CA3080875A1 - Organic molecules for use in optoelectronic devices - Google Patents

Organic molecules for use in optoelectronic devices Download PDF

Info

Publication number
CA3080875A1
CA3080875A1 CA3080875A CA3080875A CA3080875A1 CA 3080875 A1 CA3080875 A1 CA 3080875A1 CA 3080875 A CA3080875 A CA 3080875A CA 3080875 A CA3080875 A CA 3080875A CA 3080875 A1 CA3080875 A1 CA 3080875A1
Authority
CA
Canada
Prior art keywords
optionally substituted
substituents
deuterium
group
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3080875A
Other languages
French (fr)
Inventor
Daniel Volz
Sarah HOHLMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Cynora GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cynora GmbH filed Critical Cynora GmbH
Publication of CA3080875A1 publication Critical patent/CA3080875A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

The invention relates to an organic molecule, in particular for the application in optoelectronic devices. According to the invention, the organic molecule has - a first chemical moiety with a structure of Formula (I) and - two second chemical moiety with a structure of Formula (II), # represents the binding site of a single bond linking the first chemical moiety to the second chemical moiety; W represents the bond linking the first chemical moiety to one of the two second chemical moieties.

Description

ORGANIC MOLECULES
FOR USE IN OPTOELECTRONIC DEVICES
The invention relates to light-emitting organic molecules and their use in organic light-emitting diodes (OLEDs) and in other optoelectronic devices.
Description The object of the present invention is to provide molecules which are suitable for use in optoelectronic devices.
This object is achieved by the invention which provides a new class of organic molecules.
The organic molecules of the invention are purely organic molecules, i.e. they do not contain any metal ions in contrast to metal complexes known for use in optoelectronic devices.
The organic molecules exhibit emission maxima in the blue, sky-blue or green spectral range.
The photoluminescence quantum yields of the organic molecules according to the invention are, in particular, 26 % or more. The molecules of the invention exhibit in particular thermally activated delayed fluorescence (TADF). The use of the molecules according to the invention in an optoelectronic device, for example, an organic light-emitting diode (OLED), leads to higher efficiencies of the device. Corresponding OLEDs have a higher stability than OLEDs with known emitter materials and comparable color. In particular, the molecules can be used in combination with a fluorescence emitter to enable so-called hyperfluorescence.
The organic molecules according to the invention comprise or consist of one first chemical moiety comprising or consisting of a structure of Formula I, RH
RH RH
Ri2 RH

Ri4 W N N RI
RI I RI

RI W RI
RI RI
Formula I
2 and - two second chemical moieties comprising or consisting of a structure of Formula II, Ra Ra Ra 0 Z 0 Ra Ra N Ra I
Ra # Ra Formula II
wherein each second chemical moiety is linked to the first chemical moiety via a single bond.
# represents the binding site of a single bond linking the second chemical moiety to the first chemical moiety.
W shows the position of the single bond linking the first chemical moiety to one of the two second chemical moieties.
Z is at each occurrence independently from another selected from the group consisting of: a direct bond, CR3R4, C=CR3R4, 0=0, C=NR3, NR3, 0, SiR3R4, S, S(0) and S(0)2.
R' is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, Ci-05-alkyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
02-08-alkenyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
02-08-alkynyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
and 06-018-aryl.
RI' is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, Ci-05-alkyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
02-08-alkenyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
02-08-alkynyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
and
3 06-018-aryl.
R11, R12, R13, R14 and rCr,15 is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, ON, CF3, phenyl, Ci-Cs-alkyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
02-08-alkenyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
02-08-alkynyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
06-018-aryl, which is optionally substituted with one or more substituents R6; and 03-017-heteroaryl, which is optionally substituted with one or more substituents R6.
Ra, R3 and R4 is at each occurrence independently from another selected from the group consisting of: hydrogen, deuterium, N(R5)2, OR5, Si(R5)3, B(0R5)2, 0S02R5, CF3, ON, F, Br, I, CI-am-alkyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent 0H2-groups are optionally substituted by R50=0R5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
C1-040-alkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent 0H2-groups are optionally substituted by R50=0R5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
C1-040-thioalkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent 0H2-groups are optionally substituted by R50=0R5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
02-040-alkenyl, which is optionally substituted with one or more substituents R5 and
4 wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
02-040-alkynyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
06-060-aryl, which is optionally substituted with one or more substituents R5; and 03-057-heteroaryl, which is optionally substituted with one or more substituents R5.
R5 is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, N(R6)2, OR6, Si(R6)3, B(0R6)2, 0S02R6, CF3, ON, F, Br, I, CI-am-alkyl, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, CEO, Si(R6)2, Ge(R6)2, Sn(R6)2, 0=0, C=S, C=Se, C=NR6, P(=0)(R6), SO, SO2, NR6, 0, S or CONR6;
C1-C40-alkoxy, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, CEO, Si(R6)2, Ge(R6)2, Sn(R6)2, 0=0, C=S, C=Se, C=NR6, P(=0)(R6), SO, SO2, NR6, 0, S or CONR6;
C1-C40-thioalkoxy, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, CEO, Si(R6)2, Ge(R6)2, Sn(R6)2, 0=0, C=S, C=Se, C=NR6, P(=0)(R6), SO, SO2, NR6, 0, S or CONR6;
02-C40-alkenyl, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, CEO, Si(R6)2, Ge(R6)2, Sn(R6)2, 0=0, C=S, C=Se, C=NR6, P(=0)(R6), SO, SO2, NR6, 0, S or CONR6;
02-C40-alkynyl, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, CEO, Si(R6)2, Ge(R6)2, Sn(R6)2, 0=0, C=S, C=Se, C=NR6, P(=0)(R6), SO, SO2, NR6, 0, S or CONR6;
06-060-aryl, which is optionally substituted with one or more substituents R6; and 03-057-heteroaryl, which is optionally substituted with one or more substituents R6.
R6 is at each occurrence independently from another selected from the group consisting of hydrogen, deuterium, OPh, CF3, ON, F, Ci-05-alkyl, wherein optionally one or more hydrogen atoms are independently from each other substituted by deuterium, ON, CF3, or F;
C1-05-alkoxy, wherein optionally one or more hydrogen atoms are independently from each other substituted by deuterium, ON, CF3, or F;
C1-05-thioalkoxy, wherein optionally one or more hydrogen atoms are independently from each other substituted by deuterium, ON, CF3, or F;
02-05-alkenyl, wherein optionally one or more hydrogen atoms are independently from each other substituted by deuterium, ON, CF3, or F;
02-05-alkynyl, wherein optionally one or more hydrogen atoms are independently from each other substituted by deuterium, ON, CF3, or F;
06-018-aryl, which is optionally substituted with one or more Ci-Cs-alkyl substituents;
03-017-heteroaryl, which is optionally substituted with one or more Ci-Cs-alkyl substituents;
N(06-018-ary1)2;
N(03-017-heteroary1)2; and N(03-017-heteroary1)(C6-018-aryl).
The substituents Ra, R3, R4 or R5, independently from each other, optionally form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system with one or more substituents Ra, R3, R4 or R5.

In one embodiment, R", R12, R13, R14 and Kr,15 is independently from each other selected from the group consisting of H, methyl, ON, CF3 and phenyl.
In one embodiment, R' is at each occurrence independently from each other selected from the group consisting of H, methyl and phenyl.
In one embodiment, RI' is at each occurrence independently from each other selected from the group consisting of H, methyl and phenyl.
In one embodiment, R11 and R15 is independently from each other at each occurrence selected from the group consisting of H, ON, CF3 and phenyl.
In one embodiment, R" is selected from the group consisting of H, ON, CF3 and phenyl.
In one embodiment, R13 is selected from the group consisting of H, ON, CF3 and phenyl.
In one embodiment, R15 is selected from the group consisting of H, ON, CF3 and phenyl.
In one embodiment, R", R12, R13, rc r,14, and R15 is H.
In one embodiment, R' is H.
In one embodiment, RI' is H.
In one embodiment, R", R12, R13, R14, rc r,15, R' and RI' is H.
In a further embodiment of the invention, the second chemical moiety comprises or consists of a structure of Formula Ila:
Ra Ra Ra Ra Ra N Ra Ra # Ra Formula Ila wherein # and Ra are defined as above.

In a further embodiment of the invention, Ra is at each occurrence independently from another selected from the group consisting of:
hydrogen, Me, 'Pr, Su, ON, CF3, Ph, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyridinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyrimidinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, carbazolyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, triazinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, and N(Ph)2.
In a further embodiment of the invention, Ra is at each occurrence independently from another selected from the group consisting of:
hydrogen, Me, 'Pr, Su, ON, CF3, Ph, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyridinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyrimidinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, and triazinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph.

In a further embodiment of the invention, the second chemical moiety comprises or consists of a structure of Formula Ilb, a structure of Formula Ilb-2, a structure of Formula Ilb-3 or a structure of Formula Ilb-4:
Rb Rb Rb...........7õ......õ .,,,,,......õ..Rb N Rb N Rb N N
# 1 # 1 Rb # Rb #1 Formula Ilb Formula Ilb-2 Formula Ilb-3 Formula Ilb-4 wherein Rb is at each occurrence independently from another selected from the group consisting of deuterium, N(R5)2, OR5, Si(R5)3, B(0R5)2, 0S02R5, CF3, ON, F, Br, I, C1-040-alkyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent 0H2-groups are optionally substituted by R50=0R5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
C1-040-alkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
C1-040-thioalkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
02-040-alkenyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, S or CONR5;
02-040-alkynyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, CEO, Si(R5)2, Ge(R5)2, Sn(R5)2, 0=0, C=S, C=Se, C=NR5, P(=0)(R5), SO, SO2, NR5, 0, 5 or CONR5;

06-060-aryl, which is optionally substituted with one or more substituents R5; and 03-057-heteroaryl, which is optionally substituted with one or more substituents R5.
Apart from that, the aforementioned definitions apply.
In further embodiments of the invention, the second chemical moiety comprises or consists of a structure of Formula 11c, a structure of Formula 11c-2, a structure of Formula 11c-3 or a structure of Formula 11c-4:
Rb Rb Rb Y Y ,_ Y Y
Formula Ilc Formula 11c-2 Formula 11c-3 Formula 11c-4 wherein the aforementioned definitions apply.
In a further embodiment of the invention, Rb is at each occurrence independently from another selected from the group consisting of:
Me, 'Pr, Su, ON, CF3, Ph, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyridinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, carbazolyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, triazinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, and N(Ph)2.
In a further embodiment of the invention, Rb is at each occurrence independently from another selected from the group consisting of:
Me, 'Pr, Su, ON, CF3, Ph, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, '13u, ON, CF3, and Ph, pyridinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, '13u, ON, CF3, and Ph, pyrimidinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, '13u, ON, CF3, and Ph, and triazinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, '13u, ON, CF3, and Ph.
Below, examples of embodiments of the second chemical moiety are shown:
Ra Ra Ra Ra Ra R3 A Ra Ra R3 Ra Ra 0 R a Ra 0 S 0 R a Ra Ra Ra N Ra Ra N Ra Ra N Ra Ra N Ra Ra N Ra Ra #1 Ra Ra # Ra Ra # Ra Ra # Ra RaR41 R3 R3Ra Ra N ' Ra Ra 0 Ra Ra Ra Ra Ra Ra 0 0 Ra Ra N Ra Ra N Ra Ra N Ra Ra # Ra Ra # Ra Ra # Ra Ra 0 0 401 Ra Ra 0 s 0 0 Ra Ra Ra R
0 a N Ra 0 N N N N
# # 1 # 1 1 #

R5 Ra 0 Z
Ra Z Ni N N ¨R5 N #
1 Ra 0 Z N ¨R5 #

#

R5, R a Z N
Ra 0 Z 0 R5 R a Z
N
N N, # 0 N R5 # R5 1 #

Ra Ra Ra Ra Ra R5 Ra R5 Ra R5 N, Ra Ra R5 N ¨
N

Ra Ra R5 Ra R RRa N ¨R5 Ra Ra Ra # o R5 Ra # S R5 Ra # N R5 Ra Ra Ra Ili el R5 N N N
#i 0 #i Ala. R5 s \IIIF

Ra Ra Ra N N N
li li li RRa N N
li li wherein for #, Z, Ra, R3, R4 and R5 the aforementioned definitions apply.
In one embodiment, Ra and R5 is at each occurrence independently from another selected from the group consisting of hydrogen (H), methyl (Me), i-propyl (CH(CH3)2) ('Pr), t-butyl (Su), phenyl (Ph), ON, CF3, and diphenylamine (NPh2).
In one embodiment of the invention, the organic molecules comprise or consist of Formula III:
RH
Ril Ril Ra Ra Ril Ra Ra Ra R15 R13 Ra N Ra N / N RI
Ra I
RI RI
N
RI RI RI
RI Ra RI
Ra N Ra Ra Ra Ra Ra Ra Formula III
wherein the aforementioned definitions apply.

