CA3033179A1 - System and method to integrate condensed water with improved cooler performance - Google Patents
System and method to integrate condensed water with improved cooler performance Download PDFInfo
- Publication number
- CA3033179A1 CA3033179A1 CA3033179A CA3033179A CA3033179A1 CA 3033179 A1 CA3033179 A1 CA 3033179A1 CA 3033179 A CA3033179 A CA 3033179A CA 3033179 A CA3033179 A CA 3033179A CA 3033179 A1 CA3033179 A1 CA 3033179A1
- Authority
- CA
- Canada
- Prior art keywords
- stream
- air
- air stream
- inlet air
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 140
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 230000008569 process Effects 0.000 claims abstract description 83
- 238000001816 cooling Methods 0.000 claims abstract description 73
- 239000012530 fluid Substances 0.000 claims abstract description 50
- 239000007789 gas Substances 0.000 claims description 70
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 32
- 239000007921 spray Substances 0.000 claims description 20
- 239000003345 natural gas Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 5
- 238000010248 power generation Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 239000003949 liquefied natural gas Substances 0.000 claims description 3
- 239000003570 air Substances 0.000 description 300
- 239000003507 refrigerant Substances 0.000 description 53
- 238000005057 refrigeration Methods 0.000 description 32
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 20
- 239000007788 liquid Substances 0.000 description 13
- 239000012080 ambient air Substances 0.000 description 11
- 239000001294 propane Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical class CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- OXURYBANZVUSFY-UHFFFAOYSA-N 2-[3-(diaminomethylideneamino)propyl]butanedioic acid Chemical compound NC(N)=NCCCC(C(O)=O)CC(O)=O OXURYBANZVUSFY-UHFFFAOYSA-N 0.000 description 1
- 229920000544 Gore-Tex Polymers 0.000 description 1
- 102100032610 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Human genes 0.000 description 1
- 101001014590 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Proteins 0.000 description 1
- 101001014594 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms short Proteins 0.000 description 1
- 101001014610 Homo sapiens Neuroendocrine secretory protein 55 Proteins 0.000 description 1
- 101000797903 Homo sapiens Protein ALEX Proteins 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
- F02C7/143—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0236—Heat exchange integration providing refrigeration for different processes treating not the same feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0294—Multiple compressor casings/strings in parallel, e.g. split arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0296—Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0296—Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
- F25J1/0297—Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink using an externally chilled fluid, e.g. chilled water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/608—Aeration, ventilation, dehumidification or moisture removal of closed spaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/60—Natural gas or synthetic natural gas [SNG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/60—Methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/64—Propane or propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/66—Butane or mixed butanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/902—Details about the refrigeration cycle used, e.g. composition of refrigerant, arrangement of compressors or cascade, make up sources, use of reflux exchangers etc.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Drying Of Gases (AREA)
Abstract
A method and system for cooling a process fluid is disclosed. An inlet air stream of a turbine is cooled with an inlet air cooling system. Moisture contained in the cooled inlet air stream is condensed and separated from the cooled inlet air stream to produce water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
Description
SYSTEM AND METHOD TO INTEGRATE CONDENSED WATER WITH
IMPROVED COOLER PERFORMANCE
REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the priority benefit of United States Patent Application 62/375,705 filed August 16, 2016 entitled SYSTEM AND METHOD TO INTEGRATE
CONDENSED WATER WITH IMPROVED COOLER PERFORMANCE, the entirety of which is incorporated by reference herein.
IMPROVED COOLER PERFORMANCE
REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the priority benefit of United States Patent Application 62/375,705 filed August 16, 2016 entitled SYSTEM AND METHOD TO INTEGRATE
CONDENSED WATER WITH IMPROVED COOLER PERFORMANCE, the entirety of which is incorporated by reference herein.
[0002]
This application is related to U.S. Provisional Patent Application No.
62/375,700 titled "SYSTEM AND METHOD FOR LIQUEFYING NATURAL GAS WITH TURBINE
INLET COOLING", having a common assignee as this application and filed on the same day herewith. The disclosure of this related application is incorporated by reference herein in its entirety.
BACKGROUND
Field of Disclosure
This application is related to U.S. Provisional Patent Application No.
62/375,700 titled "SYSTEM AND METHOD FOR LIQUEFYING NATURAL GAS WITH TURBINE
INLET COOLING", having a common assignee as this application and filed on the same day herewith. The disclosure of this related application is incorporated by reference herein in its entirety.
BACKGROUND
Field of Disclosure
[0003] The disclosure relates generally to gas turbines, and more particularly, to inlet air cooling of a gas turbine or another process component.
Description of Related Art
Description of Related Art
[0004]
This section is intended to introduce various aspects of the art, which may be associated with the present disclosure. This discussion is intended to provide a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as an admission of prior art.
This section is intended to introduce various aspects of the art, which may be associated with the present disclosure. This discussion is intended to provide a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as an admission of prior art.
[0005]
Many industrial processes use a gas turbine or turbines to generate power or drive a mechanical load. For example, hydrocarbon production facilities use combustion gas turbines to drive the compressors needed to refrigerate the natural gas from a gaseous to a liquid state. More specifically, LNG production facilities typically use two or more refrigeration circuits to at least pre-chill the incoming natural gas and then to liquefy it. Often the use of the various refrigeration circuits in these facilities is not optimized and spare refrigeration capacity in one or more of the refrigeration circuits cannot be fully used for all operating conditions.
Operating at a wide range of ambient temperatures may be a factor that can result in such an
Many industrial processes use a gas turbine or turbines to generate power or drive a mechanical load. For example, hydrocarbon production facilities use combustion gas turbines to drive the compressors needed to refrigerate the natural gas from a gaseous to a liquid state. More specifically, LNG production facilities typically use two or more refrigeration circuits to at least pre-chill the incoming natural gas and then to liquefy it. Often the use of the various refrigeration circuits in these facilities is not optimized and spare refrigeration capacity in one or more of the refrigeration circuits cannot be fully used for all operating conditions.
Operating at a wide range of ambient temperatures may be a factor that can result in such an
6 imbalance of the various refrigeration circuits.
[0006]
Further, the combustion gas turbine drivers are also sensitive to ambient temperature and can lose about 0.7% of available power for each 1 degree Celsius increase of the ambient temperature. This means that most LNG plants have to be significantly overdesigned to ensure the required horsepower is available regardless of ambient temperature.
[0006]
Further, the combustion gas turbine drivers are also sensitive to ambient temperature and can lose about 0.7% of available power for each 1 degree Celsius increase of the ambient temperature. This means that most LNG plants have to be significantly overdesigned to ensure the required horsepower is available regardless of ambient temperature.
[0007]
U.S. Patent No. 6,324,867 to Fanning, et al. describes a system and method to liquefy natural gas that utilizes the excess refrigeration capacity in one refrigeration circuit to chill the inlet air for the gas turbine driver or drivers of another refrigeration circuit and thus increase the overall capacity of the LNG plant. The disclosure of Fanning is incorporated by reference herein in its entirety. By maintaining the inlet air for the turbines at a substantially constant low temperature, the amount of power generated by the turbines remains at a high level regardless of the ambient air temperature. This allows the LNG plant to be designed for more capacity and allows the plant to operate at a substantially constant production rate throughout the year. Further, since the system of Fanning uses the first refrigerant circuit, for example a circuit comprising propane as a refrigerant, already present in LNG
systems of this type, no addition cooling source is required.
U.S. Patent No. 6,324,867 to Fanning, et al. describes a system and method to liquefy natural gas that utilizes the excess refrigeration capacity in one refrigeration circuit to chill the inlet air for the gas turbine driver or drivers of another refrigeration circuit and thus increase the overall capacity of the LNG plant. The disclosure of Fanning is incorporated by reference herein in its entirety. By maintaining the inlet air for the turbines at a substantially constant low temperature, the amount of power generated by the turbines remains at a high level regardless of the ambient air temperature. This allows the LNG plant to be designed for more capacity and allows the plant to operate at a substantially constant production rate throughout the year. Further, since the system of Fanning uses the first refrigerant circuit, for example a circuit comprising propane as a refrigerant, already present in LNG
systems of this type, no addition cooling source is required.
[0008] U.
S . Patent No. 8,534,039 to Pierson, et al. describes using moisture condensed via gas turbine inlet air chilling for psychometric cooling to improve the performance of an organic Rankine cycle condenser and refrigerant condenser. This refrigerant condenser is part of the system that provides the gas turbine inlet air chilling. In Pierson, the condensed moisture is collected in a basin located below a wet air fin cooler and a pump sprays the collected water onto the tubes of the air fin. Pierson also describes adding makeup water to maintain a minimum level in the basin. It is desired, however, to provide a such a cooling system that does not require the use of a basin as disclosed in Pierson, and that minimizes possible contamination of the cooling water from atmospheric contaminants.
SUMMARY
S . Patent No. 8,534,039 to Pierson, et al. describes using moisture condensed via gas turbine inlet air chilling for psychometric cooling to improve the performance of an organic Rankine cycle condenser and refrigerant condenser. This refrigerant condenser is part of the system that provides the gas turbine inlet air chilling. In Pierson, the condensed moisture is collected in a basin located below a wet air fin cooler and a pump sprays the collected water onto the tubes of the air fin. Pierson also describes adding makeup water to maintain a minimum level in the basin. It is desired, however, to provide a such a cooling system that does not require the use of a basin as disclosed in Pierson, and that minimizes possible contamination of the cooling water from atmospheric contaminants.
