CA3132944A1 - Low-smoke pyrotechnic composition - Google Patents
Low-smoke pyrotechnic composition Download PDFInfo
- Publication number
- CA3132944A1 CA3132944A1 CA3132944A CA3132944A CA3132944A1 CA 3132944 A1 CA3132944 A1 CA 3132944A1 CA 3132944 A CA3132944 A CA 3132944A CA 3132944 A CA3132944 A CA 3132944A CA 3132944 A1 CA3132944 A1 CA 3132944A1
- Authority
- CA
- Canada
- Prior art keywords
- percent
- smoke
- weight
- low
- pyrotechnic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 95
- 239000000779 smoke Substances 0.000 title claims abstract description 76
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 claims abstract description 88
- 239000000446 fuel Substances 0.000 claims abstract description 36
- 239000007800 oxidant agent Substances 0.000 claims abstract description 28
- 239000011230 binding agent Substances 0.000 claims abstract description 27
- 239000003381 stabilizer Substances 0.000 claims abstract description 25
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000002485 combustion reaction Methods 0.000 claims abstract description 22
- 239000003054 catalyst Substances 0.000 claims abstract description 20
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000020 Nitrocellulose Substances 0.000 claims abstract description 12
- 229920001220 nitrocellulos Polymers 0.000 claims abstract description 12
- 229960004643 cupric oxide Drugs 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000010936 titanium Substances 0.000 claims abstract description 9
- -1 Red Gum Chemical compound 0.000 claims description 10
- 229910052755 nonmetal Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 229920002449 FKM Polymers 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims description 3
- ADCBKYIHQQCFHE-UHFFFAOYSA-N 1,3-dimethyl-1,3-diphenylurea Chemical compound C=1C=CC=CC=1N(C)C(=O)N(C)C1=CC=CC=C1 ADCBKYIHQQCFHE-UHFFFAOYSA-N 0.000 claims description 2
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004343 Calcium peroxide Substances 0.000 claims description 2
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- ZJRXSAYFZMGQFP-UHFFFAOYSA-N barium peroxide Chemical compound [Ba+2].[O-][O-] ZJRXSAYFZMGQFP-UHFFFAOYSA-N 0.000 claims description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052810 boron oxide Inorganic materials 0.000 claims description 2
- LHJQIRIGXXHNLA-UHFFFAOYSA-N calcium peroxide Chemical compound [Ca+2].[O-][O-] LHJQIRIGXXHNLA-UHFFFAOYSA-N 0.000 claims description 2
- 235000019402 calcium peroxide Nutrition 0.000 claims description 2
- 150000005323 carbonate salts Chemical class 0.000 claims description 2
- PZIMIYVOZBTARW-UHFFFAOYSA-N centralite Chemical compound C=1C=CC=CC=1N(CC)C(=O)N(CC)C1=CC=CC=C1 PZIMIYVOZBTARW-UHFFFAOYSA-N 0.000 claims description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 2
- 239000004312 hexamethylene tetramine Substances 0.000 claims description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical compound [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 claims description 2
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- UHCGLDSRFKGERO-UHFFFAOYSA-N strontium peroxide Chemical compound [Sr+2].[O-][O-] UHCGLDSRFKGERO-UHFFFAOYSA-N 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims 2
- RUKISNQKOIKZGT-UHFFFAOYSA-N 2-nitrodiphenylamine Chemical compound [O-][N+](=O)C1=CC=CC=C1NC1=CC=CC=C1 RUKISNQKOIKZGT-UHFFFAOYSA-N 0.000 claims 1
- DVARTQFDIMZBAA-UHFFFAOYSA-O ammonium nitrate Chemical compound [NH4+].[O-][N+]([O-])=O DVARTQFDIMZBAA-UHFFFAOYSA-O 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 238000010276 construction Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000006227 byproduct Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000013618 particulate matter Substances 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B31/00—Compositions containing an inorganic nitrogen-oxygen salt
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B31/00—Compositions containing an inorganic nitrogen-oxygen salt
- C06B31/28—Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
- C06B31/32—Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with a nitrated organic compound
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
- C06B23/006—Stabilisers (e.g. thermal stabilisers)
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B25/00—Compositions containing a nitrated organic compound
- C06B25/18—Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
- C06B25/20—Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition with a non-explosive or a non-explosive or a non-thermic component
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B25/00—Compositions containing a nitrated organic compound
- C06B25/34—Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Air Bags (AREA)
Abstract
A low-smoke, pyrotechnic composition is provided. The composition may include Ceric Ammonium Nitrate as an oxidizer, a fuel source, stabilizer, and a binder. The use of Ceric Ammonium Nitrate as an oxidizing agent within the composition can result in reducing the amount of smoke generated during combustion of the composition, which may be beneficial for certain pyrotechnic applications. In certain constructions, the composition may include Ceric Ammonium Nitrate as an oxidizer, Nitrocellulose and Titanium as fuel sources, Cyanoguanidine as a stabilizer, Cupric Oxide as a burn rate catalyst, and any suitable binder agent. The amount of Ceric Ammonium Nitrate by percent weight of the composition may range between 20-80 percent, 30-40 percent, or 30.0-37.5 percent. In certain configurations, the amount of Ceric Ammonium Nitrate may be about 36.7 percent by weight.
Description
LOW-SMOKE PYROTECHNIC COMPOSITION
CROSS-REFERENCE TO RELATED APPLICATIONS
mon This Application claims priority to U.S. Provisional Patent Application Serial No.
62/832,003, filed on April 10, 2019, to Lyle Salmi et al., entitled "Low-Smoke Pyrotechnic Composition," currently pending, the entire disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION
CROSS-REFERENCE TO RELATED APPLICATIONS
mon This Application claims priority to U.S. Provisional Patent Application Serial No.
62/832,003, filed on April 10, 2019, to Lyle Salmi et al., entitled "Low-Smoke Pyrotechnic Composition," currently pending, the entire disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION
[0002] The present invention relates generally to ingredients or components for use in pyrotechnics, and more specifically, as a low-smoke alternative to black powder used in pyrotechnics.
