CA3026371A1 - Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones - Google Patents
Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones Download PDFInfo
- Publication number
- CA3026371A1 CA3026371A1 CA3026371A CA3026371A CA3026371A1 CA 3026371 A1 CA3026371 A1 CA 3026371A1 CA 3026371 A CA3026371 A CA 3026371A CA 3026371 A CA3026371 A CA 3026371A CA 3026371 A1 CA3026371 A1 CA 3026371A1
- Authority
- CA
- Canada
- Prior art keywords
- waves
- treatment method
- acoustic shock
- shock waves
- reflexology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010068150 Acoustic shock Diseases 0.000 title claims abstract description 77
- 238000002560 therapeutic procedure Methods 0.000 title claims description 20
- 238000011282 treatment Methods 0.000 claims abstract description 108
- 238000000034 method Methods 0.000 claims abstract description 57
- 208000002193 Pain Diseases 0.000 claims abstract description 32
- 230000036407 pain Effects 0.000 claims abstract description 30
- 230000004936 stimulating effect Effects 0.000 claims abstract description 15
- 208000024891 symptom Diseases 0.000 claims abstract description 14
- 230000003213 activating effect Effects 0.000 claims abstract description 4
- 230000035939 shock Effects 0.000 claims description 103
- 210000002683 foot Anatomy 0.000 claims description 28
- 229940088597 hormone Drugs 0.000 claims description 28
- 239000005556 hormone Substances 0.000 claims description 28
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 18
- 210000000988 bone and bone Anatomy 0.000 claims description 17
- 206010029446 nocturia Diseases 0.000 claims description 15
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 claims description 14
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 claims description 14
- 206010061218 Inflammation Diseases 0.000 claims description 13
- 210000003979 eosinophil Anatomy 0.000 claims description 13
- 230000004054 inflammatory process Effects 0.000 claims description 13
- 230000028327 secretion Effects 0.000 claims description 13
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 claims description 12
- 208000035475 disorder Diseases 0.000 claims description 12
- 210000002216 heart Anatomy 0.000 claims description 10
- 230000001965 increasing effect Effects 0.000 claims description 10
- 210000004072 lung Anatomy 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 8
- 230000000399 orthopedic effect Effects 0.000 claims description 8
- 210000002700 urine Anatomy 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 239000003102 growth factor Substances 0.000 claims description 7
- 210000003423 ankle Anatomy 0.000 claims description 6
- 210000002784 stomach Anatomy 0.000 claims description 6
- 230000009885 systemic effect Effects 0.000 claims description 6
- 208000005615 Interstitial Cystitis Diseases 0.000 claims description 5
- 208000015181 infectious disease Diseases 0.000 claims description 5
- 208000002551 irritable bowel syndrome Diseases 0.000 claims description 5
- 244000045947 parasite Species 0.000 claims description 5
- 210000000813 small intestine Anatomy 0.000 claims description 5
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 206010044668 Trigonitis Diseases 0.000 claims description 4
- 230000000172 allergic effect Effects 0.000 claims description 4
- 208000006673 asthma Diseases 0.000 claims description 4
- 208000010668 atopic eczema Diseases 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 210000003238 esophagus Anatomy 0.000 claims description 4
- 208000031229 Cardiomyopathies Diseases 0.000 claims description 3
- 206010012438 Dermatitis atopic Diseases 0.000 claims description 3
- 208000027004 Eosinophilic disease Diseases 0.000 claims description 3
- 206010064212 Eosinophilic oesophagitis Diseases 0.000 claims description 3
- 208000017604 Hodgkin disease Diseases 0.000 claims description 3
- 208000021519 Hodgkin lymphoma Diseases 0.000 claims description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 3
- 206010021639 Incontinence Diseases 0.000 claims description 3
- 208000014767 Myeloproliferative disease Diseases 0.000 claims description 3
- 206010039085 Rhinitis allergic Diseases 0.000 claims description 3
- 208000005485 Thrombocytosis Diseases 0.000 claims description 3
- 208000017733 acquired polycythemia vera Diseases 0.000 claims description 3
- 201000010105 allergic rhinitis Diseases 0.000 claims description 3
- 201000008937 atopic dermatitis Diseases 0.000 claims description 3
- 230000001363 autoimmune Effects 0.000 claims description 3
- 230000001684 chronic effect Effects 0.000 claims description 3
- 230000002327 eosinophilic effect Effects 0.000 claims description 3
- 201000000708 eosinophilic esophagitis Diseases 0.000 claims description 3
- 201000001561 eosinophilic gastritis Diseases 0.000 claims description 3
- 201000001564 eosinophilic gastroenteritis Diseases 0.000 claims description 3
- 201000009580 eosinophilic pneumonia Diseases 0.000 claims description 3
- 206010020718 hyperplasia Diseases 0.000 claims description 3
- 208000032839 leukemia Diseases 0.000 claims description 3
- 201000006417 multiple sclerosis Diseases 0.000 claims description 3
- 206010028537 myelofibrosis Diseases 0.000 claims description 3
- 208000037244 polycythemia vera Diseases 0.000 claims description 3
- 208000003476 primary myelofibrosis Diseases 0.000 claims description 3
- 238000011471 prostatectomy Methods 0.000 claims description 3
- 201000009732 pulmonary eosinophilia Diseases 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 208000007056 sickle cell anemia Diseases 0.000 claims description 3
- 208000010228 Erectile Dysfunction Diseases 0.000 claims description 2
- 210000004204 blood vessel Anatomy 0.000 claims description 2
- 102000038379 digestive enzymes Human genes 0.000 claims description 2
- 108091007734 digestive enzymes Proteins 0.000 claims description 2
- 210000000245 forearm Anatomy 0.000 claims description 2
- 201000001881 impotence Diseases 0.000 claims description 2
- 210000003127 knee Anatomy 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 210000004705 lumbosacral region Anatomy 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims description 2
- 210000000323 shoulder joint Anatomy 0.000 claims description 2
- 210000000115 thoracic cavity Anatomy 0.000 claims description 2
- 230000004044 response Effects 0.000 abstract description 15
- 210000001519 tissue Anatomy 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 25
- 210000003932 urinary bladder Anatomy 0.000 description 22
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 20
- 210000003491 skin Anatomy 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 15
- 210000004907 gland Anatomy 0.000 description 15
- 230000006872 improvement Effects 0.000 description 15
- 210000000056 organ Anatomy 0.000 description 13
- 210000005036 nerve Anatomy 0.000 description 11
- 210000002307 prostate Anatomy 0.000 description 11