SUMMARY
[0009] The present disclosure provides a method for cooling a process fluid according to disclosed aspects. An inlet air stream of a turbine is cooled with an inlet air cooling system.
Moisture contained in the cooled inlet air stream is condensed and separated from the cooled inlet air stream to produce water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
Moisture contained in the cooled inlet air stream is condensed and separated from the cooled inlet air stream to produce water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
[0010] The present disclosure also provides a system for cooling a process fluid in a hydrocarbon process processing natural gas to produce liquefied natural gas. A
chiller is located at an inlet of a gas turbine. The chiller is configured to chill an inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature. A separator is located downstream of the chiller and is configured to separate water in the chilled inlet air stream and produce a water stream in an open-loop circuit. A wet air fin cooler combines the water stream with an air cooler air stream to condense, chill, or sub-cool the process fluid passing through the wet air fin cooler.
chiller is located at an inlet of a gas turbine. The chiller is configured to chill an inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature. A separator is located downstream of the chiller and is configured to separate water in the chilled inlet air stream and produce a water stream in an open-loop circuit. A wet air fin cooler combines the water stream with an air cooler air stream to condense, chill, or sub-cool the process fluid passing through the wet air fin cooler.
[0011] The present disclosure also provides a method for cooling a process fluid. An inlet air stream of a process component is cooled with an inlet air cooling system.
Moisture contained in the cooled inlet air stream is condensed. The moisture is separated from the cooled inlet air stream to produce water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
Moisture contained in the cooled inlet air stream is condensed. The moisture is separated from the cooled inlet air stream to produce water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
[0012] The foregoing has broadly outlined the features of the present disclosure so that the detailed description that follows may be better understood. Additional features will also be described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
BRIEF DESCRIPTION OF THE DRAWINGS
[0013]
These and other features, aspects and advantages of the disclosure will become apparent from the following description, appending claims and the accompanying drawings, which are briefly described below.
These and other features, aspects and advantages of the disclosure will become apparent from the following description, appending claims and the accompanying drawings, which are briefly described below.
[0014]
Figure 1 is a schematic diagram of an LNG liquefaction system according to aspects of the present disclosure.
Figure 1 is a schematic diagram of an LNG liquefaction system according to aspects of the present disclosure.
[0015]
Figure 2 is a schematic diagram of a detail of Figure 1 according to aspects of the present disclosure.
Figure 2 is a schematic diagram of a detail of Figure 1 according to aspects of the present disclosure.
[0016] Figure 3 is a schematic diagram of an inlet air cooling system used with an LNG
liquefaction system according to aspects of the present disclosure.
liquefaction system according to aspects of the present disclosure.
[0017] Figure 4 is a graph showing the relation between refrigeration duty of a chiller, gas turbine inlet air temperature, and ambient air flow rate as a percentage of base air flow, according to aspects of the present disclosure.
[0018] Figure 5 is a schematic diagram of an inlet air cooling system according to aspects of the present disclosure.
[0019] Figure 6 is a method according to aspects of the present disclosure.
[0020] It should be noted that the figures are merely examples and no limitations on the scope of the present disclosure are intended thereby. Further, the figures are generally not drawn to scale, but are drafted for purposes of convenience and clarity in illustrating various aspects of the disclosure.
DETAILED DESCRIPTION
DETAILED DESCRIPTION
[0021] To promote an understanding of the principles of the disclosure, reference will now be made to the features illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates. For the sake of clarity, some features not relevant to the present disclosure may not be shown in the drawings.
[0022] At the outset, for ease of reference, certain terms used in this application and their meanings as used in this context are set forth. To the extent a term used herein is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent.
Further, the present techniques are not limited by the usage of the terms shown below, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.
Further, the present techniques are not limited by the usage of the terms shown below, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.
[0023] As one of ordinary skill would appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name only. The figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. When referring to the figures described herein, the same reference numerals may be referenced in multiple figures for the sake of simplicity. In the following description and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus, should be interpreted to mean "including, but not limited to."
[0024] The articles "the," "a" and "an" are not necessarily limited to mean only one, but rather are inclusive and open ended so as to include, optionally, multiple such elements.
[0025] As used herein, the terms "approximately," "about," "substantially,"
and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numeral ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and are considered to be within the scope of the disclosure.
and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numeral ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and are considered to be within the scope of the disclosure.
[0026] The term "heat exchanger" refers to a device designed to efficiently transfer or "exchange" heat from one matter to another. Exemplary heat exchanger types include a co-current or counter-current heat exchanger, an indirect heat exchanger (e.g.
spiral wound heat exchanger, plate-fin heat exchanger such as a brazed aluminum plate fin type, shell-and-tube heat exchanger, etc.), direct contact heat exchanger, or some combination of these, and so on.
spiral wound heat exchanger, plate-fin heat exchanger such as a brazed aluminum plate fin type, shell-and-tube heat exchanger, etc.), direct contact heat exchanger, or some combination of these, and so on.
[0027] The present disclosure is a system and method of using an open loop circuit of the condensed water collected in an inlet air cooler (IAC), and transferring the water to a wet air fin cooler to increase the effective heat transfer relative to a traditional fin fan cooler with no water spray. The disclosed method and system results in improved overall process efficiency.
The water condensed downstream of at least one filter element in an IAC is expected to be chilled and generally clean, but additional water treatment may be required in the water spray system to reduce corrosion, biological growth, and the like.
The water condensed downstream of at least one filter element in an IAC is expected to be chilled and generally clean, but additional water treatment may be required in the water spray system to reduce corrosion, biological growth, and the like.
[0028] In an aspect of the disclosure, the disclosed system and method may be used in any process that uses a gas turbine, such as (for example) air separation, pharmaceutical processing, integrated gasification combined cycle power plants, other power generation processes, pharmaceutical manufacturing, organic and/or non-organic chemical manufacturing, other .. processes in the oil and gas industry, and the like. As a non-limiting example, the disclosed system may be used in a natural gas liquefaction process where using the excess refrigeration capacity in one refrigeration circuit to chill the inlet air for the gas turbine driver or drivers of another refrigeration circuit, and thus increase the overall capacity of an LNG plant. The disclosed aspects improve upon previous solutions in which moisture condensed via gas turbine inlet air chilling is used for psychometric cooling to improve the performance of a refrigerant condenser that forms part of the system that provides the gas turbine inlet air chilling. Such previous solutions collected condensed moisture in a basin located below a wet air fin cooler and sprayed the collected water onto the tubes of the air fin. According to aspects of the present disclosure, no basin is required to collect condensed moisture, and essentially all of the moisture collected from the gas turbine inlet air chilling system is subsequently vaporized within the wet air fin air stream to minimize overspray. The condensed moisture is collected downstream of at least one air filter element within the gas turbine air inlet to minimize contamination of the water by atmospheric contaminants. Each of these measures is intended to minimize the risk of corrosion and fouling of the wet air fin device, the gas turbine inlet air chiller and the gas turbine inlet air moisture separation device. Furthermore, optional control of the air flow to the wet air fin via adjustable fan speed, pitch, louvers, or the like, can be used to improve the air fin performance by trading between lower air temperature due to psychometric cooling at lower air flows and velocities vs. higher air temperature and higher velocities.
[0029] The present disclosure improves upon known cooling systems by sub-cooling the refrigerant slipstream used for gas turbine inlet air chilling, and further by using psychometric cooling using moisture condensed during the inlet air chilling to improve the performance of this refrigerant sub-cooling.
[0030]
Figures 1 and 2 illustrate a system 10 and process for liquefying natural gas (LNG) according to aspects of the present disclosure. It is to be understood that system 10 is a non-limiting example of how the disclosed aspects may be applied. In system 10, feed gas (natural gas) enters through an inlet line 11 into a preparation unit 12 where it is treated to remove contaminants. The treated gas then passes from preparation unit 12 through a series of heat exchangers 13, 14, 15, 16, where it is cooled by evaporating the first refrigerant (e.g. propane) which, in turn, is flowing through the respective heat exchangers through a first refrigeration circuit 20. The cooled natural gas then flows to fractionation column 17 wherein pentanes and heavier hydrocarbons are removed through line 18 for further processing in a fractionating unit 19.
Figures 1 and 2 illustrate a system 10 and process for liquefying natural gas (LNG) according to aspects of the present disclosure. It is to be understood that system 10 is a non-limiting example of how the disclosed aspects may be applied. In system 10, feed gas (natural gas) enters through an inlet line 11 into a preparation unit 12 where it is treated to remove contaminants. The treated gas then passes from preparation unit 12 through a series of heat exchangers 13, 14, 15, 16, where it is cooled by evaporating the first refrigerant (e.g. propane) which, in turn, is flowing through the respective heat exchangers through a first refrigeration circuit 20. The cooled natural gas then flows to fractionation column 17 wherein pentanes and heavier hydrocarbons are removed through line 18 for further processing in a fractionating unit 19.
