CA3098447A1 - Systems and methods for unifying statistical models for different data modalities - Google Patents
Systems and methods for unifying statistical models for different data modalities Download PDFInfo
- Publication number
- CA3098447A1 CA3098447A1 CA3098447A CA3098447A CA3098447A1 CA 3098447 A1 CA3098447 A1 CA 3098447A1 CA 3098447 A CA3098447 A CA 3098447A CA 3098447 A CA3098447 A CA 3098447A CA 3098447 A1 CA3098447 A1 CA 3098447A1
- Authority
- CA
- Canada
- Prior art keywords
- modality
- data
- feature vector
- statistical model
- representation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862671068P | 2018-05-14 | 2018-05-14 | |
| US62/671,068 | 2018-05-14 | ||
| US201862678074P | 2018-05-30 | 2018-05-30 | |
| US62/678,074 | 2018-05-30 | ||
| PCT/US2019/031255 WO2019221985A1 (en) | 2018-05-14 | 2019-05-08 | Systems and methods for unifying statistical models for different data modalities |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA3098447A1 true CA3098447A1 (en) | 2019-11-21 |
Family
ID=66641492
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA3098447A Pending CA3098447A1 (en) | 2018-05-14 | 2019-05-08 | Systems and methods for unifying statistical models for different data modalities |
Country Status (10)
| Country | Link |
|---|---|
| US (4) | US10956787B2 (enExample) |
| EP (1) | EP3794512A1 (enExample) |
| JP (1) | JP7317050B2 (enExample) |
| KR (1) | KR20210010505A (enExample) |
| CN (1) | CN112119411A (enExample) |
| AU (1) | AU2019269312A1 (enExample) |
| BR (1) | BR112020022270A2 (enExample) |
| CA (1) | CA3098447A1 (enExample) |
| MX (1) | MX2020012276A (enExample) |
| WO (1) | WO2019221985A1 (enExample) |
Families Citing this family (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12368453B2 (en) | 2017-10-30 | 2025-07-22 | AtomBeam Technologies Inc. | Multi-stage fully homomorphic encryption and compression system for secure data processing and analysis |
| US12229679B1 (en) * | 2023-12-12 | 2025-02-18 | Atombeam Technologies Inc | Upsampling of compressed financial time-series data using a jointly trained Vector Quantized Variational Autoencoder neural network |
| US12289121B2 (en) * | 2017-10-30 | 2025-04-29 | Atombeam Technologies Inc | Adaptive neural upsampling system for decoding lossy compressed data streams |
| CA3098447A1 (en) * | 2018-05-14 | 2019-11-21 | Quantum-Si Incorporated | Systems and methods for unifying statistical models for different data modalities |
| US11971963B2 (en) | 2018-05-30 | 2024-04-30 | Quantum-Si Incorporated | Methods and apparatus for multi-modal prediction using a trained statistical model |
| US11967436B2 (en) | 2018-05-30 | 2024-04-23 | Quantum-Si Incorporated | Methods and apparatus for making biological predictions using a trained multi-modal statistical model |
| EP3618287B1 (en) * | 2018-08-29 | 2023-09-27 | Université de Genève | Signal sampling with joint training of learnable priors for sampling operator and decoder |
| US11386306B1 (en) * | 2018-12-13 | 2022-07-12 | Amazon Technologies, Inc. | Re-identification of agents using image analysis and machine learning |
| US11704573B2 (en) * | 2019-03-25 | 2023-07-18 | Here Global B.V. | Method, apparatus, and computer program product for identifying and compensating content contributors |
