CH353800A - Process for the production of a well-adhering insulating layer on magnetic sheets - Google Patents

Process for the production of a well-adhering insulating layer on magnetic sheets

Info

Publication number
CH353800A
CH353800A CH353800DA CH353800A CH 353800 A CH353800 A CH 353800A CH 353800D A CH353800D A CH 353800DA CH 353800 A CH353800 A CH 353800A
Authority
CH
Switzerland
Prior art keywords
insulating layer
well
magnetic sheets
mica
production
Prior art date
Application number
Other languages
German (de)
Inventor
Paul Dr Guillery
Rotter Hans-Werner
Heinz Dipl Phys Keuth
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of CH353800A publication Critical patent/CH353800A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/06Obtaining tin from scrap, especially tin scrap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

       

  Verfahren zur Herstellung     einer    gut haftenden Isolierschicht auf Magnetblechen    Die Erfindung bezieht sich auf     ein.        Verfahren     zur Herstellung von Isolierschichten auf     Glimmer-          basis    auf Magnetblechen, und zwar von Isolier  schichten, die auch ohne     Bindemittelzusatz    gut haften.  



  Die Aufgabe selbst ist nicht neu; es, sind bereits  verschiedene Verfahren zu ihrer     Lösung    angegeben  worden. So ist vorgeschlagen worden, die Isolier  schicht aus einer Suspension von Glimmer in Wasser       elektrophoretisch        niederzuschlagen.    Das     glückt    jedoch  nur, wenn ganz bestimmte     Voraussetzungen    er  füllt sind; auch setzt die Durchführung     dieses    Ver  fahrens eine Sonderapparatur voraus.  



  Wollte man die gemäss den bekannten Vor  schlägen für die Elektrophorese zu verwendenden  Suspensionen nur mechanisch, das heisst durch Tau  chen, Streichen, Spritzen oder     dergleichen,    auf  bringen, so würde sich zwar auch eine Schicht bilden,  die jedoch keine hinreichende mechanische     Festigkeit     hätte. Sie würde     abkreiden.    Bei der Elektrophorese  treten anscheinend zusätzliche     physikalische    Wirkun  gen auf, die einen hinreichenden Zusammenhalt der       Glimmerteilchen    untereinander und eine gute Haft  wirkung auf dem Blech ergeben.  



  Die Elektrophorese ist - wie gesagt - nur  unter bestimmten Voraussetzungen anwendbar. Er  wünscht ist aber ein Verfahren, mit dem die Isolier  schicht rein mechanisch, durch Streichen, Tauchen,  Spritzen oder dergleichen, hergestellt werden kann.  In diesem Zusammenhang gibt es einen Vorschlag,       Vermiculit,    also einen     Aluminium-Magnesium-Silicat-          Glimmer,    auf etwa 1200  C zu erhitzen,     abzuschrek-          ken,    mit Wasser zu vermahlen und hierbei ein Ge  misch ähnlich     einer    Malerfarbe herzustellen. Auch  mit diesem Verfahren erhält man Isolierschichten,  die aber ebenfalls keine genügende     mechanische     Festigkeit aufweisen.

      Der Grund, weshalb die bisherigen     Verfahren     keine genügend guten Eigenschaften der gebildeten  Schicht ergeben, liegt     in    folgendem: Zunächst hat man  nicht erkannt, welche Bedeutung     der        Feinheitsgrad     der verwendeten     Schüppchen    hat. Es gibt     Ver-          öffentlichungen,    in denen unter     kleinsten        Partikeln     solche mit einem Durchmesser von 10 bis     15,u     und sogar noch     wesentlich    darüber verstanden wer  den.

   Mit     derart        grossen        Schüppchen,        die    für die Her  stellung von     Glimmerpapier    und für Lackpigmente  durchaus brauchbar sein mögen, lassen sich     binde-          mittelfreie,    gut haftende     Isolierschichten    auf Magnet  blechen nicht herstellen.

