CH231639A - Supercharged aircraft internal combustion engine. - Google Patents

Supercharged aircraft internal combustion engine.

Info

Publication number
CH231639A
CH231639A CH231639DA CH231639A CH 231639 A CH231639 A CH 231639A CH 231639D A CH231639D A CH 231639DA CH 231639 A CH231639 A CH 231639A
Authority
CH
Switzerland
Prior art keywords
internal combustion
combustion engine
exhaust gas
aircraft
combustion chamber
Prior art date
Application number
Other languages
German (de)
Inventor
Aktiengesellschaft Gebr Sulzer
Original Assignee
Sulzer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Ag filed Critical Sulzer Ag
Publication of CH231639A publication Critical patent/CH231639A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • F02B37/105Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump exhaust drive and pump being both connected through gearing to engine-driven shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

  

  Aufgeladene Flugzeugbrennkraftmasehine.    Die Erfindung bezieht sich auf eine auf  geladene Flugzeugbrennkraftmaschine mit       nachgeschalteter    Abgasturbine, bei     welcher     einer     Brennkammer    von einem Lader Luft  zugeführt und das erzeugte Treibgas zur Er  höhung der Leistung der Abgasturbine zuge  leitet werden kann.  



  Bei bekannten Brennkraftmaschinen der  geschilderten Art wird die Leistung der Ab  gasturbine durch die aus der Brennkammer  zugeführten Verbrennungsgase nur so weit  gesteigert, dass sie gerade imstande ist, den  Verdichter anzutreiben.  



  Nach der Erfindung ist die Abgasturbine  mit der Brennkraftmaschine durch eine Kupp  lung verbunden und sind     Mittel    vorgesehen,  um beim Abfliegen der Brennkammer von  dem beim Abfliegen zur Aufladung nicht be  nötigten Höhenlader Luft zuführen zu kön  nen. Bei dieser Anordnung braucht die Ab  gasturbine nicht nur die zur Verdichtung der  Ladeluft notwendige Arbeit zu liefern, es  kann darüber hinaus noch ein bedeutender  Leistungsüberschuss vorhanden sein, der als    Nutzleistung auf die Brennkraftmaschine  übertragen wird. Die Leistung der     Brenn-          kraftmaschine    kann somit weit über ihre nor  male Leistung hinaus     gesteigert    werden.  



  Die Kupplung kann ausrückbar sein, um  die Abgasturbine vor bezw. nach dem Ab  flug von der Brennkraftmaschine abkuppeln  zu können. Das Treibgas der Brennkammer  kann getrennt vom Abgas der     Brennkraft-          maschine    die Abgasturbine beaufsahlagen. Es  kann eine Einrichtung vorgesehen sein, um  nach dem Abflug Luft     erhöhten    Druckes von  einem Ladeverdichter der     Brennkammer    zu  führen zu können. Der     Höhenlader        kann        eine     zusätzliche Antriebsmaschine, die beispiels  weise als Dampfturbine     ausgebildet    sein  kann, erhalten.  



  Ein Beispiel des Erfindungsgegenstandes  ist in der Zeichnung dargestellt.  



  Die zum Antrieb eines Flugzeuges die  nende Zweitaktbrennkraftmaschine 1 ist mit  tels der Welle 2 mit einer nicht gezeichneten  Luftschraube gekuppelt. Die Abgase gelan  gen durch die Leitung<B>3</B> in     eine    nachgeschal-      tete Abgasturbine 4, in entspanntem Zustand  werden sie durch das Auspuffrohr 5 abge  leitet. Die Abgasturbine ist über ein Zahn  radbetriebe 6 und eine lösbare Kupplung 7  mit der Welle 2 gekuppelt. Über die Welle 8  treibt die Abgasturbine ein Ladegebläse 9.  welches verdichtete Luft durch die Leitung  10 zur Spülung und Aufladung in die Zylin  der der Brennkraftmaschine 1 führt. Ein wei  terer Verdichter 11 kommt in grösseren Höhen  als Höhenlader zur Wirkung. Seine Welle 12  ist mit Hilfe einer lösbaren Kupplung 13 mit  der Welle 8 des Ladeverdichters 9 gekuppelt.  