| CA3081168A1 (en) * | 2019-05-22 | 2020-11-22 | Royal Bank Of Canada | System and method for machine learning architecture for partially-observed multimodal data |
| US11520993B2 (en) * | 2019-07-24 | 2022-12-06 | Nec Corporation | Word-overlap-based clustering cross-modal retrieval |
| US20210027157A1 (en) * | 2019-07-24 | 2021-01-28 | Nec Laboratories America, Inc. | Unsupervised concept discovery and cross-modal retrieval in time series and text comments based on canonical correlation analysis |
| EP4008006A1 (en) * | 2019-08-02 | 2022-06-08 | Flagship Pioneering Innovations VI, LLC | Machine learning guided polypeptide design |
| CN111091010B (zh) | 2019-11-22 | 2024-12-03 | 京东方科技集团股份有限公司 | 相似度确定、网络训练、查找方法及装置和存储介质 |
| US11727913B2 (en) * | 2019-12-23 | 2023-08-15 | Adobe Inc. | Automatically associating context-based sounds with text |
| EP3851560A1 (en) * | 2020-01-16 | 2021-07-21 | Recherche 2000 Inc. | Methods and systems for detecting faults in electrolysers having electrolysis cells |
| US11507778B2 (en) * | 2020-01-27 | 2022-11-22 | Fujifilm Business Innovation Corp. | System and method for automated learning from sensors |
| US11251896B2 (en) * | 2020-03-03 | 2022-02-15 | Mitsubishi Electric Research Laboratories, Inc. | Generative model for inverse design of materials, devices, and structures |
| CN111461304B (zh) * | 2020-03-31 | 2023-09-15 | 北京小米松果电子有限公司 | 分类神经网络的训练方法、文本分类方法、装置及设备 |
| CN111625858B (zh) * | 2020-05-10 | 2023-04-07 | 武汉理工大学 | 一种垂直领域下的智能化多模态数据脱敏方法和装置 |
| US11664037B2 (en) * | 2020-05-22 | 2023-05-30 | Electronics And Telecommunications Research Institute | Methods of encoding and decoding speech signal using neural network model recognizing sound sources, and encoding and decoding apparatuses for performing the same |
| US12062059B2 (en) | 2020-05-25 | 2024-08-13 | Microsoft Technology Licensing, Llc. | Self-supervised system generating embeddings representing sequenced activity |
| US12475694B2 (en) * | 2020-05-26 | 2025-11-18 | International Business Machines Corporation | Iterative deep graph learning for graph neural networks |
| CN111797589B (zh) * | 2020-05-29 | 2024-10-18 | 华为技术有限公司 | 一种文本处理网络、神经网络训练的方法以及相关设备 |
| US11868428B2 (en) | 2020-07-21 | 2024-01-09 | Samsung Electronics Co., Ltd. | Apparatus and method with compressed neural network computation |
| US11461681B2 (en) * | 2020-10-14 | 2022-10-04 | Openstream Inc. | System and method for multi-modality soft-agent for query population and information mining |
| CN112667071A (zh) * | 2020-12-18 | 2021-04-16 | 宜通世纪物联网研究院(广州)有限公司 | 基于随机变分信息的手势识别方法、装置、设备及介质 |
| US20220229401A1 (en) * | 2020-12-23 | 2022-07-21 | Oden Technologies Ltd. | Systems and Methods for Inferring Taxonomies in Manufacturing Processes |
| CN112735569B (zh) * | 2020-12-31 | 2022-09-02 | 四川大学华西医院 | 脑肿瘤多模态mri术前胶质瘤手术区结果输出系统及方法 |
| CN112991350B (zh) * | 2021-02-18 | 2023-06-27 | 西安电子科技大学 | 一种基于模态差异缩减的rgb-t图像语义分割方法 |
| CN113033622B (zh) * | 2021-03-05 | 2023-02-03 | 北京百度网讯科技有限公司 | 跨模态检索模型的训练方法、装置、设备和存储介质 |
| CN115049582A (zh) * | 2021-03-09 | 2022-09-13 | 西门子医疗有限公司 | 用于对冠状动脉疾病进行全自动评估的多任务学习框架 |
| US12254063B2 (en) * | 2021-03-22 | 2025-03-18 | Servicenow, Inc. | Cross-modality curiosity for sparse-reward tasks |
| US20220383120A1 (en) * | 2021-05-28 | 2022-12-01 | Google Llc | Self-supervised contrastive learning using random feature corruption |