   Die Feinheit muss wesent  lich weiter getrieben werden, das     heisst    bis an die  kolloidale     Grössenordnung,    bei der die     Glimmer-          schüppchen    zum grossen Teil nur     einen    Durch  messer von 1     ,u    oder weniger haben.

   Ist der Prozent  satz     dieser    allerfeinsten Teilchen genügend gross, dann  werden natürlich auch etwa vorhandene grössere Teil  chen mit eingebunden.     Offenbar    treten bei dieser  weitgehenden     Zerkleinerung    des     Glimmers,    eigen  artige kolloidale Bindungskräfte auf,     die        einen    festen  Zusammenhalt der Teilchen untereinander und auf  dem Blech     schaffen.     



  Der zweite Grund, weshalb man     bisher        keine     genügend haftfeste Schicht durch Auftragen     einer          Glimmersuspension    erhielt, ist darin zu sehen,     d'ass     man     nicht    erkannt hat, dass nicht jeder Glimmer hier  für brauchbar ist, sondern nur eine bestimmte  Gruppe, nämlich die     Glimmer    mit geringer     inter-          kristalliner        Quel'lfähigkeit.    Hierzu gehören die syn  thetischen Glimmer     (Fluor-Glimmer),        Muskovit,          Phlogopit,

          Biotit,        Zinnwaldit    und das Abbaupro  dukt     Serizit.    Man findet     in    der Literatur verschiedent  lich Hinweise auf     Vermiculit    als Ausgangsprodukt.       Dieser    Glimmer gehört aber     gerade    zu den Glim-           mersorten    mit grosser     interkristalliner        Quellfähigkeit,     so dass die aus ihm gebildete Schicht die Neigung zum       Ablösen    und     Abblättern    hat.

   Man hat deshalb auch  nicht gehört, dass man Schichten aus einer Suspen  sion von     Vermiculit    mit     Erfolg        zur    Isolierung von  Magnetblechen angewendet hätte.  



  Demgemäss besteht die Erfindung in einem Ver  fahren zur Herstellung einer (vorzugsweise binde  mittelfreien) gut haftenden Isolierschicht auf Ma  gnetblechen, das dadurch gekennzeichnet ist, dass  eine     wässrige    Dispersion aus feinsten Glimmer  schüppchen mit geringer     interkristalliner        Quellfähig-          keit    und überwiegend höchstens 1     ,u    betragendem  Durchmesser     mechanisch    aufgetragen und die gebil  dete Schicht durch Erwärmung nachbehandelt     wird.     Für das     mechanische    Auftragen kommen insbeson  dere     in    Betracht: Streichen, Tauchen oder Spritzen.  



  Die nach dieser     technischen    Methode hergestellte  Schicht     zeigt    eine ausgezeichnete     Haftfähigkeit    und  löst sich auch bei nachträglicher Benetzung mit  Wasser nicht ab.  



  Wichtig ist, worauf bereits hingewiesen wurde,  dass man die Isolierschicht schon aus Glimmer ohne       Bindemittelzusatz        herstellen    kann. Das soll nicht    Busschliessen, dass man ein Schutzkolloid oder ein dem  besonderen Anwendungsfall     entsprechendes    Binde  mittel zusetzt, aber dann nur in wesentlich geringer  Menge, als man es für die sonst vorgeschlagenen An  striche     benötigt.    Im allgemeinen wird man ohne  Zusatz auskommen können.  



  Die Bedeutung des neuen Verfahrens zur Herstel  lung von Isolierschichten auf Magnetblechen liegt  insbesondere darin, dass sehr dünne Schichten her  gestellt werden     können,    beispielsweise im Bereich  von 1 u. Man erhält auf diese Weise einen sehr  guten Füllfaktor bei lamellierten Eisenkernen, ohne  dass man beim nachträglichen Glühen der Bleche eine  Beschädigung der Isolierschicht oder ein Zusammen  backen der     Blechpakete    befürchten müsste.