- 229960003604 testosterone Drugs 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000262 estrogen Substances 0.000 description 8
- 229940011871 estrogen Drugs 0.000 description 8
- 210000004247 hand Anatomy 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 229940124583 pain medication Drugs 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 230000000762 glandular Effects 0.000 description 6
- 230000035876 healing Effects 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 210000001672 ovary Anatomy 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 210000001550 testis Anatomy 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000027939 micturition Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 206010012335 Dependence Diseases 0.000 description 4
- 206010014950 Eosinophilia Diseases 0.000 description 4
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000003054 hormonal effect Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 230000003442 weekly effect Effects 0.000 description 4
- 206010062767 Hypophysitis Diseases 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000036755 cellular response Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000000653 nervous system Anatomy 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 210000002640 perineum Anatomy 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 210000005070 sphincter Anatomy 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 239000003270 steroid hormone Substances 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 208000000094 Chronic Pain Diseases 0.000 description 2
- 208000000059 Dyspnea Diseases 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 206010030247 Oestrogen deficiency Diseases 0.000 description 2
- 208000026251 Opioid-Related disease Diseases 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- 102000002248 Thyroxine-Binding Globulin Human genes 0.000 description 2
- 108010000259 Thyroxine-Binding Globulin Proteins 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 206010003549 asthenia Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 230000037180 bone health Effects 0.000 description 2
- 230000037118 bone strength Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000254 damaging effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000003372 endocrine gland Anatomy 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000006651 lactation Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000009245 menopause Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 229940127240 opiate Drugs 0.000 description 2
- 230000008058 pain sensation Effects 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 210000003903 pelvic floor Anatomy 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 210000003635 pituitary gland Anatomy 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 239000000186 progesterone Substances 0.000 description 2
- 229960003387 progesterone Drugs 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003716 rejuvenation Effects 0.000 description 2
- 230000033458 reproduction Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 208000013220 shortness of breath Diseases 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000007958 sleep Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000005495 thyroid hormone Substances 0.000 description 2
- 229940036555 thyroid hormone Drugs 0.000 description 2
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 230000002620 ureteric effect Effects 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 206010000087 Abdominal pain upper Diseases 0.000 description 1
- 201000000736 Amenorrhea Diseases 0.000 description 1
- 206010001928 Amenorrhoea Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 206010071445 Bladder outlet obstruction Diseases 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 206010049290 Feminisation acquired Diseases 0.000 description 1
- 208000034793 Feminization Diseases 0.000 description 1
- 208000036119 Frailty Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010020675 Hypermetropia Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020853 Hypertonic bladder Diseases 0.000 description 1
- 241001491807 Idaea straminata Species 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 208000000913 Kidney Calculi Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010027951 Mood swings Diseases 0.000 description 1
- 206010029148 Nephrolithiasis Diseases 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 206010068319 Oropharyngeal pain Diseases 0.000 description 1
- 206010033372 Pain and discomfort Diseases 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 208000025844 Prostatic disease Diseases 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 description 1
- 208000003800 Urinary Bladder Neck Obstruction Diseases 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 206010047791 Vulvovaginal dryness Diseases 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 230000009692 acute damage Effects 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 231100000540 amenorrhea Toxicity 0.000 description 1
- 239000003263 anabolic agent Substances 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 102000001307 androgen receptors Human genes 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 150000001441 androstanes Chemical class 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000009693 chronic damage Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 238000002283 elective surgery Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 230000013931 endocrine signaling Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003020 exocrine pancreas Anatomy 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000000745 gonadal hormone Substances 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000013003 healing agent Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000009247 menarche Effects 0.000 description 1
- 230000005906 menstruation Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 108700039855 mouse a Proteins 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000007514 neuronal growth Effects 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940127234 oral contraceptive Drugs 0.000 description 1
- 239000003539 oral contraceptive agent Substances 0.000 description 1
- 230000008816 organ damage Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 230000027758 ovulation cycle Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 210000001819 pancreatic juice Anatomy 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 230000014306 paracrine signaling Effects 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000007180 physiological regulation Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000025627 positive regulation of urine volume Effects 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000027424 regulation of hormone biosynthetic process Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000004706 scrotum Anatomy 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000021317 sensory perception Effects 0.000 description 1
