CH391812A - Electrical cable insulated with plastic - Google Patents
Electrical cable insulated with plasticInfo
- Publication number
- CH391812A CH391812A CH299261A CH299261A CH391812A CH 391812 A CH391812 A CH 391812A CH 299261 A CH299261 A CH 299261A CH 299261 A CH299261 A CH 299261A CH 391812 A CH391812 A CH 391812A
- Authority
- CH
- Switzerland
- Prior art keywords
- cable
- jacket
- plastic
- electrical cable
- cores
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
- H01B7/282—Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/14—Insulating conductors or cables by extrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/30—Drying; Impregnating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/06—Rod-shaped
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacturing Of Electric Cables (AREA)
Description
Mit Kunststoff isoliertes elektrisches Kabel
Die vorliegende Erfindung betrifft ein mit Kunststoff isoliertes elektrisches Kabel.
Für gewisse Zwecke der elektrischen tWbertra- gung ist es wesentlich auch dann über Kabelstromkreise grosser Zuverlässigkeit zu verfügen, wenn die Kabel während ihrer Verlegung einer groben Behandlung unterworfen sind und unter ungünstigen Bedingungen arbeiten müssen.
Trotz der Schutzarmatur oder Bewehrung besteht die Gefahr, dass der Mantel von elektrischen Kabeln beschädigt oder sogar durchschlagen wird, so dass Wasser in das Innere des Kabels eindringen kann.
Ein Eindringen von Wasser längs der Kabelseele kann auch durch die offenen Kabelenden während der Verlegung der Kabel stattfinden.
Falls die Isolation der Kabelseelen zuverlässig ist, wird das Kabel weiterhin zufriedenstellend arbeiten, auch wenn die Zwischenräume zwischen den Seelen des Kabels mit Wasser gefüllt sind. Wenn jedoch die Isolation der Kabelseelen Fehler aufweist, dann wird das Kabel unverwendbar. Es ist daher wichtig, während der Herstellung festzustellen, dass die Isolation der Kabelseelen nach der abschliessenden Ummantelung und Erweiterung noch einwandfrei ist.
Um die Isolation der Kabelseelen nach beendigter Herstellung zu prüfen, werden die Zwischenräume zwischen den verkabelten Kabelseelen und dem Mantel mit Wasser gefüllt, welches durch die offenen Enden des Kabels eingeführt wird. Nachdem das Kabel unter Wasser gesetzt ist, werden die üblichen Prüfungen auf Isolationswiderstand, Ionisation und Durchschlag in der üblichen Weise für jede Kabelseele durchgeführt.
Das Unterwassersetzen des Kabels bietet keine grossen Schwierigkeiten. Die Entfernung des Wassers nach der Prüfung hat sich jedoch als äusserst schwierig erwiesen, und zwar trotz der Verwendung von Vakuumtrocknungsverfahren und der Widerstandsheizung der Leiter des Kabels.
Die verkabelten Kabelseelen weisen eine ziemlich glatte Oberfläche auf, über welche ein engsitzender Mantel aufgebracht wird. Die Zwischenräume zwischen dem Mantel und den Kabelseelen sind klein, so dass das Fliessen von Wasser längs der Kabelseelen verhindert wird.
Um den Widerstand gegen das Fliessen von Wasser längs der Innenseite des Kabelmantels zu vermindern, weist der Kabelisoliermantel nach der Erfindung an seiner Innenfläche eine Anzahl Kanäle auf, die sich in Richtung der Kabelachse erstrecken und Zwischenräume zwischen dem Mantel und der Kabelseele schaffen. Durch diese Massnahme kann das Kabel rascher unter Wasser gesetzt und rascher getrocknet werden.
Die Erfindung wird nachstehend unter Bezugnahme auf die Zeichnung beispielsweise näher erläutert, in welcher:
Die Fig. 1 einen Querschnitt durch ein Kabel mit erfindungsgemäss ausgebildetem Mantel zeigt, während die Fig. 2 und 3 je einen Schnitt durch die Ausstossdüse zeigen.
