CH243928A - Hollow radiator for high temperature electric ovens. - Google Patents
Hollow radiator for high temperature electric ovens.Info
- Publication number
- CH243928A CH243928A CH243928DA CH243928A CH 243928 A CH243928 A CH 243928A CH 243928D A CH243928D A CH 243928DA CH 243928 A CH243928 A CH 243928A
- Authority
- CH
- Switzerland
- Prior art keywords
- radiator according
- slots
- dependent
- radiator
- longitudinal
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 4
- 230000001154 acute effect Effects 0.000 claims 1
- 239000000919 ceramic Substances 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/141—Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Resistance Heating (AREA)
Description
Hohler Heizkörper für elektrische Hochtemperaturöfen. Zum Schmelzen und Sintern hochschmel zender Mineralstoffe, wie etwa, Quarz, be nötigt man Temperaturen in der Grössen ordnung von<B>2000'C.</B> Solche Temperaturen lassen sieh in elektrisch beheizten Wider standsöfen nur dann erreichen, wenn der Heizwiderstand einen höheren Schmelzpunkt hat. Daher kommt als Widerstand vorläufig nur ein Heizkörper aus Kohlenstoff, Karbid oder halbleitender K & amik, z. B. gesintertem Metalloxyd, in Frage. Kohlenstoff kann in der gleichen Modifikation verwendet werden, wie sie für Tiegel oder für die Elektroden von Lielitbogenöfen gebraucht wird, also in Form von amorpher Kohle oder von Graphit.
Zweckmässig führt man den Heizkörper hohl aus, damit das Schmelz- oder Sintergut oder der es enthaltende Tiegel zwecks allseitig gleichmässiger Erhitzung in sein Inneres ein gebracht werden kann. Damit sich der Heiz körper bei seiner Erhitzung frei ausdehnen kann, wird er zweckmässig freitragend und derart ausgeführt-, dass seine beiden Strom zuführungen am Einspannende liegen.
Dies hat man bisher dadurch erreicht, dass man ihn als Doppelhohlzylinder ausbildete, wobei der innere oder äussere Hohlzylinder durch einen schraubenlinienförmigen Einschnitt als Widerstandsspirale ausgebildet wurde, wäh rend der andere, nicht eingeschnittene Hohl zylinder als Stro-mrüekleitung diente.
Nach der Erfindung wird der zweite Hohlzylinder überflüssig, und es genügt ein Hohlkörper mit einfacher Wanclung als Heiz widerstand. Um bei diesem ebenfalls die freie Ausdehnung und den einseitigen Strom- anschluss zu eTmöglichen, wird dieser Hohl körper mit wenigstens zwei einseitig nicht ganz durchgehenden Schlitzen versehen, so dass an den so entstehenden Abschnitten seines Einspannendes verschiedenpolige Stromzufüh rungen angeschlossen werden können.
In der Zeichnung sind einige Ausfüh rungsbeispiele für die Erfindung dargestellt, -and zwar im Längsschnitt (Fig. <B>1,</B> 4 und 12), Querschnitt (Fig. 2,<B>6, 8</B> und<B>11)</B> und in der Abwicklung (Fig. <B>3, 5, 7, 9</B> und<B>10).</B> Bei allen Beispielen ausser dein nach Fig. 4 und<B>5</B> verlaufen die Schlitze c in axialer Richtung, also naeli einer Mantellinie des Hohlkörpers a, während das Beispiel der Fig. 4 und<B>5</B> schräg verlaufende, also schrau- benlinienförmige Schlitze<B>c</B> aufweist.
Hat der Widersta,ndshahlkörper einen Boden<B>d.</B> wie in Fig. 4,<B>5</B> und<B>10</B> veranµe,'ha-ulieht oder in Fig. <B>7</B> strichpunktiert angedeutet, dann kön nen die Längsschlitze bis zu diesem oder sogar noch ein Stück weit in den Boden hinein reichen. Der Boden kann mit einer oder mehreren Öffnungen e (Fig. <B>7)</B> ver sehen sein.
Der Heizstram tritt vom An- seIllussflansch b aus in einen Hohlhörper- abschnitt a ein, verläuft dann, entsprechend den eingezeichneten Pfeilen, parallel zu den Schlitzen<B>e,</B> kehrt über ihrem Ende um und läuft über den andern Hohlkörperabschnitt a bis zu seinem Austritt aus seinem Anschluss- flansch <B>b.</B> Man kann auch, wie Fig. <B>6</B> und<B>7</B> zeigen, den Hohlkörper a durch durch gehende Längsschlitze<B>f</B> in lauter gleiche ge schlitzte Segmente (hier sind es drei)
unter teilen und diese parallel schalten. Oder man kann, gemäss Fig. <B>8</B> und<B>9,</B> den Hohlkörper a, oder seine Segmente durch abwechselnd von beiden Stiniseiten her geführte Schlitze<B>c</B> mäanderförmig aufteilen und so die einzelnen Längsabschnitte in Reihe schalten.