- 230000036301 sexual development Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000009168 stem cell therapy Methods 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 208000023409 throat pain Diseases 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 201000002327 urinary tract obstruction Diseases 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 208000016258 weakness Diseases 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H39/00—Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
- A61H39/04—Devices for pressing such points, e.g. Shiatsu or Acupressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H23/00—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
- A61H23/008—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms using shock waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H39/00—Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
- A61H39/002—Using electric currents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/01—Constructive details
- A61H2201/0119—Support for the device
- A61H2201/0153—Support for the device hand-held
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/10—Characteristics of apparatus not provided for in the preceding codes with further special therapeutic means, e.g. electrotherapy, magneto therapy or radiation therapy, chromo therapy, infrared or ultraviolet therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/12—Driving means
- A61H2201/1207—Driving means with electric or magnetic drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/1654—Layer between the skin and massage elements, e.g. fluid or ball
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/02—Head
- A61H2205/027—Ears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/06—Arms
- A61H2205/065—Hands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/12—Feet
- A61H2205/125—Foot reflex zones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0034—Skin treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0039—Ultrasound therapy using microbubbles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0056—Beam shaping elements
- A61N2007/006—Lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0056—Beam shaping elements
- A61N2007/0069—Reflectors
Landscapes
- Health & Medical Sciences (AREA)
- Rehabilitation Therapy (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A treatment method to reduce a patient's symptoms caused by a medical condition is disclosed. The treatment has the step of administering acoustic shock waves directed to an area near a source of the pain or to a reflexology zone to treat the medical condition or prior to the medical procedure or during the medical procedure or after the medical procedure or any combination thereof. The treatment further has the steps of activating acoustic shock waves of an acoustic shock wave generator to emit acoustic shock waves and subjecting the area near the reflexology zone to acoustic shock waves stimulating the area near the source of the reflexology zone to have a modulated response.
Description
ACOUSTIC SHOCK WAVE THERAPEUTIC METHODS TO TREAT
MEDICAL CONDITIONS USING REFLEXOLOGY ZONES
Technical Field [001] The present invention relates to an improved treatment method of utilizing acoustic shock waves to treat medical conditions using reflexology zones.
Background of the Invention
MEDICAL CONDITIONS USING REFLEXOLOGY ZONES
Technical Field [001] The present invention relates to an improved treatment method of utilizing acoustic shock waves to treat medical conditions using reflexology zones.
Background of the Invention
[002] In US 7,470,240 B2, entitled -Pressure Pulse/Shock Wave Therapy Methods And An Apparatus For Conducting The Therapeutic Methods-, is disclosed a novel use of unfocused shock waves to stimulate a cellular substance. From this patent a family of treatment patents evolved. The list includes US 7,841,995; US 7,883,482; US
7,905,845 all divisional applications; and US 7,507,213 entitled -Pressure Pulse/Shock Wave Therapy Methods For Organs-; US 7,544,171 B2 entitled -Methods for Promoting Nerve Regeneration and Neuronal Growth and Elongation"; US 7,988,648 B2 entitled -Pancreas Regeneration Treatment For Diabetics Using Extracorporeal Acoustic Shock Waves-; all teaching a new useful way to deliver acoustic shock waves to achieve a healing response.
Each of these patents are incorporated herein by reference in their entirety.
In addition, patents US 8,257,282 and 8,535,249 for the device to perform these methods by delivering low energy unfocused acoustic shock waves to the cellular tissue being treated.
7,905,845 all divisional applications; and US 7,507,213 entitled -Pressure Pulse/Shock Wave Therapy Methods For Organs-; US 7,544,171 B2 entitled -Methods for Promoting Nerve Regeneration and Neuronal Growth and Elongation"; US 7,988,648 B2 entitled -Pancreas Regeneration Treatment For Diabetics Using Extracorporeal Acoustic Shock Waves-; all teaching a new useful way to deliver acoustic shock waves to achieve a healing response.
Each of these patents are incorporated herein by reference in their entirety.
In addition, patents US 8,257,282 and 8,535,249 for the device to perform these methods by delivering low energy unfocused acoustic shock waves to the cellular tissue being treated.
[003] During this inventive research, the inventors disclosed the use of acoustic shock waves could be beneficial as a disease preventative therapy of at risk patients to such ailments as heart disease and other conditions.
[004] While this large volume of research has been rewarded by the granting of numerous patents, much new work has been evolving as the understanding of the technology is being applied. It is in this latest work that some, heretofore, unknown improvements and refinements have been discovered that were hidden from and unappreciated by scientists in this field. In particular, the use of acoustic shock waves to regulate and in some cases stimulate glandular hormonal secretions or modulate glandular hormonal secretions.
Summary of the Invention
Summary of the Invention
[005] A treatment method to reduce or eliminate a patient's symptoms caused by a medical condition or disease is disclosed. The treatment has the step of administering acoustic shock waves directed to an area near a source of the pain if any is exhibited, or to a reflexology zone to treat the medical condition. The treatment further has the steps of activating acoustic shock waves of an acoustic shock wave generator to emit acoustic shock waves and subjecting the area at or near the source of the pain or at or near the reflexology zone to acoustic shock waves stimulating the area near the source of the condition or an area in the reflexology zone over a period of time. The emitted acoustic shock waves can be focused or unfocused acoustic shock waves.