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION
[0003] Black powder has been used in pyrotechnic devices for thousands of years. It is an intimate mixture of approximately 75% potassium nitrate, 15% charcoal, and 10%
sulfur.
While its initial development was geared towards using it as an explosive weapon, its uses quickly expanded into the civil engineering and entertainment sectors. Its historic beginnings should be of no surprise, as there are many positive characteristics that make black powder an attractive composition for use in pyrotechnics. Firstly, black powder is readily ignitable due to the presence of sulfur and its low melting point. Secondly, black powder is made from components that are readily available and relatively inexpensive. Finally, black powder not only is able to propel or "lift" other pyrotechnic compositions effectively, it also forms a large amount of hot, solid particles during combustion which facilitate the ignition of secondary pyrotechnic compositions [00041 There is a high demand for black powder replacements that provide acceptable bum rates upon combustion, generate high volumes of gas, and successfully initiate the combustion of and propel other pyrotechnic compositions. Black powder used in current pyrotechnic devices is undesirable for certain applications due to the fact that it typically produces substantial solid by-products from the composition's combustion in the form of smoke and other solid particulate matter. Current black powder replacements typically fail to reliably ignite secondary pyrotechnic compositions.
[00051 Accordingly, a need exists for gas generating compositions suitable for use in pyrotechnic applications that require similar gas-generating and heat transfer properties while also reducing smoke output BRIEF SUMMARY OF THE INVENTION
[0006] The present invention is directed to a low-smoke, pyrotechnic composition that can be suitably used in applications where it is desirable to have minimal smoke production or other solid particulate matter production resulting from the combustion of the composition.
[00071 The low-smoke, pyrotechnic composition of the present invention includes Ceric Ammonium Nitrate (CAN) (chemical formula: FIKINIsCe018) as an oxidizing agent in order to limit the production of solid by-product, including smoke generation, during combustion of the composition. The Celtic Ammonium Nitrate within the low-smoke, pyrotechnic composition generates large amounts of oxygen useful in propagating combustion and generates nitrogen gas useful in propulsion, while also providing noticeably reduced smoke and particulate matter generation during combustion as compared to other common oxidizers.
[0008]
According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include a fuel source, a stabilizer, a binder, and Ceric Ammonium Nitrate as an oxidizer. In certain embodiments, the composition may include additional oxidizing agents in addition to Ceric Ammonium Nitrate; however, Ceric Ammonium Nitrate must be present in the composition of the present invention. The low-smoke, pyrotechnic composition in accordance with the various embodiments of the present invention may include any suitable fuel source or fuel sources, including without limitation, metal and non-metal fuel sources, any suitable type of stabilizing agent or agents, and any suitable type of binding agent or agents.
[0009] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include 20-80 percent by weight Ceric Ammonium Nitrate, 5-60 percent by weight the fuel source(s), 1-20 percent by weight the stabilizer(s), and 0-15 percent by weight the binder(s).
[0010] The low-smoke, pyrotechnic composition may also include a burn rate catalyst in accordance with one or more embodiments. The bum rate catalyst may include any suitable type or types of burn rate catalysts or heat generating compounds. The selection of the particular bum rate catalyst or heat generating compound, or a combination thereof, may be selected based at least in part on the desired effect and particular pyrotechnic application.
[0011] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include Cede Ammonium Nitrate as an oxidizer, Nitrocellulose as a non-metal fuel source, Titanium as a metal fuel source, Cyanoguanidine as a stabilizer, Cupric Oxide as a bum rate catalyst, and any suitable binder compound. In additional embodiments, one or more fuel sources, stabilizers, bum rate catalysts and/or oxidizers may be added to the low-smoke, pyrotechnic composition depending on the particular application.
[0012]
According to a specific embodiment of the present invention, the low-smoke, pyrotechnic composition can include approximately 30-40% by weight Ceric Ammonium Nitrate (oxidizer), approximately 45-55% by weight Nitrocellulose (non-metal fuel source), approximately 0.1-3,0% by weight Cyanoguanidine (stabilizer), approximately 5-10% Cupric Oxide (bum rate catalyst), and approximately 0-15% of a suitable binder material.
[0013] According to a specific embodiment, the low-smoke, pyrotechnic composition can include approximately 36.7% by weight of Ceric Amrnoniwn Nitrate (---50 um), approximately 51,4% by weight of Nitrocellulose, approximately 3,7% by weight Titanium (-325 mesh), approximately 0.9% by weight Cyanoguanidine, approximately 73% by weight of Cupric Oxide, and approximately 0-15% by weight of a binder material.
[0014] Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.
DETAILED DESCRIPTION OF THE INVENTION
100151 The following detailed description of the invention references specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention.
Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The present invention is defined by the appended claims and the description is, therefore, not to be taken in a limiting sense and shall not limit the scope of equivalents to which such claims are entitled.
[0016] The present invention is directed to a low-smoke, pyrotechnic composition that can be used in pyrotechnic applications where it is desirable to have a minimal amount of smoke or other solid particulate matter produced as a result of combustion of the composition. The low-smoke, pyrotechnic composition of the present invention can be utilized in connection
sulfur.
While its initial development was geared towards using it as an explosive weapon, its uses quickly expanded into the civil engineering and entertainment sectors. Its historic beginnings should be of no surprise, as there are many positive characteristics that make black powder an attractive composition for use in pyrotechnics. Firstly, black powder is readily ignitable due to the presence of sulfur and its low melting point. Secondly, black powder is made from components that are readily available and relatively inexpensive. Finally, black powder not only is able to propel or "lift" other pyrotechnic compositions effectively, it also forms a large amount of hot, solid particles during combustion which facilitate the ignition of secondary pyrotechnic compositions [00041 There is a high demand for black powder replacements that provide acceptable bum rates upon combustion, generate high volumes of gas, and successfully initiate the combustion of and propel other pyrotechnic compositions. Black powder used in current pyrotechnic devices is undesirable for certain applications due to the fact that it typically produces substantial solid by-products from the composition's combustion in the form of smoke and other solid particulate matter. Current black powder replacements typically fail to reliably ignite secondary pyrotechnic compositions.