In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula IIla:
RH
RH RH

IR
Ri2 * RH

R =?N
N N RI
RI I RI
N
RI RI RI
RI N RI
RC 'RC
Formula Illa wherein RC is at each occurrence independently from another selected from the group consisting of:
Me, 'Pr, Su, Ph, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyridinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, pyrimidinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, carbazolyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, triazinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, 'Pr, Su, ON, CF3, and Ph, and N(Ph)2, and wherein R11, R12, R13, R14, r< ^15 and R' are defined as above.
In a further embodiment of the invention, the organic molecule comprise or consist of a structure of Formula Illb:

RH
RH RH

IR
Ri2 * RH

= ia N
N N R RI
RI I RI
RI I.1 RI N RI
RI N RI
Rc Formula Illb wherein the aforementioned definitions apply.
In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula 111c:
RH
RH RH

R0 Ri2 it RH

. i4 N
N N R RI
RI I RI
Rc 0 N
RI RI RI
RI N RI
IR IR
Formula IIIc wherein the aforementioned definitions apply.
In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula Illd:

RH
RH RH
IR Ri2 RH

N
N N RI
RI I RI
N
RI RI RI
RI N RI
RC
Formula hid wherein wherein the aforementioned definitions apply.
In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula IIle:
RH
RH RH
Ri2 RII
IR

N
Ria N N RI
IR
I
RI RI
RI RI N . RI
RI RI
Rc Rc N
Formula IIle wherein the aforementioned definitions apply.
In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula IIIf:

RH
RH RH
Ri2 RII
'RC

N

N N RI
RI RI I RI
RI N . RI
RI RI
IR
N
Formula Illf wherein the aforementioned definitions apply.
In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula Illg:
RH
RH RH
Ri2 Rc RH
RC

N N RI
RI I RI
N
RI RI RI
RI RI
N
IR IR
Formula Illg wherein the aforementioned definitions apply.
In a further embodiment of the invention, the organic molecules comprise or consist of a structure of Formula Illh:

RH
RH 0 R, R11 RH Ri2 Rc R15 Ile R13 N

N N RI

N
RI RI RI
RI RI
N
IR
Formula Illh wherein the aforementioned definitions apply.
As used above and herein, the terms "aryl" and "aromatic" may be understood in the broadest sense as any mono-, bi- or polycyclic aromatic moieties. Accordingly, an aryl group contains 6 to 60 aromatic ring atoms, and a heteroaryl group contains 5 to 60 aromatic ring atoms, of which at least one is a heteroatom. Notwithstanding, throughout the application the number of aromatic ring atoms may be given as subscripted number in the definition of certain substituents. In particular, the heteroaromatic ring includes one to three heteroatoms. Again, the terms "heteroaryl" and "heteroaromatic" may be understood in the broadest sense as any mono-, bi- or polycyclic hetero-aromatic moieties that include at least one heteroatom. The heteroatoms may at each occurrence be the same or different and be individually selected from the group consisting of N, 0 and S. Accordingly, the term "arylene"
refers to a divalent substituent that bears two binding sites to other molecular structures and thereby serving as a linker structure. In case, a group in the exemplary embodiments is defined differently from the definitions given here, for example, the number of aromatic ring atoms or number of heteroatoms differs from the given definition, the definition in the exemplary embodiments is to be applied. According to the invention, a condensed (annulated) aromatic or heteroaromatic polycycle is built of two or more single aromatic or heteroaromatic cycles, which formed the polycycle via a condensation reaction.
In particular, as used throughout the present application the term aryl group or heteroaryl group comprises groups which can be bound via any position of the aromatic or heteroaromatic group, derived from benzene, naphthaline, anthracene, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, fluoranthene, benzanthracene, benzphenanthrene, tetracene, pentacene, benzpyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene; pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenoxazine, pyrazole, indazole, imidazole, benzimidazole, naphthoimidazole, phenanthroimidazole, pyridoimidazole, pyrazinoimidazole, quinoxalinoimidazole, oxazole, benzoxazole, napthooxazole, anthroxazol, phenanthroxazol, isoxazole, 1,2-thiazole, 1,3-thiazole, benzothiazole, pyridazine, benzopyridazine, pyrimidine, benzopyrimidine, 1,3,5-triazine, quinoxaline, pyrazine, phenazine, naphthyridine, carboline, benzocarboline, phenanthroline, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,2,3,4-tetrazine, purine, pteridine, indolizine and benzothiadiazole or combinations of the abovementioned groups.
As used throughout the present application the term cyclic group may be understood in the broadest sense as any mono-, bi- or polycyclic moieties.
As used above and herein, the term alkyl group may be understood in the broadest sense as any linear, branched, or cyclic alkyl substituent. In particular, the term alkyl comprises the substituents methyl (Me), ethyl (Et), n-propyl (nPr), i-propyl ('Pr), cyclopropyl, n-butyl (Bu), i-butyl ('Bu), s-butyl (sBu), t-butyl (Su), cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t-hexyl, 2-hexyl, 3-hexyl, neo-hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, cycloheptyl, 1-methylcyclohexyl, n-octyl, 2-ethylhexyl, cyclooctyl, 1-bicyclo[2,2,2]octyl, 2-bicyclo[2,2,2]-octyl, 2-(2,6-dimethyl)octyl, 3-(3,7-dimethyl)octyl, adamantyl, 2,2,2-trifluorethyl, 1 ,1-dimethyl-n-hex-1-yl, 1 ,1 -di methyl-n-hept-1 -yl, 1 ,1-dimethyl-n-oct-1-yl, 1 ,1 -d imethyl-n-dec-1 -yl, 1 ,1-dimethyl-n-dodec-1-yl, 1 ,1-dimethyl-n-tetradec-1-yl, 1 ,1-dimethyl-n-hexadec-1-yl, 1 ,1-dimethyl-n-octadec-1-yl, 1 ,1-diethyl-n-hex-1-yl, 1 ,1-diethyl-n-hept-1-yl, 1 ,1-diethyl-n-oct-1-yl, 1 ,1-diethyl-n-dec-1-yl, 1 ,1-diethyl-n-dodec-1-yl, 1 ,1-diethyl-n-tetradec-1-yl, 1 ,1-diethyln-n-hexadec-1-yl, 1 ,1-diethyl-n-octadec-1-yl, 1 -(n-propyl)-cyclohex-1 -yl, 1 -(n-buty1)-cyclohex-1 -yl, 1 -(n-hexyl)-cyclohex-1 -yl, 1 -(n-octyI)-cyclohex-1 -yl and 1 -(n-decyl)-cyclohex-1 -yl.
As used above and herein, the term alkenyl comprises linear, branched, and cyclic alkenyl substituents. The term alkenyl group exemplarily comprises the substituents ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl.

As used above and herein, the term alkynyl comprises linear, branched, and cyclic alkynyl substituents. The term alkynyl group exemplarily comprises ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
As used above and herein, the term alkoxy comprises linear, branched, and cyclic alkoxy substituents. The term alkoxy group exemplarily comprises methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy and 2-methylbutoxy.
As used above and herein, the term thioalkoxy comprises linear, branched, and cyclic thioalkoxy substituents, in which the 0 of the exemplarily alkoxy groups is replaced by S.
As used above and herein, the terms "halogen" and "halo" may be understood in the broadest sense as being preferably fluorine, chlorine, bromine or iodine.
Whenever hydrogen (H) is mentioned herein, it could also be replaced by deuterium at each occurrence.
It is understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g.
naphtyl, dibenzofuryl) or as if it were the whole molecule (e.g. naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.
In one embodiment, the organic molecules according to the invention have an excited state lifetime of not more than 150 ps, of not more than 100 ps, in particular of not more than 50 ps, more preferably of not more than 10 ps or not more than 7 ps in a film of poly(methyl methacrylate) (PMMA) with 10% by weight of organic molecule at room temperature.
In one embodiment of the invention, the organic molecules according to the invention represent thermally-activated delayed fluorescence (TADF) emitters, which exhibit a .8.EsT value, which corresponds to the energy difference between the first excited singlet state (Si) and the first excited triplet state (Ti), of less than 5000 cm', preferably less than 3000 cm', more preferably less than 1500 cm', even more preferably less than 1000 cm' or even less than 500 cm'.
In a further embodiment of the invention, the organic molecules according to the invention have an emission peak in the visible or nearest ultraviolet range, i.e., in the range of a wavelength of from 380 to 800 nm, with a full width at half maximum of less than 0.50 eV, preferably less than 0.48 eV, more preferably less than 0.45 eV, even more preferably less than 0.43 eV or even less than 0.40 eV in a film of poly(methyl methacrylate) (PMMA) with 10%
by weight of organic molecule at room temperature.
In a further embodiment of the invention, the organic molecules according to the invention have an emission peak in the visible or nearest ultraviolet range, i.e., in the range of a wavelength of from 380 to 800 nm, with a full width at half maximum of less than 0.40 eV
in a film of poly(methyl methacrylate) (PMMA) with 10% by weight of organic molecule at room temperature.
In a further embodiment of the invention, the organic molecules according to the invention have a "blue material index" (BMI), calculated by dividing the photoluminescence quantum yield (PLQY) in % by the CI Ey color coordinate of the emitted light, of more than 150, in particular more than 200, preferably more than 250, more preferably of more than 300 or even more than 500.
Orbital and excited state energies can be determined either by means of experimental methods or by calculations employing quantum-chemical methods, in particular density functional theory calculations. The energy of the highest occupied molecular orbital E" m is determined by methods known to the person skilled in the art from cyclic voltammetry measurements with an accuracy of 0.1 eV. The energy of the lowest unoccupied molecular orbital EI-um is determined as the onset of the absorption spectrum.
The onset of an absorption spectrum is determined by computing the intersection of the tangent to the absorption spectrum with the x-axis. The tangent to the absorption spectrum is set at the low-energy side of the absorption band and at the point at half maximum of the maximum intensity of the absorption spectrum.
The energy of the first excited triplet state Ti is determined from the onset of the emission spectrum at low temperature, typically at 77 K. For host compounds, where the first excited singlet state and the lowest triplet state are energetically separated by >
0.4 eV, the phosphorescence is usually visible in a steady-state spectrum in 2-Me-THF. The triplet energy can thus be determined as the onset of the phosphorescence spectrum. For TADF
emitter molecules, the energy of the first excited triplet state Ti is determined from the onset of the delayed emission spectrum at 77 K, if not otherwise stated measured in a film of PMMA with 10% by weight of emitter. Both for host and emitter compounds, the energy of the first excited singlet state Si is determined from the onset of the emission spectrum, if not otherwise stated measured in a film of PMMA with 10% by weight of host or emitter compound.
The onset of an emission spectrum is determined by computing the intersection of the tangent to the emission spectrum with the x-axis. The tangent to the emission spectrum is set at the high-energy side of the emission band and at the point at half maximum of the maximum intensity of the emission spectrum.
A further aspect of the invention relates to a process for preparing the organic molecules of the invention (with an optional subsequent reaction), wherein a tetra-R'-substituted 2-fluoro-benzonitrile is used as reactant:
coci RH
RH Br RH RH
RH 01 RH R" Br RH
CN F N ' N RI
RI F 1) SbC15, DCM, rt, 4h RI I RI
RI RI
2) NH3 aq. RI N
VI RI F RI
RI RI RI
RH
0õ0 HO _OH RH I RH
B B Rii or so RH