| US12333399B2 (en) * | 2021-06-15 | 2025-06-17 | Pepsico, Inc. | Anomaly detection using machine learning models and similarity regularization |
| CN113360673B (zh) * | 2021-06-21 | 2023-07-07 | 浙江师范大学 | 多模态知识图谱的实体对齐方法、装置及存储介质 |
| CN113822324B (zh) * | 2021-07-21 | 2025-07-22 | 腾讯科技(深圳)有限公司 | 基于多任务模型的图像处理方法、装置及相关设备 |
| CN113688938B (zh) * | 2021-09-07 | 2023-07-28 | 北京百度网讯科技有限公司 | 确定对象情感的方法、训练情感分类模型的方法及装置 |
| CN113934611B (zh) * | 2021-09-07 | 2025-04-25 | 中云网安科技有限公司 | 访问信息的统计方法、装置、电子设备及可读存储介质 |
| US20230117247A1 (en) * | 2021-10-18 | 2023-04-20 | Adp, Inc. | Multi-Modal Deep Learning of Structured and Non-Structured Data |
| CN114124520A (zh) * | 2021-11-22 | 2022-03-01 | 浙江大学 | 基于多模态的拟态waf执行体实现方法 |
| WO2023105673A1 (ja) * | 2021-12-08 | 2023-06-15 | 日本電信電話株式会社 | 学習装置、推定装置、学習方法、推定方法及びプログラム |
| CN114297402B (zh) * | 2021-12-17 | 2025-03-07 | 清华大学 | 面向链接预测的交互式多模态融合方法及装置 |
| JPWO2023166959A1 (enExample) * | 2022-03-01 | 2023-09-07 | ||
| JP7311120B1 (ja) | 2022-03-16 | 2023-07-19 | ソフトバンク株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
| KR102841093B1 (ko) * | 2022-04-18 | 2025-07-31 | 한양대학교 산학협력단 | 모달리티의 고유 특성을 보존하는 멀티미디어 추천 방법 및 시스템 |
| AU2022204142B1 (en) * | 2022-06-14 | 2022-10-06 | Curvebeam Ai Limited | Method and System for Material Decomposition in Dual- or Multiple-Energy X-ray Based Imaging |
| CN114840327B (zh) * | 2022-06-29 | 2022-12-02 | 阿里巴巴达摩院(杭州)科技有限公司 | 多模态多任务的处理方法、设备及系统 |
| CN115062782B (zh) * | 2022-07-06 | 2025-02-14 | 支付宝(杭州)信息技术有限公司 | 编码装置、数据处理方法及装置 |
| CN115604475B (zh) * | 2022-08-12 | 2025-06-10 | 西安电子科技大学 | 一种多模态信源联合编码方法 |
| US20240071105A1 (en) * | 2022-08-24 | 2024-02-29 | Nec Laboratories America, Inc. | Cross-modal self-supervised learning for infrastructure analysis |
| KR20240029127A (ko) * | 2022-08-26 | 2024-03-05 | 한국전자기술연구원 | 환경정보 인식을 위한 계층적 전이학습 기반의 딥러닝 모델 생성 시스템 및 방법 |
| US20240169261A1 (en) * | 2022-11-10 | 2024-05-23 | Lg Electronics Inc. | Method and device for domain generalized incremental learning under covariate shift |
| US12438555B2 (en) * | 2023-01-23 | 2025-10-07 | Dell Products L.P. | Quality of lossy compressed sensor data with machine learning |
| CN116091907B (zh) * | 2023-04-12 | 2023-08-15 | 四川大学 | 一种基于非互斥三元对比学习的图像篡改定位模型及方法 |
| JP2024179121A (ja) * | 2023-06-14 | 2024-12-26 | 株式会社日立製作所 | 学習装置、及び学習方法 |
| US20250069376A1 (en) * | 2023-08-23 | 2025-02-27 | International Business Machines Corporation | Synthetic multi-modal data generation from uni-modal datasets |
| KR20250071103A (ko) * | 2023-11-14 | 2025-05-21 | (주)아크릴 | 인공지능 플랫폼 동작 방법 및 그 장치 |
| WO2025105524A1 (ko) * | 2023-11-15 | 2025-05-22 | 엘지전자 주식회사 | 인공 지능 서버 및 그의 동작 방법 |
| US12225105B1 (en) * | 2023-12-12 | 2025-02-11 | Atombeam Technologies Inc | System and method for multi-modal homomorphic compression |
| US12417168B2 (en) | 2023-12-12 | 2025-09-16 | AtomBeam Technologies Inc. | System and method for edge based multi-modal homomorphic compression |
| US12327190B1 (en) * | 2023-12-12 | 2025-06-10 | AtomBeam Technologies Inc. | Multimodal financial technology deep learning core with joint optimization of vector-quantized variational autoencoder and neural upsampler |
| CN117853921B (zh) * | 2024-01-12 | 2024-11-29 | 中国科学院空天信息创新研究院 | 遥感单模态到多模态基础模型轻量化组合迁移方法、装置 |