  Die Brennkammer 14 erhält vom Höhen  lader 11 über die Leitung 15 Verbrennungs  luft und durch die Leitung 16 von einer nicht  g o ezeichneten Pumpe Brennöl zugeführt. Das  Treibgas der Brennkammer 14 strömt durch  die Leitung 17 in die Abgasturbine 4.  



  Beim Abflug sind die Organe 18, 19 und  20 in der in der Zeichnung bezeigten Stel  lung. Hierbei saugt der Ladeverdichter 9     über     die Leitung 21 aus der Leitung 22 Luft an  und fördert diese durch die Leitung 10 in die  Brennkraftmaschine. Der beim Abfliegen  zum Aufladen nicht benötigte Höhenlader 11  saugt über die Leitung 23 ebenfalls aus der  Leitung 22 Luft und fördert die verdichtete  Luft über die Leitung 15 in die     Brennkam-          mer    14. Das Treibgas der Brennkammer  strömt durch die Leitung 17 in die mit der  Brennkraftmaschine gekuppelte Abgastur  bine 4. Die durch das Treibgas vermehrte  Leistung der     Abgasturbine    4 wird auf die  Welle 2 der Brennkraftmaschine übertragen  und dient damit zur Steigerung der Abflug  leistung.

   Nach Abflug kann die     Brennkam-          mer    14 durch Unterbrechen der Brennstoff  zufuhr ausser Betrieb gesetzt werden. Der  Höhenlader 11 läuft dann leer mit oder wird  mit Hilfe der Kupplung 13 stillgesetzt.  



  Bei Erreichen grösserer Höhe mit vermin  dertem Luftdruck werden die Organe 18 und  19 von Hand in die gestrichelt angedeutete  Labe bestellt und der Höhenlader 11 in Be  trieb gesetzt. Die vom     Höhenlader    auf den       Atmosphärendruck    verdichtete Luft gelangt  dann durch die Leitung 24 in den Ladever-    dichter 9 und wird von diesem - wie in ge  ringeren Höhen - auf den normalen Lade  druck verdichtet.  



  Wird dabei das Organ 20 von Hand in  die gestrichelt     angedeutete    Lage gestellt, so  kann vom Ladeverdichter 9 der     Brennkam-          mer    14 Luft von erhöhtem Druck zugeführt  werden, so dass die Leistung der Abgasturbine  durch das Treibgas der Brennkammer gestei  gert werden kann.  



  Das Treibgas der     Brennkammer    kann ge  trennt vom Abgas der Brennkraftmaschine  durch besondere Leitkanäle dem Laufrad der       Abgasturbine        zugeführt    werden. Zum An  trieb des Höhenladers 11 und gegebenenfalls  des Ladeverdichters 9 kann noch eine weitere  Antriebsmaschine, zum Beispiel eine Dampf  turbine, vorgesehen sein. Der zum Antrieb       notwendige    Dampf kann von einem Dampf  erzeuger geliefert werden, welcher durch die  Abgase der Brennkraftmaschine beheizt wird.



  Turbocharged aircraft fuel engine. The invention relates to a loaded aircraft internal combustion engine with a downstream exhaust gas turbine, in which air is supplied to a combustion chamber from a charger and the propellant gas produced can be supplied to increase the power of the exhaust gas turbine.



  In known internal combustion engines of the type described, the performance of the gas turbine is increased by the combustion gases supplied from the combustion chamber only so far that it is just able to drive the compressor.