Eine an dere Art, die Strombahn zu verlängern, ist in Fig. <B>10</B> angegeben, und besteht in der An- bringung von gegeneinander versetzten Quer schlitzen<B>g.</B> Hier ist Anschluss an Dreiphasen strom vorgesehen, der an den Flanschen<B>b</B> der dreil Segmente a zugeführt wird ünd sich über den Boden<B>d</B> als Sternpunkt schliesst.
Es, ist nicht nötig, den Hohlkörper zylin- dri-sch, auszuführen, er kann auch ovalen oder eckigen Querschnitt haben; Fig. <B>11</B> zeigt z. B. quadratischen Querschnitt. Der Hohl körper kann z. B. die Form einer Flasche, eines Kegels oder Kegelstumpfes Tig. 12) usw. haben.
Hollow radiator for high temperature electric ovens. For melting and sintering high-melting minerals, such as quartz, temperatures in the order of <B> 2000'C are required. </B> Such temperatures can only be reached in electrically heated resistance furnaces if the heating resistance is one has a higher melting point. Therefore, for the time being, only a radiator made of carbon, carbide or semiconducting K & amik, z. B. sintered metal oxide in question. Carbon can be used in the same modification as is used for crucibles or for the electrodes of Lielit arc furnaces, i.e. in the form of amorphous carbon or graphite.
The heating element is expediently made hollow, so that the material to be melted or sintered or the crucible containing it can be brought into its interior for the purpose of uniform heating on all sides. So that the heater can expand freely when it is heated, it is expediently self-supporting and designed in such a way that its two power supplies are at the clamping end.
So far, this has been achieved by designing it as a double hollow cylinder, the inner or outer hollow cylinder being designed as a resistance spiral through a helical incision, while the other, non-incised hollow cylinder served as a flow line.
According to the invention, the second hollow cylinder is superfluous, and a hollow body with a simple winding is sufficient as a heating resistance. In order to also allow free expansion and the one-sided power connection, this hollow body is provided with at least two one-sided not completely continuous slots so that different-pole power supplies can be connected to the resulting sections of its clamping end.
In the drawing, some exemplary embodiments for the invention are shown, -and indeed in longitudinal section (Fig. 1, 4 and 12), cross section (Fig. 2, 6, 8) and <B> 11) </B> and in the development (Fig. <B> 3, 5, 7, 9 </B> and <B> 10). </B> In all examples except the one according to Fig. 4 and <B> 5 </B>, the slots c run in the axial direction, that is to say along a surface line of the hollow body a, while the example in FIGS. 4 and 5 run obliquely, that is to say helical slots <B> c </B>.
If the resistor has a bottom <B> d. </B> as in Fig. 4, <B> 5 </B> and <B> 10 </B>, 'ha-u' or in Fig. < B> 7 </B> indicated by dash-dotted lines, then the longitudinal slots can extend up to this point or even a little further into the floor. The bottom can be seen with one or more openings e (Fig. 7) </B>.
The heating current enters a hollow body section a from the connecting flange b, then runs, according to the arrows drawn, parallel to the slots e, reverses over their end and runs over the other hollow body section a until it emerges from its connection flange <B> b. </B> It is also possible, as shown in FIGS. <B> 6 </B> and <B> 7 </B>, to pass the hollow body a through Longitudinal slits <B> f </B> in just the same slotted segments (here there are three)
under parts and connect them in parallel. Or, according to FIGS. 8 and 9, the hollow body a or its segments can be divided up in a meandering manner by slots <B> c </B> alternating from both sides of the stini and so connect the individual longitudinal sections in series.
Another way of lengthening the current path is shown in FIG. 10 and consists in making transverse slots that are offset from one another. This is a connection to three phases current is provided, which is fed to the flanges <B> b </B> of the three segments a and closes over the base <B> d </B> as a star point.