[0031] The remaining mixture of methane, ethane, propane, and butane is removed from fractionation column 17 through line 21 and is liquefied in the main cryogenic heat exchanger 22 by further cooling the gas mixture with a second refrigerant that may comprise a mixed refrigerant (MR) which flows through a second refrigeration circuit 30. The second refrigerant, which may include at least one of nitrogen, methane, ethane, and propane, is compressed in compressors 23a, 23b which, in turn, are driven by a process component such as a gas turbine 24. After compression, the second refrigerant is cooled by passing through air or water coolers 25a, 25b and is then partly condensed within heat exchangers 26, 27, 28, and 29 by the evaporating the first refrigerant from first refrigerant circuit 20. The second refrigerant may then flow to a high pressure separator 31, which separates condensed liquid portion of the second refrigerant from the vapor portion of the second refrigerant. The condensed liquid and vapor portions of the second refrigerant are output from the high pressure separator 31 in lines
32 and 33, respectively. As seen in Figure 1, both the condensed liquid and vapor from high pressure second refrigerant separator 31 flow through main cryogenic heat exchanger 22 where they are cooled by evaporating the second refrigerant.
[0032] The condensed liquid stream in line 32 is removed from the middle of main cryogenic heat exchanger 22 and the pressure thereof is reduced across an expansion valve 34.
The now low pressure second refrigerant is then put back into the main cryogenic heat exchanger 22 where it is evaporated by the warmer second refrigerant streams and the feed gas stream in line 21. When the second refrigerant vapor stream reaches the top of the main cryogenic heat exchanger 22, it has condensed and is removed and expanded across an -- expansion valve 35 before it is returned to the main cryogenic heat exchanger 22. As the condensed second refrigerant vapor falls within the main cryogenic heat exchanger 22, it is evaporated by exchanging heat with the feed gas in line 21 and the high pressure second refrigerant stream in line 32. The falling condensed second refrigerant vapor mixes with the low pressure second refrigerant liquid stream within the middle of the main cryogenic heat exchanger 22 and the combined stream exits the bottom of the main cryogenic heat exchanger 22 as a vapor through outlet 36 to flow back to compressors 23a, 23b to complete second refrigeration circuit 30.
[0032] The condensed liquid stream in line 32 is removed from the middle of main cryogenic heat exchanger 22 and the pressure thereof is reduced across an expansion valve 34.
The now low pressure second refrigerant is then put back into the main cryogenic heat exchanger 22 where it is evaporated by the warmer second refrigerant streams and the feed gas stream in line 21. When the second refrigerant vapor stream reaches the top of the main cryogenic heat exchanger 22, it has condensed and is removed and expanded across an -- expansion valve 35 before it is returned to the main cryogenic heat exchanger 22. As the condensed second refrigerant vapor falls within the main cryogenic heat exchanger 22, it is evaporated by exchanging heat with the feed gas in line 21 and the high pressure second refrigerant stream in line 32. The falling condensed second refrigerant vapor mixes with the low pressure second refrigerant liquid stream within the middle of the main cryogenic heat exchanger 22 and the combined stream exits the bottom of the main cryogenic heat exchanger 22 as a vapor through outlet 36 to flow back to compressors 23a, 23b to complete second refrigeration circuit 30.
[0033] The closed first refrigerant circuit 20 is used to cool both the feed gas and the second refrigerant before they pass through main cryogenic heat exchanger 22. The first refrigerant is compressed by a first refrigerant compressor 37 which, in turn, is powered by a process component such as a gas turbine 38. The first refrigerant compressor 37 may comprise at least one compressor casing and the at least one casing may collectively comprise at least two inlets to receive at least two first refrigerant streams at different pressure levels. The compressed first refrigerant is condensed in one or more condensers or coolers 39 (e.g.
seawater or air cooled) and is collected in a first refrigerant surge tank 40 from which it is cascaded through the heat exchangers (propane chillers) 13, 14, 15, 16, 26, 27, 28, 29 where the first refrigerant evaporates to cool both the feed gas and the second refrigerant, respectively.
Both gas turbine systems 24 and 38 may comprise air inlet systems that in turn may comprise air filtration devices, moisture separation devices, chilling and/or heating devices or particulate separation devices.
seawater or air cooled) and is collected in a first refrigerant surge tank 40 from which it is cascaded through the heat exchangers (propane chillers) 13, 14, 15, 16, 26, 27, 28, 29 where the first refrigerant evaporates to cool both the feed gas and the second refrigerant, respectively.
Both gas turbine systems 24 and 38 may comprise air inlet systems that in turn may comprise air filtration devices, moisture separation devices, chilling and/or heating devices or particulate separation devices.
[0034]
Means may be provided in system 10 of Figure 1 for cooling the inlet air 70, 71 to both gas turbines 24 and 38 for improving the operating efficiency of the turbines. Basically, the system may use excess refrigeration available in system 10 to cool an intermediate fluid, which may comprise water, glycol or another heat transfer fluid, that, in turn, is circulated through a closed, inlet coolant loop 50 to cool the inlet air to the turbines.
Means may be provided in system 10 of Figure 1 for cooling the inlet air 70, 71 to both gas turbines 24 and 38 for improving the operating efficiency of the turbines. Basically, the system may use excess refrigeration available in system 10 to cool an intermediate fluid, which may comprise water, glycol or another heat transfer fluid, that, in turn, is circulated through a closed, inlet coolant loop 50 to cool the inlet air to the turbines.
[0035]
Refering to Figure 2, to provide the necessary cooling for the inlet air 70, 71, a slip-stream of the first refrigerant is withdrawn from the first refrigeration circuit 20 (i.e. from surge tank 40) through a line 51 and is flashed across an expansion valve 52. Since first refrigeration circuit 20 is already available in gas liquefaction processes of this type, there is no need to provide a new or separate source of cooling in the process, thereby substantially reducing the costs of the system. The expanded first refrigerant is passed from expansion valve 52 and through a heat exchanger 53 before it is returned to first refrigeration circuit 20 through a line 54. The propane evaporates within heat exchanger 53 to thereby lower the temperature of the intermediate fluid which, in turn, is pumped through the heat exchanger 53 from a storage tank 55 by pump 56.
Refering to Figure 2, to provide the necessary cooling for the inlet air 70, 71, a slip-stream of the first refrigerant is withdrawn from the first refrigeration circuit 20 (i.e. from surge tank 40) through a line 51 and is flashed across an expansion valve 52. Since first refrigeration circuit 20 is already available in gas liquefaction processes of this type, there is no need to provide a new or separate source of cooling in the process, thereby substantially reducing the costs of the system. The expanded first refrigerant is passed from expansion valve 52 and through a heat exchanger 53 before it is returned to first refrigeration circuit 20 through a line 54. The propane evaporates within heat exchanger 53 to thereby lower the temperature of the intermediate fluid which, in turn, is pumped through the heat exchanger 53 from a storage tank 55 by pump 56.
[0036] The cooled intermediate fluid is then pumped through air chillers or coolers 57, positioned at the inlets for turbines 24, 38, respectively. As inlet air 70, 71 flows into the respective turbines, it passes over coils or the like in the air chillers or coolers 57, 58 which, in turn, chill or cool the inlet air 70, 71 before the air is delivered to its respective turbine. The warmed intermediate fluid is then returned to storage tank 55 through line 59.
Preferably, the inlet air 70, 71 will be cooled to no lower than about 5 Celsius (41 Fahrenheit) since ice may form at lower temperatures. In some instances, it may be desirable to add an anti-freeze agent (e.g. ethylene glycol) with inhibitors to the intermediate fluid to prevent plugging, equipment damage and to control corrosion.
Preferably, the inlet air 70, 71 will be cooled to no lower than about 5 Celsius (41 Fahrenheit) since ice may form at lower temperatures. In some instances, it may be desirable to add an anti-freeze agent (e.g. ethylene glycol) with inhibitors to the intermediate fluid to prevent plugging, equipment damage and to control corrosion.
[0037] One aspect of the present disclosure is illustrated in detail in Figure 2, in which a wet air fin cooler 104 is connected to the first refrigeration circuit 20. As used with the present disclosure, wet air fin cooler 104 combines the cooling effectiveness of (a) a conventional air fin heat exchanger, which may use a fan 108 to pass ambient air over finned tubes through which pass the fluid (e.g. liquid or gas) to be cooled to near ambient temperature (e.g. dry bulb temperature), with (b) psychometric cooling by vaporizing a liquid, typically water, within the ambient air stream using, for example, nozzles 110 in a spray header 112, to approach the lower wet bulb temperature of the ambient air.
[0038] Wet air fin cooler 104 is used to sub-cool the slip-stream of liquid first refrigerant in line 51 from surge tank 40. The sub-cooled first refrigerant is directed through line 105 to heat exchanger 53. Sub-cooling this propane increases both the refrigeration duty of heat exchanger 53 and the coefficient of performance of the refrigeration system.
This coefficient of performance is the ratio of the refrigeration duty of the heat exchanger 53 divided by the incremental compressor power to provide that refrigeration. The wet air fin cooler 104 is positioned to cool the slip-stream of first refrigerant in line 51 in Figures 2 and 3. Alternatively, the wet air fin cooler 104 could be incorporated as part of the one or more condensers or coolers
This coefficient of performance is the ratio of the refrigeration duty of the heat exchanger 53 divided by the incremental compressor power to provide that refrigeration. The wet air fin cooler 104 is positioned to cool the slip-stream of first refrigerant in line 51 in Figures 2 and 3. Alternatively, the wet air fin cooler 104 could be incorporated as part of the one or more condensers or coolers
39 to sub-cool liquid propane that serves the other parts of the liquefaction process before the slip-stream of first refrigerant in line 51 is removed to provide a source of cooling (direct or indirect) to air chillers or coolers 57, 58. However, it is preferred to sub-cool only the slip-stream of propane in line 51 to maximize the benefit with respect to gas turbine inlet air chilling.