[006] The reflexology zone underlies the patient's skin in a region of a foot or hand or ear. The shock wave generator is acoustically coupled to the patient's skin using a coupling gel or liquid. In one embodiment for orthopedic or bone joint pain, the reflexology zone for an orthopedic structure is in a region of the foot is located in an outer surface of each foot between a toe and a heel. The treatment, when applied to this reflexology zone, reduces pain in shoulder joint, upper arm, elbow, forearm, and at an ankle reduces pain in the hip, above the ankle reduces pain in the knee. In another embodiment, the reflexology zone for an orthopedic structure is in a region of the foot is located in an inner surface of each foot progressively between a large toe and a heel. The treatment reduces pain at a location adjacent the large toe in the cervical spine, the thoracic spine, lumbar spine, the sacral bone, and the tail bone near the heel.
Alternatively, the reflexology zone for an orthopedic structure can be in a region of the hand.
Alternatively, the reflexology zone for an orthopedic structure can be in a region of the hand.
[007] The stimulating of the area causes a release of nitric oxide, secretion of digestive enzymes, hormones and other fluids and can cause a release of growth factors including, but not limited to VGEF, can also cause new blood vessels to be created increasing vascularization. The treatment method can be repeated one or more times prior to or during the medical procedure or after the medical procedure. The emitted acoustic shock waves can be low energy soft waves wherein the low energy soft waves have an energy density in the range of 0.01 mJ/mm2 to 1.0 mJ/mm2, preferably in the range of 0.04 mJ/mm2 to 0.3 mJ/mm2. Alternatively, the emitted acoustic shock waves can be higher energy waves in the range of 1.0 mJ/mm2 up to and including 50 mJ/mm2. Each subjected reflexology zone receives between 100 and 2000 acoustic shock waves per therapy session.
The emitted acoustic shock waves are spherical, radial, convergent, divergent, planar, near planar, focused or unfocused from a source with or without a lens that is one of electrohydraulic, electromagnetic, piezoelectric, ballistic or water jets configured to produce an acoustic shock wave and wherein the acoustic shock waves are administered invasively or noninvasively. Ideally, number of repeated treatments occur on a schedule over a period of three or more weeks, and treatments can be repeated over time as a treatment protocol over longer durations of time between repeated treatments.
The emitted acoustic shock waves are spherical, radial, convergent, divergent, planar, near planar, focused or unfocused from a source with or without a lens that is one of electrohydraulic, electromagnetic, piezoelectric, ballistic or water jets configured to produce an acoustic shock wave and wherein the acoustic shock waves are administered invasively or noninvasively. Ideally, number of repeated treatments occur on a schedule over a period of three or more weeks, and treatments can be repeated over time as a treatment protocol over longer durations of time between repeated treatments.
[008] The treatment method wherein the medical condition is one of auto immune indications/disorders as well as disorders of chronic local and systemic inflammation, congestive heart or lung failure; high or low eosinophils; Nocturia and BPH
(benign prostatectomy hyperplasia), incontinence, interstitial cystitis, or Trigonitis.
(benign prostatectomy hyperplasia), incontinence, interstitial cystitis, or Trigonitis.
[009] The treatment method wherein the medical condition is one of erectile dysfunction, Nocturia, Nocturia defined as urinating at least 2 times per night; reduced urine flow.
[0010] The treatment method wherein the medical condition is an eosinophilic disorder with elevated levels of eosinophils including one or more of Allergic disorders, Infections by parasites, Certain cancers, asthma, allergic rhinitis, atopic dermatitis, Hodgkin lymphoma, leukemia, certain myeloproliferative disorders, Eosinophilic pneumonia (lungs), Eosinophilic cardiomyopathy (heart), Eosinophilic esophagitis , (esophagus), Eosinophilic gastritis (stomach), Eosinophilic enteritis (small intestine), Crohns, Rheumatoid arthritis, MS Multiple Sclerosis, IBS irritable bowel syndrome, Primary myelofibrosis, Polycythemia vera, Thrombocythemia, Chronic Myelogenous Leukemia, (CML; Chronic Myelocytic Leukemia; Chronic Myeloid Leukemia; Chronic Granulocytic Leukemia), Sickle cell anemia.
[0011] The mechanism that makes the treatment so successful includes shockwaves ability to modulate inflammation locally and systemically; and cause stem cell attractants to be produced or attracted to the area localized by shockwaves or systemically through the reflexology points. All of the hands and feet are treated to ensure that all points are covered and maximized.
Definitions
Definitions
[0012] A -curved emitter- is an emitter having a curved reflecting (or focusing) or emitting surface and includes, but is not limited to, emitters having ellipsoidal, parabolic, quasi parabolic (general paraboloid) or spherical reflector/reflecting or emitting elements.
Curved emitters having a curved reflecting or focusing element generally produce waves having focused wave fronts, while curved emitters having a curved emitting surfaces generally produce wave having divergent wave fronts.
Curved emitters having a curved reflecting or focusing element generally produce waves having focused wave fronts, while curved emitters having a curved emitting surfaces generally produce wave having divergent wave fronts.
[0013] -Divergent waves- in the context of the present invention are all waves which are not focused and are not plane or nearly plane. Divergent waves also include waves which only seem to have a focus or source from which the waves are transmitted. The wave fronts of divergent waves have divergent characteristics. Divergent waves can be created in many different ways, for example: A focused wave will become divergent once it has passed through the focal point. Spherical waves are also included in this definition of divergent waves and have wave fronts with divergent characteristics.
