verwendet    werden.



   Die imidgruppenhaltigen Dicarbonsäuren lassen sich erhalten, wenn man die Anhydride aromatischer Tricarbonsäuren, vorzugsweise Trimellithsäureanhydrid, mit aromatischen Diaminen der Formel   
H2N-AR" NHi worin = N - Ar" - N = die oben angegebene Bedeu-    tung hat, im Molverhältnis 2:1 in der Kälte,   gegebe-    nenfalls in Gegenwart eines inerten Lösungsmittels, umsetzt und das Umsetzungsprodukt unter Verwendung des Lösungsmittels als Schleppmittel für das abzuspaltende Reaktionswasser so lange erhitzt, bis sich das Imid gebildet hat.



   Es hat sich aber als durchführbar erweisen, auf die gesonderte Herstellung dieser imidgruppenhaltigen Dicarbonsäuren zu verzichten, und das Reaktionsgemisch, bestehend aus den zwei- und höherwertigen Alkoholen, den aromatischen Dicarbonsäuren oder deren funktionellen Derivaten, dem Tricarbonsäureanhydrid und dem aromatischen Diamin unter Rühren in einer Stickstoff-Atmosphäre langsam auf die zur   Durchflihrung    der Polykondensation   erforderliche    Temperatur zu erhitzen.

   Diese einfachere Art der Reaktionsführung wird dadurch ermöglicht, dass der am leichtesten und daher bevorzugt ablaufende Reak  tions-Teilschritt    in dem theoretisch zu vielfachen Umsetzungen befähigten Reaktionsgemisch die Addition einer Aminogruppe an die Anhydridgruppe des Tricarbonsäureanhydrids unter Bildung einer Carbonamidund einer dazu orthoständigen freien Carboxylgruppe ist, und dass diese beiden Gruppen bei höherer Temperatur leicht in eine Imidgruppe übergehen, offenbar selbst dann, wenn die ursprünglich freie, der Carbonamidgruppe benachbarte Carboxylgruppe bereits verestert vorliegt.

   Dieser Reaktionsverlauf wird dadurch nahegelegt, dass es gelingt, einen Ansatz, bestehend aus 0,1 Mol Dimethylterephthalat, 0,1 Mol Trimellithsäureanhydrid, 0,05 Mol   4,4'-Diaminodiphenylmethan    und   0,25 Mol    Äthylenglykol in Gegenwart katalytischer Mengen Antimontrioxyd und Cadmiumacetat bis zu einem löslichen, schmelzbaren Produkt mit einer Viskositätszahl von 0,5 (bestimmt in Phenol/Tetrachlor äthan   [60:40 Gew.-01o]    bei   250 C;    1 g Substanz in   100 mol    Lösung) zu polykondensieren. Bei Annahme jedes anderen Reaktionsmechanismus müsste ein so weitgehend polykondensiertes Produkt infolge dreidi  mensionaler    Vernetzung bereits unlöslich und unschmelzbar sein.



   Unter Hitzeschockfestigkeit versteht man die Widerstandsfähigkeit der Isolierschicht eines elektrischen Leiters gegen plötzlich auftretende Temperaturerhöhung. Bei den angeführten Beispielen wurde diese Eigenschaft in folgender Weise ermittelt.



   Es werden vom Lackdraht durch Wickeln um Dorne mit verschiedenen   Durehmessern    Drahtwendel nach DIN 46 453 hergestellt. Dadurch entstehen Drahtfilme mit unterschiedlichen Aussenfaserdehnungen. Die Drahwendeln werden nun 15 Minuten auf   180"C    erhitzt und auf gegebenenfalls entstandene Risse des Lackfilmes geprüft. Die beste Hitzeschockfestigkeit besitzt derjenige   Lackdraht,    der bei grösster Aussenfaserdehnung der thermischen Beanspruchung ohne Rissbildung standhält.