[0039]
According to disclosed aspects, separators 101 and 102 are positioned in the gas turbine air inlet following the air chillers or coolers 58, 57, respectively.
These separators 101, 102 remove the water that is condensed from the inlet air 70, 71 as the inlet air is cooled from its ambient dry bulb temperature to a temperature below its wet bulb temperature. Separators 101, 102 may be of the inertial type, such as vertical vane, coalescing elements, a low velocity plenum, or any other type of moisture separator or de-mister known to those skilled in the art.
The gas turbine air inlet may include filtration elements, such as air filters 41, that may be located either upstream or downstream or both up and downstream of the air chillers or coolers 57, 58 and the separators 101, 102, respectively. Preferably, at least one filtration element is located upstream of the chiller(s) and separator(s). This air filtration element may include a moisture barrier, such as an ePTFE (expanded PTFE) membrane which may be sold under the GORETEX trademark, to remove atmospheric mist, dust, salts or other contaminants that may be concentrated in the condensed water removed by separators 101, 102. By locating at least one filtration element or similar device upstream of the chiller and separator associated with gas turbines 24 and/or 38, atmospheric contaminants in the collected moisture (water) can be minimized, fouling and corrosion of the chiller(s) and separator(s) can be minimized, and fouling and corrosion of the wet air fin cooler 104 can also be controlled and minimized.
[0039]
According to disclosed aspects, separators 101 and 102 are positioned in the gas turbine air inlet following the air chillers or coolers 58, 57, respectively.
These separators 101, 102 remove the water that is condensed from the inlet air 70, 71 as the inlet air is cooled from its ambient dry bulb temperature to a temperature below its wet bulb temperature. Separators 101, 102 may be of the inertial type, such as vertical vane, coalescing elements, a low velocity plenum, or any other type of moisture separator or de-mister known to those skilled in the art.
The gas turbine air inlet may include filtration elements, such as air filters 41, that may be located either upstream or downstream or both up and downstream of the air chillers or coolers 57, 58 and the separators 101, 102, respectively. Preferably, at least one filtration element is located upstream of the chiller(s) and separator(s). This air filtration element may include a moisture barrier, such as an ePTFE (expanded PTFE) membrane which may be sold under the GORETEX trademark, to remove atmospheric mist, dust, salts or other contaminants that may be concentrated in the condensed water removed by separators 101, 102. By locating at least one filtration element or similar device upstream of the chiller and separator associated with gas turbines 24 and/or 38, atmospheric contaminants in the collected moisture (water) can be minimized, fouling and corrosion of the chiller(s) and separator(s) can be minimized, and fouling and corrosion of the wet air fin cooler 104 can also be controlled and minimized.
[0040]
During the chilling of the gas turbine inlet air 70, 71, a significant portion of the refrigeration duty is used to condense the moisture in the gas turbine inlet air 70, 71 rather than simply reducing the dry bulb temperature of the inlet air. As an example, if inlet air with a dry bulb temperature of 40 Celsius and a wet bulb temperature of 24 Celsius is chilled, the effective specific heat of the air is about 1 kJ/kg/ C between 40 C and 24 C
but increases dramatically to about 3 kJ/kg/ C below the wet bulb temperature of 24 C as the dry bulb temperature is reduced and moisture is condensed from the air. From this, one could conclude that about two-thirds of the refrigeration duty used to chill the air below the wet bulb temperature (dew point) is wasted since the small compositional change of the air to the gas turbine 24 and/or 38 has only a small effect on the available power of the gas turbine. This condensed moisture is essentially at the same temperature as the chilled inlet air to the gas turbine and could be used to provide some precooling of the inlet air 70, 71 using another chilling coil similar to air chillers or coolers 57 or 58 that is positioned ahead of the air chillers or coolers 57 or 58 in the air flow. However, this arrangement can only recoup the part of the refrigeration duty used to reduce the temperature of the water but not the part used to condense it. That is, the heat of vaporization of the water cannot be recouped by heat transfer or psychometric cooling with the gas turbine inlet air.
During the chilling of the gas turbine inlet air 70, 71, a significant portion of the refrigeration duty is used to condense the moisture in the gas turbine inlet air 70, 71 rather than simply reducing the dry bulb temperature of the inlet air. As an example, if inlet air with a dry bulb temperature of 40 Celsius and a wet bulb temperature of 24 Celsius is chilled, the effective specific heat of the air is about 1 kJ/kg/ C between 40 C and 24 C
but increases dramatically to about 3 kJ/kg/ C below the wet bulb temperature of 24 C as the dry bulb temperature is reduced and moisture is condensed from the air. From this, one could conclude that about two-thirds of the refrigeration duty used to chill the air below the wet bulb temperature (dew point) is wasted since the small compositional change of the air to the gas turbine 24 and/or 38 has only a small effect on the available power of the gas turbine. This condensed moisture is essentially at the same temperature as the chilled inlet air to the gas turbine and could be used to provide some precooling of the inlet air 70, 71 using another chilling coil similar to air chillers or coolers 57 or 58 that is positioned ahead of the air chillers or coolers 57 or 58 in the air flow. However, this arrangement can only recoup the part of the refrigeration duty used to reduce the temperature of the water but not the part used to condense it. That is, the heat of vaporization of the water cannot be recouped by heat transfer or psychometric cooling with the gas turbine inlet air.
[0041] A much greater portion of the refrigeration duty used to cool and condense the moisture from the gas turbine inlet air 70, 71 can be recouped by collecting this chilled water from separators 101 or 102, pumping it with a pump 103 and spraying the water onto the tubes of the wet air fin cooler 104 or otherwise mixing the water with the air flow 106 to the wet air fin cooler 104. Based on the ambient conditions and the actual flow rate of air conveyed by the fan associated with the wet air fin cooler 104, the water pumped by pump 103 may be sufficient to saturate the air flow of wet air fin cooler 104 and bring it to its wet bulb temperature. Excess water flow from separators 101, 102 may be available that could be used for another purpose, or may be insufficient to saturate the air flow. In this later case, additional water from another source may be provided. Additionally, the water separated by separators 101, 102 is supplied to the wet air fin cooler 104 in an open-loop circuit, or in other words, the water is not recycled or re-used by the wet air fin cooler 104. As the cooling of the gas turbine inlet air 70, 71 provides a constant source of chilled water to be used by the wet air fin cooler 104, it is not necessary to recycle or re-use the water after it has been sprayed in the wet air fin cooler.
Employing such an open-loop water circuit reduces the need to re-cool and/or filter the water after being used by the wet air fin cooler, thereby reducing the cost and complexity of system or any other system using the disclosed aspects. Additionally or alternatively, as the water sprayed in the wet air fin cooler has been filtered and is relatively clean, it may be either 5 disposed of with minimal additional processing required, or may be used as a water source for other processes within system 10.
Employing such an open-loop water circuit reduces the need to re-cool and/or filter the water after being used by the wet air fin cooler, thereby reducing the cost and complexity of system or any other system using the disclosed aspects. Additionally or alternatively, as the water sprayed in the wet air fin cooler has been filtered and is relatively clean, it may be either 5 disposed of with minimal additional processing required, or may be used as a water source for other processes within system 10.
[0042] An example of the effectiveness of the use of water collected from separators 101 or 102 to improve the air inlet cooling is shown in Table 1. The three columns show the impact of no cooler such as wet air fin cooler 104, an air fin cooler with no water spray, and a wet air 10 fin cooler 104 using condensed moisture from separators 101 or 102.
TABLE 1.
No cooler Air fin cooler Air fin cooler without water with water spray spray Ambient temperature (dry bulb) 40 C Same Same Ambient wet bulb temperature 24 C Same Same Gas turbine inlet air flow rate (at 1,528,000 Same Same wet condition) kg/hr Compressor refrigeration power 4,000 kW Same Same Condenser (39) outlet 47.8 C Same Same temperature (with propane used as first refrigerant) "Wet" air fin outlet temperature 41.5 C 32.4 C
(stream 105) Refrigeration Duty of Chiller (53) 18,000 kW 19,450 kW 21,400 kW
Temperature of inlet air 70, 71 16.1 C 14.9 C 13.2 C
Moisture condensed in 101 or 102 11.1 tons/hr 12.4 tons/hr 14.1 tons/hr Power increase (per Gas 20.8% 22.0% 23.5%
Processors Suppliers Association) from ambient Heat rate decrease per GPSA 7.9% 8.2% 8.5%
from ambient
TABLE 1.
No cooler Air fin cooler Air fin cooler without water with water spray spray Ambient temperature (dry bulb) 40 C Same Same Ambient wet bulb temperature 24 C Same Same Gas turbine inlet air flow rate (at 1,528,000 Same Same wet condition) kg/hr Compressor refrigeration power 4,000 kW Same Same Condenser (39) outlet 47.8 C Same Same temperature (with propane used as first refrigerant) "Wet" air fin outlet temperature 41.5 C 32.4 C
(stream 105) Refrigeration Duty of Chiller (53) 18,000 kW 19,450 kW 21,400 kW
Temperature of inlet air 70, 71 16.1 C 14.9 C 13.2 C
Moisture condensed in 101 or 102 11.1 tons/hr 12.4 tons/hr 14.1 tons/hr Power increase (per Gas 20.8% 22.0% 23.5%
Processors Suppliers Association) from ambient Heat rate decrease per GPSA 7.9% 8.2% 8.5%
from ambient
[0043] As an example of the effectiveness to control the air flow rate of the wet air fin cooler, for the same example above, a wet air fin cooler with a fixed UA
(surface area combined with heat transfer coefficients) is used. For this example, the same 40 C dry bulb, 24 C wet bulb ambient air is assumed to provide the cooling air for this wet air fin cooler. As a base, the air flow is set to 1,000,000 kg/hr and all of the water condensed from the gas turbine inlet air is used for psychometric cooling of the wet air fin cooler 104. As the water is sprayed onto the air fin tubes or into the air flow stream (or a combination of both), part of the water vaporizes to cool the tubes or the air flow and approaches the wet bulb temperature of the air stream.
