AU2020272752A1 - Low-smoke pyrotechnic composition - Google Patents

Low-smoke pyrotechnic composition Download PDF

Info

Publication number
AU2020272752A1
AU2020272752A1 AU2020272752A AU2020272752A AU2020272752A1 AU 2020272752 A1 AU2020272752 A1 AU 2020272752A1 AU 2020272752 A AU2020272752 A AU 2020272752A AU 2020272752 A AU2020272752 A AU 2020272752A AU 2020272752 A1 AU2020272752 A1 AU 2020272752A1
Authority
AU
Australia
Prior art keywords
percent
weight
smoke
low
pyrotechnic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2020272752A
Inventor
Seth PATTEE
Lyle SALMI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Next F/x Inc
Original Assignee
Next F/x Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next F/x Inc filed Critical Next F/x Inc
Publication of AU2020272752A1 publication Critical patent/AU2020272752A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/32Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with a nitrated organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/006Stabilisers (e.g. thermal stabilisers)
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
    • C06B25/20Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition with a non-explosive or a non-explosive or a non-thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine

Abstract

A low-smoke, pyrotechnic composition is provided. The composition may include Ceric Ammonium Nitrate as an oxidizer, a fuel source, stabilizer, and a binder. The use of Ceric Ammonium Nitrate as an oxidizing agent within the composition can result in reducing the amount of smoke generated during combustion of the composition, which may be beneficial for certain pyrotechnic applications. In certain constructions, the composition may include Ceric Ammonium Nitrate as an oxidizer, Nitrocellulose and Titanium as fuel sources, Cyanoguanidine as a stabilizer, Cupric Oxide as a burn rate catalyst, and any suitable binder agent. The amount of Ceric Ammonium Nitrate by percent weight of the composition may range between 20-80 percent, 30-40 percent, or 30.0-37.5 percent. In certain configurations, the amount of Ceric Ammonium Nitrate may be about 36.7 percent by weight.