   Beispiel 1
297 g Dimethylterephthalat (1,53 Mol), 148 g eines Umsetzungsproduktes, erhalten durch 30-stündiges Kochen von 2 Mol Trimellithsäureanhydrid und 1 Mol   4,4'-Diaminodiphenylmethan    in Xylol unter azeotroper Entfernung des Reaktionswassers und gekennzeichnet durch eine   Säurezahl    von 320 anstelle der für das entsprechende Dicarboxy-diimid theoretisch errechneten Säurezahl von 206, entsprechend   0,26 Mol    Umsetzungsprodukt, 92 g Glycerin (1 Mol) und 83 g   Äthy-    lenglykol   (1,34Mol)    wurden in Gegenwart von 0,8 g Bleioktoat in einer Stickstoff-Atmosphäre unter   Rüh-    ren während ca. 8 Stunden auf eine Innentemparatur von ca. 195 bis   2300 C    erhitzt, so dass die Brüden Temperatur konstant bei ca.

     1000 C    gehalten wurde.



  Im Verlauf der Reaktion wurden 130 ml eines Destillates aufgefangen, das aus dem bei der Umesterung des Dimethylterphthalates entstandenen Methanol, Wasser und etwas Glykol bestand. Die Reaktion wurde beendet, sobald die Viskositätszahl des Harzes, bestimmt mittels eines in 100 ml Lösung 1 g Substanz gelöst enthaltenden Phenol-Tetrachloräthan-Gemisch (60:40 Gewichts0/o) bei 250 C, einen Wert von 0,089 erreicht hatte.



  Es wurde ein bei Zimmertemperatur hartes, sprödes, rotbraunes Harz erhalten, dessen Gehalt an Trimellithsäure Diamin-Umsetzungsprodukt 15   Mol-O/o    des gesamten Dicarbonsäure-Gehaltes betrug (Harz A).



   Beispiel 2
Die Mengenverhältnisse der Reaktionspartner entsprachen denen des Beispiels 1 mit der Ausnahme, dass anstelle des Trimellithsäurenhydrid-Diamin-Umsetzungsproduktes 100 g Trimellithsäureanhydrid   (0,52 Mol)    und   51, 5 g      4,4'-Diaminodiphenylmethan      (0,26 Mol)    eingesetzt wurden. Der Ansatz wurde im Verlauf von ca. 2 Stunden unter Rühren auf   1950 C    gebracht. Weiter wurde wie in Beispiel 1 angegeben verfahren (Harz B).



   Beispiel 3
Die Mengenverhältnisse der Reaktionspartner entsprachen denen des Beispiels 2 mit der Ausnahme, dass anstelle des   4,4'-Diaminodiphenylmethans    64, 5 g   4,4'-Diaminodiphenylsulfon    (0,26 Mol) eingesetzt wurde. Das Herstellungsverfahren entsprach dem des Beispiels 2 (Harz C).



   Die Harze A, B und C wurden im Verhältnis: 35 Teile   Harz 1 45    Teile   Kresol /19    Teile Lösungsben  zog 1 1    Teil polymeres Butyltitanat gelöst und auf 0,6 mm-Kupferdraht wie folgt eingebrannt: Fahrdaten:   Ofenlänge:    2,00 m   Ofentemperatur:   3900 C      Durebzüge:    8 Abzugsgeschwindigkeit:

   4,2 m/Minute
Die wichtigsten Prüfungsergebnisse sind in der folgenden Tabelle   zusammengefasst:       Harz A    Harz B Harz C Abriebfestigkeit nach NEMA NW 55-1955, Ziffer 5.2.3 45 43 50 [Doppelhübe] Hitzeschockfestigkeit bei   180"C    15 Minuten   50 /o      50 /o      50 /o      CAussenfaserdehnungl    Wärmedruckfestigkeit nach DIN   46453/12.1.      295"C      2900C      320"C    Max.

   Aussenfaserdehnung nach 500 Stunden Alterung bei   180"C      13 /o      25 /o      40 /o   
Die Oberflächenhärte (Bleistifthärte) aller Harze betrug 4 H, nach 30 Minuten Lagerung in Äthanol, Benzol, Trichloräthylen, Wasser und Butylacetat bei 500 C betrug sie zwischen 3 H und 4 H, nach der Lagerung in Aceton betrug sie B.