R13 R13 Ri4 Pd2(dpa)3, SPhos F N ' N RI
_________________________ VP- RI I I

RI
N
Toluene/water 10:1, K3PO4 RI RI F RI
RI RI
a RH
R
Da Rii Rii Ra 40 '' Ri 1 Ra Ra R12 Ra 0 Z 0 Ra Z Ra Rii N

Ra Ra . Ra N Ri4 H
Ra Ra Ra Ra N 'N RI
Cs2CO3 Ra RI I
_______________________ OP- RI
N
DMF, 150 C
RI RI RI
RI RI
Ra Ra Ra Ra * N fik Ra Z
Ra Ra Ra For the reaction of a nitrogen heterocycle in a nucleophilic aromatic substitution with an aryl halide, preferably an aryl fluoride, typical conditions include the use of a base, such as tribasic potassium phosphate for example, in an aprotic polar solvent, such as dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF), for example.
A further aspect of the invention relates to the use of an organic molecule according to the invention as a luminescent emitter or as an absorber, and/or as host material and/or as electron transport material, and/or as hole injection material, and/or as hole blocking material in an optoelectronic device.
The optoelectronic device may be understood in the broadest sense as any device based on organic materials that is suitable for emitting light in the visible or nearest ultraviolet (UV) range, i.e., in the range of a wavelength of from 380 to 800 nm. More preferably, the optoelectronic device may be able to emit light in the visible range, i.e., of from 400 to 800 nm.
In the context of such use, the optoelectronic device is more particularly selected from the group consisting of:
= organic light-emitting diodes (OLEDs), = light-emitting electrochemical cells, = OLED sensors, especially in gas and vapor sensors not hermetically externally shielded, = organic diodes, = organic solar cells, = organic transistors, = organic field-effect transistors, = organic lasers and = down-conversion elements.
A light-emitting electrochemical cell consists of three layers, namely a cathode, an anode, and an active layer, which contains the organic molecule according to the invention.
In a preferred embodiment in the context of such use, the optoelectronic device is a device selected from the group consisting of an organic light emitting diode (OLED), a light emitting electrochemical cell (LEO), an organic laser, and a light-emitting transistor.
In one embodiment, the light-emitting layer of an organic light-emitting diode comprises not only the organic molecules according to the invention but also a host material whose triplet (Ti) and singlet (Si) energy levels are energetically higher than the triplet (Ti) and singlet (Si) energy levels of the organic molecule.
A further aspect of the invention relates to a composition comprising or consisting of:
(a) the organic molecule of the invention, in particular in the form of an emitter and/or a host, and (b) one or more emitter and/or host materials, which differ from the organic molecule of the invention, and (c) optionally, one or more dyes and/or one or more solvents.
In a further embodiment of the invention, the composition has a photoluminescence quantum yield (PLQY) of more than 26 %, preferably more than 40 %, more preferably more than 60 %, even more preferably more than 80 % or even more than 90 % at room temperature.
Compositions with at least one further emitter One embodiment of the invention relates to a composition comprising or consisting of:
(i) 1-50 % by weight, preferably 5-40 % by weight, in particular 10-30 % by weight, of the organic molecule according to the invention;
(ii) 5-98 % by weight, preferably 30-93.9 % by weight, in particular 40-88%
by weight, of one host compound H;
(iii) 1-30 % by weight, in particular 1-20 % by weight, preferably 1-5 % by weight, of at least one further emitter molecule F with a structure differing from the structure of the molecules according to the invention; and (iv) optionally 0-94 % by weight, preferably 0.1-65 % by weight, in particular 1-50 % by weight, of at least one further host compound D with a structure differing from the structure of the molecules according to the invention; and (v) optionally 0-94 % by weight, preferably 0-65 % by weight, in particular 0-50 % by weight, of a solvent.
The components or the compositions are chosen such that the sum of the weight of the components add up to 100 %.
In a further embodiment of the invention, the composition has an emission peak in the visible or nearest ultraviolet range, i.e., in the range of a wavelength of from 380 to 800 nm.
In one embodiment of the invention, the at least one further emitter molecule F is a purely organic emitter.

In one embodiment of the invention, the at least one further emitter molecule F is a purely organic TADF emitter. Purely organic TADF emitters are known from the state of the art, e.g.
Wong and Zysman-Colman (õPurely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes", Adv. Mater. 2017 Jun;29(22)).
In one embodiment of the invention, the at least one further emitter molecule F is a fluorescence emitter, in particular a blue, a green or a red fluorescence emitter.
In a further embodiment of the invention, the composition, containing the at least one further emitter molecule F shows an emission peak in the visible or nearest ultraviolet range, i.e., in the range of a wavelength of from 380 to 800 nm, with a full width at half maximum of less than 0.30 eV, in particular less than 0.25 eV, preferably less than 0.22 eV, more preferably less than 0.19 eV or even less than 0.17 eV at room temperature, with a lower limit of 0.05 eV.
Composition wherein the at least one further emitter molecule F is a blue fluorescence emitter In one embodiment of the invention, the at least one further emitter molecule F is a fluorescence emitter, in particular a blue fluorescence emitter.
In one embodiment, the at least one further emitter molecule F is a blue fluorescence emitter selected from the following group:

Q
N "
-\
N
= Si N
N
N 41 Si *
N
N

___________ CC/ ______________ \
I
[-\ __ /
\ /
I
, 41 =

\/ 111 \ _____ ¨
*O / 0 *
.......... ¶ \ / o i iiklig NI w ... __ 0 0 _____________________ \ /
/
i \ ip W. = 0 *
. = 0 =
Q. . = wt *
= 0 air dik- = 0 .16.

, \/* 44 *
, * . S
.11- ' = *
'''' .... 0 O
. _ 0 *
. 4 *
= * . .

0 N I.
ill n C6H13 NLii mn IlL
C6H13 L.,-. u 101 6n13 n = 1, 2, 3, 4 C6H13111 m = 0, 1 N 0 C6H13 110 C6H13 C6H13C6H13 , ' C6H13 II* SI 101 C6Hm =* 40i n m t-61-113 * . 101 n . Att 11 ., c63 I N
*it ir 4.
, ..= c6,3 C6F1j.
L.6F113 I /
n N S
n m .'"*- 40 0 t lik MI

O 41, N II Oi 0,p/, _ 0 0 it II N
O-P
_i 6 N

P
P-N 6 o N N

N
Os P, 0- vo ,07 ) -P
0' \

Q
N-N 4* N ,N
/ \

N
1.1 N
0 I. N N ISI

le 01 Q
N N

* N N *

CN
0 *
\N
LjLN . p N
N
6 N ¨
* N

\
N
N
i N
N
6 N __ 1--( __ --E
n lik . n 40 C6H13 0 IktM.. C

n 11110 IWil 1 00 P 1 Pig I 40 I

C6H13 ail n C6Hi3C6H13 N 'C61-113 C61-113C61-113 . W. . n = 2, 3 n = 0, 1, 2, 3 C6H13 N

*C6 ik 404. *Ami n n = C6H13 I 410) ir C6H13 c Fip II. n _NJ
6 =-=6H13 \ /
n n CgH17 C8N117 \ IN
n N 411 n 0 C81W17 N\ I
n = 1, 2, 3, 4 N 41 N
0' C81-117C8H17 N
N
it n C8H17 11i CgH17 n N

* n N
Uo N N N
N N N
N N N
\ / / \
N N N
\ /

\ /
oo N
N N
/ \
N N
N N
9 N \
I / N
I
*
N \
N
N N

0 N \
N
b b N N
* 0 N 2 N

. YI ii P *
b b =

Q IN * = .
N = N 41 N

o = 40 Q , __ \
N il--- --N

*
* N * N, ' N . * 4N

N /
N
N
CS * * .
N ' 0 0 N, 4Ik I( 0 N
il-- -N -N
N C61113 %

= * C61113 * 41 N * * *
N C61113 a C61113 *
= * * N N
0 * ill B I.N, , N / 0"N
N
*
pl.__ NI NC CN
N \ 0 0 ;NI n 110 . 1113 C61113 n lei C61113C61113 N
= 11 N

N

III
=
c-3 P
2 =

N

q N
*
N ----\
N /
/
*
/ B
¨\
B*
* N
/ \
N --* \ NC
0 /¨ IP
N
¨\ / N Q N
N N
N --Q g N
* N is N-N 0 N * \N

/ \ I
o ab N
P0'N N gab 114N.
N S Q
/ N N
N

N ________________ N N
N

* C5 *

n C H
a 6 13 * n = 1,2, 3 e *
* C6H1306H13 06H13 *O. C6H13 n n C6H13 4i 06H13 e c6H13 c6H13 * 0 c6H1306H13 N
0 C6H13 n 06H13 n = 1, 2, 3 n In a certain embodiment, the one further emitter molecule F is a blue fluorescence emitter selected from the following group:
Q
N "
_ N
N

b SOO

S
N
-N
N
N
N
Composition wherein the at least one further emitter molecule F is a triplet-triplet annihilation (TTA) fluorescence emitter In one embodiment of the invention, the at least one further emitter molecule F is a triplet-triplet annihilation (TTA) emitter. In one embodiment, F is a blue TTA emitter selected from the following group:

\o CN
/ ___________________________ \
_ 2 w 4 i = i ic w 6 Cornposition wherein the at least one further emitter molecule F is a green fluorescence emitter In a further embodiment of the invention, the at least one further emitter molecule F is a fluorescence emitter, in particular a green fluorescence emitter.
In one embodiment, the at least one further emitter molecule F is a fluorescence emitter selected from the following group:

cA
N
,¨i o oo o oo ,¨i o el a, ,., . 0 a, /
dP d2=>= z 0 z *
z zq _z u_ \ , z z .
, = =
u) 0 0 2 0 CV
1 41 z pop.
"
, CV

CV Z Z .1.
d .,z Cy, r-oo o oo õ

, = (-u) 0 z , \z __________________________________________ 0 0.
, z z_ =
=

z ==z * z . z z * 0 0 0 b oo -- z z * 0 I
¨z oe ¨z 0 0 9 2 c7, _ e,z co z z el Z co ' z¨N
0 0 z¨ 0 z 0 6 * z 0 0 U 0 0* 0 z o N
N = 4111 N
N 1.I
0 0010.1110 0 N
N cfl . N N-N

it 101 N - N-C4H9 . N gi oN lip, AI
QN N ilk '.õ
N
S *
4 .1 1 rN
",. \
N i N N 0 0 , ,õ.
N "\
0 Si 1101 N-N
N N
is N

In a further embodiment of the invention, the composition has an emission peak in the visible or nearest ultraviolet range, i.e., in the range of a wavelength of from 380 to 800 nm, in particular between 485 nm and 590 nm, preferably between 505 nm and 565 nm, even more preferably between 515 nm and 545 nm.
Composition wherein the at least one further emitter molecule F is a red fluorescence emitter In a further embodiment of the invention, the at least one further emitter molecule F is a fluorescence emitter, in particular a red fluorescence emitter.
In one embodiment, the at least one further emitter molecule F is a fluorescence emitter selected from the following group:

NC CN NC CN NC CN

\
N N I\1 0 I NC CN

/ S
N N
/

/

N
I\1 HNC CN NC CN NC CN

N N
NC CN NNC CN

N

NC CN NC CN NC CN NC CN

---' ..-' ---' ----N
I

N N
C4E19-- 0 'C41-19 I I

* NC CN
* N 0 N0 N

----*
1 * 0 NC CN N CN
CN
CN

N
N CN
SONS S

CN
* * N
I N
/
N * /

. --... 0 / S
N-S
Q * N
/ µ
, N
S N * 04 oN *
I /
*

d' *
N
\ 0 iN

s ,...
II
0 = N
=
SOO NC CN

,I I

N
ir I 1 N N
NC CN
/

\

NC CN LI

/\
NC ON \ 0 1 \ 0 N
In a further embodiment of the invention, the composition has an emission peak in the visible or nearest ultraviolet range, i.e., in the range of a wavelength of from 380 to 800 nm, in particular between 590 nm and 690 nm, preferably between 610 nm and 665 nm, even more preferably between 620 nm and 640 nm.
Light-emitting layer EML
In one embodiment, the light-emitting layer EML of an organic light-emitting diode of the invention comprises (or essentially consists of) a composition comprising or consisting of:
(i) 1-50 % by weight, preferably 5-40 % by weight, in particular 10-30 % by weight, of one or more organic molecules according to the invention;
(ii) 5-99 % by weight, preferably 30-94.9 % by weight, in particular 40-89%
by weight, of at least one host compound H; and (iii) optionally 0-94 % by weight, preferably 0.1-65 % by weight, in particular 1-50 % by weight, of at least one further host compound D with a structure differing from the structure of the molecules according to the invention; and (iv) optionally 0-94 % by weight, preferably 0-65 % by weight, in particular 0-50 % by weight, of a solvent; and (v) optionally 0-30 % by weight, in particular 0-20 % by weight, preferably 0-5 % by weight, of at least one further emitter molecule F with a structure differing from the structure of the molecules according to the invention.
Preferably, energy can be transferred from the host compound H to the one or more organic molecules of the invention, in particular transferred from the first excited triplet state Ti (H) of the host compound H to the first excited triplet state Ti (E) of the one or more organic molecules according to the invention and/ or from the first excited singlet state S1(H) of the host compound H to the first excited singlet state S1(E) of the one or more organic molecules according to the invention.
In one embodiment, the host compound H has a highest occupied molecular orbital HOMO(H) having an energy E" m (H) in the range of from -5 eV to -6.5 eV and one organic molecule according to the invention E has a highest occupied molecular orbital HOMO(E) having an energy E"'(E), wherein EHomoot > EHomo(E).
In a further embodiment, the host compound H has a lowest unoccupied molecular orbital LUMO(H) having an energy ELum (H) and the one organic molecule according to the invention E has a lowest unoccupied molecular orbital LUMO(E) having an energy ELum (E), wherein ELumoot > ELumo(E).
Light-emitting layer EML comprising at least one further host compound D
In a further embodiment, the light-emitting layer EML of an organic light-emitting diode of the invention comprises (or essentially consists of) a composition comprising or consisting of:
(i) 1-50 % by weight, preferably 5-40 % by weight, in particular 10-30 % by weight, of one organic molecule according to the invention;
(ii) 5-99 % by weight, preferably 30-94.9 % by weight, in particular 40-89%
by weight, of one host compound H; and (iii) 0-94 % by weight, preferably 0.1-65 % by weight, in particular 1-50 %
by weight, of at least one further host compound D with a structure differing from the structure of the molecules according to the invention; and (iv) optionally 0-94 % by weight, preferably 0-65 % by weight, in particular 0-50 % by weight, of a solvent; and (v) optionally 0-30 % by weight, in particular 0-20 % by weight, preferably 0-5 % by weight, of at least one further emitter molecule F with a structure differing from the structure of the molecules according to the invention.

In one embodiment of the organic light-emitting diode of the invention, the host compound H
has a highest occupied molecular orbital HOMO(H) having an energy E" m (H) in the range of from -5 eV to -6.5 eV and the at least one further host compound D has a highest occupied molecular orbital HOMO(D) having an energy E"'(D), wherein EH m (H) >
EHomo(u,¨). The relation EH m (H) > EHom (D) favors an efficient hole transport.
In a further embodiment, the host compound H has a lowest unoccupied molecular orbital LUMO(H) having an energy ELum (H) and the at least one further host compound D
has a lowest unoccupied molecular orbital LUMO(D) having an energy ELum (D), wherein ELum (H) > ELumo(u,¨). The relation ELum (H) > ELum (D) favors an efficient electron transport.
In one embodiment of the organic light-emitting diode of the invention, the host compound H
has a highest occupied molecular orbital HOMO(H) having an energy EH m (H) and a lowest unoccupied molecular orbital LUMO(H) having an energy ELum (H), and the at least one further host compound D has a highest occupied molecular orbital HOMO(D) having an energy EH m (D) and a lowest unoccupied molecular orbital LUMO(D) having an energy ELum (D), the organic molecule E of the invention has a highest occupied molecular orbital HOMO(E) having an energy EH m (E) and a lowest unoccupied molecular orbital LUMO(E) having an energy ELum (E), wherein EHomo(H) > EHomo(D) and the difference between the energy level of the highest occupied molecular orbital HOMO(E) of organic molecule according to the invention (EH m (E)) and the energy level of the highest occupied molecular orbital HOMO(H) of the host compound H
(EHomo(,)) is between -0.5 eV and 0.5 eV, more preferably between -0.3 eV and 0.3 eV, even more preferably between -0.2 eV and 0.2 eV or even between -0.1 eV and 0.1 eV;
and ELumo(H) > ELumo(D) and the difference between the energy level of the lowest unoccupied molecular orbital LUMO(E) of organic molecule according to the invention (ELum (E)) and the lowest unoccupied molecular orbital LUMO(D) of the at least one further host compound D
(ELum (D)) is between -0.5 eV and 0.5 eV, more preferably between -0.3 eV and 0.3 eV, even more preferably between -0.2 eV and 0.2 eV or even between -0.1 eV and 0.1 eV.
Light-emitting layer EML comprising at least one further emitter molecule F
In a further embodiment, the light-emitting layer EML comprises (or (essentially) consists of) a composition comprising or consisting of:

