CH415608A - Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes - Google Patents

Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes

Info

Publication number
CH415608A
CH415608A CH551062A CH551062A CH415608A CH 415608 A CH415608 A CH 415608A CH 551062 A CH551062 A CH 551062A CH 551062 A CH551062 A CH 551062A CH 415608 A CH415608 A CH 415608A
Authority
CH
Switzerland
Prior art keywords
arylcycloalkanes
catalyst
alkyl
cracking
catalysts
Prior art date
Application number
CH551062A
Other languages
German (de)
Inventor
Diederich Logemann Johan
Original Assignee
Stamicarbon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamicarbon filed Critical Stamicarbon
Publication of CH415608A publication Critical patent/CH415608A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/74Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition with simultaneous hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/04Sulfides

Description

  

  



  Verfahren zur Herstellung von Arylcycloalkanen bzw.   Alkyl-arylcycloalkanen   
Die Erfindung betrifft die Herstellung von Arylcycloalkanen bzw.   Alkylarylcycloalkanen    aus unsubstituierten bzw. alkylsubstituierten aromatischen Kohlenwasserstoffen.



   Bekanntlich lassen sich Cycloalkane, wie Cyclohexan und Decahydronaphthalin, durch Hydrierung mit Hilfe von Hydrierkatalysatoren aus aromatischen Kohlenwasserstoffen, wie Benzol und Naphthalin, herstellen.



   Weiter ist es bekannt, dass aromatische Kohlenwasserstoffe durch Reaktion mit einem Alkylen in Anwesenheit von Krackkatalysatoren alkyliert werden können, auf welche Weise sich z. B. aus Benzol und Propylen Isopropylbenzol gewinnen lässt. Krackkatalysatoren sind bekanntlich Katalysatoren, die sich eignen, das Kracken von Kohlenwasserstoffen zu flüssigen   und/oder    gasförmigen Produkten zu   begün-    stigen.



   Es wurde nunmehr gefunden, dass Arylcycloalkane bzw. Alkyl-arylcycloalkane aus substituierten bzw. alkylsubstituierten aromatischen Kohlenwasserstoffen erhalten werden können, wenn diese in der Flüssigkeitsphase bei einer Temperatur von nicht über   250  C    in Anwesenheit von Wasserstoff mit einem Druck unter 100 at mit durch Kombination von Hydrier-und Krackkatalysatoren erhaltenen Katalysatoren in Berührung gebracht werden.



   Beispiele von Herstellungen, auf die sich die Erfindung bezieht, sind : Phenylcyclohexan... aus Benzol   Toluylmethylcyclohexan.... aus Toluol      Dimethylphenyldimethylcyclohexan..    aus Xylol   Naphthylhydronaphthalin...    aus Naphthalin   Phenylhydronaphthaliin......    aus Benzol und Naphthalin   Methylnaphthylmethylhydronaphthalin.    aus Methylnaphthalin Methylphenylhydronaphthalin.. aus Toluol und Naphthalin
Beim Durchführen des erfindungsgemässen Verfahrens werden vorzugsweise als Krackkatalysatoren saure   Silikatkatalysatoren    angewandt. Diese Katalysatoren setzen sich aus Siliciumdioxyd und Oxyden von Metallen, wie Aluminium, Calcium, Zirkon und Magnesium, zusammen, während ferner andere anorganische Oxyde anwesend sein können.

   Sowohl saure Tonerde wie auch im wesentlichen aus Siliciumdioxyd mit wenigen   Aluminiumsilikatspuren    bestehende Krackkatalysatoren kommen in Betracht.



   Wichtige Vertreter der Hydrierkatalysatoren sind Metalle, z. B. Nickel, Kobalt, Eisen, Platin, Palladium, Iridium, Osmium, Rhodium und Ruthen, ferner Oxyde, z. B. Chromoxyd,   Molybdänoxyd    und Wolframoxyd, wie auch Sulfide, z. B.   Molybdän-    sulfid, Nickelsulfid und Wolframsulfid.



   Das Verhältnis zwischen den Mengen Hydrierkatalysator und Krackkatalysator kann schwanken.



  Schon mit geringen   Hydrierkatalysatormengen    von z. B. 0,05,0,1,1,5,3,5,10,15 oder 25 Gew.   %     Hydrierkatalysator, bezogen auf den Krackkatalysator, werden gute Ergebnisse erzielt.