[00051 Accordingly, a need exists for gas generating compositions suitable for use in pyrotechnic applications that require similar gas-generating and heat transfer properties while also reducing smoke output BRIEF SUMMARY OF THE INVENTION
[0006] The present invention is directed to a low-smoke, pyrotechnic composition that can be suitably used in applications where it is desirable to have minimal smoke production or other solid particulate matter production resulting from the combustion of the composition.
[00071 The low-smoke, pyrotechnic composition of the present invention includes Ceric Ammonium Nitrate (CAN) (chemical formula: FIKINIsCe018) as an oxidizing agent in order to limit the production of solid by-product, including smoke generation, during combustion of the composition. The Celtic Ammonium Nitrate within the low-smoke, pyrotechnic composition generates large amounts of oxygen useful in propagating combustion and generates nitrogen gas useful in propulsion, while also providing noticeably reduced smoke and particulate matter generation during combustion as compared to other common oxidizers.
[0008]
According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include a fuel source, a stabilizer, a binder, and Ceric Ammonium Nitrate as an oxidizer. In certain embodiments, the composition may include additional oxidizing agents in addition to Ceric Ammonium Nitrate; however, Ceric Ammonium Nitrate must be present in the composition of the present invention. The low-smoke, pyrotechnic composition in accordance with the various embodiments of the present invention may include any suitable fuel source or fuel sources, including without limitation, metal and non-metal fuel sources, any suitable type of stabilizing agent or agents, and any suitable type of binding agent or agents.
[0009] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include 20-80 percent by weight Ceric Ammonium Nitrate, 5-60 percent by weight the fuel source(s), 1-20 percent by weight the stabilizer(s), and 0-15 percent by weight the binder(s).
[0010] The low-smoke, pyrotechnic composition may also include a burn rate catalyst in accordance with one or more embodiments. The bum rate catalyst may include any suitable type or types of burn rate catalysts or heat generating compounds. The selection of the particular bum rate catalyst or heat generating compound, or a combination thereof, may be selected based at least in part on the desired effect and particular pyrotechnic application.
[0011] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include Cede Ammonium Nitrate as an oxidizer, Nitrocellulose as a non-metal fuel source, Titanium as a metal fuel source, Cyanoguanidine as a stabilizer, Cupric Oxide as a bum rate catalyst, and any suitable binder compound. In additional embodiments, one or more fuel sources, stabilizers, bum rate catalysts and/or oxidizers may be added to the low-smoke, pyrotechnic composition depending on the particular application.
[0012]
According to a specific embodiment of the present invention, the low-smoke, pyrotechnic composition can include approximately 30-40% by weight Ceric Ammonium Nitrate (oxidizer), approximately 45-55% by weight Nitrocellulose (non-metal fuel source), approximately 0.1-3,0% by weight Cyanoguanidine (stabilizer), approximately 5-10% Cupric Oxide (bum rate catalyst), and approximately 0-15% of a suitable binder material.
[0013] According to a specific embodiment, the low-smoke, pyrotechnic composition can include approximately 36.7% by weight of Ceric Amrnoniwn Nitrate (---50 um), approximately 51,4% by weight of Nitrocellulose, approximately 3,7% by weight Titanium (-325 mesh), approximately 0.9% by weight Cyanoguanidine, approximately 73% by weight of Cupric Oxide, and approximately 0-15% by weight of a binder material.
[0014] Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.
DETAILED DESCRIPTION OF THE INVENTION
100151 The following detailed description of the invention references specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention.
Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The present invention is defined by the appended claims and the description is, therefore, not to be taken in a limiting sense and shall not limit the scope of equivalents to which such claims are entitled.
[0016] The present invention is directed to a low-smoke, pyrotechnic composition that can be used in pyrotechnic applications where it is desirable to have a minimal amount of smoke or other solid particulate matter produced as a result of combustion of the composition. The low-smoke, pyrotechnic composition of the present invention can be utilized in connection
4 illuminating pyrotechnic compositions and/or propellant compositions depending on the desired application. For example, the low-smoke, pyrotechnic composition of the present invention may be utilized to create an illuminating light, flash or flame, heat and/or sound in connection with the combustion of the composition while limiting the overall production of smoke generated in connection with the chemical reaction and combustion.
[0017] The principal component in the low-smoke, pyrotechnic composition of the present invention is Ceric Ammonium Nitrate, which is used as an oxidizer. Ceric Ammonium Nitrate is an inorganic compound with the formula (N1-14)2Ce(NO3)6 (chemical formula:
H8N8Ce018) and is often used as an oxidant in organic synthesis. Ceric Ammonium Nitrate (CAN) can also be referred to as Diammonium cerium hexanitrate, Diammonium hexanitratocerate(2-), and Ammonium cerium nitrate (VAN). CAN is used as the main oxidizing agent in the low-smoke, pyrotechnic composition and limits the production of solid by-product, including smoke generation during combustion of the composition.
[0018] Ceric Ammonium Nitrate is necessary in the low-smoke, pyrotechnic composition of the present invention, as it generates large amounts of oxygen useful in propagating combustion, and nitrogen gas useful in propulsion; it is also readily ignitable in the presence of organic fuels. CAN has likely found limited use in the pyrotechnics industry due to availability issues as well as its ready ability to oxidize various materials at room temperature when solvated.
[0019] Decomposition of one gram of Ceric Ammonium Nitrate generates 0.53 grams of oxygen, 0.2 grams of nitrogen, and 0.1 grams of hydrogen. The mass of oxygen generated is comparable with other common oxidizers such as potassium nitrate (0.40 grams of oxygen/gram), potassium chlorate (0.39 grams of oxygen/gram), and potassium perchlorate (0.46 grams of oxygen/gram). The combustion of CAN forms 0.31 grams of Cerium (IV) Oxide and 033 grams of water vapor. After subtracting the oxygen that falls out as Cerium (li) Oxide and water vapor, 0.35 grams of free oxygen are left to participate in the combustion process. Using this information, it is found that over 69% of the byproducts of the decomposition of CAN are gaseous, and the combustion of formulations using CAN as an oxidizer have noticeably reduced smoke generation.