   Aus diesen Werten geht hervor, dass sich die erfindungsgemäss hergestellten Harze nach dem Einbrennen durch hervorragende Härte und Lösungsmittelbeständigkeit im Vergleich zu anderen Drahtisolierlacken der Wärmeklasse F auszeichnen und ausserdem eine verbesserte Hitzeschockfestigkeit aufweisen; diese liegt bei den herkömmlichen, für diese Wärmeklasse gebräuchlichen Terephthalatharz-Drahtisolierlacken bei   3040      O/o    Aussendehnung.



   Die elektrischen Werte, wie der Verlustfaktor bei verschiedenen Frequenzen und Temperaturen und der Isolationswiderstand unter verschiedenen Bedingungen entsprachen etwa denen vergleichbarer Terephthalat Drahtisolierlacke.   



  
 



  Process for the production of stoving enamels suitable for heat-resistant coatings
It is known to produce stoving enamels in such a way that terephthalic acid and / or isophthalic acid or functional derivatives of these acids are reacted with mixtures of glycols and higher alcohols, in particular glycerol, to form essentially linear or slightly branched polyesters which have free hydroxyl groups. These products can be converted into the insoluble, infusible state by known crosslinking reactions, such as, for example, with diisocyanates, or esters of metal acids, such as, for example, alkyl titanates. Such products are used in particular as binders for wire insulating varnishes.

   For these purposes, however, the heat shock resistance of the coatings produced in the manner described has not always proven to be sufficient.



   It is also known that high-temperature-resistant coatings, especially for electrical conductors, can be produced by mixing dianhydrides of aromatic tetracarboxylic acids, especially pyromellitic dianhydride, with aromatic, optionally polynuclear diamines, especially 4,4'-diaminodiphenyl ether, in the presence of a strongly polar solvent which does not contain any contains the anhydride groups reacting hydrogen atoms, converts at low temperature.



  This process gives solutions of linear polyamides which have free carboxyl groups adjacent to the carbonamide groups. After the solvent has volatilized, these polyamides containing carboxyl groups pass by heating with elimination of water into essentially linear polyimides which result in insoluble, only fusible with decomposition transfer of excellent mechanical and electrical properties. The disadvantage of the uncured products, however, is the fact that they only have a limited shelf life even at low temperatures and become unusable after an undesirably short time due to gel formation.

   The obvious idea of blocking the free carboxyl groups of the dissolved polyamides by salt formation with organic bases for the undesired gel formation reaction did not lead to any significant improvement in the storage stability.



   It has now been found that for heat-resistant, heat-shock-resistant coatings, in particular for electrical conductors, suitable stoving enamels are obtained if, according to the characterization of the invention, mixtures of dialcohols and! or higher-valent alcohols with imide-containing dicarboxylic acids of the general formula
EMI1.1
   m aer -Ar 'aromatic radicals and
N-Ar "-N radicals of diamines whose amino groups are on one or different phenylene groups and whose optionally several phenylene groups are fused, linked to one another by CC bonds, alkylene or cycloalkylene groups or groups containing heteroatoms or heteroatoms, mean, polycondensed and in Solvents.



   The stoving enamels produced according to the invention can be used as coating agents in such a way that, after the addition of crosslinking substances, they are cured by heating.



   As dialcohols, for example, polymethylene glycols; cycloaliphatic diols, e.g. B. dimethylolcyclohexanes, quinites; aromatic-aliphatic diols, e.g. B.



  Xylylene glycols or oxyethylation products of dihydric phenols, such as di-oxyethoxy-diphenylpropane or di-oxyethoxybenzenes, are used, while glycerol, pentaerythritol, trimethylolpropane, hexanediol, sorbitol and the like, for example, are possible as higher-valent alcohols.



   As a solvent for the polycondensates described, for. B. cresols, xylenols, diacetone alcohol, methyl glycol acetate, may be used in a mixture with aromatic hydrocarbons.



   Known crosslinking substances, such as alkyl or aryl titanates, oil-soluble salts of Al, Cr, Co, Cu, Fe, Mn, Ni, Sn, Ti, V, Zn, Cd, Pb, Ca, polyisocyanates and so-called blocked polyisocyanates can be used.