  According to the invention, the exhaust gas turbine is connected to the internal combustion engine by a hitch and means are provided in order to be able to supply air when flying off the combustion chamber from the high-altitude charger that is not required when flying off for charging. In this arrangement, the exhaust gas turbine not only needs to deliver the work necessary to compress the charge air, there can also be a significant excess power that is transferred to the internal combustion engine as useful power. The output of the internal combustion engine can thus be increased far beyond its normal output.



  The clutch can be disengageable to bezw the exhaust turbine. to be able to uncouple after the flight from the internal combustion engine. The propellant gas from the combustion chamber can power the exhaust gas turbine separately from the exhaust gas from the internal combustion engine. A device can be provided in order to be able to lead air of increased pressure from a charge compressor to the combustion chamber after take-off. The high-altitude loader can receive an additional drive machine which, for example, can be designed as a steam turbine.



  An example of the subject matter of the invention is shown in the drawing.



  The two-stroke engine 1 to drive an aircraft is coupled with means of the shaft 2 with a propeller, not shown. The exhaust gases pass through the line 3 into a downstream exhaust gas turbine 4; in the relaxed state, they are diverted through the exhaust pipe 5. The exhaust gas turbine is coupled to the shaft 2 via a gear 6 and a releasable coupling 7. Via the shaft 8, the exhaust gas turbine drives a charging fan 9, which leads to the compressed air through the line 10 for flushing and charging into the cylinder of the internal combustion engine 1. A further compressor 11 comes into effect at greater heights as a high-altitude loader. Its shaft 12 is coupled to the shaft 8 of the charge compressor 9 with the aid of a releasable coupling 13.



  The combustion chamber 14 receives combustion air from the height loader 11 via line 15 and fuel oil supplied through line 16 from a pump (not shown). The propellant gas of the combustion chamber 14 flows through the line 17 into the exhaust gas turbine 4.



  Upon departure, the organs 18, 19 and 20 are in the position shown in the drawing. Here, the charge compressor 9 sucks in air via the line 21 from the line 22 and conveys it through the line 10 into the internal combustion engine. The high-altitude charger 11, which is not required when flying off for charging, also sucks air from the line 22 via the line 23 and conveys the compressed air via the line 15 into the combustion chamber 14. The propellant gas from the combustion chamber flows through the line 17 into the engine with the internal combustion engine coupled exhaust turbine 4. The increased power of the exhaust gas turbine 4 by the propellant gas is transferred to the shaft 2 of the internal combustion engine and thus serves to increase the take-off performance.

   After take-off, the combustion chamber 14 can be put out of operation by interrupting the fuel supply. The height loader 11 then runs along empty or is stopped with the aid of the coupling 13.



  When reaching greater heights with vermin modified air pressure, the organs 18 and 19 are ordered by hand in the Labe indicated by dashed lines and the height loader 11 is put into operation. The air, which has been compressed to atmospheric pressure by the high-altitude loader, then passes through line 24 into the loader compressor 9 and is compressed to the normal load pressure by this - as at lower heights.



  If the element 20 is placed by hand in the position indicated by dashed lines, air at increased pressure can be supplied from the charge compressor 9 to the combustion chamber 14 so that the output of the exhaust gas turbine can be increased by the propellant gas of the combustion chamber.



  The propellant gas of the combustion chamber can be fed to the impeller of the exhaust gas turbine through special ducts, separated from the exhaust gas of the internal combustion engine. To drive the high-altitude loader 11 and possibly the charging compressor 9, another drive machine, for example a steam turbine, can be provided. The steam required for driving can be supplied by a steam generator which is heated by the exhaust gases from the internal combustion engine.