[0020] Ceric Ammonium Nitrate is also advantageous in the low-smoke, pyrotechnic composition of the present invention due to its low melting point. Sulfur's implementation as a low-melting point fuel in black powder has a drawback in that its presence leads to large amounts of solid sulfide byproducts that increases the smoke output of the composition.
CAN's low melting point and high ignitability with organic fuels greatly reduces the amount of activation energy necessary for combustion and eliminates the need for sulfur.
Furthermore, Ceric Ammonium Nitrate and its byproducts are environmentally benign.
[0021] As illustrated in Table I below, according to one embodiment, the low-smoke, pyrotechnic composition of the present invention can include a fuel source, a stabilizer, a binder, and Ceric Ammonium Nitrate as an oxidizer. In certain embodiments, additional oxidizers may be utilized with the Cede Ammonium Nitrate; however, Ceric Ammonium Nitrate is the only specific component of the composition that cannot be removed or replaced.
Additional oxidizers that may be used in conjunction with the Ceric Ammonium Nitrate may include, but are not limited to, nitrate salts, perchlorate salts, and metal oxides. In certain embodiments, the low-smoke pyrotechnic composition of the present invention can include one or more of each type of component comprising the composition. In such embodiments, the low-smoke, pyrotechnic composition can include at least one fuel source agent, at least one stabilizer agent, at least one binder agent, and at least one oxidizer agent including at least Ceric Ammonium Nitrate.
[0022] The fuel can be metal or non-metal source and the composition can include multiple fuel sources in certain embodiments. Non-limiting examples of suitable fuel sources that may be used in the low-smoke, pyrotechnic composition of the present invention can include:
Nitrocellulose, Hexamine, Nitroguanidine, Red Gum, Titanium, Aluminum, Magnesium, Boron, Charcoal, Silicon, any transition metals or other types of fuel source now known or hereinafter developed or commonly used in the art.
[0023] The stabilizer can be any suitable stabilizing agent, including without limitation:
Cyanoguanidine, Dicyanodiamide, 2-cy anoguanidine, Guanidine-1 -carbonitrile, Dipheny famine, Nitrodiphenylarnine, Akardite, Ethyl Centralite, Methyl Centralite, Carbonate salts, or other type of stabilizer now known or hereinafter developed or commonly used in the art.
[0024] The binder can be a suitable compound or substance that can bind/bond the other components of the low-smoke, pyrotechnic composition. Non-limiting examples of a suitable binder that may be used in the low-smoke gas-generating composition of the present invention can include: Ethylcellulose, Methylcellulose, Hydroxypropyl methylcellulose, Hydroxypropyl ethylcelltilose polyvinyl alcohol, Viton, Parlon, polyvinyl pyrrolidone, polyethylene glycol, polyethylene glycol-polyvinyl alcohol copolymer, epoxy resins and their appropriate, crosslinking compounds, or other binder agents now known or hereinafter developed or commonly used in the art.
[0025] TABLE I
[0026] Basic Formula for Low-Smoke Pyrotechnic Composition:
[0027] Formula A:
Range [0028] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0029] Fuel Source(s) 05-60%
[0030] Stabilizer(S) 01-20%
[0031] Binder(s) 00-15%
[0032] As illustrated in Table II below, the low-smoke gas generating composition of the present invention can also include at least one burn rate catalyst or heat generating compound or compounds depending on the desired effect and particular pyrotechnic application.
According to one embodiment, the low-smoke, pyrotechnic composition of the present invention can include Cupric Oxide as a burn rate catalyst. Other potentially suitable catalysts can include, but are not limited to, Ferric Oxide, Titanium Dioxide, Bismuth Trioxide, Molybdenum Trioxide, barium peroxide, strontium peroxide, calcium peroxide, chromic oxide, silicon dioxide, manganese (II) oxide, boron oxide or other desired compounds commonly used in the art.
[0033] TABLE II
[0034] Basic Formula for Low-Smoke Pyrotechnic Composition:
[0035] Formula B:
Range [0036] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0037] Fuel Source(s) 05-60%
[0038] Stabilizer(s) 01-20%
[0039] Binder(s) 00-15%
[0040] Bum Rate Catalyst(s) 0.5-20%
[0041] As illustrated in Table III below, according to one preferred embodiment of the present invention, the low-smoke, pyrotechnic composition includes Ceric Anunonium Nitrate as an oxidizer, Nitrocellulose as a non-metal fuel source, Titanium as a metal fuel source, Cyanoguanidine as a stabilizer, Cupric Oxide as a burn rate catalyst, and any suitable binder compound. The table below illustrates this preferred formula for low-smoke, pyrotechnic composition. As shown the Ceric Ammonium Nitrate can have a suitable range of 20-80 percent by weight of the overall formula. In addition, the other components of the composition can vary substantially by percent by weight and can be replaced with other suitable compounds depending on the particular application.
[0042] TABLE III
[0043] Select Formula for Low-Smoke Pyrotechnic Composition:
[0044] Formula C:
Range [0045] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0046] Nitrocellulose (non-metal fuel source) 00-60%
[0047] Titanium (metal fuel source) 05-20%
[0048] Cy anoguanidine (stabilizer) 01-05%
[0049] Cupric Oxide (burn rate catalyst) 0.5-20%
[0050] Binder 00-15%
100511 According to one preferred embodiment of the present invention, the low-smoke, pyrotechnic composition includes approximately 36.7% by weight of Cede Ammonium Nitrate (-50 urn), approximately 51.4% by weight of Nitrocellulose, approximately 3.7% by weight Titanium (-325 mesh), approximately 0.9% by weight Cy anoguanidine, approximately 7,3% by weight of Cupric Oxide, and approximately 0-15% by weight of a binder material. The specific % by weights may vary depending on the particular or desired application and or the amount of binder material utilized. For example, the particular amount by weight of Ceric Ammonium Nitrate as an oxidizer may range between 36.0-37.5%
according to certain embodiments or may range between 30-40% in other embodiments_ Table IV below illustrates one specific embodiment of the low-smoke, pyrotechnic composition along with potential ranges (by percent weight) of each ingredient or compound included in the composition.