[0014] -Eosinophils-, sometimes called eosinophiles or, less commonly, acidophils, are a variety of white blood cells and one of the immune system components responsible for combating multicellular parasites and certain infections in vertebrates. Along with mast cells and basophils, they also control mechanisms associated with allergy and asthma.
They are granulocytes that develop during hematopoiesis in the bone marrow before migrating into blood, after which they are terminally differentiated and do not multiply.
They are granulocytes that develop during hematopoiesis in the bone marrow before migrating into blood, after which they are terminally differentiated and do not multiply.
[0015] -Estrogen-: A female steroid hormone that is produced by the ovaries and, in lesser amounts, by the adrenal cortex, placenta, and male testes. Estrogen helps control and guide sexual development, including the physical changes associated with puberty. It also influences the course of ovulation in the monthly menstrual cycle, lactation after pregnancy, aspects of mood, and the aging process. Production of estrogen changes naturally over the female lifespan, reaching adult levels with the onset of puberty (menarche) and decreasing in middle age until the onset of menopause. Estrogen deficiency can lead to lack of menstruation (amenorrhea), persistent difficulties associated with menopause (such as mood swings and vaginal dryness), and osteoporosis in older age. In cases of estrogen deficiency, natural and synthetic estrogen preparations may be prescribed. Estrogen is also a component of many oral contraceptives. An overabundance of estrogen in men causes development of female secondary sexual characteristics (feminization), such as enlargement of breast tissue.
[0016] "extracorporeal- means occurring or based outside the living body.
[0017] A -generalized paraboloid- according to the present invention is also a three-dimensional bowl. In two dimensions (in Cartesian coordinates, x and y) the formula yn=2px [with n being 2, but being greater than about 1.2 and smaller than 2, or greater than 2 but smaller than about 2.8]. In a generalized paraboloid, the characteristics of the wave fronts created by electrodes located within the generalized paraboloid may be corrected by the selection of (p (-z,+z)), with z being a measure for the burn down of an electrode, and n, so that phenomena including, but not limited to, burn down of the tip of an electrode (-z,+z) and/or disturbances caused by diffraction at the aperture of the paraboloid are compensated for.
[0018] -Hormone-: A hormone is any member of a class of signaling molecules produced by glands in multicellular organisms that are transported by the circulatory system to target distant organs to regulate physiology and behaviour. Hormones have diverse chemical structures, mainly of 3 classes: eicosanoids, steroids, and amino acid/protein derivatives (amines, peptides, and proteins). The glands that secrete hormones comprise the endocrine signaling system. The term hormone is sometimes extended to include chemicals produced by cells that affect the same cell (autocrine or intracrine signalling) or nearby cells (paracrine signalling). Hormones are used to communicate between organs and tissues for physiological regulation and behavioral activities, such as digestion, metabolism, respiration, tissue function, sensory perception, sleep, excretion, lactation, stress, growth and development, movement, reproduction, and mood. Hormones affect distant cells by binding to specific receptor proteins in the target cell resulting in a change in cell function.
When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription resulting in increased expression of target proteins; non-genomic effects are more rapid, and can be synergistic with genomic effects. Amino acid¨based hormones (amines and peptide or protein hormones) are water-soluble and act on the surface of target cells via second messengers; steroid hormones, being lipid-soluble, move through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei. Hormone secretion may occur in many tissues.
Endocrine glands are the cardinal example, but specialized cells in various other organs also secrete hormones. Hormone secretion occurs in response to specific biochemical signals from a wide range of regulatory systems. For instance, serum calcium concentration affects parathyroid hormone synthesis; blood sugar (serum glucose concentration) affects insulin synthesis; and because the outputs of the stomach and exocrine pancreas (the amounts of gastric juice and pancreatic juice) become the input of the small intestine, the small intestine secretes hormones to stimulate or inhibit the stomach and pancreas based on how busy it is. Regulation of hormone synthesis of gonadal hormones, adrenocortical hormones, and thyroid hormones is often dependent on complex sets of direct influence and feedback interactions involving the hypothalamic-pituitary-adrenal (HPA), -gonadal (HPG), and -thyroid (HPT) axes. Upon secretion, certain hormones, including protein hormones and catecholamines, are water-soluble and are thus readily transported through the circulatory system. Other hormones, including steroid and thyroid hormones, are lipid-soluble; to allow for their widespread distribution, these hormones must bond to carrier plasma glycoproteins (e.g., thyroxine-binding globulin (TBG)) to form ligand-protein complexes. Some hormones are completely active when released into the bloodstream (as is the case for insulin and growth hormones), while others are prohormones that must be activated in specific cells through a series of activation steps that are commonly highly regulated. The endocrine system secretes hormones directly into the bloodstream typically into fenestrated capillaries, whereas the exocrine system secretes its hormones indirectly using ducts. Hormones with paracrine function diffuse through the interstitial spaces to nearby target tissue.
When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription resulting in increased expression of target proteins; non-genomic effects are more rapid, and can be synergistic with genomic effects. Amino acid¨based hormones (amines and peptide or protein hormones) are water-soluble and act on the surface of target cells via second messengers; steroid hormones, being lipid-soluble, move through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei. Hormone secretion may occur in many tissues.