   The dicarboxylic acids containing imide groups can be obtained by combining the anhydrides of aromatic tricarboxylic acids, preferably trimellitic anhydride, with aromatic diamines of the formula
H2N-AR "NHi where = N - Ar" - N = has the meaning given above, in a molar ratio of 2: 1 in the cold, possibly in the presence of an inert solvent, and the reaction product is converted using the solvent as an entrainer for the water of reaction to be split off heated until the imide has formed.



   However, it has proven to be feasible to dispense with the separate preparation of these imide-containing dicarboxylic acids and the reaction mixture, consisting of the dihydric and higher alcohols, the aromatic dicarboxylic acids or their functional derivatives, the tricarboxylic anhydride and the aromatic diamine with stirring in a nitrogen - to slowly heat the atmosphere to the temperature required to carry out the polycondensation.

   This simpler type of reaction is made possible by the fact that the easiest and therefore preferred reaction substep in the reaction mixture theoretically capable of multiple reactions is the addition of an amino group to the anhydride group of the tricarboxylic acid anhydride with the formation of a carbonamide and a free carboxyl group ortho to it, and that these two groups easily convert to an imide group at higher temperatures, apparently even if the originally free carboxyl group adjacent to the carbonamide group is already esterified.

   This course of the reaction is suggested by the fact that a batch consisting of 0.1 mol of dimethyl terephthalate, 0.1 mol of trimellitic anhydride, 0.05 mol of 4,4'-diaminodiphenylmethane and 0.25 mol of ethylene glycol in the presence of catalytic amounts of antimony trioxide and cadmium acetate is possible to a soluble, fusible product with a viscosity number of 0.5 (determined in phenol / tetrachloroethane [60:40 wt. 01o] at 250 C; 1 g of substance in 100 mol of solution) to polycondense. Assuming any other reaction mechanism, such a largely polycondensed product would already have to be insoluble and infusible due to three-dimensional crosslinking.



   Thermal shock resistance is the resistance of the insulating layer of an electrical conductor to sudden increases in temperature. In the examples given, this property was determined in the following way.



   Wire coils according to DIN 46 453 are produced from enamelled wire by winding it around mandrels with various diameter knives. This creates wire films with different external fiber expansions. The wire coils are then heated to 180 ° C for 15 minutes and checked for any cracks in the lacquer film. The best heat shock resistance is provided by that enamelled wire which can withstand the thermal stress without cracking with the greatest external fiber expansion.



   example 1
297 g of dimethyl terephthalate (1.53 mol), 148 g of a reaction product, obtained by boiling 2 mol of trimellitic anhydride and 1 mol of 4,4'-diaminodiphenylmethane in xylene for 30 hours with azeotropic removal of the water of reaction and characterized by an acid number of 320 instead of for the corresponding dicarboxy-diimide theoretically calculated acid number of 206, corresponding to 0.26 mol of reaction product, 92 g of glycerol (1 mol) and 83 g of ethylene glycol (1.34 mol) were in the presence of 0.8 g of lead octoate in a nitrogen The atmosphere is heated to an internal temperature of approx. 195 to 2300 C for approx. 8 hours with stirring, so that the vapor temperature remains constant at approx.

     1000 C was held.



  In the course of the reaction, 130 ml of a distillate were collected, which consisted of the methanol formed during the transesterification of the dimethyl terphthalate, water and a little glycol. The reaction was ended as soon as the viscosity number of the resin, determined by means of a phenol-tetrachloroethane mixture (60:40 weight 0 / o) at 250 ° C. containing 1 g of substance dissolved in 100 ml solution, had reached a value of 0.089.



  A brittle, red-brown resin which was hard, brittle at room temperature and had a trimellitic acid / diamine reaction product content of 15 mol / o of the total dicarboxylic acid content was obtained (resin A).



   Example 2
The proportions of the reactants corresponded to those of Example 1 with the exception that 100 g of trimellitic anhydride (0.52 mol) and 51.5 g of 4,4'-diaminodiphenylmethane (0.26 mol) were used instead of the trimellitic acid hydride / diamine reaction product. The batch was brought to 1950 C over the course of about 2 hours while stirring. The procedure was as indicated in Example 1 (resin B).



