CH106314A - Multi-phase transformer with 2 multi-phase excited magnet systems. - Google Patents

Multi-phase transformer with 2 multi-phase excited magnet systems.

Info

Publication number
CH106314A
CH106314A CH106314DA CH106314A CH 106314 A CH106314 A CH 106314A CH 106314D A CH106314D A CH 106314DA CH 106314 A CH106314 A CH 106314A
Authority
CH
Switzerland
Prior art keywords
phase
magnet systems
transformer
excited magnet
yoke
Prior art date
Application number
Other languages
German (de)
Inventor
Cie Aktiengesellschaft Boveri
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of CH106314A publication Critical patent/CH106314A/en

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

  

      Nehrphasen-Transformator    mit 2 mehrphasig erregten Magnetsystemen.    Zur     TJmformung    von Dreiphasen- in Zwölf  phasenstrom verwendet man vielfach, neben  andern Anordnungen, zwei     Dreiphasen-Trans-          formatoren,    wobei die Primärwicklung des  einen in Stern, die des andern in Dreieck  geschaltet ist. Jeder dieser     Dreiphasen-Trans-          formatoren    hat ein dreiphasiges     A'ragnetsystem,     auf welchem eine sechsphasige Wicklung an  gebracht werden kann.

   Durch die     Stern-Drei-          eckscbaltung    der Primärwicklungen wird er  reicht, dass die Flüsse der beiden     dreiphasi-          gen    Magnetsysteme und ebenso auch die von  ihnen induzierten Spannungen nicht phasen  gleich, sondern um 30   elektrisch gegenein  ander verschoben sind. Die beiden Sechs  phasensysteme ergeben also zusammen ein       Zwölfphasensystem    mit 30   Phasenwinkel  zwischen je zwei benachbarten Phasen.  



  Die Erfindung soll es ermöglichen, an  Stelle der beiden Transformatoren nur einen  zu verwenden, und zwar dadurch, dass die  beiden Transformatoren so zusammengebaut  werden, dass ihre Magnetsysteme mindestens  ein gemeinsames Jocherhalten. Dadurch wird  nicht nur mindestens ein Joch gespart,. son-         dern    es wird auch in vielen Fällen möglich  sein, jedes gemeinsame Joch bedeutend     schwä-          eher    zu halten, also jedes der beiden einzel  nen     Joche,    an deren Stelle es getreten ist,  wie aus dem folgenden hervorgeht.  



  In     Fig.    1 ist der Aufbau des Eisens für  einen nach der Erfindung ausgeführten Trans  formator mit einem gemeinsamen Joch bei  spielsweise dargestellt. Mit a sind die Säulen  des ersten     Magnetsystems    bezeichnet, mit b  die Säulen des zweiten     Alagnetsystems,    mit c  das obere Joch des ersten, mit     d    das untere  Joch des zweiten     Magnetsystems,    mit e das  gemeinsame Joch der beiden Magnetsysteme.  In den drei Säulen des     obern    Magnetsystems  fliessen die drei Kraftflüsse<B>01,</B>     0s,   <I>Os,</I> die in       Fig.    2 im     Vektordiagramm    dargestellt sind.

    In den drei     Säulen    des untern Magnetsystems  fliessen die drei Kraftflüsse     (h4,        (A,        0s,    die  ebenfalls in     Fig.    2 in     Vektordiagramm    dar  gestellt sind und deren Richtungen gegen die  der drei Kraftflüsse des obern Magnetsystems  um 30   im     Vektordiagramm    verschoben sind.

    Nun folgt aus     Fig.    1, dass im obern und untern  Joch dieselben Kraftflüsse fliessen wie in den           äuf.;ern    Schenkeln, im mittleren Joch dagegen  die Kraftflüsse     (I!s-(I),    und und     aus     dein     Vektordiagramm        (Fig.    2) folgt,     da1,    die  Flüsse und     @h@i-@hs    nur     ungefähr    halb  so     grol:,    sind wie die Flüsse     (h,    bis (A;.

   Das  mittlere     gemeinsame    Joch braucht also nur  den halben Querschnitt zu erhalten wie jedes  der     äussern        Joche.     



  In der     Iionstrul@tion    und Schaltung eines  solchen Transformators sind im einzelnen  noch manche Abänderungen möglich. Zum  Beispiel können die     Primärwieldungen    der  beiden Magnetsysteme parallel oder in Serie  geschaltet werden. Die     Sekundarwicklungen          höhnen    zu Dreiphasen-, Sechsphasen- oder       Zwölfpliasen-Systeinen        zusammengefafjt    wer  den.

   Die     Leistung    der beiden Teile des Trans  formators kann verschieden sein, wodurch    verschieden grosse Eisenquerschnitte bedingt  sein     können.    Die Erfindung kann ebenso wie  für die Uniformung von Dreiphasenstrom in       Zwölfphasenstrom    auch für andere     mehrpha-          sige    Anordnungen verwendet werden. Es kann       zum    Beispiel     primär        Zweiphasenstrom    zur       Verfügung    stehen und sekundär Acht- oder       3Iehrphasenstrom    entnommen werden.



      Multi-phase transformer with 2 multi-phase excited magnet systems. In order to convert three-phase to twelve-phase currents, two three-phase transformers are often used, in addition to other arrangements, with the primary winding of one connected in star and the other in delta. Each of these three-phase transformers has a three-phase grid system on which a six-phase winding can be attached.

   The star-delta connection of the primary windings ensures that the fluxes of the two three-phase magnet systems and also the voltages they induce are not in phase with each other, but rather are electrically shifted by 30. The two six-phase systems together result in a twelve-phase system with 30 phase angles between each two adjacent phases.