Endocrine glands are the cardinal example, but specialized cells in various other organs also secrete hormones. Hormone secretion occurs in response to specific biochemical signals from a wide range of regulatory systems. For instance, serum calcium concentration affects parathyroid hormone synthesis; blood sugar (serum glucose concentration) affects insulin synthesis; and because the outputs of the stomach and exocrine pancreas (the amounts of gastric juice and pancreatic juice) become the input of the small intestine, the small intestine secretes hormones to stimulate or inhibit the stomach and pancreas based on how busy it is. Regulation of hormone synthesis of gonadal hormones, adrenocortical hormones, and thyroid hormones is often dependent on complex sets of direct influence and feedback interactions involving the hypothalamic-pituitary-adrenal (HPA), -gonadal (HPG), and -thyroid (HPT) axes. Upon secretion, certain hormones, including protein hormones and catecholamines, are water-soluble and are thus readily transported through the circulatory system. Other hormones, including steroid and thyroid hormones, are lipid-soluble; to allow for their widespread distribution, these hormones must bond to carrier plasma glycoproteins (e.g., thyroxine-binding globulin (TBG)) to form ligand-protein complexes. Some hormones are completely active when released into the bloodstream (as is the case for insulin and growth hormones), while others are prohormones that must be activated in specific cells through a series of activation steps that are commonly highly regulated. The endocrine system secretes hormones directly into the bloodstream typically into fenestrated capillaries, whereas the exocrine system secretes its hormones indirectly using ducts. Hormones with paracrine function diffuse through the interstitial spaces to nearby target tissue.
[0019] "Interstitial Cystitis- is a condition that involved inflammation of the bladder. This inflammation is characterized by pain in the pelvic region, frequent urination, and urinary incontinence. Individuals who have this condition are likely to experience very small hemorrhages on their bladder wall or even develop sores.
[0020] -Nocturia- - Purposeful urination at night, after waking from sleep;
typically caused by nocturnal urine volume in excess of bladder capacity or incomplete emptying of the bladder because of lower urinary tract obstruction or detrusor instability. Excessive urination at night may be a symptom of cardiac. renal. or prostatic disease or bladder outlet obstruction.
typically caused by nocturnal urine volume in excess of bladder capacity or incomplete emptying of the bladder because of lower urinary tract obstruction or detrusor instability. Excessive urination at night may be a symptom of cardiac. renal. or prostatic disease or bladder outlet obstruction.
[0021] A "paraboloid- according to the present invention is a three-dimensional reflecting bowl. In two dimensions (in Cartesian coordinates, x and y) the formula y2=2px, wherein p/2 is the distance of the focal point of the paraboloid from its apex.
defines the paraboloid.
Rotation of the two-dimensional figure defined by this formula around its longitudinal axis generates a de facto paraboloid.
defines the paraboloid.
Rotation of the two-dimensional figure defined by this formula around its longitudinal axis generates a de facto paraboloid.
[0022] -Plane waves- are sometimes also called flat or even waves. Their wave fronts have plane characteristics (also called even or parallel characteristics). The amplitude in a wave front is constant and the -curvature- is flat (that is why these waves are sometimes called flat waves). Plane waves do not have a focus to which their fronts move (focused) or from which the fronts are emitted (divergent). -Nearly plane waves- also do not have a focus to which their fronts move (focused) or from which the fronts are emitted (divergent). The amplitude of their wave fronts (having "nearly plane-characteristics) is approximating the constancy of plain waves. "Nearly plane- waves can be emitted by generators having pressure pulse/ shock wave generating elements with flat emitters or curved emitters. Curved emitters may comprise a generalized paraboloid that allows waves having nearly plane characteristics to be emitted.
[0023] A -pressure pulse- according to the present invention is an acoustic pulse which includes several cycles of positive and negative pressure. The amplitude of the positive part of such a cycle should be above about 0.1 MPa and its time duration is from below a microsecond to about a second. Rise times of the positive part of the first pressure cycle may be in the range of nano-seconds (ns) up to some milli-seconds (ms). Very fast pressure pulses are called shock waves. Shock waves used in medical applications do have amplitudes above 0.1 MPa and rise times of the amplitude are below 100 us. The duration of a shock wave is typically below 1-3 micro-seconds (ids) for the positive part of a cycle and typically above some micro-seconds for the negative part of a cycle.
[0024] -Reflexology zone- as used herein means an area or pressure point on the feet or hands that are access pathways to every organ, gland, muscle, etc. These pathways between pressure points and other parts of the body are thought to be connected via the nervous system and that a neurological relationship exists between the skin and the internal organs, and that the whole nervous system adjusts to a stimulus. According to reflexology theory, application of pressure to feet, hands, or ears sends a calming message from the peripheral nerves in these extremities to the central nervous system, which in turn signals the body to adjust the tension level. This enhances overall relaxation, removes stress, brings internal organs-and their systems into a state of optimum functioning, and increases blood supply which brings additional oxygen and nutrients to cells and enhances waste removal. It positively affects the circulatory. respirator). endocrine, immune, and neuropeptide systems in the body.
[0025] -Reproductive glands- include ovaries and testes: A woman's 2 ovaries are located on each side of the uterus, just below the opening of the fallopian tubes (tubes that extend from the uterus to near the ovaries). The ovaries contain the egg cells needed for reproduction. They also make estrogen and progesterone. These affect many of the female characteristics and reproductive functions. Estrogens also play an important role in bone health and strength. The levels of estrogen and progesterone are controlled by certain hormones made by the pituitary gland. The testes are oval-shaped organs that hang suspended in a pouch of skin (scrotum) outside the male body. The testes are the site of sperm production. They also make testosterone and other hormones. These affect many of the male characteristics and support sperm production. Testosterone also plays an important role in bone health and strength.