(i) 1-50 % by weight, preferably 5-40 % by weight, in particular 10-30 % by weight, of one organic molecule according to the invention;
(ii) 5-98 % by weight, preferably 30-93.9 % by weight, in particular 40-88%
by weight, of one host compound H;
(iii) 1-30 % by weight, in particular 1-20 % by weight, preferably 1-5 % by weight, of at least one further emitter molecule F with a structure differing from the structure of the molecules according to the invention; and (iv) optionally 0-94 % by weight, preferably 0.1-65 % by weight, in particular 1-50 % by weight, of at least one further host compound D with a structure differing from the structure of the molecules according to the invention; and (v) optionally 0-94 % by weight, preferably 0-65 % by weight, in particular 0-50 % by weight, of a solvent.
In a further embodiment, the light-emitting layer EML comprises (or (essentially) consists of) a composition as described in Compositions with at least one further emitter, with the at least one further emitter molecule F as defined in Composition wherein the at least one further emitter molecule F is a blue fluorescence emitter.
In a further embodiment, the light-emitting layer EML comprises (or (essentially) consists of) a composition as described in Compositions with at least one further emitter, with the at least one further emitter molecule F as defined in Composition wherein the at least one further emitter molecule F is a triplet-triplet annihilation (TTA) fluorescence emitter.
In a further embodiment, the light-emitting layer EML comprises (or (essentially) consists of) a composition as described in Compositions with at least one further emitter, with the at least one further emitter molecule F as defined in Composition wherein the at least one further emitter molecule F is a green fluorescence emitter.
In a further embodiment, the light-emitting layer EML comprises (or (essentially) consists of) a composition as described in Compositions with at least one further emitter, with the at least one further emitter molecule F as defined in Composition wherein the at least one further emitter molecule F is a red fluorescence emitter.
In one embodiment of the light-emitting layer EML comprising at least one further emitter molecule F, energy can be transferred from the one or more organic molecules of the invention E to the at least one further emitter molecule F, in particular transferred from the first excited singlet state S1(E) of one or more organic molecules of the invention E to the first excited singlet state Si (F) of the at least one further emitter molecule F.
In one embodiment, the first excited singlet state S1(H) of one host compound H of the light-emitting layer is higher in energy than the first excited singlet state Si (E) of the one or more organic molecules of the invention E: S1(H) > S1(E), and the first excited singlet state S1(H) of one host compound H is higher in energy than the first excited singlet state Si (F) of the at least one emitter molecule F: S1(H) > S1(F).
In one embodiment, the first excited triplet state T1(H) of one host compound H is higher in energy than the first excited triplet state Ti (E) of the one or more organic molecules of the invention E: Ti (H) > Ti (E), and the first excited triplet state Ti (H) of one host compound H is higher in energy than the first excited triplet state Ti (F) of the at least one emitter molecule F:
T1 (H) > T1 (F).
In one embodiment, the first excited singlet state Si (E) of the one or more organic molecules of the invention E is higher in energy than the first excited singlet state Si (F) of the at least one emitter molecule F: S1(E) > S1(F).
In one embodiment, the first excited triplet state Ti (E) of the one or more organic molecules E
of the invention is higher in energy than the first excited singlet state Ti (F) of the at least one emitter molecule F: Ti (E) > Ti (F).
In one embodiment, the first excited triplet state Ti (E) of the one or more organic molecules E
of the invention is higher in energy than the first excited singlet state Ti (F) of the at least one emitter molecule F: T1 (E) > T1 (F), wherein the absolute value of the energy difference between T1(E) and T1(F) is larger than 0.3 eV, preferably larger than 0.4 eV, or even larger than 0.5 eV.
In one embodiment, the host compound H has a highest occupied molecular orbital HOMO(H) having an energy E" m (H) and a lowest unoccupied molecular orbital LUMO(H) having an energy Ewm (H), and the one organic molecule according to the invention E has a highest occupied molecular orbital HOMO(E) having an energy E" m (E) and a lowest unoccupied molecular orbital LUMO(E) having an energy Ewm (E), the at least one further emitter molecule F has a highest occupied molecular orbital HOMO(F) having an energy E" m (F) and a lowest unoccupied molecular orbital LUMO(E) having an energy Ewm (F), wherein EHomo(H) > EHomo(E) and the difference between the energy level of the highest occupied molecular orbital HOMO(F) of the at least one further emitter molecule (EH m (F)) and the energy level of the highest occupied molecular orbital HOMO(H) of the host compound H
(EHomo(,)) is between -0.5 eV and 0.5 eV, more preferably between -0.3 eV and 0.3 eV, even more preferably between -0.2 eV and 0.2 eV or even between -0.1 eV and 0.1 eV;
and ELumo(H) > ELumo(E) and the difference between the energy level of the lowest unoccupied molecular orbital LUMO(F) of the at least one further emitter molecule (E'(F)) and the lowest unoccupied molecular orbital LUMO(E) of the one organic molecule according to the invention (E'(E)) is between -0.5 eV and 0.5 eV, more preferably between -0.3 eV and 0.3 eV, even more preferably between -0.2 eV and 0.2 eV or even between -0.1 eV
and 0.1 eV.
Optoelectronic devices In a further aspect, the invention relates to an optoelectronic device comprising an organic molecule or a composition as described herein, more particularly in the form of a device selected from the group consisting of organic light-emitting diode (OLED), light-emitting electrochemical cell, OLED sensor, more particularly gas and vapour sensors not hermetically externally shielded, organic diode, organic solar cell, organic transistor, organic field-effect transistor, organic laser and down-conversion element.
In a preferred embodiment, the optoelectronic device is a device selected from the group consisting of an organic light emitting diode (OLED), a light emitting electrochemical cell (LEO), and a light-emitting transistor.
In one embodiment of the optoelectronic device of the invention, the organic molecule according to the invention is used as emission material in a light-emitting layer EML.
In one embodiment of the optoelectronic device of the invention, the light-emitting layer EML
consists of the composition according to the invention described herein.
When the optoelectronic device is an OLED, it may, for example, exhibit the following layer structure:
1. substrate 2. anode layer A
3. hole injection layer, HIL
4. hole transport layer, HTL
5. electron blocking layer, EBL
6. emitting layer, EML
7. hole blocking layer, HBL
8. electron transport layer, ETL
9. electron injection layer, EIL
10. cathode layer, wherein the OLED comprises each layer only optionally, different layers may be merged and the OLED may comprise more than one layer of each layer type defined above.
Furthermore, the optoelectronic device may optionally comprise one or more protective layers protecting the device from damaging exposure to harmful species in the environment including, exemplarily moisture, vapor and/or gases.
In one embodiment of the invention, the optoelectronic device is an OLED, which exhibits the following inverted layer structure:
1. substrate 2. cathode layer 3. electron injection layer, EIL
4. electron transport layer, ETL
5. hole blocking layer, HBL
6. emitting layer, B
7. electron blocking layer, EBL
8. hole transport layer, HTL
9. hole injection layer, HIL
10. anode layer A
wherein the OLED with an inverted layer structure comprises each layer only optionally, different layers may be merged and the OLED may comprise more than one layer of each layer types defined above.
In one embodiment of the invention, the optoelectronic device is an OLED, which may exhibit stacked architecture. In this architecture, contrary to the typical arrangement, where the OLEDs are placed side by side, the individual units are stacked on top of each other. Blended light may be generated with OLEDs exhibiting a stacked architecture, in particular white light may be generated by stacking blue, green and red OLEDs. Furthermore, the OLED
exhibiting a stacked architecture may optionally comprise a charge generation layer (CGL), which is typically located between two OLED subunits and typically consists of a n-doped and p-doped layer with the n-doped layer of one CGL being typically located closer to the anode layer.
In one embodiment of the invention, the optoelectronic device is an OLED, which comprises two or more emission layers between anode and cathode. In particular, this so-called tandem OLED comprises three emission layers, wherein one emission layer emits red light, one emission layer emits green light and one emission layer emits blue light, and optionally may comprise further layers such as charge generation layers, blocking or transporting layers between the individual emission layers. In a further embodiment, the emission layers are adjacently stacked. In a further embodiment, the tandem OLED comprises a charge generation layer between each two emission layers. In addition, adjacent emission layers or emission layers separated by a charge generation layer may be merged.
The substrate may be formed by any material or composition of materials. Most frequently, glass slides are used as substrates. Alternatively, thin metal layers (e.g., copper, gold, silver or aluminum films) or plastic films or slides may be used. This may allow a higher degree of flexibility. The anode layer A is mostly composed of materials allowing to obtain an (essentially) transparent film. As at least one of both electrodes should be (essentially) transparent in order to allow light emission from the OLED, either the anode layer A or the cathode layer C is transparent. Preferably, the anode layer A comprises a large content or even consists of transparent conductive oxides (TC0s). Such anode layer A may exemplarily comprise indium tin oxide, aluminum zinc oxide, fluorine doped tin oxide, indium zinc oxide, Pb0, SnO, zirconium oxide, molybdenum oxide, vanadium oxide, wolfram oxide, graphite, doped Si, doped Ge, doped GaAs, doped polyaniline, doped polypyrrol and/or doped polythiophene.
Preferably, the anode layer A (essentially) consists of indium tin oxide (ITO) (e.g., (In03)0.9(5n02)0.1). The roughness of the anode layer A caused by the transparent conductive oxides (TC0s) may be compensated by using a hole injection layer (HI L). Further, the HIL may facilitate the injection of quasi charge carriers (i.e., holes) in that the transport of the quasi charge carriers from the TOO to the hole transport layer (HTL) is facilitated. The hole injection layer (HIL) may comprise poly-3,4-ethylendioxy thiophene (PEDOT), polystyrene sulfonate (PSS), Mo02, V205, CuPC or Cul, in particular a mixture of PEDOT and PSS. The hole injection layer (HIL) may also prevent the diffusion of metals from the anode layer A into the hole transport layer (HTL). The HIL may exemplarily comprise PEDOT:PSS
(poly-3,4-ethylendioxy thiophene: polystyrene sulfonate), PEDOT (poly-3,4-ethylendioxy thiophene), mMTDATA (4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine), Spiro-TAD (2,2',7,7'-tetrakis(n,n-diphenylamino)-9,9'-spirobifluorene), DNTPD (N1,N11-(biphenyl-4,4'-diy1)bis(N1-phenyl-N4,N4-di-m-tolylbenzene-1,4-diamine), NPB (N,N1-nis-(1-naphthaleny1)-N,N1-bis-phenyl-(1,11-biphenyl)-4,4'-diamine), NPNPB (N,N1-diphenyl-N,N1-di-[4-(N,N-diphenyl-amino)phenyl]benzidine), Me0-TPD (N,N,N',N'-tetrakis(4-methoxyphenyl)benzidine), HAT-ON (1,4,5,8,9,11-hexaazatriphenylen-hexacarbonitrile) and/or Spiro-NPD (N,N'-diphenyl-N,N'-bis-(1-naphthyl)-9,9'-spirobifluorene-2,7-diamine).
Adjacent to the anode layer A or hole injection layer (HIL) typically a hole transport layer (HTL) is located. Herein, any hole transport compound may be used. Exemplarily, electron-rich heteroaromatic compounds such as triarylamines and/or carbazoles may be used as hole transport compound. The HTL may decrease the energy barrier between the anode layer A
and the light-emitting layer EML. The hole transport layer (HTL) may also be an electron blocking layer (EBL). Preferably, hole transport compounds bear comparably high energy levels of their triplet states Ti. Exemplarily the hole transport layer (HTL) may comprise a star-shaped heterocycle such as tris(4-carbazoy1-9-ylphenyl)amine (TCTA), poly-TPD
(poly(4-butylphenyl-diphenyl-amine)), [alpha]-NPD (poly(4-butylphenyl-diphenyl-amine)), TAPC (4,4'-cyclohexyliden-bis[N,N-bis(4-methylphenyl)benzenamine]), 2-TNATA (4,4',4"-tris[2-naphthyl(phenyl)amino]triphenylamine), Spiro-TAD, DNTPD, NPB, NPNPB, Me0-TPD, HAT-ON and/or TrisPcz (9,9'-dipheny1-6-(9-phenyl-9H-carbazol-3-y1)-9H,911-1-3,3'-bicarbazole). In addition, the HTL may comprise a p-doped layer, which may be composed of an inorganic or organic dopant in an organic hole-transporting matrix. Transition metal oxides such as vanadium oxide, molybdenum oxide or tungsten oxide may exemplarily be used as inorganic dopant. Tetrafluorotetracyanoquinodimethane (F4-TCNQ), copper-pentafluorobenzoate (Cu(l)pFBz) or transition metal complexes may exemplarily be used as organic dopant.
The EBL may exemplarily comprise mCP (1,3-bis(carbazol-9-yl)benzene), TCTA, 2-TNATA, mCBP (3,3-di(9H-carbazol-9-yl)biphenyl), tris-Pcz, CzSi (9-(4-tert-ButylphenyI)-3,6-bis(triphenylsily1)-9H-carbazole), and/or DOB (N,N'-dicarbazolyI-1,4-dimethylbenzene).
Adjacent to the hole transport layer (HTL), typically, the light-emitting layer EML is located. The light-emitting layer EML comprises at least one light emitting molecule.
Particular, the EML
comprises at least one light emitting molecule according to the invention.
Typically, the EML
additionally comprises one or more host material. Exemplarily, the host material is selected from CBP (4,4'-Bis-(N-carbazolyI)-biphenyl), mCP, mCBP 5if87 (dibenzo[b,d]thiophen-2-yltriphenylsilane), CzSi, 5if88 (dibenzo[b,d]thiophen-2-yl)diphenylsilane), DPEPO (bis[2-(diphenylphosphino)phenyl] ether oxide), 9[3-(dibenzofuran-2-yl)pheny1]-9H-carbazole, 943-(d ibenzofuran-2-yl)phenyI]-9 H-carbazole, 943-(d ibenzothiophen-2-yl)phenyI]-9 H-carbazole, 9[3,5-bis(2-dibenzofuranyl)pheny1]-9H-carbazole, 943,5-bis(2-dibenzothiophenyl)phenyl]-9H-carbazole, T2T (2,4,6-tris(bipheny1-3-y1)-1,3,5-triazine), T3T (2,4,6-tris(tripheny1-3-y1)-1,3,5-triazine) and/or TST (2,4,6-tris(9,9'-spirobifluorene-2-yI)-1,3,5-triazine).
The host material typically should be selected to exhibit first triplet (Ti) and first singlet (Si) energy levels, which are energetically higher than the first triplet (Ti) and first singlet (Si) energy levels of the organic molecule.
In one embodiment of the invention, the EML comprises a so-called mixed-host system with at least one hole-dominant host and one electron-dominant host. In a particular embodiment, the EML comprises exactly one light emitting molecule according to the invention and a mixed-host system comprising T2T as electron-dominant host and a host selected from CBP, mCP, mCBP, 943-(dibenzofuran-2-yl)pheny1]-9H-carbazole, 943-(dibenzofuran-2-yl)pheny1]-9H-carbazole, 943-(d ibenzothiophen-2-yl)phenyI]-9 H-carbazole, 9-[3,5-bis(2-dibenzofuranyl)pheny1]-9H-carbazole and -- 943,5-bis(2-dibenzothiophenyl)pheny1]-9H-carbazole as hole-dominant host. In a further embodiment the EML comprises 50-80 % by weight, preferably 60-75 % by weight of a host selected from CBP, mCP, mCBP, 9-[3-(dibenzofuran-2-yl)pheny1]-9H-carbazole, 943-(dibenzofuran-2-yl)pheny1]-9H-carbazole, 943-(d ibenzoth iophen-2-yl)phenyI]-9 H-carbazole, 943,5-bis(2-dibenzofuranyl)pheny1]-9H-carbazole and 9[3,5-bis(2-dibenzothiophenyl)pheny1]-9H-carbazole; 10-45 % by weight, preferably 15-30 % by weight of T2T and 5-40 % by weight, preferably 10-30 %
by weight of light emitting molecule according to the invention.
Adjacent to the light-emitting layer EML an electron transport layer (ETL) may be located.
Herein, any electron transporter may be used. Exemplarily, compounds poor of electrons such as, e.g., benzimidazoles, pyridines, triazoles, oxadiazoles (e.g., 1,3,4-oxadiazole), phosphinoxides and sulfone, may be used. An electron transporter may also be a star-shaped heterocycle such as 1,3,5-tri(1-pheny1-1H-benzo[d]imidazol-2-yl)phenyl (TP6i).
The ETL may comprise NBphen (2,9-bis(naphthalen-2-y1)-4,7-dipheny1-1,10-phenanthroline), Alq3 (Aluminum-tris(8-hydroxyquinoline)), TSPO1 (dipheny1-4-triphenylsilylphenyl-phosphinoxide), BPyTP2 (2,7-di(2,2'-bipyridin-5-yl)triphenyle), 5if87 (dibenzo[b,d]thiophen-2-yltriphenylsilane), 5if88 (dibenzo[b,d]thiophen-2-yl)diphenylsilane), BmPyPhB (1,3-bis[3,5-di(pyridin-3-yl)phenyl]benzene) and/or BTB (4,4'-bis42-(4,6-dipheny1-1,3,5-triaziny1)]-1,1'-biphenyl).
Optionally, the ETL may be doped with materials such as Liq. The electron transport layer (ETL) may also block holes or a holeblocking layer (HBL) is introduced.
The HBL may, for example, comprise BCP (2,9-dimethy1-4,7-dipheny1-1,10-phenanthroline =
Bathocuproine), BAlq (bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum), NBphen (2,9-bis(naphthalen-2-y1)-4,7-dipheny1-1,10-phenanthroline), Alq3 (Aluminum-tris(8-hydroxyquinoline)), TSPO1 (dipheny1-4-triphenylsilylphenyl-phosphinoxide), T2T
(2,4,6-tris(bipheny1-3-y1)-1,3,5-triazine), T3T (2,4,6-tris(tripheny1-3-y1)-1,3,5-triazine), TST (2,4,6-tris(9,9'-spirobifluorene-2-yI)-1,3,5-triazine), and/or TCB/TCP (1,3,5-tris(N-carbazolyl)benzol/
1,3,5-tris(carbazol)-9-y1) benzene).
A cathode layer C may be located adjacent to the electron transport layer (ETL). For example, the cathode layer C may comprise or may consist of a metal (e.g., Al, Au, Ag, Pt, Cu, Zn, Ni, Fe, Pb, LiF, Ca, Ba, Mg, In, W, or Pd) or a metal alloy. For practical reasons, the cathode layer may also consist of (essentially) non-transparent metals such as Mg, Ca or Al.
Alternatively or additionally, the cathode layer C may also comprise graphite and or carbon nanotubes (CNTs).
Alternatively, the cathode layer C may also consist of nanoscalic silver wires.
An OLED may further, optionally, comprise a protection layer between the electron transport layer (ETL) and the cathode layer C (which may be designated as electron injection layer (EIL)). This layer may comprise lithium fluoride, cesium fluoride, silver, Liq (8-hydroxyquinolinolatolithium), Li2O, BaF2, MgO and/or NaF.
Optionally, also the electron transport layer (ETL) and/or a hole blocking layer (HBL) may comprise one or more host compounds.
In order to modify the emission spectrum and/or the absorption spectrum of the light-emitting layer EML further, the light-emitting layer EML may further comprise one or more further emitter molecule F. Such an emitter molecule F may be any emitter molecule known in the art.
Preferably such an emitter molecule F is a molecule with a structure differing from the structure of the molecules according to the invention. The emitter molecule F may optionally be a TADF
emitter. Alternatively, the emitter molecule F may optionally be a fluorescent and/or phosphorescent emitter molecule which is able to shift the emission spectrum and/or the absorption spectrum of the light-emitting layer EML. Exemplarily, the triplet and/or singlet excitons may be transferred from the emitter molecule according to the invention to the emitter molecule F before relaxing to the ground state SO by emitting light typically red-shifted in comparison to the light emitted by emitter molecule E. Optionally, the emitter molecule F may also provoke two-photon effects (i.e., the absorption of two photons of half the energy of the absorption maximum).
Optionally, an optoelectronic device (e.g., an OLED) may exemplarily be an essentially white optoelectronic device. Exemplarily such white optoelectronic device may comprise at least one (deep) blue emitter molecule and one or more emitter molecules emitting green and/or red light. Then, there may also optionally be energy transmittance between two or more molecules as described above.
As used herein, if not defined more specifically in the particular context, the designation of the colors of emitted and/or absorbed light is as follows:
violet: wavelength range of >380-420 nm;
deep blue: wavelength range of >420-480 nm;
sky blue: wavelength range of >480-500 nm;
green: wavelength range of >500-560 nm;
yellow: wavelength range of >560-580 nm;
orange: wavelength range of >580-620 nm;
red: wavelength range of >620-800 nm.
With respect to emitter molecules, such colors refer to the emission maximum.
Therefore, exemplarily, a deep blue emitter has an emission maximum in the range of from >420 to 480 nm, a sky-blue emitter has an emission maximum in the range of from >480 to 500 nm, a green emitter has an emission maximum in a range of from >500 to 560 nm, a red emitter has an emission maximum in a range of from >620 to 800 nm.
A further embodiment of the present invention relates to an OLED, which emits light with ClEx and ClEy color coordinates close to the ClEx (= 0.131) and ClEy (= 0.046) color coordinates of the primary color blue (ClEx = 0.131 and ClEy = 0.046) as defined by ITU-R
Recommendation BT.2020 (Rec. 2020) and thus is suited for the use in Ultra High Definition (UHD) displays, e.g. UHD-TVs. In this context, the term "close to" refers to the ranges of ClEx and ClEy coordinates provided at the end of this paragraph. In commercial applications, typically top-emitting (top-electrode is transparent) devices are used, whereas test devices as described throughout the present application represent bottom-emitting devices (bottom-electrode and substrate are transparent). The ClEy color coordinate of a blue device can be reduced by up to a factor of two, when changing from a bottom- to a top-emitting device, while the ClEx remains nearly unchanged (Okinaka et al. doi:10.1002/sdtp.10480).
Accordingly, a further embodiment of the present invention relates to an OLED, whose emission exhibits a ClEx color coordinate of between 0.02 and 0.30, preferably between 0.03 and 0.25, more preferably between 0.05 and 0.20 or even more preferably between 0.08 and 0.18 or even between 0.10 and 0.15 and/ or a ClEy color coordinate of between 0.00 and 0.45, preferably between 0.01 and 0.30, more preferably between 0.02 and 0.20 or even more preferably between 0.03 and 0.15 or even between 0.04 and 0.10.