   Das Kombinieren des Hydrier-und des Krackkatalysators kann durch Mischung erfolgen. Auch auf andere Weise kann die erwünschte Kombination erhaIten werden, z. B. durch Herstellung des Hydrierkatalysators in Anwesenheit des Krackkatalysators.



  In dieser Weise kann z. B. der Krackkatalysator mit einer Lösung einer Verbindung des Metalls des Hydrierkatalysators getränkt und nach Entfernung des Lösungsmittels der Hydrierkatalysator weiter hergestelltwerden.



   Das erfindungsgemässe Verfahren lässt sich auf die für eine Behandlung mit Wasserstoff übliche Weise durchführen. Dabei werden die Temperatur von nicht über   250  C    und der Wasserstoffdruck von unter 100 at derart gewählt, dass die Reaktion in der   Flüssigkeitsphase    stattfindet. Man braucht dabei keinen reinen Wasserstoff anzuwenden, aber auch inerte Gase, wie Stickstoff und gesättigte Kohlenwasserstoffe, können anwesend sein. Ferner können gesättigte Kohlenwasserstoffe in der   Flüssigkeits-    phase, wie Cyclohexan oder Decahydronaphthalin beigegeben werden.



   Beispiel 1
Ein Krackkatalysator, der aus einer Verbindung von Siliciumdioxyd und Aluminiumoxyd   (Al2O3-    Gehalt 13 Gew.   %) besteht,    wird mit Nickel kombiniert, indem er mit einer wässrigen   Nickelnitratlösung    getränkt, darauf getrocknet und bei   450  C    erhitzt und anschliessend mit Wasserstoff reduziert wird.



  Der kombinierte Katalysator enthält, bezogen auf den Krackkatalysator, 3 Gew. % Ni.



   In einem mit einem Rührwerk versehenen Autoklaven von 2 Liter Inhalt werden 70 g des kombinierten Katalysators in 700 cm3 Benzol verteilt. Das Gemisch wird unter einem Wasserstoffdruck von 30 at während 5 Stunden unter Rühren bei einer Temperatur von 185-190  C erhitzt. Nach Kühlung bis auf Zimmertemperatur wird das flüssige Reaktionsprodukt aus dem Katalysator ausgeschieden und destilliert.



   Es fallen an : 18,5 % Phenylcyclohexan, 8,5 % Cyclohexan,   68,    6 % Benzol und 4,4% höhersiedende Produkte.



   Beispiel 2
Auf entsprechende Weise, wie in Beispiel   1    beschrieben, werden 700 cm3 Toluol in Anwesenheit von 35 g des Krackkatalysators behandelt, der statt mit Nickel in diesem Falle mit 0,2 % Platin kombiniert wurde.



   Der Wasserstoffdruck beträgt 10 at, und die Temperatur wird auf   150     C gehalten.



   Nach einer Reaktionsdauer von 4 Stunden fallen    17 % Toluylmethylcyclohexan, 20 % Methylcyclohexan    und 63 % Toluol an.



   Beispiel 3
Auf entsprechende Weise und mit einem Katalysator von gleicher Zusammensetzung, wie in Beispiel 1 beschrieben, wird ein Gemisch aus 150 g Naphthalin und 300 g Benzol in Anwesenheit von 20 g des Katalysators behandelt. Der Wasserstoffdruck   betägt    80 at und die Temperatur   170-175     C.



   Nach einer Reaktionsdauer von 3 Stunden fallen 60 % Benzol (und ein wenig Cyclohexan), 28 % Tetrahydronaphthalin (und ein wenig Naphthalin),   1 %    Phenylcyclohexan, 5 % Phenyltetrahydronaphthalin,   4 %    Naphthyltetrahydronaphthalin und 2 % nicht identifizierte Produkte an.



  



  Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes
The invention relates to the preparation of arylcycloalkanes or alkylarylcycloalkanes from unsubstituted or alkyl-substituted aromatic hydrocarbons.



   It is known that cycloalkanes, such as cyclohexane and decahydronaphthalene, can be prepared from aromatic hydrocarbons, such as benzene and naphthalene, by hydrogenation with the aid of hydrogenation catalysts.