[0052] TABLE IV
[0053] Specific Formula for Low-Smoke Pyrotechnic Composition:
[0054] Formula D:
Specific Amount Range [0055] Ceric Ammonium Nitrate (oxidizer) 36.7% 30-400/e [0056] Nitrocellulose (non-metal fuel source) 51.4% 45-55%
[0057] Cyanoguanidine (stabilizer) 0.9% 0.1-3.0%
[0058] Cupric Oxide (burn rate catalyst) 73% 5.0-10%
[0059] Binder 0.0% 00-15%
[0060] The low-smoke, pyrotechnic composition of the present invention, as described, herein results in minimal solid particulate and smoke by-product production during the combustion of the composition while still providing the desired burn temperatures, burn rates and other desired effects for various pyrotechnic applications. The Ceric Ammonium Nitrate is the key ingredient in the composition of the present invention that produces comparable performance characteristics to that of black powder while reducing or eliminating its negative attributes. In particular the inclusion of Ceric Ammonium Nitrate in the low-smoke, pyrotechnic composition of the present invention in accordance with the percent by weight ranges as described herein has the effect of producing limited smoke generating during combustion of the composition when compared to traditional pyrotechnic compositions.
[0061] For safety and longevity reasons, the compositions must be stabilized through the use of hydrophobic binders such as epoxy resin, viton, or polyvinyl butyral. Any number of suitable manufacturing and production methods can be utilized in the preparation of the low-smoke pyrotechnic composition of the present invention depending on the particular embodiment, including without limitation, manufacturing and production methods currently used in the pyrotechnics industry or hereinafter developed, or any other methods or techniques used in the production of chemical compositions. The low-smoke pyrotechnic composition of the present invention has several potential benefits, including without limitation, tunable performance aspects through minimal formulation changes, and the generation of mostly gaseous byproducts which increases performance while lowering the smoke output.
[0062] From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure_ It will be understood that certain features and sub combinations are of utility and may be employed without reference to other features and sub combinations. This is contemplated by and is within the scope of the claims.
[0063] The constructions described above are presented by way of example only and are not intended to limit the concepts and principles of the present invention. Thus, there has been shown and described several embodiments of a novel invention. As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art_ The terms "having" and "including" and similar terms as used in the foregoing specification are used in the sense of "optional" or "may include" and not as "required".
Many changes, modifications, variations and other uses and applications of the present construction will, however, become apparent to those skilled in the art after considering the specification. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.
[0017] The principal component in the low-smoke, pyrotechnic composition of the present invention is Ceric Ammonium Nitrate, which is used as an oxidizer. Ceric Ammonium Nitrate is an inorganic compound with the formula (N1-14)2Ce(NO3)6 (chemical formula:
H8N8Ce018) and is often used as an oxidant in organic synthesis. Ceric Ammonium Nitrate (CAN) can also be referred to as Diammonium cerium hexanitrate, Diammonium hexanitratocerate(2-), and Ammonium cerium nitrate (VAN). CAN is used as the main oxidizing agent in the low-smoke, pyrotechnic composition and limits the production of solid by-product, including smoke generation during combustion of the composition.
[0018] Ceric Ammonium Nitrate is necessary in the low-smoke, pyrotechnic composition of the present invention, as it generates large amounts of oxygen useful in propagating combustion, and nitrogen gas useful in propulsion; it is also readily ignitable in the presence of organic fuels. CAN has likely found limited use in the pyrotechnics industry due to availability issues as well as its ready ability to oxidize various materials at room temperature when solvated.
[0019] Decomposition of one gram of Ceric Ammonium Nitrate generates 0.53 grams of oxygen, 0.2 grams of nitrogen, and 0.1 grams of hydrogen. The mass of oxygen generated is comparable with other common oxidizers such as potassium nitrate (0.40 grams of oxygen/gram), potassium chlorate (0.39 grams of oxygen/gram), and potassium perchlorate (0.46 grams of oxygen/gram). The combustion of CAN forms 0.31 grams of Cerium (IV) Oxide and 033 grams of water vapor. After subtracting the oxygen that falls out as Cerium (li) Oxide and water vapor, 0.35 grams of free oxygen are left to participate in the combustion process. Using this information, it is found that over 69% of the byproducts of the decomposition of CAN are gaseous, and the combustion of formulations using CAN as an oxidizer have noticeably reduced smoke generation.
[0020] Ceric Ammonium Nitrate is also advantageous in the low-smoke, pyrotechnic composition of the present invention due to its low melting point. Sulfur's implementation as a low-melting point fuel in black powder has a drawback in that its presence leads to large amounts of solid sulfide byproducts that increases the smoke output of the composition.
CAN's low melting point and high ignitability with organic fuels greatly reduces the amount of activation energy necessary for combustion and eliminates the need for sulfur.
Furthermore, Ceric Ammonium Nitrate and its byproducts are environmentally benign.
[0021] As illustrated in Table I below, according to one embodiment, the low-smoke, pyrotechnic composition of the present invention can include a fuel source, a stabilizer, a binder, and Ceric Ammonium Nitrate as an oxidizer. In certain embodiments, additional oxidizers may be utilized with the Cede Ammonium Nitrate; however, Ceric Ammonium Nitrate is the only specific component of the composition that cannot be removed or replaced.
Additional oxidizers that may be used in conjunction with the Ceric Ammonium Nitrate may include, but are not limited to, nitrate salts, perchlorate salts, and metal oxides. In certain embodiments, the low-smoke pyrotechnic composition of the present invention can include one or more of each type of component comprising the composition. In such embodiments, the low-smoke, pyrotechnic composition can include at least one fuel source agent, at least one stabilizer agent, at least one binder agent, and at least one oxidizer agent including at least Ceric Ammonium Nitrate.