However, as this water is vaporized, the water content of this wet air stream also increases and so also increases the wet bulb temperature of this wet air stream above the ambient wet bulb temperature. As such, it is not possible to vaporize the water to reach a wet air stream temperature that approaches the ambient wet bulb temperature; the water can only approach the "wet-wet bulb temperature" (WWBT), which is the wet bulb temperature of the ambient air with the moisture added to the gas composition at the local conditions.
(surface area combined with heat transfer coefficients) is used. For this example, the same 40 C dry bulb, 24 C wet bulb ambient air is assumed to provide the cooling air for this wet air fin cooler. As a base, the air flow is set to 1,000,000 kg/hr and all of the water condensed from the gas turbine inlet air is used for psychometric cooling of the wet air fin cooler 104. As the water is sprayed onto the air fin tubes or into the air flow stream (or a combination of both), part of the water vaporizes to cool the tubes or the air flow and approaches the wet bulb temperature of the air stream.
However, as this water is vaporized, the water content of this wet air stream also increases and so also increases the wet bulb temperature of this wet air stream above the ambient wet bulb temperature. As such, it is not possible to vaporize the water to reach a wet air stream temperature that approaches the ambient wet bulb temperature; the water can only approach the "wet-wet bulb temperature" (WWBT), which is the wet bulb temperature of the ambient air with the moisture added to the gas composition at the local conditions.
[0044]
Figure 3 illustrates another aspect of the present disclosure that adds a dedicated supplemental compressor 114 to compress the vapor leaving heat exchanger 53 to the pressure similar to the outlet pressure of first refrigerant compressor 37. This may provide an improvement to the system of Figure 2 to provide control of the inlet air chilling system that is independent of the control of the first refrigerant circuit required to manage the LNG
liquefaction system. To ensure no icing of the inlet air chillers or inlet air that enters the gas turbine inlet, it may be advantageous to adjust the temperature of the intermediate fluid to ensure that the inlet air temperature can be managed to avoid icing. To control the intermediate fluid temperature, the pressure of the first refrigerant slip-stream leaving heat exchanger 53 may need to be adjusted such that the temperature of the slip-stream is between -5 C and 20 C. This may be done by use of a control valve at the exit of heat exchanger 53 as shown in Figure 3. However, it may be more efficient and provide more precise control to adjust the performance of the supplemental compressor 114. The aspect depicted in Figure 3 may also be an especially good solution if the inlet air chilling system is retrofitted to an existing LNG
liquefaction system.
Figure 3 illustrates another aspect of the present disclosure that adds a dedicated supplemental compressor 114 to compress the vapor leaving heat exchanger 53 to the pressure similar to the outlet pressure of first refrigerant compressor 37. This may provide an improvement to the system of Figure 2 to provide control of the inlet air chilling system that is independent of the control of the first refrigerant circuit required to manage the LNG
liquefaction system. To ensure no icing of the inlet air chillers or inlet air that enters the gas turbine inlet, it may be advantageous to adjust the temperature of the intermediate fluid to ensure that the inlet air temperature can be managed to avoid icing. To control the intermediate fluid temperature, the pressure of the first refrigerant slip-stream leaving heat exchanger 53 may need to be adjusted such that the temperature of the slip-stream is between -5 C and 20 C. This may be done by use of a control valve at the exit of heat exchanger 53 as shown in Figure 3. However, it may be more efficient and provide more precise control to adjust the performance of the supplemental compressor 114. The aspect depicted in Figure 3 may also be an especially good solution if the inlet air chilling system is retrofitted to an existing LNG
liquefaction system.
[0045]
Figure 4 is a chart 400 showing the effect of air flow rate on the effectiveness of the cooling as the wet air fin ambient air flow rate is varied from 80% to 120% of the base value.
In this case, any excess moisture not required to reach the WWBT of the air upstream of the wet air fin cooler 104 is neglected or in essence is allowed to drip away.
Figure 4 demonstrates that the maximum refrigeration duty of the chiller 402 is reached at an air flow (about 101% in this example) that corresponds roughly with the full vaporization of the available water supply.
This is the optimum air flow required to maximize the refrigeration duty with the restriction that excess moisture is separated upstream of the wet air fin cooler 104. This optimum air flow may be determined by several means, including but not limited to 1) measuring the relative humidity of the air stream after the water spray and targeting about 100%
relative humidity; 2) measuring the gas turbine inlet air temperature 404 and performing a real time optimization to minimize the gas turbine inlet temperature by air fin air flow adjustments; 3) measuring the refrigerant outlet temperature from the wet air fin cooler 104 and performing a similar real time optimization; 4) constructing a physics based or empirical model of the system to optimize the air flow across the wet air fin cooler 104; 5) another optimization technique generally known to those skilled in the art or 6) a combination of (1) to (5). Those skilled in the art will understand that a physics based model may be as simple as one that incorporates psychometric air data and at least one of ambient temperature, relative humidity, air fin air flow temperature, barometric pressure, spray water flow rate and spray water temperature to estimate or determine the amount of moisture that can be vaporized into the air fin air flow to reach saturation.
Figure 4 is a chart 400 showing the effect of air flow rate on the effectiveness of the cooling as the wet air fin ambient air flow rate is varied from 80% to 120% of the base value.
In this case, any excess moisture not required to reach the WWBT of the air upstream of the wet air fin cooler 104 is neglected or in essence is allowed to drip away.
Figure 4 demonstrates that the maximum refrigeration duty of the chiller 402 is reached at an air flow (about 101% in this example) that corresponds roughly with the full vaporization of the available water supply.
This is the optimum air flow required to maximize the refrigeration duty with the restriction that excess moisture is separated upstream of the wet air fin cooler 104. This optimum air flow may be determined by several means, including but not limited to 1) measuring the relative humidity of the air stream after the water spray and targeting about 100%
relative humidity; 2) measuring the gas turbine inlet air temperature 404 and performing a real time optimization to minimize the gas turbine inlet temperature by air fin air flow adjustments; 3) measuring the refrigerant outlet temperature from the wet air fin cooler 104 and performing a similar real time optimization; 4) constructing a physics based or empirical model of the system to optimize the air flow across the wet air fin cooler 104; 5) another optimization technique generally known to those skilled in the art or 6) a combination of (1) to (5). Those skilled in the art will understand that a physics based model may be as simple as one that incorporates psychometric air data and at least one of ambient temperature, relative humidity, air fin air flow temperature, barometric pressure, spray water flow rate and spray water temperature to estimate or determine the amount of moisture that can be vaporized into the air fin air flow to reach saturation.
[0046] The example in Figure 4 was restricted to psychometric cooling of the air fin air stream prior to any heating of this air stream by transfer of any heat from stream 51. With an adequate mixing area ahead of the air fin tube bundle, this air stream would be dry but saturated with moisture at the local conditions with any excess moisture separated.
However, if the air flow is reduced below the optimum of Figure 4 and it is assumed that any excess moisture is not separated but rather travels with this air stream, then a new optimum air flow can be determined that is characterized by full vaporization of the available moisture at the local air stream conditions downstream of the air fin bundle. Similar to the original example, this new optimum air flow may be determined by similar techniques as described in (1) to (6) above except that any humidity measurement is preferably performed on the air stream downstream of the wet air fin cooler.
However, if the air flow is reduced below the optimum of Figure 4 and it is assumed that any excess moisture is not separated but rather travels with this air stream, then a new optimum air flow can be determined that is characterized by full vaporization of the available moisture at the local air stream conditions downstream of the air fin bundle. Similar to the original example, this new optimum air flow may be determined by similar techniques as described in (1) to (6) above except that any humidity measurement is preferably performed on the air stream downstream of the wet air fin cooler.
[0047]
Figure 5 schematically depicts a cooling system 500 according to aspects disclosed herein. System 500 includes a turbine 502 operatively connected to a load 504, which may be a compressor, a generator, or the like. Air 506 entering the turbine may be filtered by one or more filters 508 and cooled using chillers or coolers 510, which in an aspect a refrigerant (not shown) is run through. One or more separators 512 may remove condensed water in the cooled air as previously described. The water may be directed through a conduit 514 to a storage tank 516, and may then be pumped using one or more pumps 518, through a conduit 520, to a wet air fin cooler 522. The water may then be directed to a spray header 524 and sprayed through nozzles 526 into ambient air 528 that is being directed into the wet air fin cooler 522 using a fan 530. The combined water spray and ambient air are directed over or around finned tubes 532. The finned tubes 532 are configured to permit a process fluid 534 to pass therethrough. As explained previously with respect to Figures 1 and 2, the wet air fin cooler 522 cools the process fluid, which exits the wet air fin cooler at 536. The process fluid may be any fluid to be cooled, which in the oil and gas industry may include refrigerants, solvents, natural gas liquids, natural gas, or other fluids. The water spray in the ambient air may be recovered by collecting condensed water on the finned tubes 532 or other means, and may be disposed of or used in another process. In the aspect shown in Figure 5, the open-loop circuit of water may be depicted by the path of the water from the separator 512 through the wet air fin cooler 522.