[0026] -Shock Wave-: As used herein is defined by Camilo Perez, Hong Chen, and Thomas J. Matula; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105;
Maria Karzova and Vera A. Khokhlovab; Department of Acoustics. Faculty of Physics, Moscow State University, Moscow 119991, Russia; (Received 9 October 2012;
revised 16 April 2013; accepted I May 2013) in their publication. **Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device-;
incorporated by reference herein in its entirety.
Maria Karzova and Vera A. Khokhlovab; Department of Acoustics. Faculty of Physics, Moscow State University, Moscow 119991, Russia; (Received 9 October 2012;
revised 16 April 2013; accepted I May 2013) in their publication. **Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device-;
incorporated by reference herein in its entirety.
[0027] -Testosterone': Testosterone is the primary male sex hormone and an anabolic steroid. In male humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate. as well as promoting secondary sexual characteristics such as increased muscle and bone mass. and the growth of body hair. In addition, testosterone is involved in health and well-being, and the prevention of osteoporosis. Insufficient levels of testosterone in men may lead to abnormalities including frailty and bone loss. Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites. It exerts its action through binding to and activation of the androgen receptor.
In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females. As the metabolism of testosterone in males is greater, the daily production is about 20 times greater in men.
Females are also more sensitive to the hormone.
In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females. As the metabolism of testosterone in males is greater, the daily production is about 20 times greater in men.
Females are also more sensitive to the hormone.
[0028] The -trigone- (a.k.a. vesical trigone) is a smooth triangular region of the internal urinary bladder formed by the two ureteric orifices and the internal urethral orifice.
[0029] Waves/wave fronts described as being -focused- or -having focusing characteristics" means in the context of the present invention that the respective waves or wave fronts are traveling and increase their amplitude in direction of the focal point. Per definition the energy of the wave will be at a maximum in the focal point or, if there is a focal shift in this point, the energy is at a maximum near the geometrical focal point. Both the maximum energy and the maximal pressure amplitude may be used to define the focal point.
Brief Description of the Drawings
Brief Description of the Drawings
[0030] The invention will be described by way of example and with reference to the accompanying drawings in which:
[0031] Figure 1 is a simplified depiction of a pressure pulse / shock wave (PP/SW) generator with focusing wave characteristics.
[0032] Figure 2 is a simplified depiction of a pressure pulse / shock wave generator with plane wave characteristics.
[0033] Figure 3 is a simplified depiction of a pressure pulse / shock wave generator with divergent wave characteristics.
[0034] Figure 4a is a simplified depiction of a pressure pulse / shock wave generator having a focusing element in the form of an ellipsoid. The waves generated are focused.
[0035] Figure 4b is a simplified depiction of a pressure pulse / shock wave generator having a parabolic reflector element and generating waves that are disturbed plane.
[0036] Figure 4c is a simplified depiction of a pressure pulse / shock wave generator having a quasi parabolic reflector element (generalized paraboloid) and generating waves that are nearly plane/have nearly plane characteristics.
[0037] Figure 4d is a simplified graphic depiction of a generalized paraboloid with better focusing characteristic than a paraboloid in which n=2. The electrode usage is shown. The generalized paraboloid, which is an interpolation (optimization) between two optimized paraboloids for a new electrode and for a used (burned down) electrode is also shown.
[0038] Figure 5 is a simplified depiction of a pressure pulse / shock wave generator being connected to a control/power supply unit.
[0039] Figure 6 is a simplified depiction of a pressure pulse / shock wave generator comprising a flat EMSE (electromagnetic shock wave emitter) coil system to generate nearly plane waves as well as an acoustic lens. Convergent wave fronts are leaving the housing via an exit window.
[0040] Figure 7 is a simplified depiction of a pressure pulse / shock wave generator having a flat EMSE coil system to generate nearly plane waves. The generator has no reflecting or focusing element. As a result, the pressure pulse / shock waves are leaving the housing via the exit window unfocused having nearly plane wave characteristics.
[0041] Figure 8 is a simplified depiction of a pressure pulse / shock wave generator having a flat piezoceramic plate equipped with a single or numerous individual piezoceramic elements to generate plane waves without a reflecting or focusing element. As a result, the pressure pulse / shock waves are leaving the housing via the exit window unfocused having nearly plane wave characteristics.
[0042] Figure 9 is a simplified depiction of a pressure pulse / shock wave generator having a cylindrical EMSE system and a triangular shaped reflecting element to generate plane waves. As a result, the pressure pulse / shock waves are leaving the housing via the exit window unfocused having nearly plane wave characteristics.
[0043] Figure 10 shows an exemplary shock wave generator device.
[0044] Figure 11 shows the shock wave generator device directed at a reflexology zone on a foot of a patient.
[0045] Figure 12 shows the shock wave generator device directed at a reflexology zone on a hand of a patient.
[0046] Figures 13-13C show schematic views showing general reflexology locations of the foot and ankle area in the human body.
[0047] Figure 14 shows a schematic view showing general reflexology locations of the hand in the human body.