 

Claims (1)

PATENTANSPRUCH: Aufgeladene Flugzeugbrennkraftmaschine mit nachbeschalteter Abgasturbine, bei wel cher einer Brennkammer von einem Lader Luft zugeführt und das erzeugte Treibgas zur Erhöhung der Leistung der Abgasturbine zugeleitet werden kann, dadurch gekennzeich net, dass die Abgasturbine mit der Brenn- kraftmaschine durch eine Kupplung verbun den ist und dass Mittel vorgesehen sind, PATENT CLAIM: Supercharged aircraft internal combustion engine with downstream exhaust gas turbine, in which air is supplied to a combustion chamber by a charger and the propellant gas produced can be fed to the exhaust gas turbine to increase the output, characterized in that the exhaust gas turbine is connected to the internal combustion engine by a clutch and that funds are provided um beim Abfliegen der Brennkammer von dem heim Abfliegen zur Aufladung nicht benötig- ten Höhenlader Luft zuführen zu können. UNTERANSPRÜCHE: 1. Flubzeugbrennkraftmaschine nach Pa tentanspruch, dadurch gekennzeichnet, dass die Kupplung ausrückbar ist, um die Abgas- i urbine vor bezw. nach dem Abflug von der Brennkraftmaschine abkuppeln zu können. in order to be able to supply air to the high-altitude loader that is not required for charging when the combustion chamber is flying off from the home. SUBClaims: 1. Aircraft internal combustion engine according to patent claim, characterized in that the clutch can be disengaged to the exhaust i urbine before or. to be able to disconnect from the internal combustion engine after departure. ?. Flugzeu"-bi-ennkraftmaschine nach Pa tentanspruch, dadurch gekennzeichnet, dass (las Treibgas der Brennkammer getrennt vom Abgas der Brennkraftmaschine die Abgastur bine lx aufschlagt. ä. Flugzeugbrennkraftmaschine nach Pa tentanspruch, gekennzeichnet durch eine Ein richtung, mit welcher nach dem Abflug Luft erhöhten Druckes von einem Ladeverdichter der Brennkammer zugeführt werden kann. 4. Flugzeugbrennkraftmaschine nach Pa tentanspruch, gekennzeichnet durch eine zu- sätzliche Antriebsmaschine zum Antrieb des Höhenladers. 5. ?. Aircraft engine according to the patent claim, characterized in that the propellant gas of the combustion chamber hits the exhaust turbine lx separately from the exhaust gas of the internal combustion engine. Similar aircraft engine according to the patent claim, characterized by a device with which air increased after take-off 4. Aircraft internal combustion engine according to patent claim, characterized by an additional drive machine for driving the high-altitude loader. Flugzeugbrennkraftmaschine nach Un- teranspruch 4, dadurch gekennzeichnet, dass die zusätzliche Antriebsmaschine als Dampf turbine ausgebildet ist. Aircraft internal combustion engine according to dependent claim 4, characterized in that the additional drive machine is designed as a steam turbine.
CH231639D 1942-02-21 1942-02-21 Supercharged aircraft internal combustion engine. CH231639A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH231639T 1942-02-21

Publications (1)

Publication Number Publication Date
CH231639A true CH231639A (en) 1944-03-31

Family

ID=4457215

Family Applications (1)

Application Number Title Priority Date Filing Date
CH231639D CH231639A (en) 1942-02-21 1942-02-21 Supercharged aircraft internal combustion engine.

Country Status (1)

Country Link
CH (1) CH231639A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1056424B (en) * 1955-03-29 1959-04-30 Mak Maschinenbau Kiel Ag Device for using the waste heat of the exhaust gases from internal combustion engines to generate steam
DE1262673B (en) * 1961-03-11 1968-03-07 Robert Pouit Diesel internal combustion engine with variable speed
FR2660695A1 (en) * 1990-04-05 1991-10-11 Mtu Friedrichshafen Gmbh POWER SUPPLY UNIT, COMPRISING EXHAUST AIR COMPRESSORS FOR AN INTERNAL COMBUSTION ENGINE.
US5406796A (en) * 1993-04-13 1995-04-18 Mercedes-Benz Ag Exhaust gas turbocharger for a supercharged internal combustion engine
WO2012041941A1 (en) * 2010-09-29 2012-04-05 Eads Deutschland Gmbh Diesel engine/gas turbine compound engine for a means of transportation
FR3033830A1 (en) * 2015-03-16 2016-09-23 Soc De Motorisations Aeronautiques POWER GROUP FOR AIRCRAFT