In der Fig. 1 ist schematisch der Querschnitt durch ein Kabel dargestellt, welches mit einem Mantel versehen ist. Die verkabelten Kabelseelen sind mit 1 bezeichnet. Diese Kabelseelen sind von einem Isoliermantel 2 umgeben, der auf der Innenseite mit Kanälen 3 versehen ist.
Eine Vorrichtung, welche für die Ausstossung eines Mantels gemäss der Erfindung geeignet ist, ist in den Fig. 2 und 3 dargestellt, wo mit 4 die Ausstossdüse und mit 5 ein rohrförmiger Kern bezeichnet ist, welcher die nötigen Profile aufweist, um die gewünschte Anzahl von Rillen auf der Innenseite des ausgestossenen Plastikmantels zu erzeugen.
Obwohl in der Fig. 1 die verkabelten Kabelseelen einen kreisförmigen Querschnitt aufweisen, ist diese Querschnittsform lediglich als Beispiel. aufzufassen, und die erfindungsgemässe Massnahme lässt sich für Kabelseelen irgend einer gewünschten Form anwenden. In gleicher Weise können die auf der Mantelinnenseite vorhandenen Rillen einen Querschnitt aufweisen, der sich von dem in den Figuren gezeigten Querschnitt unterscheidet. Obwohl dies in der Zeichnung nicht gezeigt ist, kann ein weiterer Schutz des Mantels in bekannter Weise beispielsweise durch Anbringen einer Armierung erzielt werden.
Electrical cable insulated with plastic
The present invention relates to a plastic insulated electrical cable.
For certain purposes of electrical transmission, it is essential to have cable circuits of great reliability even if the cables are subjected to rough treatment while they are being laid and have to work under unfavorable conditions.
Despite the protective fitting or armoring, there is a risk that the sheath of electrical cables will be damaged or even punctured, so that water can penetrate into the interior of the cable.
Penetration of water along the cable core can also take place through the open cable ends while the cables are being laid.
If the insulation of the cable cores is reliable, the cable will continue to work satisfactorily even if the spaces between the cores of the cable are filled with water. However, if the insulation of the cable core shows defects, then the cable becomes unusable. It is therefore important to determine during production that the insulation of the cable cores is still flawless after the final sheathing and expansion.
In order to test the insulation of the cable cores after production is complete, the spaces between the wired cable cores and the jacket are filled with water, which is introduced through the open ends of the cable. After the cable is submerged, the usual tests for insulation resistance, ionization and breakdown are carried out in the usual way for each cable core.
Placing the cable underwater does not present any great difficulties. However, removal of the water after testing has proven extremely difficult despite the use of vacuum drying techniques and resistance heating of the conductors of the cable.
The wired cable cores have a fairly smooth surface over which a tight-fitting jacket is applied. The gaps between the jacket and the cable cores are small, so that the flow of water along the cable cores is prevented.
In order to reduce the resistance to the flow of water along the inside of the cable jacket, the cable insulation jacket according to the invention has a number of channels on its inner surface which extend in the direction of the cable axis and create spaces between the jacket and the cable core. This measure enables the cable to be submerged more quickly and dried more quickly.
The invention is explained in more detail below with reference to the drawing, for example, in which:
1 shows a cross section through a cable with a jacket designed according to the invention, while FIGS. 2 and 3 each show a section through the discharge nozzle.
In Fig. 1, the cross section through a cable is shown schematically, which is provided with a jacket. The wired cable cores are labeled 1. These cable cores are surrounded by an insulating jacket 2, which is provided with channels 3 on the inside.
A device which is suitable for the ejection of a jacket according to the invention is shown in FIGS. 2 and 3, where 4 denotes the ejection nozzle and 5 denotes a tubular core which has the necessary profiles to produce the desired number of Create grooves on the inside of the ejected plastic jacket.