| CN118467989B (zh) * | 2024-07-11 | 2024-09-20 | 贵州航天云网科技有限公司 | 基于业务分析的多源异构数据处理构建与验证方法 |
| CN118885740B (zh) * | 2024-09-30 | 2025-01-03 | 湖南工商大学 | 多模态数据的数据修复方法、装置、设备及介质 |
| CN119513721B (zh) * | 2024-11-04 | 2025-09-23 | 北京理工大学 | 一种用于旋转机械迁移诊断的无监督多源信息域自适应方法、设备、介质及产品 |
| CN119961846B (zh) * | 2025-04-10 | 2025-06-20 | 交通运输部东海航海保障中心厦门航标处 | 海上浮标智能感知识别方法及系统 |
| JP7744546B1 (ja) * | 2025-04-18 | 2025-09-25 | 株式会社ビデオリサーチ | データ予測システム、および予測モデル構築システム |
| CN120541530B (zh) * | 2025-07-29 | 2025-10-03 | 中国科学院深圳先进技术研究院 | 一种脑机接口信号增强方法、装置、设备及存储介质 |
| CN120767001B (zh) * | 2025-09-08 | 2025-11-18 | 易迪希医药科技(嘉兴)有限公司 | 一种基于机器学习的临床试验数据异常检测方法及系统 |
Family Cites Families (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5814565A (en) | 1995-02-23 | 1998-09-29 | University Of Utah Research Foundation | Integrated optic waveguide immunosensor |
| US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
| US6202049B1 (en) | 1999-03-09 | 2001-03-13 | Matsushita Electric Industrial Co., Ltd. | Identification of unit overlap regions for concatenative speech synthesis system |
| JP2003532123A (ja) | 2000-04-28 | 2003-10-28 | エッジライト バイオサイエンシズ インコーポレイテッド | マイクロアレーエバネッセント波蛍光検出装置 |
| US6917726B2 (en) | 2001-09-27 | 2005-07-12 | Cornell Research Foundation, Inc. | Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes |
| FR2813121A1 (fr) | 2000-08-21 | 2002-02-22 | Claude Weisbuch | Dispositif perfectionne de support d'elements chromophores |
| US7738086B2 (en) | 2005-05-09 | 2010-06-15 | The Trustees Of Columbia University In The City Of New York | Active CMOS biosensor chip for fluorescent-based detection |
| US7426322B2 (en) | 2005-07-20 | 2008-09-16 | Searete Llc. | Plasmon photocatalysis |
| US8975216B2 (en) | 2006-03-30 | 2015-03-10 | Pacific Biosciences Of California | Articles having localized molecules disposed thereon and methods of producing same |
| EP2064488B1 (en) | 2006-09-01 | 2021-10-06 | Pacific Biosciences of California, Inc. | Device and method for analyzing materials |
| US8207509B2 (en) | 2006-09-01 | 2012-06-26 | Pacific Biosciences Of California, Inc. | Substrates, systems and methods for analyzing materials |
| FR2908888B1 (fr) | 2006-11-21 | 2012-08-03 | Centre Nat Rech Scient | Dispositif pour la detection exaltee de l'emission d'une particule cible |
| WO2009082706A1 (en) | 2007-12-21 | 2009-07-02 | The Trustees Of Columbia University In The City Of New York | Active cmos sensor array for electrochemical biomolecular detection |
| CA2737505C (en) | 2008-09-16 | 2017-08-29 | Pacific Biosciences Of California, Inc. | Substrates and optical systems and methods of use thereof |
| JP5229478B2 (ja) | 2008-12-25 | 2013-07-03 | 日本電気株式会社 | 統計モデル学習装置、統計モデル学習方法、およびプログラム |
| US8278728B2 (en) | 2009-10-17 | 2012-10-02 | Florida Institute Of Technology | Array of concentric CMOS photodiodes for detection and de-multiplexing of spatially modulated optical channels |
| US8467061B2 (en) | 2010-02-19 | 2013-06-18 | Pacific Biosciences Of California, Inc. | Integrated analytical system and method |
| US8865078B2 (en) | 2010-06-11 | 2014-10-21 | Industrial Technology Research Institute | Apparatus for single-molecule detection |
| US8778849B2 (en) | 2011-10-28 | 2014-07-15 | Illumina, Inc. | Microarray fabrication system and method |