[0022] The fuel can be metal or non-metal source and the composition can include multiple fuel sources in certain embodiments. Non-limiting examples of suitable fuel sources that may be used in the low-smoke, pyrotechnic composition of the present invention can include:
Nitrocellulose, Hexamine, Nitroguanidine, Red Gum, Titanium, Aluminum, Magnesium, Boron, Charcoal, Silicon, any transition metals or other types of fuel source now known or hereinafter developed or commonly used in the art.
[0023] The stabilizer can be any suitable stabilizing agent, including without limitation:
Cyanoguanidine, Dicyanodiamide, 2-cy anoguanidine, Guanidine-1 -carbonitrile, Dipheny famine, Nitrodiphenylarnine, Akardite, Ethyl Centralite, Methyl Centralite, Carbonate salts, or other type of stabilizer now known or hereinafter developed or commonly used in the art.
[0024] The binder can be a suitable compound or substance that can bind/bond the other components of the low-smoke, pyrotechnic composition. Non-limiting examples of a suitable binder that may be used in the low-smoke gas-generating composition of the present invention can include: Ethylcellulose, Methylcellulose, Hydroxypropyl methylcellulose, Hydroxypropyl ethylcelltilose polyvinyl alcohol, Viton, Parlon, polyvinyl pyrrolidone, polyethylene glycol, polyethylene glycol-polyvinyl alcohol copolymer, epoxy resins and their appropriate, crosslinking compounds, or other binder agents now known or hereinafter developed or commonly used in the art.
[0025] TABLE I
[0026] Basic Formula for Low-Smoke Pyrotechnic Composition:
[0027] Formula A:
Range [0028] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0029] Fuel Source(s) 05-60%
[0030] Stabilizer(S) 01-20%
[0031] Binder(s) 00-15%
[0032] As illustrated in Table II below, the low-smoke gas generating composition of the present invention can also include at least one burn rate catalyst or heat generating compound or compounds depending on the desired effect and particular pyrotechnic application.
According to one embodiment, the low-smoke, pyrotechnic composition of the present invention can include Cupric Oxide as a burn rate catalyst. Other potentially suitable catalysts can include, but are not limited to, Ferric Oxide, Titanium Dioxide, Bismuth Trioxide, Molybdenum Trioxide, barium peroxide, strontium peroxide, calcium peroxide, chromic oxide, silicon dioxide, manganese (II) oxide, boron oxide or other desired compounds commonly used in the art.
[0033] TABLE II
[0034] Basic Formula for Low-Smoke Pyrotechnic Composition:
[0035] Formula B:
Range [0036] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0037] Fuel Source(s) 05-60%
[0038] Stabilizer(s) 01-20%
[0039] Binder(s) 00-15%
[0040] Bum Rate Catalyst(s) 0.5-20%
[0041] As illustrated in Table III below, according to one preferred embodiment of the present invention, the low-smoke, pyrotechnic composition includes Ceric Anunonium Nitrate as an oxidizer, Nitrocellulose as a non-metal fuel source, Titanium as a metal fuel source, Cyanoguanidine as a stabilizer, Cupric Oxide as a burn rate catalyst, and any suitable binder compound. The table below illustrates this preferred formula for low-smoke, pyrotechnic composition. As shown the Ceric Ammonium Nitrate can have a suitable range of 20-80 percent by weight of the overall formula. In addition, the other components of the composition can vary substantially by percent by weight and can be replaced with other suitable compounds depending on the particular application.
[0042] TABLE III
[0043] Select Formula for Low-Smoke Pyrotechnic Composition:
[0044] Formula C:
Range [0045] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0046] Nitrocellulose (non-metal fuel source) 00-60%
[0047] Titanium (metal fuel source) 05-20%
[0048] Cy anoguanidine (stabilizer) 01-05%
[0049] Cupric Oxide (burn rate catalyst) 0.5-20%
[0050] Binder 00-15%
100511 According to one preferred embodiment of the present invention, the low-smoke, pyrotechnic composition includes approximately 36.7% by weight of Cede Ammonium Nitrate (-50 urn), approximately 51.4% by weight of Nitrocellulose, approximately 3.7% by weight Titanium (-325 mesh), approximately 0.9% by weight Cy anoguanidine, approximately 7,3% by weight of Cupric Oxide, and approximately 0-15% by weight of a binder material. The specific % by weights may vary depending on the particular or desired application and or the amount of binder material utilized. For example, the particular amount by weight of Ceric Ammonium Nitrate as an oxidizer may range between 36.0-37.5%
according to certain embodiments or may range between 30-40% in other embodiments_ Table IV below illustrates one specific embodiment of the low-smoke, pyrotechnic composition along with potential ranges (by percent weight) of each ingredient or compound included in the composition.
[0052] TABLE IV
[0053] Specific Formula for Low-Smoke Pyrotechnic Composition:
[0054] Formula D:
Specific Amount Range [0055] Ceric Ammonium Nitrate (oxidizer) 36.7% 30-400/e [0056] Nitrocellulose (non-metal fuel source) 51.4% 45-55%
[0057] Cyanoguanidine (stabilizer) 0.9% 0.1-3.0%
[0058] Cupric Oxide (burn rate catalyst) 73% 5.0-10%
[0059] Binder 0.0% 00-15%
[0060] The low-smoke, pyrotechnic composition of the present invention, as described, herein results in minimal solid particulate and smoke by-product production during the combustion of the composition while still providing the desired burn temperatures, burn rates and other desired effects for various pyrotechnic applications. The Ceric Ammonium Nitrate is the key ingredient in the composition of the present invention that produces comparable performance characteristics to that of black powder while reducing or eliminating its negative attributes. In particular the inclusion of Ceric Ammonium Nitrate in the low-smoke, pyrotechnic composition of the present invention in accordance with the percent by weight ranges as described herein has the effect of producing limited smoke generating during combustion of the composition when compared to traditional pyrotechnic compositions.