It is not necessary to make the hollow body cylindrical, it can also have an oval or angular cross-section; For example, FIG. 11 shows B. square cross-section. The hollow body can, for. B. the shape of a bottle, a cone or truncated cone Tig. 12) etc. have.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH243928T | 1944-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
CH243928A true CH243928A (en) | 1946-08-15 |
Family
ID=4463906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH243928D CH243928A (en) | 1944-09-18 | 1944-09-18 | Hollow radiator for high temperature electric ovens. |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH243928A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE973914C (en) * | 1949-09-18 | 1960-07-14 | Otto Junker Fa | Heating device for electric resistance ovens |
US3039071A (en) * | 1959-07-06 | 1962-06-12 | William M Ford | Electrical resistance-type heater |
US3160693A (en) * | 1962-04-26 | 1964-12-08 | Titanium Metals Corp | Furnace for determining melting points of metals |
EP0080013A1 (en) * | 1981-11-19 | 1983-06-01 | Ultra Carbon Corporation | Method of making segmented heater assembly |
US4549345A (en) * | 1981-11-19 | 1985-10-29 | Wilsey Harvey J | Method of making a graphite zig-zag picket heater |
DE3636448A1 (en) * | 1986-10-25 | 1987-05-21 | Martin Prof Dr Ing Fiebig | Electrical resistance furnace for producing high temperatures |
DE3743879A1 (en) * | 1986-12-26 | 1988-07-07 | Toshiba Ceramics Co | Carbon heating device and associated heating element |
-
1944
- 1944-09-18 CH CH243928D patent/CH243928A/en unknown
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE973914C (en) * | 1949-09-18 | 1960-07-14 | Otto Junker Fa | Heating device for electric resistance ovens |
US3039071A (en) * | 1959-07-06 | 1962-06-12 | William M Ford | Electrical resistance-type heater |
US3160693A (en) * | 1962-04-26 | 1964-12-08 | Titanium Metals Corp | Furnace for determining melting points of metals |
EP0080013A1 (en) * | 1981-11-19 | 1983-06-01 | Ultra Carbon Corporation | Method of making segmented heater assembly |
US4549345A (en) * | 1981-11-19 | 1985-10-29 | Wilsey Harvey J | Method of making a graphite zig-zag picket heater |
DE3636448A1 (en) * | 1986-10-25 | 1987-05-21 | Martin Prof Dr Ing Fiebig | Electrical resistance furnace for producing high temperatures |
DE3743879A1 (en) * | 1986-12-26 | 1988-07-07 | Toshiba Ceramics Co | Carbon heating device and associated heating element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2919763C2 (en) | Atomizing burners for oil firing systems | |
CH243928A (en) | Hollow radiator for high temperature electric ovens. | |
DE2125085C3 (en) | Device for manufacturing tubes closed on one side from semiconductor material | |
DE1966175C3 (en) | Electric oven with a heating element and a preheater. Eliminated from: 1925087 | |
DE2225421C2 (en) | Sample atomiser for flameless atom absorption spectroscopy - has electrically heated porous body heating sample holder indirectly | |
DE2057747C3 (en) | Electric heating element made of a heat and oxidation resistant material | |
DE2323774A1 (en) | TUBULAR, ELECTRICALLY CONDUCTIVE SAMPLING AND HEATING DEVICE FOR FLAMELESS ATOMIC ABSORPTION SPECTROMETRY | |
DE3888401T2 (en) | Furnace for the electrothermal atomization of samples for analysis by atomic absorption spectrophotometry. | |
DE2538576C2 (en) | Electric melting device | |
DE950453C (en) | Ignition device for flowing fuel-air mixtures | |
DE857540C (en) | Electrode system for electrical discharge vessels | |
DE403492C (en) | Arrangement and means for eliminating the uneven heating of the glow wires in electron tubes | |
DE892185C (en) | Method for producing a highly conductive connection between the end of a glow wire coil and a metal part used for reinforcement | |
DE1226338B (en) | Sample heating device, especially for electron microscopes | |
DE270795C (en) | Process for the continuous release of gases or vapours from chemical compounds in electric light bulbs | |
DE1565873C (en) | Electric heater | |
DE758058C (en) | Gas or vapor filled discharge vessel with glow cathode and control electrode made of metal | |
DE630856C (en) | Power supply electrode for electric salt baths | |
AT137286B (en) | Optical pyrometer with two intersecting filaments heated by the same power source. | |
DE172170C (en) | ||
DE577475C (en) | Device for the formation of crystals of continuously moving wires, rods, bands or the like made of difficult-to-melt metals, metal alloys or metal compounds | |
DE1771529C3 (en) | Method and furnace for depositing a substance | |
DE2055241C3 (en) | Drawing nozzle | |
DE1539896C (en) | Process for the production of incandescent cathodes with aluminate material for electron tubes | |
DE920005C (en) | Catalytic gas self-igniter |