A further embodiment of the present invention relates to an OLED, which emits light with ClEx and ClEy color coordinates close to the ClEx (= 0.170) and ClEy (= 0.797) color coordinates of the primary color green (ClEx = 0.170 and ClEy = 0.797) as defined by ITU-R

Recommendation BT.2020 (Rec. 2020) and thus is suited for the use in Ultra High Definition (UHD) displays, e.g. UHD-TVs. In this context, the term "close to" refers to the ranges of ClEx and ClEy coordinates provided at the end of this paragraph. In commercial applications, typically top-emitting (top-electrode is transparent) devices are used, whereas test devices as used throughout the present application represent bottom-emitting devices (bottom-electrode and substrate are transparent). The ClEy color coordinate of a blue device can be reduced by up to a factor of two, when changing from a bottom- to a top-emitting device, while the ClEx remains nearly unchanged (Okinaka et al. doi:10.1002/sdtp.10480). Accordingly, a further aspect of the present invention relates to an OLED, whose emission exhibits a ClEx color coordinate of between 0.06 and 0.34, preferably between 0.07 and 0.29, more preferably between 0.09 and 0.24 or even more preferably between 0.12 and 0.22 or even between 0.14 and 0.19 and/ or a ClEy color coordinate of between 0.75 and 1.20, preferably between 0.76 and 1.05, more preferably between 0.77 and 0.95 or even more preferably between 0.78 and 0.90 or even between 0.79 and 0.85.
A further embodiment of the present invention relates to an OLED, which emits light with ClEx and ClEy color coordinates close to the ClEx (= 0.708) and ClEy (= 0.292) color coordinates of the primary color red (ClEx = 0.708 and ClEy = 0.292) as defined by ITU-R
Recommendation BT.2020 (Rec. 2020) and thus is suited for the use in Ultra High Definition (UHD) displays, e.g. UHD-TVs. In this context, the term "close to" refers to the ranges of ClEx and ClEy coordinates provided at the end of this paragraph. In commercial applications, typically top-emitting (top-electrode is transparent) devices are used, whereas test devices as used throughout the present application represent bottom-emitting devices (bottom-electrode and substrate are transparent). The ClEy color coordinate of a blue device can be reduced by up to a factor of two, when changing from a bottom- to a top-emitting device, while the ClEx remains nearly unchanged (Okinaka et al. doi:10.1002/sdtp.10480). Accordingly, a further aspect of the present invention relates to an OLED, whose emission exhibits a ClEx color coordinate of between 0.60 and 0.88, preferably between 0.61 and 0.83, more preferably between 0.63 and 0.78 or even more preferably between 0.66 and 0.76 or even between 0.68 and 0.73 and/ or a ClEy color coordinate of between 0.25 and 0.70, preferably between 0.26 and 0.55, more preferably between 0.27 and 0.45 or even more preferably between 0.28 and 0.40 or even between 0.29 and 0.35.
Accordingly, a further aspect of the present invention relates to an OLED, which exhibits an external quantum efficiency at 1000 cd/m2 of more than 8%, more preferably of more than 10%, more preferably of more than 13%, even more preferably of more than 15%
or even more than 20% and/or exhibits an emission maximum between 420 nm and 500 nm, preferably between 430 nm and 490 nm, more preferably between 440 nm and 480 nm, even more preferably between 450 nm and 470 nm and/or exhibits a LT80 value at 500 cd/m2 of more than 100 h, preferably more than 200 h, more preferably more than 400 h, even more preferably more than 750 h or even more than 1000 h.
The optoelectronic device, in particular the OLED according to the present invention can be produced by any means of vapor deposition and/ or liquid processing.
Accordingly, at least one layer is - prepared by means of a sublimation process, - prepared by means of an organic vapor phase deposition process, - prepared by means of a carrier gas sublimation process, - solution processed or printed.
The methods used to produce the optoelectronic device, in particular the OLED
according to the present invention are known in the art. The different layers are individually and successively deposited on a suitable substrate by means of subsequent deposition processes.
The individual layers may be deposited using the same or differing deposition methods.
Vapor deposition processes exemplarily comprise thermal (co)evaporation, chemical vapor deposition and physical vapor deposition. For active matrix OLED display, an AMOLED
backplane is used as substrate. The individual layer may be processed from solutions or dispersions employing adequate solvents. Solution deposition process exemplarily comprise spin coating, dip coating and jet printing. Liquid processing may optionally be carried out in an inert atmosphere (e.g., in a nitrogen atmosphere) and the solvent may optionally be completely or partially removed by means known in the state of the art.

Examples General synthesis scheme I
coci RH
RH Br RH RH
RH 0 RH RH Br RH
CN F N ' N RI
RI F 1) SbC15, DCM, rt, 4 h RI I RI
2) NH3 aq. N
RI RI RI RI F RI
RI RI RI
RH
0õ0 HO _OH RH RH
B B RáCJ
ii R11 R15 R11 so R15 Ri5 Ri3 Riz or RI, Pd2(dpa)3, SPhos F N ' N RI
_________________________ VP- RI I RI
N
Toluene/water 10:1, K3PO4 RI RI F RI
RI RI
RH
Ra Da Rii Rii Ri 1 Ra 010 '' Ra Ra Ri2 Ra 0 Z 0 Ra Z Ra Rii Ra N Ra Ra . R14 H
Ra Ra Ra Ra N ' N RI
Cs2CO3 Ra RI I
N RI
DMF, 150 C
RI RI RI
RI RI
Ra Ra Ra Ra * N fik Ra Z
Ra Ra Ra General procedure for synthesis AAV1:
COCI
0 Br CN Br 0 F 1) SbC15, DCM, it, 4 h F N N
2) NH3 aq.
Ili- I

El F

2-Fluorobenzonitrile (2.00 equivalents) and 2-bromobenzoyl chloride (1.00 equivalents) are dissolved in dichloromethane and cooled in an ice-bath. Antimony(V)-chloride (1.00 equivalents) is added dropwise to the solution and the mixture is stirred at room temperature (rt) for 1 hour and subsequently at 45 C for 6 hours. The product is filtered and washed with dichloromethane.
The dried solid is added to a cooled 25%-ammonia solution (0 ¨ 5 C) and stirred overnight at rt. The mixture is filtered. The collected solid is washed with water. The solid is added to DMF and stirred at 155 C for 30 min. The insoluble solid was separated by hot filtration. Pure water was added to the hot DMF-solution to precipitate the product. The solid product was separated by filtration.
General procedure for synthesis AAV2:
COCI

Br F N N Pd2(dpa)3, SPhos F -- N -- N
40/ N 40 Toluene/water 10:1, K3PO4 . N 40 El F ZI F
El (1 equivalent), phenylboronic acid (1.5 equivalents), potassium phosphate tribasic (4 equivalents) and the catalyst-system are suspended under nitrogen atmosphere in toluene / water (10:1) and stirred at 110 C for 24 h. After chilling to rt the reaction mixture is poured into water and extracted with DCM. The organic layer was washed with water, dried with Na2SO4 and filtrated. Solvents were removed and the product was purified with a filtercolumn.
General procedure for synthesis AAV3:
Ra Ra Ra Ra 40 Ra Ra 0 z 0 Ra Z
Ra Ra Ra N Ra * N
H N \ N
Ra Ra Ra 1 , CS2CO3 Ra I.