[0061] For safety and longevity reasons, the compositions must be stabilized through the use of hydrophobic binders such as epoxy resin, viton, or polyvinyl butyral. Any number of suitable manufacturing and production methods can be utilized in the preparation of the low-smoke pyrotechnic composition of the present invention depending on the particular embodiment, including without limitation, manufacturing and production methods currently used in the pyrotechnics industry or hereinafter developed, or any other methods or techniques used in the production of chemical compositions. The low-smoke pyrotechnic composition of the present invention has several potential benefits, including without limitation, tunable performance aspects through minimal formulation changes, and the generation of mostly gaseous byproducts which increases performance while lowering the smoke output.
[0062] From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure_ It will be understood that certain features and sub combinations are of utility and may be employed without reference to other features and sub combinations. This is contemplated by and is within the scope of the claims.
[0063] The constructions described above are presented by way of example only and are not intended to limit the concepts and principles of the present invention. Thus, there has been shown and described several embodiments of a novel invention. As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art_ The terms "having" and "including" and similar terms as used in the foregoing specification are used in the sense of "optional" or "may include" and not as "required".
Many changes, modifications, variations and other uses and applications of the present construction will, however, become apparent to those skilled in the art after considering the specification. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.
Claims (17)
1. A low-smoke, pyrotechnic composition comprising:
an oxidizer comprising Ceric Ammonium Nitrate;
a fuel source;
a stabilizer; and a binder;
wherein said low-smoke, pyrotechnic composition is configured to propagate combustion and produce gas-generated propulsion during combustion of said low-smoke, pyrotechnic composition.
an oxidizer comprising Ceric Ammonium Nitrate;
a fuel source;
a stabilizer; and a binder;
wherein said low-smoke, pyrotechnic composition is configured to propagate combustion and produce gas-generated propulsion during combustion of said low-smoke, pyrotechnic composition.
2. The low-smoke, pyrotechnic composition of claim L, wherein said fuel source comprises at least one of Nitrocellulose, Hexamine, Cellulose Nitrate, Nitroguanidine, Red Gum, Titanium, Aluminum, Magnesium, Boron, Charcoal, Silicon, and a transition metal_
3. The low-smoke, pyrotechnic composition of claim 1, wherein said stabilizer comprises at least one of Cyanoguanidine, Dicyanodiamide, 2-cyanoguanidine, Guanidine-1 -carbonitrile, Diphenylamine, Nitrodiphenylamine, Alcardite, Ethyl Centralite, Methyl Centralite. and Carbonate salts.
4. The low-smoke, pyrotechnic composition of claim 1, wherein said binder comprises at least one of Ethylcellulose, Methylccllulose, Hydroxypropyl methylcelhdose, Hydroxypropyl ethylcellulosc polyvinyl alcohol, Viton, Parlon, poly-vinyl pyrrolidonc, polyethylene glycol, and polyethylene glycol-polyvinyl alcohol copolymer.
5. The low-smoke, pyrotechnic composition of claim l further comprising a burn rate catalyst.
6. The low-smoke, pyrotechnic composition of claim 5, wherein said burn rate catalyst comprises at least one of Cupric Oxide, Ferric Oxide, Titanium Dioxide, Bismuth Trioxide, Molybdenum Trioxide, barium peroxide, strontium peroxide, calcium peroxide, chromic oxide, silicon dioxide, manganese (II) oxide, and boron oxide.
Page 12 of 15
Page 12 of 15
7. The low-smoke, pyrotechnic composition of claim 1, further comprising a second oxidizer comprising at least one of nitrate salts, perchlorate salts, and metal oxides.
8. The low-smoke, pyrotechnic composition of claim 1, comprising 20 percent by weight to 80 percent by weight said Ceric Ammonium Nitrate.
9. The low-smoke, pyrotechnic compopition of claim 1, comprising 30 percent by weight to 40 percent by weight said Ccric Ammonium Nitrate_
10. The low-smoke, pyrotechnic composition of claim 1, comprising approximately 36.0 percent by weight to 37.5 percent by weight said Ceric Ammonium Nitrate.
11. The low-smoke, pyrotechnic composition of claim 1, comprising 20-80 percent by weight said Ceric Ammonium Nitrate, 0-60 percent by weight said fuel source, 1-20 percent by weight said stabilizer, and 0-15 percent by weight said binder.
12. A low-smoke, pyrotechnic composition comprising:
an oxidizer comprising Ceric Ammonium Nitrate;
a non-metal fuel source comprising Nitrocellulose;
a metal fuel source comprising Titanium;
a stabilizer comprising Cyanoguanidine;
a burn rate catalyst comprising Cupric Oxide; and a binder.
an oxidizer comprising Ceric Ammonium Nitrate;
a non-metal fuel source comprising Nitrocellulose;
a metal fuel source comprising Titanium;
a stabilizer comprising Cyanoguanidine;
a burn rate catalyst comprising Cupric Oxide; and a binder.
13. The low-smoke, pyrotechnic composition of claim 12, comprising 20-80 percent by weight said oxidizer.
14 The low-smoke, pyrotechnic composition of claim 12, comprising 30-40 percent by weight said oxidizer.
15. The low-smoke, pyrotechnic composition of claim 12, comprising approximately 36.0-37.5 percent by weight said oxidizer.
Page 13 of 15
Page 13 of 15
16. The low-smoke, pyrotechnic composition of claim 12, comprising 20-80 percent by weight said oxidizer, 0-60 percent by weight said non-metal fuel source, 5-20 percent by weight said metal fuel source, 1-5 percent by weight said stabilizer, 0.5-20 percent by weight said burn rate catalyst, and 0-15 percent by weight said binder.
17_ The low-smoke, pyrotechnic composition of claim 12, comprising approximately 36.7 percent by weight said oxidizer, approximately 51.4 percent by weight said non-metal fuel source, approximately 3.7 percent by weight said metal fuel source, approximately 0.9 percent by weight said stabilizer, and approximately 7.3 percent by weight said burn rate catalyst.