Although the wired cable cores in FIG. 1 have a circular cross-section, this cross-sectional shape is only an example. to be understood, and the measure according to the invention can be used for cable cores of any desired shape. In the same way, the grooves present on the inside of the casing can have a cross section that differs from the cross section shown in the figures. Although this is not shown in the drawing, further protection of the jacket can be achieved in a known manner, for example by attaching reinforcement.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9660/60A GB887029A (en) | 1960-03-18 | 1960-03-18 | Internally fluted plastic cable sheaths |
Publications (1)
Publication Number | Publication Date |
---|---|
CH391812A true CH391812A (en) | 1965-05-15 |
Family
ID=9876285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH299261A CH391812A (en) | 1960-03-18 | 1961-03-13 | Electrical cable insulated with plastic |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH391812A (en) |
GB (1) | GB887029A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2085225A1 (en) * | 1970-02-24 | 1971-12-24 | Lignes Telegraph Telephon |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3331910A (en) * | 1965-10-04 | 1967-07-18 | Westinghouse Electric Corp | Condenser bushing having longitudinally extending ducts therethrough for the flow of oil to remove heat resulting from dielectric losses |
GB1133455A (en) * | 1965-12-10 | 1968-11-13 | British Insulated Callenders | Improvements in or relating to direct current electric cables |
FR2614878B1 (en) * | 1987-05-07 | 1993-06-25 | Phenix Charpentes | STORAGE SYSTEM WITH SUPERIMPOSED SHELVES ASSOCIATED WITH A TROLLEY |
DE4241927C2 (en) * | 1992-12-11 | 1994-09-22 | Max Planck Gesellschaft | Self-supporting, insulated electrode arrangement suitable for arrangement in a vacuum vessel, in particular antenna coil for a high-frequency plasma generator |
US5442131A (en) * | 1993-07-23 | 1995-08-15 | Borgwarth; Dennis | High energy coaxial cable cooling apparatus |
-
1960
- 1960-03-18 GB GB9660/60A patent/GB887029A/en not_active Expired
-
1961
- 1961-03-13 CH CH299261A patent/CH391812A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2085225A1 (en) * | 1970-02-24 | 1971-12-24 | Lignes Telegraph Telephon |
Also Published As
Publication number | Publication date |
---|---|
GB887029A (en) | 1962-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3342976A1 (en) | MESSAGE CABLES | |
CH391812A (en) | Electrical cable insulated with plastic | |
DE3514879A1 (en) | METHOD FOR REDUCING WATER VAPOR DIFFUSION IN A MULTIPLE LAYER PLASTIC COMPOSITE INSULATOR | |
DE599934C (en) | Process for producing an electrical line | |
DE961903C (en) | Flexible insulated electrical cable | |
DE542791C (en) | Process for drying or vulcanizing the insulation of electrical cables by heating the conductive core | |
DE890201C (en) | Hose made of swellable substances for binding isolated electrical lines | |
DE2108343A1 (en) | Twisted conductors for windings of transformers and process for its manufacture | |
DE947486C (en) | Process for the production of a non-metallic protective sheath for electrical cables and lines | |
DE849721C (en) | Telecommunication cable used at high frequency | |
DE976282C (en) | Process for the production of a corrugated metal jacket for cables, in particular power cables | |
DE8011292U1 (en) | Conductor cable | |
AT277347B (en) | Method for producing a telecommunication cable and a telecommunication cable produced therefrom | |
DE1640683C (en) | Process for the production of coaxial high-frequency lines with small cross-sectional dimensions | |
DE624968C (en) | Process for the manufacture of telephone cables with air space cores | |
DE1640608C3 (en) | Process for the production of a telecommunication cable with plastic-insulated cores | |
DE732030C (en) | Process for the production of flexible connection points of electrical power and high voltage cables with layered insulation, in particular of water cables | |
DE1905849C (en) | Telecommunication cables | |
DE765142C (en) | Process for the production of electrical cables with paper insulation soaked with mass | |
AT134031B (en) | High voltage multi-conductor electrical cable and process for its manufacture. | |
AT127719B (en) | Method and device for the production of cables. | |
CH617528A5 (en) | Method for producing an electric cable having stress relief | |
DE494931C (en) | High voltage cables | |
DE511323C (en) | Conductor that is loaded with magnetic material | |
DE901809C (en) | Electric cable or wire with a protective sheath made of thermal image material |