  Method for producing a well-adhering insulating layer on magnetic sheets The invention relates to a. Process for the production of insulating layers based on mica on magnetic sheets, namely insulating layers that adhere well even without the addition of binding agents.



  The task itself is not new; there, various methods of solving them have already been given. It has been proposed that the insulating layer be deposited electrophoretically from a suspension of mica in water. However, this is only successful if very specific conditions are met; This process also requires special equipment to be carried out.



  If you wanted the suspensions to be used for electrophoresis according to the known proposals only mechanically, that is to say by dipping, brushing, spraying or the like, a layer would indeed form, but would not have sufficient mechanical strength. She would chalk off. In the case of electrophoresis, additional physical effects apparently occur, which result in sufficient cohesion of the mica particles with one another and good adhesion to the sheet metal.



  As mentioned, electrophoresis can only be used under certain conditions. But what he wants is a method with which the insulating layer can be produced purely mechanically, by painting, dipping, spraying or the like. In this context, there is a proposal to heat vermiculite, ie an aluminum-magnesium-silicate mica, to around 1200 C, quench it, grind it with water and produce a mixture similar to that of a painter's paint. With this method, too, insulating layers are obtained which, however, likewise do not have sufficient mechanical strength.

      The reason why the previous methods did not produce sufficiently good properties of the layer formed is as follows: First of all, the importance of the degree of fineness of the flakes used was not recognized. There are publications in which the smallest particles are understood to be those with a diameter of 10 to 15 µ and even significantly above that.

   With such large flakes, which may well be useful for the production of mica paper and for paint pigments, binder-free, well-adhering insulating layers cannot be produced on magnetic sheets.

   The fineness must be increased significantly, that is to say up to the colloidal order of magnitude at which the mica flakes are for the most part only 1 .mu.m or less in diameter.

   If the percentage of these very fine particles is large enough, then of course any larger particles that may be present are also included. Obviously, during this extensive crushing of the mica, peculiar colloidal binding forces occur, which create a firm bond between the particles and on the sheet metal.



  The second reason why one has not yet obtained a sufficiently strong layer by applying a mica suspension is to be seen in the fact that it has not been recognized that not every mica is usable here, but only a certain group, namely the mica with less intercrystalline swellability. These include synthetic mica (fluorine mica), muscovite, phlogopite,

          Biotite, zinnwaldite and the degradation product sericite. There are various references to vermiculite as the starting product in the literature. However, this mica belongs precisely to the types of mica with a high intergranular swelling capacity, so that the layer formed from it has a tendency to peel off and flake off.

   It has therefore not been heard that layers made from a suspension of vermiculite have been used successfully to insulate magnetic sheets.



  Accordingly, the invention consists in a process for the production of a (preferably binder-free) well-adhering insulating layer on magnetic sheets, which is characterized in that an aqueous dispersion of the finest mica flakes with low intergranular swellability and predominantly a maximum diameter of 1 u applied mechanically and the formed layer is post-treated by heating. The following are particularly suitable for mechanical application: brushing, dipping or spraying.



  The layer produced by this technical method shows excellent adhesion and does not peel off even if it is subsequently wetted with water.



  It is important, as has already been pointed out, that the insulating layer can be made from mica without the addition of binding agents. This is not intended to conclude that a protective colloid or a binding agent appropriate for the particular application is added, but then only in a much smaller amount than is required for the otherwise proposed coatings. In general, you will be able to do without an addition.



  The importance of the new method for the produc- tion of insulating layers on magnetic sheets is in particular that very thin layers can be made forth, for example in the range of 1 u. In this way, a very good fill factor is obtained for laminated iron cores, without having to fear damage to the insulating layer or the laminated cores baking together when the sheets are annealed.