Description

LOW-SMOKE PYROTECHNIC COMPOSITION
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This Application claims priority to U.S. Provisional Patent Application Serial No.
62/832,003, filed on April 10, 2019, to Lyle Salmi et al, entitled“Low-Smoke Pyrotechnic Composition,” currently pending, the entire disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION
[0002] The present invention relates generally to ingredients or components for use in pyrotechnics, and more specifically, as a low-smoke alternative to black powder used in pyrotechnics.
BACKGROUND OF THE INVENTION
[0003] Black powder has been used in pyrotechnic devices for thousands of years. It is an intimate mixture of approximately 75% potassium nitrate, 15% charcoal, and 10% sulfur. While its initial development was geared towards using it as an explosive weapon, its uses quickly expanded into the civil engineering and entertainment sectors. Its historic beginnings should be of no surprise, as there are many positive characteristics that make black powder an attractive composition for use in pyrotechnics. Firstly, black powder is readily ignitable due to the presence of sulfur and its low melting point. Secondly, black powder is made from components that are readily available and relatively inexpensive. Finally, black powder not only is able to propel or“lift” other pyrotechnic compositions effectively, it also forms a large amount of hot, solid particles during combustion which facilitate the ignition of secondary pyrotechnic compositions
[0004] There is a high demand for black powder replacements that provide acceptable bum rates upon combustion, generate high volumes of gas, and successfully initiate the combustion of and propel other pyrotechnic compositions. Black powder used in current pyrotechnic devices is undesirable for certain applications due to the fact that it typically produces substantial solid by-products from the composition’s combustion in the form of smoke and other solid particulate matter. Current black powder replacements typically fail to reliably ignite secondary pyrotechnic compositions.
[0005] Accordingly, a need exists for gas generating compositions suitable for use in pyrotechnic applications that require similar gas -generating and heat transfer properties while also reducing smoke output.
BRIEF SUMMARY OF THE INVENTION
[0006] The present invention is directed to a low-smoke, pyrotechnic composition that can be suitably used in applications where it is desirable to have minimal smoke production or other solid particulate matter production resulting from the combustion of the composition.
[0007] The low-smoke, pyrotechnic composition of the present invention includes Ceric Ammonium Nitrate (CAN) (chemical formula: HgNgCeOig) as an oxidizing agent in order to limit the production of solid by-product, including smoke generation, during combustion of the composition. The Ceric Ammonium Nitrate within the low-smoke, pyrotechnic composition generates large amounts of oxygen useful in propagating combustion and generates nitrogen gas useful in propulsion, while also providing noticeably reduced smoke and particulate matter generation during combustion as compared to other common oxidizers. [0008] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include a fuel source, a stabilizer, a binder, and Ceric Ammonium Nitrate as an oxidizer. In certain embodiments, the composition may include additional oxidizing agents in addition to Ceric Ammonium Nitrate; however, Ceric Ammonium Nitrate must be present in the composition of the present invention. The low-smoke, pyrotechnic composition in accordance with the various embodiments of the present invention may include any suitable fuel source or fuel sources, including without limitation, metal and non-metal fuel sources, any suitable type of stabilizing agent or agents, and any suitable type of binding agent or agents.
[0009] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include 20-80 percent by weight Ceric Ammonium Nitrate, 5-60 percent by weight the fuel source(s), 1-20 percent by weight the stabilizer(s), and 0-15 percent by weight the binder(s).
[0010] The low-smoke, pyrotechnic composition may also include a bum rate catalyst in accordance with one or more embodiments. The bum rate catalyst may include any suitable type or types of bum rate catalysts or heat generating compounds. The selection of the particular bum rate catalyst or heat generating compound, or a combination thereof, may be selected based at least in part on the desired effect and particular pyrotechnic application.