Page 14 of 15
Page 14 of 15
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962832003P | 2019-04-10 | 2019-04-10 | |
US62/832,003 | 2019-04-10 | ||
PCT/US2020/027216 WO2020210318A1 (en) | 2019-04-10 | 2020-04-08 | Low-smoke pyrotechnic composition |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3132944A1 true CA3132944A1 (en) | 2020-10-15 |
Family
ID=72748864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3132944A Pending CA3132944A1 (en) | 2019-04-10 | 2020-04-08 | Low-smoke pyrotechnic composition |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200325083A1 (en) |
EP (1) | EP3953319A4 (en) |
CN (1) | CN113840815A (en) |
AU (1) | AU2020272752A1 (en) |
CA (1) | CA3132944A1 (en) |
MX (1) | MX2021012451A (en) |
WO (1) | WO2020210318A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE543907C2 (en) * | 2019-12-13 | 2021-09-21 | Organoclick Ab | Non-rewetting o/w (oil in water) emulsification system for hydrophobic compounds |
CN113582794A (en) * | 2021-08-27 | 2021-11-02 | 陈昊彬 | Pyrotechnic composition for liquid carbon dioxide blasting and production method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3399089A (en) * | 1967-06-29 | 1968-08-27 | Trojan Powder Co | Gelatinized dinitrotoluenenitrostarch explosives |
AU465635B2 (en) * | 1972-09-07 | 1975-10-02 | Ici Australia Limited | Processes and products |
US5780768A (en) * | 1995-03-10 | 1998-07-14 | Talley Defense Systems, Inc. | Gas generating compositions |
US6235132B1 (en) * | 1995-03-10 | 2001-05-22 | Talley Defense Systems, Inc. | Gas generating compositions |
US5959242A (en) * | 1996-05-14 | 1999-09-28 | Talley Defense Systems, Inc. | Autoignition composition |
BR9711958A (en) * | 1996-07-25 | 2000-10-24 | Thiokol Corp | Metal complexes for use as gas generators |
US6605233B2 (en) * | 2001-03-02 | 2003-08-12 | Talley Defense Systems, Inc. | Gas generant composition with coolant |
US6599379B2 (en) * | 2001-04-12 | 2003-07-29 | Dmd Systems, Llc | Low-smoke nitroguanidine and nitrocellulose based pyrotechnic compositions |
US6673172B2 (en) * | 2001-05-07 | 2004-01-06 | Atlantic Research Corporation | Gas generant compositions exhibiting low autoignition temperatures and methods of generating gases therefrom |
US6699379B1 (en) * | 2002-11-25 | 2004-03-02 | Industrial Technology Research Institute | Method for reducing stress in nickel-based alloy plating |
US20070068610A1 (en) * | 2005-02-15 | 2007-03-29 | Nickel Russell R | Microcrystalline Nitrocellulose Pyrotechnic Compositions |
US8002914B1 (en) * | 2005-06-06 | 2011-08-23 | United States Of America As Represented By The Secretary Of The Navy | Smokeless flash powder |
US8641842B2 (en) * | 2011-08-31 | 2014-02-04 | Alliant Techsystems Inc. | Propellant compositions including stabilized red phosphorus, a method of forming same, and an ordnance element including the same |
-
2020
- 2020-04-08 MX MX2021012451A patent/MX2021012451A/en unknown
- 2020-04-08 AU AU2020272752A patent/AU2020272752A1/en not_active Abandoned
- 2020-04-08 EP EP20788436.2A patent/EP3953319A4/en not_active Withdrawn
- 2020-04-08 CA CA3132944A patent/CA3132944A1/en active Pending
- 2020-04-08 CN CN202080034977.9A patent/CN113840815A/en active Pending
- 2020-04-08 WO PCT/US2020/027216 patent/WO2020210318A1/en active Search and Examination
- 2020-04-08 US US16/843,291 patent/US20200325083A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20200325083A1 (en) | 2020-10-15 |
AU2020272752A1 (en) | 2021-11-11 |
MX2021012451A (en) | 2021-12-15 |
CN113840815A (en) | 2021-12-24 |
WO2020210318A1 (en) | 2020-10-15 |
EP3953319A1 (en) | 2022-02-16 |
EP3953319A4 (en) | 2022-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3898112A (en) | Solid 5-aminotetrazole nitrate gas generating propellant with block copolymer binder | |
CA3132944A1 (en) | Low-smoke pyrotechnic composition | |
CN102050685B (en) | Micro smoke gun propellant for fireworks | |
US8282749B1 (en) | Green light emitting pyrotechnic compositions | |
US3031347A (en) | Slow burning solid composite propellant | |
US4234363A (en) | Solid propellant hydrogen generator | |
JP3802094B2 (en) | Solid pyrotechnic composition comprising a thermoplastic binder and a polybutadiene silylferrocene plasticizer | |
CA2344232C (en) | Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer | |
US8147627B2 (en) | Ignition means for propellant powders | |
US4570540A (en) | LOVA Type black powder propellant surrogate | |
US3953259A (en) | Pressure exponent suppressants | |
US4078953A (en) | Reignition suppressants for solid extinguishable propellants for use in controllable motors | |
US4798636A (en) | Composite solid propellant | |
AU2013213697B2 (en) | Active composition for a decoy which radiates spectrally on burnup of the active composition | |
US3464869A (en) | Pyrotechnic compositions containing metal fuel,inorganic oxidizer salt,and a vinyl polymer in a solvent | |
JPH1059792A (en) | Ignitable composition | |
AU2014242706A1 (en) | Insensitive munition propellants | |
US3954531A (en) | Composite double base propellant composition containing ferric fluoride | |
US8002914B1 (en) | Smokeless flash powder | |
EP4317122A3 (en) | Cool burning hydrate fuels in gas generant formulations for automotive airbag applications | |
US3658608A (en) | Hydrazinium nitroformate propellant stabilized with nitroguanidine | |
JP2981587B2 (en) | Azide and nitrato group-containing solid propellants | |
US3664132A (en) | Hypergolic propellant systems using tetraformaltrisazine | |
US3663323A (en) | Energetic propellant composition containing a difluoramino binder | |
US3074830A (en) | Combustion mixtures containing guanidine nitrate |