    

Claims (1)

PATENTANSPRUCH Verfahren zur Herstellung einer gut haftenden Isolierschicht auf Magnetblechen, dadurch gekenn zeichnet, dass eine wässrige Dispersion aus feinsten Glimmerschüppchen mit geringer interkristalliner Quellfähigkeit und überwiegend höchstens 1 ,u betra- gendem Durchmesser mechanisch aufgetragen und die gebildete Schicht durch Erwärmung nachbehandelt wird. PATENT CLAIM A method for producing a well-adhering insulating layer on magnetic sheets, characterized in that an aqueous dispersion of the finest mica flakes with a low intergranular swellability and predominantly a maximum diameter of 1.u is applied mechanically and the layer formed is post-treated by heating.
CH353800D 1955-07-07 1956-07-03 Process for the production of a well-adhering insulating layer on magnetic sheets CH353800A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE353800X 1904-04-30

Publications (1)

Publication Number Publication Date
CH353800A true CH353800A (en) 1961-04-30

Family

ID=6284451

Family Applications (1)

Application Number Title Priority Date Filing Date
CH353800D CH353800A (en) 1955-07-07 1956-07-03 Process for the production of a well-adhering insulating layer on magnetic sheets

Country Status (2)

Country Link
CH (1) CH353800A (en)
FR (1) FR353800A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086411A (en) * 1959-12-03 1963-04-23 Du Pont Flexible tool
US3183750A (en) * 1961-09-19 1965-05-18 Paramount Packaging Corp Plastic bag cutter
US5121701A (en) * 1989-12-13 1992-06-16 National Research Development Corporation Transplating apparatus

Also Published As

Publication number Publication date
FR353800A (en) 1905-09-20

Similar Documents

Publication Publication Date Title
DE1769722A1 (en) Process for the production of steam-hardened lightweight reinforced concrete and coating agents for carrying out the process
DE1954233A1 (en) Formation of a hydrolysis-resistant bond between glass and polytetrafluoroethylene
DE1769582A1 (en) Aqueous agent for the production of electrically resistant and / or corrosion-resistant coatings on metals
DE616812C (en)
DE1026874B (en) Selenium rectifier with a plastic intermediate layer between selenium and counter electrode
DE1045377C2 (en) Process for stabilizing selenium disulphide which is suitable for the production of fungicides and which is activated by adding a hydrophilic colloidal suspending agent
DE2912834A1 (en) PROCESS FOR THE PRODUCTION OF SILVER / SILVER CHLORIDE REFERENCE ELECTRODES OF HIGH ACCURACY AND STABILITY
CH353800A (en) Process for the production of a well-adhering insulating layer on magnetic sheets
DE2632439A1 (en) PROCESS FOR PRODUCING A STEEL SHEET COATED WITH ALUMINUM OR AN ALUMINUM ALLOY
DE1246915B (en) Aqueous coating agent for the production of meltable corrosion protection coatings
DE670506C (en) Process for maintaining the throwing ability and storage stability of Duengesalzen, in particular Duengesalts containing ammonium nitrate
DE810097C (en) Process for the production of an oxide coating on aluminum
DE1519295A1 (en) Alumina dispersion paints
DE554375C (en) Process for coating aluminum with hard rubber
DE877177C (en) Process for the production of magnetic cores
DE626244C (en) Modification of the method for isolating earth cores, especially for communication lines
DE672966C (en) Process for the production of highly elastic upholstered bodies, mats, or the like.
DE651943C (en) Process for the isolation of magnetizable powders for mass cores of Pupin coils, radio coils, etc. like
DE3408238A1 (en) Process for preparing a metal oxide paste for electrical discharge configurations
DE544814C (en) Process for the production of mass cores from magnetizable powder mixed with sodium silicate as an insulating material, in particular with the addition of chromic acid and optionally talc
AT209133B (en) Agent for the aftertreatment of phosphated surfaces
DE581311C (en) Compensation for lead-calcium alloys
DE527453C (en) Process for the preparation of a paint binder
DE1915987A1 (en) Smokeless coal briquette bonded by means of a plastics
DE571391C (en) Sea telecommunication cable