Ra N- I.
F N N _____________ lb- Ra /

zi F DMF, 150 C Ra a Ra * N R
. Ra Z
Ra Ra Ra Zi (1 equivalent each), the corresponding donor molecule D-H (2.0 0 equivalents) and cesium carbonate (6.00 equivalents) are suspended under nitrogen atmosphere in DMF
and stirred at 150 C (7 days). After chilling to rt the reaction mixture is poured into water in order to precipitate the organics. The precipitate is filtered off (fiber glass filter) and subsequently washed with water.
In particular, the donor molecule D-H is a 3,6-substituted carbazole (e.g., 3,6-dimethylcarbazole, 3,6-diphenylcarbazole, 3,6-di-tert-butylcarbazole), a 2,7-substituted carbazole (e.g., 2,7-dimethylcarbazole, 2,7-diphenylcarbazole, 2,7-di-tert-butylcarbazole), a 1,8-substituted carbazole (e.g., 1,8-dimethylcarbazole, 1,8-diphenylcarbazole, 1,8-di-tert-butylcarbazole), a 1-substituted carbazole (e.g., 1-methylcarbazole, 1-phenylcarbazole, 1-tert-butylcarbazole), a 2-substituted carbazole (e.g., 2-methylcarbazole, 2-phenylcarbazole, 2-tert-butylcarbazole), or a 3-substituted carbazole (e.g., 3-methylcarbazole, 3-phenylcarbazole, 3-tert-butylcarbazole).
Exemplarily a halogen-substituted carbazole, particularly 3-bromocarbazole, can be used as D-H.
In a subsequent reaction a boronic acid ester functional group or boronic acid functional group may be exemplarily introduced at the position of the one or more halogen substituents, which was introduced via D-H, to yield the corresponding carbazol-3-ylboronic acid ester or carbazol-3-ylboronic acid, e.g., via the reaction with bis(pinacolato)diboron (CAS No.
73183-34-3).
Subsequently, one or more substituents Ra may be introduced in place of the boronic acid ester group or the boronic acid group via a coupling reaction with the corresponding halogenated reactant Ra-Hal, preferably Ra-CI and Ra-Br.
Alternatively, one or more substituents Ra may be introduced at the position of the one or more halogen substituents, which was introduced via D-H, via the reaction with a boronic acid of the substituent Ra [Ra-B(OH)2] or a corresponding boronic acid ester.
HPLC-MS:
HPLC-MS spectroscopy is performed on a HPLC by Agilent (1100 series) with MS-detector (Thermo LTQ XL). A reverse phase column 4,6mm x 150mm, particle size 5,0 pm from Waters (without pre-column) is used in the HPLC. The HPLC-MS measurements are performed at room temperature (rt) with the solvents acetonitrile, water and THF in the following concentrations:
solvent A: H20 (90%) MeCN (10%) solvent B: H20 (10%) MeCN (90%) solvent C: THF (100%) From a solution with a concentration of 0.5mg/m1 an injection volume of 15 pL
is taken for the measurements. The following gradient is used:

Flow rate [ml/min] time [min] A[%] B[%] D[%]

3 16.01 40 50 10 Ionisation of the probe is performed by APCI (atmospheric pressure chemical ionization).
Cyclic voltammetty Cyclic voltammograms are measured from solutions having concentration of 10-3 mo1/1 of the organic molecules in dichloromethane or a suitable solvent and a suitable supporting electrolyte (e.g. 0.1 mo1/1 of tetrabutylammonium hexafluorophosphate). The measurements are conducted at room temperature under nitrogen atmosphere with a three-electrode assembly (Working and counter electrodes: Pt wire, reference electrode: Pt wire) and calibrated using FeCp2/FeCp2+ as internal standard. The HOMO data was corrected using ferrocene as internal standard against a saturated calomel electrode (SCE).
Density functional theory calculation Molecular structures are optimized employing the BP86 functional and the resolution of identity approach (RI). Excitation energies are calculated using the (BP86) optimized structures employing Time-Dependent DFT (TD-DFT) methods. Orbital and excited state energies are calculated with the B3LYP functional. Def2-SVP basis sets (and a m4-grid for numerical integration are used. The Turbomole program package is used for all calculations.
Photophysical measurements Sample pretreatment: Spin-coating Apparatus: Spin150, SPS euro.
The sample concentration is 10 mg/ml, dissolved in a suitable solvent.
Program: 1) 3s at 400 U/min; 20s at 1000 U/min at 1000 Upm/s. 3) 10 s at 4000 U/min at 1000 Upm/s. After coating, the films are tried at 70 C for 1 min.
Photoluminescence spectroscopy and TCSPC (Time-correlated single-photon counting) Steady-state emission spectroscopy is measured by a Horiba Scientific, Modell FluoroMax-4 equipped with a 150 W Xenon-Arc lamp, excitation- and emissions monochromators and a Hamamatsu R928 photomultiplier and a time-correlated single-photon counting option.
Emissions and excitation spectra are corrected using standard correction fits.

Excited state lifetimes are determined employing the same system using the TCSPC method with FM-2013 equipment and a Horiba Yvon TCSPC hub.
Excitation sources:
NanoLED 370 (wavelength: 371 nm, puls duration: 1,1 ns) NanoLED 290 (wavelength: 294 nm, puls duration: <1 ns) SpectraLED 310 (wavelength: 314 nm) SpectraLED 355 (wavelength: 355 nm).
Data analysis (exponential fit) is done using the software suite DataStation and DAS6 analysis software. The fit is specified using the chi-squared-test.
Photoluminescence quantum yield measurements For photoluminescence quantum yield (PLQY) measurements an Absolute PL Quantum Yield Measurement C9920-03G system (Hamamatsu Photonics) is used. Quantum yields and CIE
coordinates are determined using the software U6039-05 version 3.6Ø
Emission maxima are given in nm, quantum yields (I) in `)/0 and CIE
coordinates as x,y values.
PLQY is determined using the following protocol:
1) Quality assurance: Anthracene in ethanol (known concentration) is used as reference 2) Excitation wavelength: the absorption maximum of the organic molecule is determined and the molecule is excited using this wavelength 3) Measurement Quantum yields are measured for sample of solutions or films under nitrogen atmosphere. The yield is calculated using the equation:
A
"
nphoton, emited f ¨ [int7,t p hc e m t el e sample d (A) ¨ Int aõ07- b ed (A)1dA
OPL =
nphoton, absorbed A
[intreference nC emitted ) Intreference 1 absorbed (A)idA
wherein nphoton denotes the photon count and Int. the intensity.
Production and characterization of optoelectronic devices OLED devices comprising organic molecules according to the invention can be produced via vacuum-deposition methods. If a layer contains more than one compound, the weight-percentage of one or more compounds is given in %. The total weight-percentage values amount to 100 %, thus if a value is not given, the fraction of this compound equals to the difference between the given values and 100%.
The not fully optimized OLEDs are characterized using standard methods and measuring electroluminescence spectra, the external quantum efficiency (in %) in dependency on the intensity, calculated using the light detected by the photodiode, and the current. The OLED
device lifetime is extracted from the change of the luminance during operation at constant current density. The LT50 value corresponds to the time, where the measured luminance decreased to 50 % of the initial luminance, analogously LT80 corresponds to the time point, at which the measured luminance decreased to 80 % of the initial luminance, LT 95 to the time point, at which the measured luminance decreased to 95 % of the initial luminance etc.
Accelerated lifetime measurements are performed (e.g. applying increased current densities).
Exemplarily LT80 values at 500 cd/m2 are determined using the following equation:
cd2 ( 1.6 Lo LT80 (500 ¨2) = LT80(4) _________________________ 2 in cd \ 500 j wherein Lo denotes the initial luminance at the applied current density.
The values correspond to the average of several pixels (typically two to eight), the standard deviation between these pixels is given.

Additional Examples of Organic Molecules of the Invention -- N
N N "N N
I
N -- N \ N/ .

N I N
N .
N
N

N ".. N = i .
N I
N

N
N
40 4.
*
N N
/ \
- N NNN
N\ /
N IIP N
N
N
N
N
Ph 101\10 ilt N Ili N
11 N \ i N
N I
N N N
P h N
N
N ' N
N

Ph --- N N NC
N ,- N ' N
N N
1 / . Ph I N N I N N-... N r Ph N
* Ph Ph Ph Ph N
N
Ph *
NC
CN CN
N
N -- N
' N 1 z *
N I N
Nr N 411 NC N
,-NC I N N
N-. N * NC CN
N

CN CN

N
NC NC
*

N
NS
,-N I
* *
N , N N N

N / N
" I
Ils,, N N
QN
N
N Ph 110 0 CF3 Ph CF3 N
*
N
N N ==== N
I /
* N
N
N * N
* N
N

NN
N\1' N

I N N I
, N
*

, N I
N N
-N
*
N
\ /
N
N
N

, N I
, N I

N N
N N
CF3 * N
* CN
N NC
/ \

- N
NC CN
N

I N NC CN
N , N

N
* / N
N \
-N
CN

CN CN
rc * = #
N
N N
\
* CN
*
N

N . CN
I
* N

N N * CN
N*
CN
* *
CN
CN NC N

CN CN
N-#
N

1 * 1110 CN
NC = N N
* CN
N
0 *

NC CN NC
NC
CN NC
* CN
NC N
N
N ' N

*
N NC
" / N N N . N

CN--Si CN
N /
\
N
CN
N
*
N
NC C
NC
CN
NC N
CN

N CN N ' N

N N N
CN NC
NC N
. )--CN
CN

N ' N
l\r 0 441 \ N
/ N * 0 N N
N

---N I
N ... N
*
N._ \ N 40 N /
N =
N
N *
NLN
I
1\r N ' N
#N
I N
0 0 l\r NO* *
* *
* * N
N
N * N-\
= / N N
\ N
N
...- N

N

NC Ph CN )/-N
N \
NC )=1\I
CN
Ph N N \ N
/
NC N * N
N
CN
N ".= N N *
I

-Ph -N
(N---- N
CN * N)_N /)-Ph Ph--\\ N Ph NC
N /
N Ph N N
N ----N Ph \
-N N N N
\r-N N N II
)\--I\?---- NI\r Ni ----N \ _N
N
*
N /
N- \
Ph * / N
N \
0 ) N N
N \ N * N
Ph I

N N N
N -- N
Ph N 'Ph _N
N ---*
-N
N N
\ / * N
N N

N
CF3. / \ N
N- N
* N
N I
N ,N

Claims (15)