Figure 5 schematically depicts a cooling system 500 according to aspects disclosed herein. System 500 includes a turbine 502 operatively connected to a load 504, which may be a compressor, a generator, or the like. Air 506 entering the turbine may be filtered by one or more filters 508 and cooled using chillers or coolers 510, which in an aspect a refrigerant (not shown) is run through. One or more separators 512 may remove condensed water in the cooled air as previously described. The water may be directed through a conduit 514 to a storage tank 516, and may then be pumped using one or more pumps 518, through a conduit 520, to a wet air fin cooler 522. The water may then be directed to a spray header 524 and sprayed through nozzles 526 into ambient air 528 that is being directed into the wet air fin cooler 522 using a fan 530. The combined water spray and ambient air are directed over or around finned tubes 532. The finned tubes 532 are configured to permit a process fluid 534 to pass therethrough. As explained previously with respect to Figures 1 and 2, the wet air fin cooler 522 cools the process fluid, which exits the wet air fin cooler at 536. The process fluid may be any fluid to be cooled, which in the oil and gas industry may include refrigerants, solvents, natural gas liquids, natural gas, or other fluids. The water spray in the ambient air may be recovered by collecting condensed water on the finned tubes 532 or other means, and may be disposed of or used in another process. In the aspect shown in Figure 5, the open-loop circuit of water may be depicted by the path of the water from the separator 512 through the wet air fin cooler 522.
[0048] It can be seen that using condensed water collected in an inlet air cooler (IAC), and transferring the water to a wet air fin cooler in an open-loop circuit, increases the effective heat transfer relative to a traditional fin fan cooler with no water spray. The water condensed downstream of at least one filter element in an IAC is expected to be chilled and generally clean, but additional water treatment may be required in the water spray system to reduce corrosion, biological growth, and the like.
[0049] The disclosed aspects have particular applicability to the to the oil and gas industry or other industries where water usage is often less critical than with large power plants having high capacity steam systems. For example, the disclosed aspects may be installed in any heat transfer service requiring additional capacity or process debottlenecking, such as process compressor discharge temperature control. The disclosed aspects increase the effective heat transfer of any air fin cooler in any service. The disclosed aspects may be used in the discharge of a process compressor to reduce the load of the driver, i.e. reduce firing temperature, as a means to extend maintenance intervals. The disclosed aspects may also be used to improve natural gas liquids processes whereby auxilliary refrigerant systems are used to reduce the mole weight of the gas. The capacity of such auxiliary refrigerant systems is often the limiting factor in process capacity. Using the disclosed wet air fin cooler, the capacity of these auxiliary refrigerant systems is greatly increased, leading to additional available capacity in the primary compression process. The disclosed aspects may also be used to improve efficiency of a turbine/generator emissions system, where condensed water from an exhaust gas recirculation .. cooler is used as a wet spray onto associated steam system condensers and/or the process stream coolers.
[0050] The scope of the disclosed aspects is not limited to use in the oil and gas industry.
The disclosed aspects may be advantageously applied in other industrial processes that may include but are not limited to air separation, integrated gasification combined cycle (IGCC) power plants, other power generation processes, pharmaceutical manufacturing, organic and non-organic chemical manufacturing, and the like. Furthermore, the scope of the disclosed aspects is not limited to processes in which a gas turbine is used. For example, the inlet air stream to an air separation unit (ASU) compressor may be cooled to below the dew point, and the water condensed thereby may be used to cool another process fluid in a wet air fin cooler as described herein. While cooling the inlet air of the compressor reduces the required compression energy and enables improved process efficiency, using the condensed water in a wet air fin cooler as described herein will further improve the process efficiency. In another example, gas turbines may be integrated with with an ASU for for IGCC and gas-to-liquids plants by extracting part of the compressed air from the gas turbine as an input stream to the ASU. In this case, the input stream could be cooled to below the dew point using the aspects described herein.
The disclosed aspects may be advantageously applied in other industrial processes that may include but are not limited to air separation, integrated gasification combined cycle (IGCC) power plants, other power generation processes, pharmaceutical manufacturing, organic and non-organic chemical manufacturing, and the like. Furthermore, the scope of the disclosed aspects is not limited to processes in which a gas turbine is used. For example, the inlet air stream to an air separation unit (ASU) compressor may be cooled to below the dew point, and the water condensed thereby may be used to cool another process fluid in a wet air fin cooler as described herein. While cooling the inlet air of the compressor reduces the required compression energy and enables improved process efficiency, using the condensed water in a wet air fin cooler as described herein will further improve the process efficiency. In another example, gas turbines may be integrated with with an ASU for for IGCC and gas-to-liquids plants by extracting part of the compressed air from the gas turbine as an input stream to the ASU. In this case, the input stream could be cooled to below the dew point using the aspects described herein.
[0051]
Figure 6 is a flowchart of a method 600 for cooling a process fluid acording to disclosed aspects. At block 602 an inlet air stream of a process component, such as a turbine, is cooled with an inlet air cooling system. At block 604 moisture contained in the cooled inlet air stream is condensed. At block 606 the moisture is separated from the cooled inlet air stream to produce a water stream in an open-loop circuit. At block 608 the water stream is sprayed into an air cooler air stream. At block 610 the combined air cooler air stream and sprayed water stream is directed through an air cooler. At block 612 heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
Figure 6 is a flowchart of a method 600 for cooling a process fluid acording to disclosed aspects. At block 602 an inlet air stream of a process component, such as a turbine, is cooled with an inlet air cooling system. At block 604 moisture contained in the cooled inlet air stream is condensed. At block 606 the moisture is separated from the cooled inlet air stream to produce a water stream in an open-loop circuit. At block 608 the water stream is sprayed into an air cooler air stream. At block 610 the combined air cooler air stream and sprayed water stream is directed through an air cooler. At block 612 heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
[0052]
Disclosed aspects may include any combinations of the methods and systems shown in the following numbered paragraphs. This is not to be considered a complete listing of all possible aspects, as any number of variations can be envisioned from the description above.
1. A method for cooling a process fluid, comprising:
cooling an inlet air stream of a turbine with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open-loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
2. The method of paragraph 1, wherein the air cooler includes a tube bundle, and wherein the step of exchanging heat comprises:
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
3. The method of paragraph 1 or paragraph 2, wherein directing the combined air cooler air stream and the sprayed water stream is accomplished using a fan.
4. The method of paragraph 3, wherein a flow rate or velocity of the air cooler air stream is adjusted using one or more of a fan speed control, a fan blade pitch control, and a damper adjustment.
5. The method of paragraph 4, wherein the air cooler air stream flow rate or velocity is adjusted based on at least one of: relative humidity of the air cooler air stream, flow rate of the sprayed water stream, ambient temperature, barometric pressure, psychometric air data, ambient relative humidity, air stream temperature, and temperature of the sprayed water stream.
6. The method of any of paragraphs 1-5, wherein separating the moisture is accomplished by a separating device selected from an inertial separator, a vane separator, a plenum, and a coalescer.
7. The method of any of paragraphs 1-6, further comprising at least partially filtering the inlet air stream before cooling the inlet air stream.
8. The method of any of paragraphs 1-7, wherein the process stream is a hydrocarbon process stream requiring heat rejection.
9. The method of any of paragraphs 1-7, wherein the process stream is a process stream in one of a pharmaceutical manufacturing process, a power generation process, and a chemical manufacturing process.
10. The method of any of paragraphs 1-9, wherein the inlet air stream, the turbine, and the inlet air cooling system are a first inlet air stream, a first turbine, and a first inlet air cooling system, respectively, the method further comprising:
cooling a second inlet air stream of a second turbine with a second inlet air cooling system;
condensing moisture contained in the second cooled inlet air stream;
separating the moisture from the second cooled inlet air stream; and directing the water into the water stream.
11. The method of any of paragraphs 1-10, wherein cooling the inlet air stream of the turbine with the inlet air cooling system comprises chilling the inlet air stream from about a dry bulb temperature of the inlet air stream to a temperature below a wet bulb temperature of the inlet air stream.
12. A system for cooling a process fluid in a hydrocarbon process processing natural gas to produce liquefied natural gas, the system comprising:
a gas turbine;
a chiller located at an inlet of the gas turbine, the chiller configured to chill an inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature;
a separator located downstream of the chiller and configured to separate water in the chilled inlet air stream and produce a water stream in an open-loop circuit;
and a wet air fin cooler that combines the water stream with an air cooler air stream to condense, chill, or sub-cool the process fluid passing through the wet air fin cooler.
13. The system of paragraph 12, wherein the wet air fin cooler comprises:
a tube bundle through which the process fluid passes;
a spray header configured to spray the water stream into the air cooler air stream; and a fan that forces the air stream and sprayed water stream over or across the tube bundle.
14. The system of paragraph 13, further comprising a fan controller that controls at least one of a speed of the fan, a pitch of a blade of the fan, and a damper associated with the fan.
15. The system of any of paragraphs 12-14, wherein the separator is one of an inertial separator, a vane separator, a plenum, and a coalescer.
16. The system of any of paragraphs 12-15, further comprising a filter arranged to at least partially filter the inlet air stream before the inlet air stream is chilled by the chiller.