[0011] According to one embodiment of the present invention, the low-smoke, pyrotechnic composition can include Ceric Ammonium Nitrate as an oxidizer, Nitrocellulose as a non- metal fuel source, Titanium as a metal fuel source, Cyanoguanidine as a stabilizer, Cupric Oxide as a bum rate catalyst, and any suitable binder compound. In additional embodiments, one or more fuel sources, stabilizers, bum rate catalysts and/or oxidizers may be added to the low-smoke, pyrotechnic composition depending on the particular application. [0012] According to a specific embodiment of the present invention, the low-smoke, pyrotechnic composition can include approximately 30-40% by weight Ceric Ammonium Nitrate (oxidizer), approximately 45-55% by weight Nitrocellulose (non-metal fuel source), approximately 0.1-3.0% by weight Cyanoguanidine (stabilizer), approximately 5-10% Cupric Oxide (bum rate catalyst), and approximately 0-15% of a suitable binder material.
[0013] According to a specific embodiment, the low-smoke, pyrotechnic composition can include approximately 36.7% by weight of Ceric Ammonium Nitrate (~50 um), approximately 51.4% by weight of Nitrocellulose, approximately 3.7% by weight Titanium (- 325 mesh), approximately 0.9% by weight Cyanoguanidine, approximately 7.3% by weight of Cupric Oxide, and approximately 0-15% by weight of a binder material.
[0014] Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.
DETAILED DESCRIPTION OF THE INVENTION
[0015] The following detailed description of the invention references specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The present invention is defined by the appended claims and the description is, therefore, not to be taken in a limiting sense and shall not limit the scope of equivalents to which such claims are entitled.
[0016] The present invention is directed to a low-smoke, pyrotechnic composition that can be used in pyrotechnic applications where it is desirable to have a minimal amount of smoke or other solid particulate matter produced as a result of combustion of the composition. The low-smoke, pyrotechnic composition of the present invention can be utilized in connection illuminating pyrotechnic compositions and/or propellant compositions depending on the desired application. For example, the low-smoke, pyrotechnic composition of the present invention may be utilized to create an illuminating light, flash or flame, heat and/or sound in connection with the combustion of the composition while limiting the overall production of smoke generated in connection with the chemical reaction and combustion.
[0017] The principal component in the low-smoke, pyrotechnic composition of the present invention is Ceric Ammonium Nitrate, which is used as an oxidizer. Ceric Ammonium Nitrate is an inorganic compound with the formula (NH )2Ce(N03)6 (chemical formula: HgNgCeOig) and is often used as an oxidant in organic synthesis. Ceric Ammonium Nitrate (CAN) can also be referred to as Diammonium cerium hexanitrate, Diammonium hexanitratocerate(2-), and Ammonium cerium nitrate (VAN). CAN is used as the main oxidizing agent in the low-smoke, pyrotechnic composition and limits the production of solid by-product, including smoke generation during combustion of the composition.
[0018] Ceric Ammonium Nitrate is necessary in the low-smoke, pyrotechnic composition of the present invention, as it generates large amounts of oxygen useful in propagating combustion, and nitrogen gas useful in propulsion; it is also readily ignitable in the presence of organic fuels. CAN has likely found limited use in the pyrotechnics industry due to availability issues as well as its ready ability to oxidize various materials at room temperature when solvated.
[0019] Decomposition of one gram of Ceric Ammonium Nitrate generates 0.53 grams of oxygen, 0.2 grams of nitrogen, and 0.1 grams of hydrogen. The mass of oxygen generated is comparable with other common oxidizers such as potassium nitrate (0.40 grams of oxygen/gram), potassium chlorate (0.39 grams of oxygen/gram), and potassium perchlorate (0.46 grams of oxygen/gram). The combustion of CAN forms 0.31 grams of Cerium (IV) Oxide and 0.13 grams of water vapor. After subtracting the oxygen that falls out as Cerium (IV) Oxide and water vapor, 0.35 grams of free oxygen are left to participate in the combustion process. Using this information, it is found that over 69% of the byproducts of the decomposition of CAN are gaseous, and the combustion of formulations using CAN as an oxidizer have noticeably reduced smoke generation.