Claims
1. Organic molecule, comprising - one first chemical moiety comprising a structure of Formula I, and - two second chemical moiety comprising a structure of Formula II, wherein the first chemical moiety is linked to the second chemical moiety via a single bond;
wherein # represents the binding site of the first chemical moiety to the second chemical moiety;
W represents the single bond linking the first chemical moiety to one of the two second chemical moieties;
Z is at each occurrence independently from another selected from the group consisting of a direct bond, CR3R4, C=CR3R4, C=O, C=NR3, NR3, O, SiR3R4, S, S(O) and S(O)2;
R1 is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, C1-C5-alkyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
C2-C8-alkenyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
C2-C8-alkynyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
and C6-C18-aryl;
R11 is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, C1-C5-alkyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
C2-C8-alkenyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
C2-C8-alkynyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
and C6-C18-aryl;
R11, R12, R13, R14 and R15 is at each occurrence independently from another selected from the group consisting of hydrogen, deuterium, CN, CF3, phenyl, C1-C5-alkyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
C2-C8-alkenyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
C2-C8-alkynyl, wherein one or more hydrogen atoms are optionally substituted by deuterium;
and C6-C18-aryl;
Ra, R3 and R4 is at each occurrence independently from another selected from the group consisting of: hydrogen, deuterium, N(R5)2, OR5, Si(R5)3, B(OR5)2, OSO2R5, CF3, CN, F, Br, l, C1-C40-alkyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C1-C40-alkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C1-C40-thioalkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C2-C40-alkenyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C2-C40-alkynyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C6-C60-aryl, which is optionally substituted with one or more substituents R5; and C3-C57-heteroaryl, which is optionally substituted with one or more substituents R5;
R5 is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, N(R6)2, OR6, Si(R6)3, B(OR6)2, OSO2R6, CF3, CN, F, Br, l, C1-C40-alkyl, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, C.ident.C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S or CONR6;
C1-C40-alkoxy, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, C.ident.C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S or CONR6;
C1-C40-thioalkoxy, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, C.ident.C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S or CONR6;
C2-C40-alkenyl, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, C.ident.C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S or CONR6;
C2-C40-alkynyl, which is optionally substituted with one or more substituents R6 and wherein one or more non-adjacent CH2-groups are optionally substituted by R6C=CR6, C.ident.C, Si(R6)2, Ge(R6)2, Sn(R6)2, C=O, C=S, C=Se, C=NR6, P(=O)(R6), SO, SO2, NR6, O, S or CONR6;
C6-C60-aryl, which is optionally substituted with one or more substituents R6; and C3-C57-heteroaryl, which is optionally substituted with one or more substituents R6;
R6 is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, OPh, CF3, CN, F, C1-C5-alkyl, wherein one or more hydrogen atoms are optionally, independently from each other substituted by deuterium, CN, CF3, or F;
C1-C5-alkoxy, wherein one or more hydrogen atoms are optionally, independently from each other substituted by deuterium, CN, CF3, or F;
C1-C5-thioalkoxy, wherein one or more hydrogen atoms are optionally, independently from each other substituted by deuterium, CN, CF3, or F;
C2-C5-alkenyl, wherein one or more hydrogen atoms are optionally, independently from each other substituted by deuterium, CN, CF3, or F;
C2-C5-alkynyl, wherein one or more hydrogen atoms are optionally, independently from each other substituted by deuterium, CN, CF3, or F;
C6-C18-aryl, which is optionally substituted with one or more C1-C5-alkyl substituents ;

C3-C17-heteroaryl, which is optionally substituted with one or more C1-C5-alkyl substituents ;
N(C6-C18-aryl)2;
N(C3-C17-heteroaryl)2, and N(C3-C17-heteroaryl)(C6-C18-aryl);
wherein the substituents R a, R3, R4 or R5 independently from each other optionally form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system with one or more substituents R a, R3, R4 or R5;
2. The organic molecule according to claim 1, wherein R I and R II is at each occurrence independently from another selected from the group consisting of H, methyl and phenyl.
3. The organic molecule according to claim 1 or 2, wherein R11, R12, R13, R14, R15 is at each occurrence independently from each other selected from the group consisting of H, methyl and phenyl.
4. The organic molecule according to one or more of claims 1 to 3, wherein the second chemical moiety comprises a structure of Formula IIa:
wherein # and R a are defined as in claim 1.
5. The organic molecule according to one or more of claims 1 to 4, wherein the second chemical moiety comprises a structure of Formula IIb:
wherein R b is at each occurrence independently from another selected from the group consisting of hydrogen, deuterium, N(R5)2, OR5, Si(R5)3, B(OR5)2, OSO2R5, CF3, CN, F, Br, l, C1-C40-alkyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C1-C40-alkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C1-C40-thioalkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C2-C40-alkenyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C2-C40-alkynyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C6-C60-aryl, which is optionally substituted with one or more substituents R5; and C3-C57-heteroaryl, which is optionally substituted with one or more substituents R5;
and wherein apart from that the definitions in claim 1 apply.
6. The organic molecule according to one or more of claims 1 to 4, wherein the second chemical moiety comprises a structure of Formula IIc:

wherein R b is at each occurrence independently from another selected from the group consisting of:
hydrogen, deuterium, N(R5)2, OR5, Si(R5)3, B(OR5)2, OSO2R5, CF3, CN, F, Br, l, C1-C40-alkyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C1-C40-alkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C1-C40-thioalkoxy, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C2-C40-alkenyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C2-C40-alkynyl, which is optionally substituted with one or more substituents R5 and wherein one or more non-adjacent CH2-groups are optionally substituted by R5C=CR5, C.ident.C, Si(R5)2, Ge(R5)2, Sn(R5)2, C=O, C=S, C=Se, C=NR5, P(=O)(R5), SO, SO2, NR5, O, S or CONR5;
C6-C60-aryl, which is optionally substituted with one or more substituents R5; and C3-C57-heteroaryl, which is optionally substituted with one or more substituents R5;

and wherein apart from that the definitions in claim 1 apply.
7. The organic molecule according to claim 5 or 6, wherein R b is at each occurrence independently from another selected from the group consisting of:
- Me, iPr, Su, CN, CF3, - Ph, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, iPr, Su, CN, CF3 and Ph;
- pyridinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, iPr, Su, CN, CF3 and Ph;
- pyrimidinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, iPr, Su, CN, CF3 and Ph;
- carbazolyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, iPr, Su, CN, CF3 and Ph;
- triazinyl, which is optionally substituted with one or more substituents independently from each other selected from the group consisting of Me, iPr, Su, CN, CF3, and Ph;
and - N(Ph)2.
8. A method for preparing an organic molecule according to one or more of claims 1 to 7, wherein a tetra-R I-substituted 2-fluoro-benzonitrile is used as reactant.
9. Use of molecule according to one or more of claims 1 to 8 as luminescent emitter and/or a host material and/or an electron transport material and/or a hole injection material and/or a hole blocking material in an optoelectronic device.
10. The use according to claim 9, wherein the optoelectronic device is selected from the group consisting of:
.cndot. organic light-emitting diodes (OLEDS), .cndot. light-emitting electrochemical cells, .cndot. OLED-sensors, .cndot. organic diodes, .cndot. organic solar cells, .cndot. organic transistors, .cndot. organic field-effect transistors, .cndot. organic lasers, and .cndot. down-conversion elements.
11. Composition, comprising:
(a) at least one organic molecule according to one or more of claims 1 to 8, in particular in the form of an emitter and/or a host, and (b) one or more emitter and/or host materials, which differ from the organic molecule of one or more of claims 1 to 8 and (c) optional one or more dyes and/or one or more solvents.
12. The composition according to claim 11, comprising:
(i) 1-50 % by weight, preferably 5-40 % by weight, in particular 10-30 % by weight, of one organic molecule according to the invention;
(ii) 5-98 % by weight, preferably 30-93.9 % by weight, in particular 40-88%
by weight, of one host compound H;
(iii) 1-30 % by weight, in particular 1-20 % by weight, preferably 1-5 % by weight, of at least one further emitter molecule F with a structure differing from the structure of the molecules according to the invention; and (iv) optionally 0-94 % by weight, preferably 0.1-65 % by weight, in particular 1-50 % by weight, of at least one further host compound D with a structure differing from the structure of the molecules according to the invention; and (v) optionally 0-94 % by weight, preferably 0-65 % by weight, in particular 0-50 % by weight, of a solvent.
13. Optoelectronic device, comprising an organic molecule according to one or more of claims 1 to 7 or a composition according to claim 11 or claim 12, in particular in form of a device selected from the group consisting of organic light-emitting diode (OLED), light-emitting electrochemical cell OLED-sensor, organic diode, organic solar cell, organic transistor, organic field-effect transistor, organic laser, and down-conversion element.
14. The optoelectronic device according to claim 13, comprising - a substrate, - an anode, and - a cathode, wherein the anode or the cathode are disposed on the substrate, and - at least one light-emitting layer, which is arranged between the anode and the cathode and which comprises an organic molecule according to claims 1 to 7 or a composition according to claim 11 or claim 12.
15. Method for producing an optoelectronic device, wherein an organic molecule according to any one of claims 1 to 7 or a composition according to claim 10 or claim 11 is used, in particular comprising the processing of the organic molecule using a vacuum evaporation method or from a solution.
CA3080875A 2017-11-03 2018-11-05 Organic molecules for use in optoelectronic devices Pending CA3080875A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017125765 2017-11-03
DE102017125765.9 2017-11-03
PCT/EP2018/080179 WO2019086668A1 (en) 2017-11-03 2018-11-05 Organic molecules for use in optoelectronic devices

Publications (1)

Publication Number Publication Date
CA3080875A1 true CA3080875A1 (en) 2019-05-09

Family

ID=64500322

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3080875A Pending CA3080875A1 (en) 2017-11-03 2018-11-05 Organic molecules for use in optoelectronic devices

Country Status (2)

Country Link
CA (1) CA3080875A1 (en)
WO (1) WO2019086668A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023534515A (en) * 2020-07-24 2023-08-09 三星ディスプレイ株式會社 Organic molecules for optoelectronic devices
KR20240041853A (en) * 2022-09-23 2024-04-01 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101749943B1 (en) * 2014-11-19 2017-07-03 (주)경인양행 An organoelectro luminescent compounds and organoelectro luminescent device using the same
CN107667102B (en) * 2015-03-27 2021-10-22 辛诺拉有限公司 Ortho-substituted thermally activated delayed fluorescence material and organic light emitting device including the same
KR101956425B1 (en) * 2016-03-25 2019-03-11 단국대학교 산학협력단 TADF Material and OLED Having the Same

Also Published As

Publication number Publication date
WO2019086668A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
EP3483156B1 (en) Organic molecues for use in optoelectronic devices
EP4004006A1 (en) Organic molecules for optoelectronic devices
EP3837255B1 (en) Organic molecules for optoelectronic devices
WO2019101746A1 (en) Organic molecules for use in optoelectronic devices
EP3697782B1 (en) Organic molecules for use in optoelectronic devices
WO2019175160A1 (en) Organic molecules for optoelectronic devices
EP3759193A1 (en) Organic molecules for optoelectronic devices
WO2019073075A1 (en) Organic molecules for use in optoelectronic devices
EP3688116A1 (en) Organic molecules, in particular for use in optoelectronic devices
WO2018229053A1 (en) Organic molecule, in particular for use in optoelectronic devices
CA3080875A1 (en) Organic molecules for use in optoelectronic devices
WO2019072617A1 (en) Organic molecules, in particular for use in optoelectronic devices
WO2019038448A1 (en) Organic triazine containing molecules, in particular for use in optoelectronic devices
WO2018189356A1 (en) Organic molecules, in particular for use in optoelectronic devices
WO2019001838A1 (en) Organic molecules, in particular for use in optoelectronic devices
WO2020035365A1 (en) Organic molecules for optoelectronic devices
WO2019238471A1 (en) Organic molecules for optoelectronic devices
WO2019086670A1 (en) Organic molecules for use in optoelectronic devices
WO2019106109A1 (en) Organic molecules for use in optoelectronic devices
WO2019038376A1 (en) Organic molecules, in particular for use in optoelectronic devices
EP3613744B1 (en) Organic molecules for optoelectronic devices
WO2022079182A1 (en) Organic molecules for optoelectronic devices
WO2020043483A1 (en) Organic molecules for optoelectronic devices
WO2019115447A1 (en) Organic molecules with a trifluoromethyl-biphenyl core for use in optoelectronic devices
EP3781559A1 (en) Organic molecules for optoelectronic devices

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20220926

EEER Examination request

Effective date: 20220926

EEER Examination request

Effective date: 20220926

EEER Examination request

Effective date: 20220926