17. The system of paragraph 16, wherein the filter comprises a moisture barrier.
18. The system of any of paragraphs 12-17, wherein the gas turbine, the chiller, the inlet air stream, and the separator are a first gas turbine, a first chiller, a first inlet air stream, and a first separator, and further comprising:
a second gas turbine;
a second chiller located at an inlet of the second gas turbine, the second cooler configured to chill a second inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature; and a second separator located downstream of the second chiller and configured to separate water in the chilled second inlet air stream and deliver the separated water into the water stream.
19. A method for cooling a process fluid, comprising:
cooling an inlet air stream of a process component with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
20. The method of paragraph 19, wherein the air cooler includes a tube bundle, and wherein the step of exchanging heat comprises:
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
21. The method of paragraph 19 or paragraph 20, wherein directing the combined air cooler air stream and the sprayed water stream is accomplished using a fan.
22. The method of paragraph 21, wherein a flow rate or velocity of the air cooler air stream is adjusted using one or more of a fan speed control, a fan blade pitch control, and a damper adjustment.
23. The method of paragraph 22, wherein the air cooler air stream flow rate or velocity is adjusted based on at least one of: relative humidity of the air cooler air stream, flow rate of the sprayed water stream, ambient temperature, barometric pressure, psychometric air data, ambient relative humidity, air stream temperature, and temperature of the sprayed water stream.
24. The method of any of paragraphs 19-23, wherein separating the moisture is accomplished by a separating device selected from an inertial separator, a vane separator, a plenum, and a coalescer.
25. The method of any of paragraphs 19-24, further comprising at least partially filtering the inlet air stream before cooling the inlet air stream.
26. The method of any of paragraphs 19-25, wherein cooling the inlet air stream of the process component with the inlet air cooling system comprises chilling the inlet air stream from about a dry bulb temperature of the inlet air stream to a temperature below a wet bulb temperature of the inlet air stream.
Disclosed aspects may include any combinations of the methods and systems shown in the following numbered paragraphs. This is not to be considered a complete listing of all possible aspects, as any number of variations can be envisioned from the description above.
1. A method for cooling a process fluid, comprising:
cooling an inlet air stream of a turbine with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open-loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
2. The method of paragraph 1, wherein the air cooler includes a tube bundle, and wherein the step of exchanging heat comprises:
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
3. The method of paragraph 1 or paragraph 2, wherein directing the combined air cooler air stream and the sprayed water stream is accomplished using a fan.
4. The method of paragraph 3, wherein a flow rate or velocity of the air cooler air stream is adjusted using one or more of a fan speed control, a fan blade pitch control, and a damper adjustment.
5. The method of paragraph 4, wherein the air cooler air stream flow rate or velocity is adjusted based on at least one of: relative humidity of the air cooler air stream, flow rate of the sprayed water stream, ambient temperature, barometric pressure, psychometric air data, ambient relative humidity, air stream temperature, and temperature of the sprayed water stream.
6. The method of any of paragraphs 1-5, wherein separating the moisture is accomplished by a separating device selected from an inertial separator, a vane separator, a plenum, and a coalescer.
7. The method of any of paragraphs 1-6, further comprising at least partially filtering the inlet air stream before cooling the inlet air stream.
8. The method of any of paragraphs 1-7, wherein the process stream is a hydrocarbon process stream requiring heat rejection.
9. The method of any of paragraphs 1-7, wherein the process stream is a process stream in one of a pharmaceutical manufacturing process, a power generation process, and a chemical manufacturing process.
10. The method of any of paragraphs 1-9, wherein the inlet air stream, the turbine, and the inlet air cooling system are a first inlet air stream, a first turbine, and a first inlet air cooling system, respectively, the method further comprising:
cooling a second inlet air stream of a second turbine with a second inlet air cooling system;
condensing moisture contained in the second cooled inlet air stream;
separating the moisture from the second cooled inlet air stream; and directing the water into the water stream.
11. The method of any of paragraphs 1-10, wherein cooling the inlet air stream of the turbine with the inlet air cooling system comprises chilling the inlet air stream from about a dry bulb temperature of the inlet air stream to a temperature below a wet bulb temperature of the inlet air stream.
12. A system for cooling a process fluid in a hydrocarbon process processing natural gas to produce liquefied natural gas, the system comprising:
a gas turbine;
a chiller located at an inlet of the gas turbine, the chiller configured to chill an inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature;
a separator located downstream of the chiller and configured to separate water in the chilled inlet air stream and produce a water stream in an open-loop circuit;
and a wet air fin cooler that combines the water stream with an air cooler air stream to condense, chill, or sub-cool the process fluid passing through the wet air fin cooler.
13. The system of paragraph 12, wherein the wet air fin cooler comprises:
a tube bundle through which the process fluid passes;
a spray header configured to spray the water stream into the air cooler air stream; and a fan that forces the air stream and sprayed water stream over or across the tube bundle.
14. The system of paragraph 13, further comprising a fan controller that controls at least one of a speed of the fan, a pitch of a blade of the fan, and a damper associated with the fan.
15. The system of any of paragraphs 12-14, wherein the separator is one of an inertial separator, a vane separator, a plenum, and a coalescer.
16. The system of any of paragraphs 12-15, further comprising a filter arranged to at least partially filter the inlet air stream before the inlet air stream is chilled by the chiller.
17. The system of paragraph 16, wherein the filter comprises a moisture barrier.
18. The system of any of paragraphs 12-17, wherein the gas turbine, the chiller, the inlet air stream, and the separator are a first gas turbine, a first chiller, a first inlet air stream, and a first separator, and further comprising:
a second gas turbine;
a second chiller located at an inlet of the second gas turbine, the second cooler configured to chill a second inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature; and a second separator located downstream of the second chiller and configured to separate water in the chilled second inlet air stream and deliver the separated water into the water stream.
19. A method for cooling a process fluid, comprising:
cooling an inlet air stream of a process component with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
20. The method of paragraph 19, wherein the air cooler includes a tube bundle, and wherein the step of exchanging heat comprises:
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
21. The method of paragraph 19 or paragraph 20, wherein directing the combined air cooler air stream and the sprayed water stream is accomplished using a fan.
22. The method of paragraph 21, wherein a flow rate or velocity of the air cooler air stream is adjusted using one or more of a fan speed control, a fan blade pitch control, and a damper adjustment.
23. The method of paragraph 22, wherein the air cooler air stream flow rate or velocity is adjusted based on at least one of: relative humidity of the air cooler air stream, flow rate of the sprayed water stream, ambient temperature, barometric pressure, psychometric air data, ambient relative humidity, air stream temperature, and temperature of the sprayed water stream.
24. The method of any of paragraphs 19-23, wherein separating the moisture is accomplished by a separating device selected from an inertial separator, a vane separator, a plenum, and a coalescer.
25. The method of any of paragraphs 19-24, further comprising at least partially filtering the inlet air stream before cooling the inlet air stream.
26. The method of any of paragraphs 19-25, wherein cooling the inlet air stream of the process component with the inlet air cooling system comprises chilling the inlet air stream from about a dry bulb temperature of the inlet air stream to a temperature below a wet bulb temperature of the inlet air stream.
[0053] It should be understood that the numerous changes, modifications, and alternatives to the preceding disclosure can be made without departing from the scope of the disclosure.
The preceding description, therefore, is not meant to limit the scope of the disclosure. Rather, the scope of the disclosure is to be determined only by the appended claims and their equivalents. It is also contemplated that structures and features in the present examples can be altered, rearranged, substituted, deleted, duplicated, combined, or added to each other.
The preceding description, therefore, is not meant to limit the scope of the disclosure. Rather, the scope of the disclosure is to be determined only by the appended claims and their equivalents. It is also contemplated that structures and features in the present examples can be altered, rearranged, substituted, deleted, duplicated, combined, or added to each other.
Claims (26)
1. A method for cooling a process fluid, comprising:
cooling an inlet air stream of a turbine with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open-loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
cooling an inlet air stream of a turbine with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open-loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
2. The method of claim 1, wherein the air cooler includes a tube bundle, and wherein the step of exchanging heat comprises:
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
3. The method of claim 1 or claim 2, wherein directing the combined air cooler air stream and the sprayed water stream is accomplished using a fan.
4. The method of claim 3, wherein a flow rate or velocity of the air cooler air stream is adjusted using one or more of a fan speed control, a fan blade pitch control, and a damper adjustment.
5. The method of claim 4, wherein the air cooler air stream flow rate or velocity is adjusted based on at least one of: relative humidity of the air cooler air stream, flow rate of the sprayed water stream, ambient temperature, barometric pressure, psychometric air data, ambient relative humidity, air stream temperature, and temperature of the sprayed water stream.
6. The method of any of claims 1-5, wherein separating the moisture is accomplished by a separating device selected from an inertial separator, a vane separator, a plenum, and a coalescer.
7. The method of any of claims 1-6, further comprising at least partially filtering the inlet air stream before cooling the inlet air stream.
8. The method of any of claims 1-7, wherein the process stream is a hydrocarbon process stream requiring heat rejection.
9. The method of any of claims 1-7, wherein the process stream is a process stream in one of a pharmaceutical manufacturing process, a power generation process, and a chemical manufacturing process.
10. The method of any of claims 1-9, wherein the inlet air stream, the turbine, and the inlet air cooling system are a first inlet air stream, a first turbine, and a first inlet air cooling system, respectively, the method further comprising:
cooling a second inlet air stream of a second turbine with a second inlet air cooling system;
condensing moisture contained in the second cooled inlet air stream;
separating the moisture from the second cooled inlet air stream; and directing the water into the water stream.
cooling a second inlet air stream of a second turbine with a second inlet air cooling system;
condensing moisture contained in the second cooled inlet air stream;
separating the moisture from the second cooled inlet air stream; and directing the water into the water stream.