[0020] Ceric Ammonium Nitrate is also advantageous in the low-smoke, pyrotechnic composition of the present invention due to its low melting point. Sulfur’s implementation as a low-melting point fuel in black powder has a drawback in that its presence leads to large amounts of solid sulfide byproducts that increases the smoke output of the composition. CAN’s low melting point and high ignitability with organic fuels greatly reduces the amount of activation energy necessary for combustion and eliminates the need for sulfur. Furthermore, Ceric Ammonium Nitrate and its byproducts are environmentally benign.
[0021] As illustrated in Table I below, according to one embodiment, the low-smoke, pyrotechnic composition of the present invention can include a fuel source, a stabilizer, a binder, and Ceric Ammonium Nitrate as an oxidizer. In certain embodiments, additional oxidizers may be utilized with the Ceric Ammonium Nitrate; however, Ceric Ammonium Nitrate is the only specific component of the composition that cannot be removed or replaced. Additional oxidizers that may be used in conjunction with the Ceric Ammonium Nitrate may include, but are not limited to, nitrate salts, perchlorate salts, and metal oxides. In certain embodiments, the low-smoke pyrotechnic composition of the present invention can include one or more of each type of component comprising the composition. In such embodiments, the low-smoke, pyrotechnic composition can include at least one fuel source agent, at least one stabilizer agent, at least one binder agent, and at least one oxidizer agent including at least Ceric Ammonium Nitrate.
[0022] The fuel can be metal or non-metal source and the composition can include multiple fuel sources in certain embodiments. Non-limiting examples of suitable fuel sources that may be used in the low-smoke, pyrotechnic composition of the present invention can include: Nitrocellulose, Hexamine, Nitroguanidine, Red Gum, Titanium, Aluminum, Magnesium, Boron, Charcoal, Silicon, any transition metals or other types of fuel source now known or hereinafter developed or commonly used in the art.
[0023] The stabilizer can be any suitable stabilizing agent, including without limitation:
Cyanoguanidine, Dicyanodiamide, 2-cyanoguanidine, Guanidine- 1 -carbonitrile, Diphenylamine, Nitrodiphenylamine, Akardite, Ethyl Centralite, Methyl Centralite, Carbonate salts, or other type of stabilizer now known or hereinafter developed or commonly used in the art.
[0024] The binder can be a suitable compound or substance that can bind/bond the other components of the low-smoke, pyrotechnic composition. Non-limiting examples of a suitable binder that may be used in the low-smoke gas-generating composition of the present invention can include: Ethylcellulose, Methylcellulose, Hydroxypropyl methylcellulose, Hydroxypropyl ethylcellulose polyvinyl alcohol, Viton, Parlon, polyvinyl pyrrolidone, polyethylene glycol, polyethylene glycol-polyvinyl alcohol copolymer, epoxy resins and their appropriate, crosslinking compounds, or other binder agents now known or hereinafter developed or commonly used in the art.
[0025] TABLE I
[0026] Basic Formula for Low-Smoke Pyrotechnic Composition:
[0027] Formula A: _ Range
[0028] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0029] Fuel Source(s) 05-60%
[0030] Stabilizer(s) 01-20%
[0031] Binder(s) 00-15% [0032] As illustrated in Table II below, the low-smoke gas generating composition of the present invention can also include at least one bum rate catalyst or heat generating compound or compounds depending on the desired effect and particular pyrotechnic application. According to one embodiment, the low-smoke, pyrotechnic composition of the present invention can include Cupric Oxide as a bum rate catalyst. Other potentially suitable catalysts can include, but are not limited to, Ferric Oxide, Titanium Dioxide, Bismuth Trioxide, Molybdenum Trioxide, barium peroxide, strontium peroxide, calcium peroxide, chromic oxide, silicon dioxide, manganese (II) oxide, boron oxide or other desired compounds commonly used in the art.
[0033] TABLE II
[0034] Basic Formula for Low-Smoke Pyrotechnic Composition:
[0035] Formula B: _ Range
[0036] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0037] Fuel Source(s) 05-60%
[0038] Stabilizer(s) 01-20%
[0039] Binder(s) 00-15%
[0040] Bum Rate Catalyst(s) 0.5-20%
[0041] As illustrated in Table III below, according to one preferred embodiment of the present invention, the low-smoke, pyrotechnic composition includes Ceric Ammonium Nitrate as an oxidizer, Nitrocellulose as a non-metal fuel source, Titanium as a metal fuel source, Cyanoguanidine as a stabilizer, Cupric Oxide as a bum rate catalyst, and any suitable binder compound. The table below illustrates this preferred formula for low-smoke, pyrotechnic composition. As shown the Ceric Ammonium Nitrate can have a suitable range of 20-80 percent by weight of the overall formula. In addition, the other components of the composition can vary substantially by percent by weight and can be replaced with other suitable compounds depending on the particular application.