| US9606060B2 (en) | 2012-01-13 | 2017-03-28 | California Institute Of Technology | Filterless time-domain detection of one or more fluorophores |
| JP2013211616A (ja) | 2012-03-30 | 2013-10-10 | Sony Corp | 端末装置、端末制御方法、プログラム、および情報処理システム |
| US9372308B1 (en) | 2012-06-17 | 2016-06-21 | Pacific Biosciences Of California, Inc. | Arrays of integrated analytical devices and methods for production |
| US9223084B2 (en) | 2012-12-18 | 2015-12-29 | Pacific Biosciences Of California, Inc. | Illumination of optical analytical devices |
| US9607014B2 (en) | 2013-10-31 | 2017-03-28 | Adobe Systems Incorporated | Image tagging |
| JP6101817B2 (ja) * | 2013-11-01 | 2017-03-22 | Eizo株式会社 | 画像高画質化装置、画像表示装置、画像高画質化方法及びコンピュータプログラム |
| US9765395B2 (en) | 2014-04-28 | 2017-09-19 | Nanomedical Diagnostics, Inc. | System and method for DNA sequencing and blood chemistry analysis |
| US20160170982A1 (en) | 2014-12-16 | 2016-06-16 | Yahoo! Inc. | Method and System for Joint Representations of Related Concepts |
| US9666748B2 (en) | 2015-01-14 | 2017-05-30 | International Business Machines Corporation | Integrated on chip detector and zero waveguide module structure for use in DNA sequencing |
| CN113064236B (zh) | 2015-03-16 | 2022-11-01 | 加利福尼亚太平洋生物科学股份有限公司 | 用于自由空间光耦合的集成装置及系统 |
| JP2019512758A (ja) | 2016-01-15 | 2019-05-16 | 株式会社Preferred Networks | マルチモーダル生成機械学習のためのシステムおよび方法 |
| US10872699B2 (en) | 2016-03-25 | 2020-12-22 | Siemens Healthcare Gmbh | Case-based reasoning in the cloud using deep learning |
| GB201615051D0 (en) | 2016-09-05 | 2016-10-19 | Kheiron Medical Tech Ltd | Multi-modal medical image procesing |
| US10534613B2 (en) * | 2017-04-28 | 2020-01-14 | Intel Corporation | Supporting learned branch predictors |
| CN107506370A (zh) * | 2017-07-07 | 2017-12-22 | 大圣科技股份有限公司 | 多媒体数据深度挖掘方法、存储介质及电子设备 |
| US20190026655A1 (en) | 2017-07-19 | 2019-01-24 | Petuum Inc. | Machine Learning System for Patient Similarity |
| US20190279075A1 (en) | 2018-03-09 | 2019-09-12 | Nvidia Corporation | Multi-modal image translation using neural networks |
| US20190325293A1 (en) * | 2018-04-19 | 2019-10-24 | National University Of Singapore | Tree enhanced embedding model predictive analysis methods and systems |
| CA3098447A1 (en) | 2018-05-14 | 2019-11-21 | Quantum-Si Incorporated | Systems and methods for unifying statistical models for different data modalities |
| US11971963B2 (en) | 2018-05-30 | 2024-04-30 | Quantum-Si Incorporated | Methods and apparatus for multi-modal prediction using a trained statistical model |
| US11967436B2 (en) | 2018-05-30 | 2024-04-23 | Quantum-Si Incorporated | Methods and apparatus for making biological predictions using a trained multi-modal statistical model |
-
2019
- 2019-05-08 CA CA3098447A patent/CA3098447A1/en active Pending
- 2019-05-08 EP EP19726251.2A patent/EP3794512A1/en active Pending
- 2019-05-08 AU AU2019269312A patent/AU2019269312A1/en not_active Abandoned
- 2019-05-08 WO PCT/US2019/031255 patent/WO2019221985A1/en not_active Ceased
- 2019-05-08 JP JP2020564186A patent/JP7317050B2/ja active Active
- 2019-05-08 MX MX2020012276A patent/MX2020012276A/es unknown
- 2019-05-08 CN CN201980032862.3A patent/CN112119411A/zh active Pending
- 2019-05-08 US US16/406,348 patent/US10956787B2/en active Active
- 2019-05-08 BR BR112020022270-4A patent/BR112020022270A2/pt not_active IP Right Cessation