11. The method of any of claims 1-10, wherein cooling the inlet air stream of the turbine with the inlet air cooling system comprises chilling the inlet air stream from about a dry bulb temperature of the inlet air stream to a temperature below a wet bulb temperature of the inlet air stream.
12. A system for cooling a process fluid in a hydrocarbon process processing natural gas to produce liquefied natural gas, the system comprising:
a gas turbine;
a chiller located at an inlet of the gas turbine, the chiller configured to chill an inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature;
a separator located downstream of the chiller and configured to separate water in the chilled inlet air stream and produce a water stream in an open-loop circuit;
and a wet air fin cooler that combines the water stream with an air cooler air stream to condense, chill, or sub-cool the process fluid passing through the wet air fin cooler.
a gas turbine;
a chiller located at an inlet of the gas turbine, the chiller configured to chill an inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature;
a separator located downstream of the chiller and configured to separate water in the chilled inlet air stream and produce a water stream in an open-loop circuit;
and a wet air fin cooler that combines the water stream with an air cooler air stream to condense, chill, or sub-cool the process fluid passing through the wet air fin cooler.
13. The system of claim 12, wherein the wet air fin cooler comprises:
a tube bundle through which the process fluid passes;
a spray header configured to spray the water stream into the air cooler air stream; and a fan that forces the air stream and sprayed water stream over or across the tube bundle.
a tube bundle through which the process fluid passes;
a spray header configured to spray the water stream into the air cooler air stream; and a fan that forces the air stream and sprayed water stream over or across the tube bundle.
14. The system of claim 13, further comprising a fan controller that controls at least one of a speed of the fan, a pitch of a blade of the fan, and a damper associated with the fan.
15. The system of any of claims 12-14, wherein the separator is one of an inertial separator, a vane separator, a plenum, and a coalescer.
16. The system of any of claims 12-15, further comprising a filter arranged to at least partially filter the inlet air stream before the inlet air stream is chilled by the chiller.
17. The system of claim 16, wherein the filter comprises a moisture barrier.
18. The system of any of claims 12-17, wherein the gas turbine, the chiller, the inlet air stream, and the separator are a first gas turbine, a first chiller, a first inlet air stream, and a first separator, and further comprising:
a second gas turbine;
a second chiller located at an inlet of the second gas turbine, the second cooler configured to chill a second inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature; and a second separator located downstream of the second chiller and configured to separate water in the chilled second inlet air stream and deliver the separated water into the water stream.
a second gas turbine;
a second chiller located at an inlet of the second gas turbine, the second cooler configured to chill a second inlet air stream from about its dry bulb temperature to a temperature below its wet bulb temperature; and a second separator located downstream of the second chiller and configured to separate water in the chilled second inlet air stream and deliver the separated water into the water stream.
19. A method for cooling a process fluid, comprising:
cooling an inlet air stream of a process component with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open-loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
cooling an inlet air stream of a process component with an inlet air cooling system;
condensing moisture contained in the cooled inlet air stream;
separating the moisture from the cooled inlet air stream to produce water stream in an open-loop circuit;
spraying the water stream into an air cooler air stream;
directing the combined air cooler air stream and sprayed water stream through an air cooler; and exchanging heat between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
20. The method of claim 19, wherein the air cooler includes a tube bundle, and wherein the step of exchanging heat comprises:
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
passing the process fluid through the tube bundle; and directing the combined air cooler air stream and sprayed water stream over or across the tube bundle.
21. The method of claim 19 or claim 20, wherein directing the combined air cooler air stream and the sprayed water stream is accomplished using a fan.
22. The method of claim 21, wherein a flow rate or velocity of the air cooler air stream is adjusted using one or more of a fan speed control, a fan blade pitch control, and a damper adjustment.
23. The method of claim 22, wherein the air cooler air stream flow rate or velocity is adjusted based on at least one of: relative humidity of the air cooler air stream, flow rate of the sprayed water stream, ambient temperature, barometric pressure, psychometric air data, ambient relative humidity, air stream temperature, and temperature of the sprayed water stream.
24. The method of any of claims 19-23, wherein separating the moisture is accomplished by a separating device selected from an inertial separator, a vane separator, a plenum, and a coalescer.
25. The method of any of claims 19-24, further comprising at least partially filtering the inlet air stream before cooling the inlet air stream.
26. The method of any of claims 19-25, wherein cooling the inlet air stream of the process component with the inlet air cooling system comprises chilling the inlet air stream from about a dry bulb temperature of the inlet air stream to a temperature below a wet bulb temperature of the inlet air stream.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662375705P | 2016-08-16 | 2016-08-16 | |
US62/375,705 | 2016-08-16 | ||
PCT/US2017/044103 WO2018034816A1 (en) | 2016-08-16 | 2017-07-27 | System and method to integrate condensed water with improved cooler performance |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3033179A1 true CA3033179A1 (en) | 2018-02-22 |
Family
ID=59569380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3033179A Abandoned CA3033179A1 (en) | 2016-08-16 | 2017-07-27 | System and method to integrate condensed water with improved cooler performance |
Country Status (9)
Country | Link |
---|---|
US (1) | US20180051929A1 (en) |
EP (1) | EP3500810A1 (en) |
JP (1) | JP2019531454A (en) |
KR (1) | KR20190040023A (en) |
CN (1) | CN109564058A (en) |
AU (1) | AU2017313698A1 (en) |
CA (1) | CA3033179A1 (en) |
SG (1) | SG11201900579WA (en) |
WO (1) | WO2018034816A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112983627B (en) * | 2019-12-16 | 2022-05-31 | 广州汽车集团股份有限公司 | Intercooling condensation-preventing control method and system for supercharged gasoline engine |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6324867B1 (en) * | 1999-06-15 | 2001-12-04 | Exxonmobil Oil Corporation | Process and system for liquefying natural gas |
US6560980B2 (en) * | 2000-04-10 | 2003-05-13 | Thermo King Corporation | Method and apparatus for controlling evaporator and condenser fans in a refrigeration system |
JP5196722B2 (en) * | 2005-12-09 | 2013-05-15 | 三機工業株式会社 | Compressed air dehumidifier |
CN201074921Y (en) * | 2007-06-27 | 2008-06-18 | 王全龄 | High-efficiency air source heat pump type air conditioner and water heater |
US20120060552A1 (en) * | 2009-05-18 | 2012-03-15 | Carolus Antonius Cornelis Van De Lisdonk | Method and apparatus for cooling a gaseous hydrocarbon stream |
CN101788173B (en) * | 2010-01-22 | 2012-08-29 | 西安工程大学 | Spray air cooler and packless spray cooling tower combined high temperature water chiller |
US8534039B1 (en) * | 2012-04-16 | 2013-09-17 | TAS Energy, Inc. | High performance air-cooled combined cycle power plant with dual working fluid bottoming cycle and integrated capacity control |
US9784490B2 (en) * | 2013-03-14 | 2017-10-10 | Tippmann Companies Llc | Refrigeration system with humidity control |
US10118116B2 (en) * | 2015-01-07 | 2018-11-06 | Hyun-Wook Jeong | Moisture separator and air cycle system with the same |
-
2017
- 2017-07-27 AU AU2017313698A patent/AU2017313698A1/en not_active Abandoned
- 2017-07-27 CA CA3033179A patent/CA3033179A1/en not_active Abandoned
- 2017-07-27 CN CN201780049990.XA patent/CN109564058A/en active Pending
- 2017-07-27 US US15/661,315 patent/US20180051929A1/en not_active Abandoned
- 2017-07-27 KR KR1020197007649A patent/KR20190040023A/en active Search and Examination
- 2017-07-27 WO PCT/US2017/044103 patent/WO2018034816A1/en unknown
- 2017-07-27 EP EP17749784.9A patent/EP3500810A1/en not_active Withdrawn
- 2017-07-27 SG SG11201900579WA patent/SG11201900579WA/en unknown
- 2017-07-27 JP JP2019508887A patent/JP2019531454A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2018034816A1 (en) | 2018-02-22 |
US20180051929A1 (en) | 2018-02-22 |
AU2017313698A1 (en) | 2019-02-07 |
EP3500810A1 (en) | 2019-06-26 |
CN109564058A (en) | 2019-04-02 |
KR20190040023A (en) | 2019-04-16 |
JP2019531454A (en) | 2019-10-31 |
SG11201900579WA (en) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100636562B1 (en) | Plant for liquefying natural gas | |
RU2395765C2 (en) | Plant and device for liquefaction of natural gas | |
RU2668303C1 (en) | System and method for liquefying of natural gas (options) | |
US12025371B2 (en) | Solvent injection and recovery in a LNG plant | |
AU2017313697B2 (en) | System and method for liquefying natural gas with turbine inlet cooling | |
US20180051929A1 (en) | System and Method to Integrate Condensed Water with Improved Cooler Performance | |
US11747081B2 (en) | Method and system for efficient nonsynchronous LNG production using large scale multi-shaft gas turbines | |
CN103299145A (en) | Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor | |
US11105553B2 (en) | Method and system for LNG production using standardized multi-shaft gas turbines, compressors and refrigerant systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20190206 |
|
FZDE | Discontinued |
Effective date: 20210831 |