[0042] TABLE III
[0043] Select Formula for Low-Smoke Pyrotechnic Composition:
[0044] Formula C: _ Range
[0045] Ceric Ammonium Nitrate (oxidizer) 20-80%
[0046] Nitrocellulose (non-metal fuel source) 00-60%
[0047] Titanium (metal fuel source) 05-20%
[0048] Cyanoguanidine (stabilizer) 01-05%
[0049] Cupric Oxide (bum rate catalyst) 0.5-20%
[0050] Binder 00-15%
[0051] According to one preferred embodiment of the present invention, the low-smoke, pyrotechnic composition includes approximately 36.7% by weight of Ceric Ammonium Nitrate (~50 um), approximately 51.4% by weight of Nitrocellulose, approximately 3.7% by weight Titanium (-325 mesh), approximately 0.9% by weight Cyanoguanidine, approximately 7.3% by weight of Cupric Oxide, and approximately 0-15% by weight of a binder material. The specific % by weights may vary depending on the particular or desired application and or the amount of binder material utilized. For example, the particular amount by weight of Ceric Ammonium Nitrate as an oxidizer may range between 36.0-37.5% according to certain embodiments or may range between 30-40% in other embodiments. Table IV below illustrates one specific embodiment of the low-smoke, pyrotechnic composition along with potential ranges (by percent weight) of each ingredient or compound included in the composition.
[0052] TABLE IV
[0053] Specific Formula for Low-Smoke Pyrotechnic Composition: [0054] Formula D: Specific Amount Range
[0055] Ceric Ammonium Nitrate (oxidizer) 36.7% 30-40%
[0056] Nitrocellulose (non-metal fuel source) 51.4% 45-55%
[0057] Cyanoguanidine (stabilizer) 0.9% 0.1-3.0%
[0058] Cupric Oxide (bum rate catalyst) 7.3% 5.0-10%
[0059] Binder 0.0% 00-15%
[0060] The low-smoke, pyrotechnic composition of the present invention, as described, herein results in minimal solid particulate and smoke by-product production during the combustion of the composition while still providing the desired bum temperatures, bum rates and other desired effects for various pyrotechnic applications. The Ceric Ammonium Nitrate is the key ingredient in the composition of the present invention that produces comparable performance characteristics to that of black powder while reducing or eliminating its negative attributes. In particular the inclusion of Ceric Ammonium Nitrate in the low-smoke, pyrotechnic composition of the present invention in accordance with the percent by weight ranges as described herein has the effect of producing limited smoke generating during combustion of the composition when compared to traditional pyrotechnic compositions.
[0061] For safety and longevity reasons, the compositions must be stabilized through the use of hydrophobic binders such as epoxy resin, viton, or polyvinyl butyral. Any number of suitable manufacturing and production methods can be utilized in the preparation of the low- smoke pyrotechnic composition of the present invention depending on the particular embodiment, including without limitation, manufacturing and production methods currently used in the pyrotechnics industry or hereinafter developed, or any other methods or techniques used in the production of chemical compositions. The low-smoke pyrotechnic composition of the present invention has several potential benefits, including without limitation, tunable performance aspects through minimal formulation changes, and the generation of mostly gaseous byproducts which increases performance while lowering the smoke output.
[0062] From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure. It will be understood that certain features and sub combinations are of utility and may be employed without reference to other features and sub combinations. This is contemplated by and is within the scope of the claims.
[0063] The constructions described above are presented by way of example only and are not intended to limit the concepts and principles of the present invention. Thus, there has been shown and described several embodiments of a novel invention. As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art. The terms“having” and“including” and similar terms as used in the foregoing specification are used in the sense of“optional” or“may include” and not as“required”. Many changes, modifications, variations and other uses and applications of the present construction will, however, become apparent to those skilled in the art after considering the specification. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.