   Example 3
The proportions of the reactants corresponded to those of Example 2 with the exception that 64.5 g of 4,4'-diaminodiphenyl sulfone (0.26 mol) were used instead of the 4,4'-diaminodiphenylmethane. The manufacturing process was the same as that of Example 2 (Resin C).



   Resins A, B and C were dissolved in the ratio: 35 parts of resin 1, 45 parts of cresol / 19 parts of solvent, 1 part of polymeric butyl titanate and baked onto 0.6 mm copper wire as follows: Driving data: Oven length: 2.00 m oven temperature : 3900 C pulls: 8 take-off speed:

   4.2 m / minute
The most important test results are summarized in the following table: Resin A Resin B Resin C Abrasion resistance according to NEMA NW 55-1955, Section 5.2.3 45 43 50 [double strokes] Heat shock resistance at 180 "C 15 minutes 50 / o 50 / o 50 / o C Outer fiber expansion l Thermal compressive strength according to DIN 46453 / 12.1. 295 "C 2900C 320" C Max.

   External fiber elongation after 500 hours of aging at 180 "C 13 / o 25 / o 40 / o
The surface hardness (pencil hardness) of all resins was 4 H, after 30 minutes of storage in ethanol, benzene, trichlorethylene, water and butyl acetate at 500 C it was between 3 H and 4 H, after storage in acetone it was B.



   From these values it can be seen that the resins produced according to the invention, after stoving, are distinguished by excellent hardness and solvent resistance compared to other wire insulating enamels of thermal class F and also have improved heat shock resistance; In the case of the conventional terephthalate resin wire insulating varnishes used for this thermal class, this is 3040% external expansion.



   The electrical values, such as the loss factor at different frequencies and temperatures and the insulation resistance under different conditions, roughly corresponded to those of comparable terephthalate wire insulating varnishes.

 

Claims (1)

PATENTANSPRUCH 1 Verfahren zur Herstellung von für wärmebeständige Überzüge geeigneten Einbrennlacken, dadurch gekennzeichnet, dass man Gemische aus Dialkoholen und/oder höherwertigen Alkoholen mit imidgruppenhaltigen Dicarbonsäuren der allgemeinen Formel EMI3.1 in der -Ar' aromatische Radikale und N-Ar" -N Radikale von Diaminen, deren Aminogruppen an einer oder verschiedenen Phenylengruppen stehen und deren gegebenenfalls mehrere Phenylengruppen anelliert, durch C-C-Bindungen, Alkylen- oder Cycloalkylengruppen oder durch Heteroatome oder Heteroatome enthaltende Gruppen miteinander verbunden sind, bedeuten, polykondensiert und in Lösungsmitteln löst. PATENT CLAIM 1 Process for the production of stoving enamels suitable for heat-resistant coatings, characterized in that mixtures of dialcohols and / or higher alcohols with imide-containing dicarboxylic acids of the general formula EMI3.1 in the -Ar 'aromatic radicals and N-Ar "-N radicals of diamines whose amino groups are on one or different phenylene groups and whose optionally several phenylene groups are fused together, through CC bonds, alkylene or cycloalkylene groups or through groups containing heteroatoms or heteroatoms are connected, mean, polycondensed and dissolves in solvents. UNTERANSPRUCH 1. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass die Polykondensation im Gemisch mit aromatischen Dicarbonsäuren oder funktionellen Derivaten derselben durchgeführt wird. SUBClaim 1. The method according to claim I, characterized in that the polycondensation is carried out in a mixture with aromatic dicarboxylic acids or functional derivatives thereof. PATENTANSPRUCH II Verwendung der gemäss Patentanspruch I hergestellten Einbrennlacke als Oberzugsmittel, dadurch gekennzeichnet, dass sie nach Zusatz vernetzend wirkender Stoffe durch Erhitzen ausgehärtet werden. PATENT CLAIM II Use of the stoving enamels produced according to patent claim I as coating agents, characterized in that, after the addition of crosslinking substances, they are cured by heating. UNTERANSPRUCH 2. Verwendung der Einbrennlacke gemäss Patent anspruch II, dadurch gekennzeichnet, dass Alkylester von Metallsäuren als Vernetzungsmittel verwendet werden. SUBClaim 2. Use of the stoving enamels according to patent claim II, characterized in that alkyl esters of metal acids are used as crosslinking agents.
CH431763A 1962-10-16 1963-04-04 Process for the production of stoving enamels suitable for heat-resistant coatings CH448346A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEC0028189 1962-10-16