- 2019-05-08 KR KR1020207035725A patent/KR20210010505A/ko not_active Ceased
-
2021
- 2021-03-08 US US17/195,311 patent/US11494589B2/en active Active
-
2022
- 2022-10-17 US US17/967,417 patent/US11875267B2/en active Active
-
2024
- 2024-01-12 US US18/411,814 patent/US20240232633A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US20210192290A1 (en) | 2021-06-24 |
| JP2021524099A (ja) | 2021-09-09 |
| BR112020022270A2 (pt) | 2021-02-23 |
| EP3794512A1 (en) | 2021-03-24 |
| US20230039210A1 (en) | 2023-02-09 |
| JP7317050B2 (ja) | 2023-07-28 |
| CN112119411A (zh) | 2020-12-22 |
| US20240232633A1 (en) | 2024-07-11 |
| US11494589B2 (en) | 2022-11-08 |
| MX2020012276A (es) | 2021-01-29 |
| US10956787B2 (en) | 2021-03-23 |
| WO2019221985A1 (en) | 2019-11-21 |
| AU2019269312A1 (en) | 2020-11-19 |
| KR20210010505A (ko) | 2021-01-27 |
| US20190347523A1 (en) | 2019-11-14 |
| US11875267B2 (en) | 2024-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240232633A1 (en) | Systems and methods for unifying statistical models for different data modalities | |
| CN109299373B (zh) | 基于图卷积技术的推荐系统 | |
| CN113177141B (zh) | 基于语义嵌入软相似性的多标签视频哈希检索方法及设备 | |
| Chen et al. | Efficient ant colony optimization for image feature selection | |
| CN105447498B (zh) | 配置有神经网络的客户端设备、系统和服务器系统 | |
| Linderman et al. | Reparameterizing the birkhoff polytope for variational permutation inference | |
| CN110415022B (zh) | 处理用户行为序列的方法及装置 | |
| CN112395438A (zh) | 一种多标签图像的哈希码生成方法和系统 | |
| US11295229B1 (en) | Scalable generation of multidimensional features for machine learning | |
| CN117523278A (zh) | 基于贝叶斯估计语义注意力元学习方法 | |
| Damianou et al. | Multi-view learning as a nonparametric nonlinear inter-battery factor analysis | |
| Xie et al. | Advances in set function learning: a survey of techniques and applications | |
| Brinkmeyer et al. | Chameleon: learning model initializations across tasks with different schemas | |
| Mathew et al. | Warping resilient time series embeddings | |
| Kolek et al. | Learning interpretable queries for explainable image classification with information pursuit | |
| CN114298153A (zh) | 一种数据处理方法、装置及设备 | |
| Huguet | Advances in optimal transport for biology; from manifold learning to generative modeling | |
| US20240152799A1 (en) | Generative graph modeling framework | |
| Strohmeier | Online Nonnegative CP-Dictionary Learning with Applications to Multimodal Data | |
| Fadlallah et al. | and Francesc Serratosa ID Research Group ASCLEPIUS: Smart Technology for Smart Healthcare, Department D'Enginyeria Informática I Matemátiques, Universitat Rovira I Virgili, 43k007 Tarragona, Catalonia, Spain | |
| Gilhuber | Advances in deep active learning and synergies with semi-supervision | |
| Lensink | Designing deep neural networks for high dimensional problems: leveraging the connection between deep neural networks and differential equations | |
| Schwarz | Sparse Parameterisations For Efficient Machine Learning Algorithms | |
| WO2024063914A1 (en) | Neural graphical models for generic data types | |
| REPETTO | Self-Supervised Learning: Video Clip Order Prediction with diffusion models |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request |
Effective date: 20240507 |
|
| EEER | Examination request |
Effective date: 20240507 |