Claims (17)

CLAIMS What is claimed is:
1. A low-smoke, pyrotechnic composition comprising:
an oxidizer comprising Ceric Ammonium Nitrate;
a fuel source;
a stabilizer; and
a binder.
2. The low-smoke, pyrotechnic composition of claim 1, wherein said fuel source comprises at least one of Nitrocellulose, Hexamine, Cellulose Nitrate, Nitroguanidine, Red Gum, Titanium, Aluminum, Magnesium, Boron, Charcoal, Silicon, and a transition metal.
3. The low-smoke, pyrotechnic composition of claim 1, wherein said stabilizer comprises at least one of Cyanoguanidine, Dicyanodiamide, 2-cyanoguanidine, Guanidine-1 - carbonitrile, Diphenylamine, Nitrodiphenylamine, Akardite, Ethyl Centralite, Methyl Centralite, and Carbonate salts.
4. The low-smoke, pyrotechnic composition of claim 1, wherein said binder comprises at least one of Ethylcellulose, Methylcellulose, Hydroxypropyl methylcellulose, Hydroxypropyl ethylcellulose polyvinyl alcohol, Viton, Parlon, polyvinyl pyrrolidone, polyethylene glycol, and polyethylene glycol-polyvinyl alcohol copolymer.
5. The low-smoke, pyrotechnic composition of claim 1 further comprising a bum rate catalyst.
6. The low-smoke, pyrotechnic composition of claim 5, wherein said bum rate catalyst comprises at least one of Cupric Oxide, Ferric Oxide, Titanium Dioxide, Bismuth Trioxide, Molybdenum Trioxide, barium peroxide, strontium peroxide, calcium peroxide, chromic oxide, silicon dioxide, manganese (II) oxide, and boron oxide.
7. The low-smoke, pyrotechnic composition of claim 1, further comprising a second oxidizer comprising at least one of nitrate salts, perchlorate salts, and metal oxides.
8. The low-smoke, pyrotechnic composition of claim 1, comprising 20 percent by weight to 80 percent by weight said Ceric Ammonium Nitrate.
9. The low-smoke, pyrotechnic composition of claim 1, comprising 30 percent by weight to 40 percent by weight said Ceric Ammonium Nitrate.
10. The low-smoke, pyrotechnic composition of claim 1, comprising approximately 36.0 percent by weight to 37.5 percent by weight said Ceric Ammonium Nitrate.
11. The low-smoke, pyrotechnic composition of claim 1, comprising 20-80 percent by weight said Ceric Ammonium Nitrate, 0-60 percent by weight said fuel source, 1-20 percent by weight said stabilizer, and 0-15 percent by weight said binder.
12. A low-smoke, pyrotechnic composition comprising:
an oxidizer comprising Ceric Ammonium Nitrate;
a non-metal fuel source comprising Nitrocellulose;
a metal fuel source comprising Titanium;
a stabilizer comprising Cyanoguanidine;
a bum rate catalyst comprising Cupric Oxide; and
a binder.
13. The low-smoke, pyrotechnic composition of claim 12, comprising 20-80 percent by weight said oxidizer.
14. The low-smoke, pyrotechnic composition of claim 12, comprising 30-40 percent by weight said oxidizer.
15. The low-smoke, pyrotechnic composition of claim 12, comprising approximately 36.0-37.5 percent by weight said oxidizer.
16. The low-smoke, pyrotechnic composition of claim 12, comprising 20-80 percent by weight said oxidizer, 0-60 percent by weight said non-metal fuel source, 5-20 percent by weight said metal fuel source, 1-5 percent by weight said stabilizer, 0.5-20 percent by weight said bum rate catalyst, and 0-15 percent by weight said binder.
17. The low-smoke, pyrotechnic composition of claim 12, comprising approximately 36.7 percent by weight said oxidizer, approximately 51.4 percent by weight said non-metal fuel source, approximately 3.7 percent by weight said metal fuel source, approximately 0.9 percent by weight said stabilizer, and approximately 7.3 percent by weight said bum rate catalyst.
AU2020272752A 2019-04-10 2020-04-08 Low-smoke pyrotechnic composition Abandoned AU2020272752A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962832003P 2019-04-10 2019-04-10
US62/832,003 2019-04-10
PCT/US2020/027216 WO2020210318A1 (en) 2019-04-10 2020-04-08 Low-smoke pyrotechnic composition