   It is also known that aromatic hydrocarbons can be alkylated by reaction with an alkylene in the presence of cracking catalysts, in which way z. B. from benzene and propylene can win isopropylbenzene. Cracking catalysts are known to be catalysts which are suitable for promoting the cracking of hydrocarbons to form liquid and / or gaseous products.



   It has now been found that arylcycloalkanes or alkyl-arylcycloalkanes can be obtained from substituted or alkyl-substituted aromatic hydrocarbons if they are in the liquid phase at a temperature of not more than 250 ° C. in the presence of hydrogen at a pressure of less than 100 atm with a combination of Hydrogenation and cracking catalysts obtained catalysts are brought into contact.



   Examples of preparations to which the invention relates are: phenylcyclohexane ... from benzene toluylmethylcyclohexane .... from toluene dimethylphenyldimethylcyclohexane .. from xylene naphthylhydronaphthalene ... from naphthalene phenylhydronaphthalene ...... from benzene and naphthalene methylnaphthylmethyl. from methylnaphthalene methylphenylhydronaphthalene .. from toluene and naphthalene
When carrying out the process according to the invention, acidic silicate catalysts are preferably used as cracking catalysts. These catalysts are composed of silica and oxides of metals such as aluminum, calcium, zirconium and magnesium, while other inorganic oxides may also be present.

   Both acid alumina and cracking catalysts consisting essentially of silicon dioxide with few traces of aluminum silicate can be used.



   Important representatives of the hydrogenation catalysts are metals, e.g. B. nickel, cobalt, iron, platinum, palladium, iridium, osmium, rhodium and ruthenium, as well as oxides such. B. chromium oxide, molybdenum oxide and tungsten oxide, as well as sulfides, z. B. molybdenum sulfide, nickel sulfide and tungsten sulfide.



   The ratio between the amounts of hydrogenation catalyst and cracking catalyst can vary.



  Even with small amounts of hydrogenation catalyst of z. B. 0,05,0,1,1,5,3,5,10,15 or 25 wt.% Hydrogenation catalyst, based on the cracking catalyst, good results are achieved.



   The combining of the hydrogenation and cracking catalysts can be done by mixing. The desired combination can also be obtained in other ways, e.g. B. by preparing the hydrogenation catalyst in the presence of the cracking catalyst.



  In this way, for. B. the cracking catalyst is impregnated with a solution of a compound of the metal of the hydrogenation catalyst and the hydrogenation catalyst can be further prepared after removal of the solvent.



   The method according to the invention can be carried out in the manner customary for a treatment with hydrogen. The temperature of not more than 250 C and the hydrogen pressure of less than 100 atm are chosen so that the reaction takes place in the liquid phase. You do not need to use pure hydrogen, but inert gases such as nitrogen and saturated hydrocarbons can also be present. Furthermore, saturated hydrocarbons such as cyclohexane or decahydronaphthalene can be added in the liquid phase.



   example 1
A cracking catalyst, which consists of a compound of silicon dioxide and aluminum oxide (Al2O3 content 13% by weight), is combined with nickel by impregnating it with an aqueous nickel nitrate solution, drying it and heating it at 450 C and then reducing it with hydrogen.



  The combined catalyst contains 3 wt.% Ni based on the cracking catalyst.



   In a 2 liter autoclave equipped with a stirrer, 70 g of the combined catalyst are distributed in 700 cm3 of benzene. The mixture is heated under a hydrogen pressure of 30 atm for 5 hours with stirring at a temperature of 185-190 ° C. After cooling to room temperature, the liquid reaction product is precipitated from the catalyst and distilled.



   There are: 18.5% phenylcyclohexane, 8.5% cyclohexane, 68.6% benzene and 4.4% higher-boiling products.



   Example 2
In a similar manner as described in Example 1, 700 cm 3 of toluene are treated in the presence of 35 g of the cracking catalyst, which in this case has been combined with 0.2% platinum instead of nickel.



   The hydrogen pressure is 10 atm and the temperature is kept at 150.degree.



   After a reaction time of 4 hours, 17% toluylmethylcyclohexane, 20% methylcyclohexane and 63% toluene are obtained.



   Example 3
In a corresponding manner and with a catalyst of the same composition as described in Example 1, a mixture of 150 g of naphthalene and 300 g of benzene is treated in the presence of 20 g of the catalyst. The hydrogen pressure is 80 at and the temperature 170-175 C.