Publications (1)

Publication Number Publication Date
CH448346A true CH448346A (en) 1967-12-15

Family

ID=7018565

Family Applications (1)

Application Number Title Priority Date Filing Date
CH431763A CH448346A (en) 1962-10-16 1963-04-04 Process for the production of stoving enamels suitable for heat-resistant coatings

Country Status (7)

Country Link
BE (1) BE638676A (en)
CH (1) CH448346A (en)
DE (1) DE1495261A1 (en)
FR (1) FR1371474A (en)
GB (1) GB1055287A (en)
NL (1) NL292164A (en)
YU (1) YU31336B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1645435C1 (en) * 1965-05-20 1983-04-21 Schenectady Chemicals, Inc., Schenectady, N.Y. Process for the production of polyesterimides
US3853817A (en) * 1971-06-17 1974-12-10 Gen Electric Tin containing esterimide polymer resins and method of forming
US4038254A (en) 1973-03-01 1977-07-26 Dynamit Nobel Aktiengesellschaft Process for the manufacture of wire insulation varnish resins suitable chiefly for application in the melted state

Also Published As

Publication number Publication date
BE638676A (en)
YU31336B (en) 1973-04-30
NL292164A (en)
DE1495261A1 (en) 1969-03-06
GB1055287A (en) 1967-01-18
FR1371474A (en) 1964-09-04

Similar Documents

Publication Publication Date Title
US3382203A (en) Polyesters and insulating coatings for electrical conductors made therefrom
DE1795637C3 (en) Use of polyester imides for electrical insulation
WO1996027643A1 (en) Wire coating medium and process for producing the same
DE1645435A1 (en) Process for the production of a heat-resistant polyester-polyimide plastic
DE1440862B2 (en) INSULATED ELECTRIC CONDUCTOR
CH448346A (en) Process for the production of stoving enamels suitable for heat-resistant coatings
DE2032075C3 (en) Multilayer insulation materials
EP0941273B1 (en) Method for the production of polyester imides containing carboxyl- and hydroxyl groups and their usage in wire enamels
EP0075239B1 (en) Process for producing aqueous thermosetting electrically insulating lacquers, and their use
DE3048434A1 (en) HEAT-RESISTANT POLYAMIDIMIDE ESTERIMIDE RESIN AND ELECTRIC INSULATION LACQUER
DE2264662B2 (en) Curable composition containing polyamide-imide precursors
AT275872B (en) Process for the production of a heat-resistant modified polyester-polyimide, particularly suitable for electrical insulation
DE2134479A1 (en) Branched amide-imide-ester polymers for insulation varnishes
DE1795596B2 (en) Bis-trimellitic acid imide of 4,4'-diaminodiphenylmethane. Eliminated from: 1445263
DE1795826C2 (en) Use of polyester imides for stoving insulation on electrical conductors
DE3113925A1 (en) "POLYAETHERAMIDIMIDE RESIN AND ISOLATED ELECTRICAL LADDER"
DE3113988A1 (en) "POLYAETHERIMIDE RESIN AND ISOLATED ELECTRICAL LADDER"
DE1690163B2 (en) DOUBLE LACQUERED ELECTRIC CONDUCTOR
AT278123B (en) Electrical conductor with two layers of insulation
DE2460206C2 (en) Resin mixture based on polyester and polyhydantoin and their use
DE1494452C2 (en) Highly heat-resistant coatings provide electrical insulating varnish
DE1814497A1 (en) Nitrogen-containing polycondensates, processes for their production and their use
CH624986A5 (en) Process for the preparation of lacquer and use of the lacquer prepared by the process
AT254527B (en) Process for the production of thermosetting synthetic resins
DE2445302C2 (en) Impregnating varnishes for electrical insulation purposes