Publications (1)

Publication Number Publication Date
AU2020272752A1 true AU2020272752A1 (en) 2021-11-11

Family

ID=72748864

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2020272752A Abandoned AU2020272752A1 (en) 2019-04-10 2020-04-08 Low-smoke pyrotechnic composition

Country Status (7)

Country Link
US (1) US20200325083A1 (en)
EP (1) EP3953319A4 (en)
CN (1) CN113840815A (en)
AU (1) AU2020272752A1 (en)
CA (1) CA3132944A1 (en)
MX (1) MX2021012451A (en)
WO (1) WO2020210318A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582793A (en) * 2021-08-27 2021-11-02 陈昊彬 Carbon nano tube micro-pyrotechnic composition and production method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399089A (en) * 1967-06-29 1968-08-27 Trojan Powder Co Gelatinized dinitrotoluenenitrostarch explosives
AU465635B2 (en) * 1972-09-07 1975-10-02 Ici Australia Limited Processes and products
US5780768A (en) * 1995-03-10 1998-07-14 Talley Defense Systems, Inc. Gas generating compositions
US6235132B1 (en) * 1995-03-10 2001-05-22 Talley Defense Systems, Inc. Gas generating compositions
US5959242A (en) * 1996-05-14 1999-09-28 Talley Defense Systems, Inc. Autoignition composition
JP2001508751A (en) * 1996-07-25 2001-07-03 コーダント・テクノロジーズ・インコーポレーテッド Metal complexes used as gas generating agents
US6605233B2 (en) * 2001-03-02 2003-08-12 Talley Defense Systems, Inc. Gas generant composition with coolant
US6599379B2 (en) * 2001-04-12 2003-07-29 Dmd Systems, Llc Low-smoke nitroguanidine and nitrocellulose based pyrotechnic compositions
US6673172B2 (en) * 2001-05-07 2004-01-06 Atlantic Research Corporation Gas generant compositions exhibiting low autoignition temperatures and methods of generating gases therefrom
US6699379B1 (en) * 2002-11-25 2004-03-02 Industrial Technology Research Institute Method for reducing stress in nickel-based alloy plating
US20070068610A1 (en) * 2005-02-15 2007-03-29 Nickel Russell R Microcrystalline Nitrocellulose Pyrotechnic Compositions
US8002914B1 (en) * 2005-06-06 2011-08-23 United States Of America As Represented By The Secretary Of The Navy Smokeless flash powder
US8641842B2 (en) * 2011-08-31 2014-02-04 Alliant Techsystems Inc. Propellant compositions including stabilized red phosphorus, a method of forming same, and an ordnance element including the same

Also Published As

Publication number Publication date
WO2020210318A1 (en) 2020-10-15
EP3953319A1 (en) 2022-02-16
EP3953319A4 (en) 2022-12-28
CA3132944A1 (en) 2020-10-15
CN113840815A (en) 2021-12-24
US20200325083A1 (en) 2020-10-15
MX2021012451A (en) 2021-12-15

Similar Documents

Publication Publication Date Title
US3898112A (en) Solid 5-aminotetrazole nitrate gas generating propellant with block copolymer binder
CN102050685B (en) Micro smoke gun propellant for fireworks
US5684268A (en) Lead-free primer mix
JPH08501269A (en) Press-moldable infrared light-emitting composition
US8282749B1 (en) Green light emitting pyrotechnic compositions
US4234363A (en) Solid propellant hydrogen generator
JP3802094B2 (en) Solid pyrotechnic composition comprising a thermoplastic binder and a polybutadiene silylferrocene plasticizer
AU2020272752A1 (en) Low-smoke pyrotechnic composition
CA2344232C (en) Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer
US4570540A (en) LOVA Type black powder propellant surrogate
US3953259A (en) Pressure exponent suppressants
US4798636A (en) Composite solid propellant
US4078953A (en) Reignition suppressants for solid extinguishable propellants for use in controllable motors
US3954531A (en) Composite double base propellant composition containing ferric fluoride
US3658608A (en) Hydrazinium nitroformate propellant stabilized with nitroguanidine
US8002914B1 (en) Smokeless flash powder
RU2513919C2 (en) Pyrotechnic low temperature rapidly burning gas-generating composition
US6984275B1 (en) Reduced erosion additive for a propelling charge
EP4317122A3 (en) Cool burning hydrate fuels in gas generant formulations for automotive airbag applications
JP2981587B2 (en) Azide and nitrato group-containing solid propellants
US6964715B2 (en) High impetus, high burn rate gas generant propellant and seatbelt pretensioner incorporating same
US3074830A (en) Combustion mixtures containing guanidine nitrate
US3663323A (en) Energetic propellant composition containing a difluoramino binder
US2060522A (en) Nitrosoguanidine as a priming ingredient
JP2587084B2 (en) Solid propellant

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period