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1056424B (en) * 1955-03-29 1959-04-30 Mak Maschinenbau Kiel Ag Device for using the waste heat of the exhaust gases from internal combustion engines to generate steam
DE1262673B (en) * 1961-03-11 1968-03-07 Robert Pouit Diesel internal combustion engine with variable speed
FR2660695A1 (en) * 1990-04-05 1991-10-11 Mtu Friedrichshafen Gmbh POWER SUPPLY UNIT, COMPRISING EXHAUST AIR COMPRESSORS FOR AN INTERNAL COMBUSTION ENGINE.
US5157924A (en) * 1990-04-05 1992-10-27 Mtu Friedrichshafen Gmbh Turbo supercharging system for an internal-combustion engine having controllable charge air compressors
US5406796A (en) * 1993-04-13 1995-04-18 Mercedes-Benz Ag Exhaust gas turbocharger for a supercharged internal combustion engine
WO2012041941A1 (en) * 2010-09-29 2012-04-05 Eads Deutschland Gmbh Diesel engine/gas turbine compound engine for a means of transportation
CN103167985A (en) * 2010-09-29 2013-06-19 空中客车德国运营有限责任公司 Diesel engine/gas turbine compound engine for a means of transportation
CN103167985B (en) * 2010-09-29 2016-03-16 空中客车德国运营有限责任公司 For the associating engine of means of delivery, driving method and corresponding means of delivery
FR3033830A1 (en) * 2015-03-16 2016-09-23 Soc De Motorisations Aeronautiques POWER GROUP FOR AIRCRAFT

Similar Documents

Publication Publication Date Title
EP0235390B1 (en) Marine diesel engine assembly
WO2010049277A1 (en) Gas turbine system with exhaust recycling and method for operating of such system
DE102009043721A1 (en) Internal-combustion engine e.g. petrol engine, for use in e.g. aircraft, has axial flow compressor, flow turbine, outer housing and main shaft implementing part of entire compression and expansion of fuel
DE1756138A1 (en) Power plant for helicopters
CH231639A (en) Supercharged aircraft internal combustion engine.
DE398902C (en) Internal combustion engine system with increased performance
DE3224006A1 (en) Turbocharger group for internal-combustion engines
CH192652A (en) Engine system with internal combustion engine, exhaust gas turbine and a compressor that supplies all of the air for the internal combustion engine.
DE712583C (en) Vehicle internal combustion engine for changing altitudes
DE102020201754A1 (en) TURBO CLUSTER GAS TURBINE SYSTEM AND ACTIVATION PROCEDURE THEREOF
DE102019216766A1 (en) Method of operating a heating device
DE897634C (en) Exhaust gas turbine system for internal combustion engines with partial admission of the turbine blades
DE560075C (en) Air jet engine for high flight
DE701457C (en) Device for generating energy from the exhaust gases of internal combustion engines
DE768006C (en) Hot jet engine for propelling aircraft
DE627455C (en) An engine system which, in addition to a free-flight piston internal combustion engine, also has an internal combustion engine provided with a crankshaft
DE3829908A1 (en) Multipurpose gas turbine
CH222116A (en) Machine system for multi-screw ships.
DE940024C (en) Heating method and device, in particular for internal combustion engines
DE874674C (en) Process and system for operating thermal machines with gas and compressed air
DE849201C (en) Method for operating a gas turbine used in particular to drive a motor vehicle
WO2023108306A1 (en) Gas turbine for aircraft propulsion, and method for operating a gas turbine for aircraft propulsion
DE839605C (en) Machine system for multi-screw ships, the drive machines of which are wholly or partly gas turbines
CH121405A (en) Internal combustion engine.
CH210397A (en) Gas turbine plant.