  The invention is intended to make it possible to use only one instead of the two transformers, namely in that the two transformers are assembled in such a way that their magnet systems have at least one common yoke. This not only saves at least one yoke. but it will also be possible in many cases to keep each common yoke significantly weaker, that is, each of the two individual yokes that it has replaced, as follows from the following.



  In Fig. 1 the structure of the iron for a transformer executed according to the invention with a common yoke is shown for example. The columns of the first magnet system are designated with a, the columns of the second magnet system with b, the upper yoke of the first magnet system with c, the lower yoke of the second magnet system with d, and the common yoke of the two magnet systems with e. The three force flows <B> 01, </B> 0s, <I> Os, </I>, which are shown in the vector diagram in FIG. 2, flow in the three columns of the upper magnet system.

    In the three columns of the lower magnet system flow the three force flows (h4, (A, 0s, which are also shown in Fig. 2 in a vector diagram and whose directions are shifted by 30 in the vector diagram against those of the three force flows of the upper magnet system.

    Now it follows from Fig. 1 that the same force flows flow in the upper and lower yoke as in the upper legs, whereas in the middle yoke the force flows (I! S- (I), and and from your vector diagram (Fig. 2)) it follows that the rivers and @ h @ i- @ hs are only about half as large as the rivers (h, to (A ;.

   The central common yoke therefore only needs to have half the cross-section as each of the outer yokes.



  In the Iionstrul @ tion and circuit of such a transformer, some modifications are still possible. For example, the primary walls of the two magnet systems can be connected in parallel or in series. The secondary windings sneer into three-phase, six-phase or twelve-phase systems.

   The performance of the two parts of the transformer can be different, which can result in different sized iron cross-sections. As for the uniformity of three-phase current in twelve-phase current, the invention can also be used for other multi-phase arrangements. For example, two-phase electricity can be primarily available and eight- or three-phase electricity can be drawn secondarily.

 

Claims (1)

PA T EN TAhi SPRUCH Dlelirphasen-Ti@ansformatoi- mit zwei mehr phasig erregten Magnetsystemen, deren Flüsse in der Phase gegeneinander verschoben sind, dadurch gekennzeichnet, dafj diese beiden Magnetsysteme mindestens ein gemeinsames Joch erhalten. PA T EN TAhi SPRUCH Dlelirphasen-Ti @ ansformatoi- with two more phase excited magnet systems, the fluxes of which are shifted in phase against each other, characterized in that these two magnet systems have at least one common yoke.
CH106314D 1922-10-05 1923-09-20 Multi-phase transformer with 2 multi-phase excited magnet systems. CH106314A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE106314X 1922-10-05

Publications (1)

Publication Number Publication Date
CH106314A true CH106314A (en) 1924-08-16

Family

ID=5650624

Family Applications (1)

Application Number Title Priority Date Filing Date
CH106314D CH106314A (en) 1922-10-05 1923-09-20 Multi-phase transformer with 2 multi-phase excited magnet systems.

Country Status (1)

Country Link
CH (1) CH106314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531708A (en) * 1968-10-07 1970-09-29 North Electric Co Integral structure three-phase ferroresonant transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531708A (en) * 1968-10-07 1970-09-29 North Electric Co Integral structure three-phase ferroresonant transformer

Similar Documents

Publication Publication Date Title
DE2110746A1 (en) Inverter with stepped output voltage
DE440793C (en) Multi-phase transformer with two multi-phase magnet systems, the fluxes of which are phase shifted
CH106314A (en) Multi-phase transformer with 2 multi-phase excited magnet systems.
DE662920C (en) Transformer for converting three-phase electricity into two-phase electricity and vice versa
DE915479C (en) Converter with discharge vessels arranged in a bridge circuit
DE508979C (en) Three-phase winding on which a 2n-pole winding is made from a 6n-pole winding by changing the pole
AT64837B (en) Switching arrangement in which the movable current connectors of a rotary switch remain permanently connected to the same lines.
DE661541C (en) Multi-phase transformer in economy circuit for coupling networks
DE2057518A1 (en) Multi-phase transformer with taps that can be switched under load
DE439741C (en) Short-circuit armature for induction motors with deep slots and two or a few superposed conductors in each slot
DE595470C (en) Transformer for converting three-phase current into multi-phase current for rectifier
DE682531C (en) Three-phase rectifier arrangement for connection to a single-phase alternating current network
DE528163C (en) Device for converting three-phase current into four-phase current, in particular for feeding four-phase rectifiers from a three-phase network
AT238321B (en) Device for connecting valves in parallel in multi-phase rectifier arrangements without circulating current
DE494438C (en) Earth fault protection device
DE653974C (en) Pole-changing winding with different numbers of phases for the individual numbers of poles
AT96408B (en) Autotransformer for single and multi-phase electricity.
DE647376C (en) Pole-changing three-phase winding
DE911308C (en) Three-phase converter arrangement with mechanical contacts
DE616768C (en) In an even-numbered ratio of 2n: 1, pole-changing, six-phase two-layer winding, designed for the highest number of poles
DE435655C (en) Device for feeding multi-phase mercury vapor rectifiers with anode number that is more than twice the number of mains phases
DE750359C (en) Device for direct frequency conversion with the help of controllable discharge paths
DE609295C (en) Transformer circuit for evenly distributing the power to metal vapor rectifiers working in parallel with six phases
DE491991C (en) Twelve-phase transformer in which the primary windings of two transformers are connected in a star or delta series
DE744556C (en) Star-delta switch for three-phase motors