   After a reaction time of 3 hours, 60% benzene (and a little cyclohexane), 28% tetrahydronaphthalene (and a little naphthalene), 1% phenylcyclohexane, 5% phenyltetrahydronaphthalene, 4% naphthyltetrahydronaphthalene and 2% unidentified products are obtained.

 

Claims (1)

PATENTANSPRUCH Verfahren zur Herstellung von Arylcycloalkanen bzw. Alkyl-arylcycloalkanen aus unsubstituierten bzw. alkylsubstituierten aromatischen Kohlenwasserstoffen, dadurch gekennzeichnet, dass diese Kohlenwasserstoffe in der Flüssigkeitsphase bei einer Temperatur von nicht über 250 C in Anwesenheit von Wasserstoff mit einem Druck unter 100 at mit durch Kombination von Hydrier-und Krackkatalysa- toren erhaltenen Katalysatoren in Berührung gebracht werden. PATENT CLAIM Process for the production of arylcycloalkanes or alkyl-arylcycloalkanes from unsubstituted or alkyl-substituted aromatic hydrocarbons, characterized in that these hydrocarbons are in the liquid phase at a temperature not above 250 C in the presence of hydrogen at a pressure below 100 atm with by combining hydrogenation -Catalysts obtained and cracking catalysts are brought into contact. UNTERANSPRUCH Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass als Krackkatalysator ein saurer Sili katkatalysator verwendet wird. SUBClaim Process according to claim, characterized in that an acidic silica catalyst is used as the cracking catalyst.
CH551062A 1961-05-10 1962-05-08 Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes CH415608A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL264645 1961-05-10

Publications (1)

Publication Number Publication Date
CH415608A true CH415608A (en) 1966-06-30

Family

ID=19753028

Family Applications (1)

Application Number Title Priority Date Filing Date
CH551062A CH415608A (en) 1961-05-10 1962-05-08 Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes

Country Status (2)

Country Link
CH (1) CH415608A (en)
GB (1) GB940928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484855A2 (en) * 1990-11-05 1992-05-13 Lonza Ag Process for the preparation of 3-aminocrotonitrile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484855A2 (en) * 1990-11-05 1992-05-13 Lonza Ag Process for the preparation of 3-aminocrotonitrile
EP0484855B1 (en) * 1990-11-05 1995-06-14 Lonza Ag Process for the preparation of 3-aminocrotonitrile

Also Published As

Publication number Publication date
GB940928A (en) 1963-11-06

Similar Documents

Publication Publication Date Title
DE2016341A1 (en) Process for converting cyclic hydrocarbons to paraffinic hydrocarbons
DE1115238B (en) Process for the partial hydrogenation of acetylene compounds
CH416604A (en) Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes
DE19546514B9 (en) Catalyst and its use
CH415608A (en) Process for the preparation of arylcycloalkanes or alkyl-arylcycloalkanes
DE974067C (en) Process for the production of phenols
AT201579B (en) Process for the production of acrylic acid
DE651610C (en) Process for the production of AEthyl chloride
DE2127170C3 (en) Process for the disproportionation of alkyl aromatic hydrocarbons
DE1061767B (en) Process for the production of aldehydes and ketones
DE1241446B (en) Process for the preparation of optionally alkyl-substituted phenyl and / or naphthyl naphthenes
DE1909045A1 (en) Process for the preparation of cycloalkyl aromatic compounds
DE3513569A1 (en) METHOD FOR PRODUCING ALKYLBENZENE
DE890955C (en) Process for the production of butadiene
DE1568244A1 (en) Process for the catalytic liquid phase dehydrogenation of cyclododecanol
DE851188C (en) Process for the preparation of dicyclohexylamine
DE1618294C3 (en) Process for the dehydrocyclization of non-aromatic hydrocarbons
DE868152C (en) Process for the production of diolefins
DE740637C (en) Process for the production of diacetylene
DE809437C (en) Process for the production of zinc oxide catalysts
DE743160C (en) Process for the catalytic splitting off of water from organic compounds
DE827063C (en) Process for the production of ethylene
DE516251C (en) Process for the catalytic reduction or dehydrogenation of organic substances
AT228359B (en) Process for the production of anti-skinning agents for oxidatively drying paints
DE863189C (en) Process for the preparation of butanetriol- (1,2,4)