Detailed Description of the Invention 100481 In recently filed co-pending US patent application serial number 15/984,505 filed May 21, 2018 entitled **Improved Acoustic Shock Wave Therapeutic Methods-which is also being incorporated herein by reference in its entirety discloses a method of modulating glandular secretions by administering acoustic shock waves to a gland.
includes the steps of activating acoustic shock waves of an acoustic shock wave generator to emit acoustic shock waves and subjecting the gland to acoustic shock waves stimulating the gland to have a modulated response. The modulated response is one of an adjustment in hormonal release which increases low level output, decreases high level output or stabilizes erratic output.
[0049] This evolved into a method of modulating glandular secretions by administering acoustic shock waves to a reflexology zone or region has been discovered. In one preferred embodiment, a treatment method achieves one or more of a) modulating blood sugar levels, b) stimulating insulin production levels or c) normalizing A IC levels by using the step of administering acoustic shock waves to a reflexology zone or region.
This treatment method, US application 16/009,807 filed on June 15, 2018 entitled -Improved Acoustic Shock Wave Therapeutic Methods- is also incorporated herein by reference in its entirety.
[0050] These most recent inventions have recently and quite unexpectedly discovered an improved treatment therapy that achieves all the objectives of the earlier work in a newly discovered and remarkably efficient way which directs acoustic shock waves to reflexology regions to achieve a desired response.
[0051] The present invention has built upon this large volume of work with a discovery that a treatment of acoustic shock wave therapy to treat medical conditions using reflexology zones.
[0052] The present methodology uses an acoustic shock wave form directed to specific reflexology zones to stimulate a modulated response. The present invention described herein in addition to treating medical conditions, also in a related patent application teaches a therapy to reduce the number of opioid addictions following surgery by reducing the need for pain medication post-surgery; and. aiding in the recovery from addiction of pain medications and opioids by elimination chronic pain in the addict and minimizing the withdrawal symptoms in the addict.
[0053] The present inventors have treated hundreds of "addicts", those individuals suffering from prescription or opioid addiction. successfully including those patients who require pain medication and/or opiates daily to manage their pain such that a patient can participate in daily activities. A huge success rate is being achieved as they only treat those motivated patients who seek out treatment for their chronic injuries and want to get off pain medication or opiates. Two million new addicts are created annually following elective surgery in the USA. These people are target patients. Additionally, the present invention has had substantial success in treating long term addicts as well.
This is especially true when an added incentive of a job treating other addicts is afforded with this technology upon the successful "kicking" of the addiction. This effort is part of a Kentucky project.
[0054] The inventors have also proven the ability to prevent long term chronic pain not only in their clinical experiences but in their published skin flap rat model.
By treating the standardized skin flap of the mouse with shock waves they reduced the area of necrosis post-surgery by 75% and accelerated complete healing by 50%. This must translate into pain reduction and the need for pain meds. They treated the mouse a day prior to, or during surgery to reduce healing time and necrosis. This is the preferred embodiment.
Treat a patient during surgery to (1) prevent adverse effects and prevent infection (2) reduce the recovery time and (3) reduce post-surgical pain. All 3 factor in long term pain medication usage. The advantage of treating during surgery is that treating a patient in the acute injury phase is painful. During surgery one can increase the energy level and the number of shocks to improve outcomes and reduce the amount of future pain medication, thus reducing the likelihood of addiction.
[0055] Treating the reflexology points in both hands and feet of the addict can minimize the anxiety and pain during the withdrawal period and generally just make the addict feel better. The inventors have seen this in numerous cases and this is included in this patent which is directed to reduce or eliminate a patient's symptoms caused by a medical condition. The medical condition as a result of this therapy is often remarkably eradicated leading to a cure of said condition.
[0056] In the Extracorporeal Shock wave method of treating a patient at a target site on the anatomy. In this invention, the term target site refers to a reflexology location for a specific orthopedic bone structure, nerve, gland and the tissue of the hand or foot at the desired reflexology zone or region being in the path of the shock wave applicator. The patient is placed in a convenient orientation to permit the source of the emitted waves to most directly send the waves to the target site to initiate shock wave stimulation of the target area. Assuming the target area is within a projected area of the wave transmission, a single transmission dosage of wave energy may be used. The transmission dosage can be from a few seconds to 20 minutes or more dependent on the condition.
Preferably the waves are generated from an unfocused or focused source. The unfocused waves can be divergent or near planar and having a low-pressure amplitude and density in the range of 0.00001 mJ/mm2 to 1.0 mJ/mm2 or less, most typically below 0.2 mJ/mm2. The focused source can use a focused beam of waves or can optionally use a diffusing lens or have a far-sight focus to minimize if not eliminate having the localized focus point within the tissue. Preferably the focused shock waves are used at a similarly effective low energy transmission or alternatively can be at higher energy but wherein the tissue target site is disposed pre-convergence inward of the geometric focal point of the emitted wave transmission. Understanding the higher the energy used, the more sensation of pain the patient may experience.
[0057] These shock wave energy transmissions are effective in stimulating a cellular response and in some cases, such as unfocused low energy. and even low energy focused emissions can be accomplished without creating the localized hemorrhaging caused by rupturing cavitation bubbles in the tissue of the target site. This effectively insures the patient does not have to experience the sensation of pain so common in the higher energy focused wave forms having a focal point at or within the targeted treatment site. Higher energy acoustic shock waves including focused ways can be used if the patient is adequately sedated such as during a surgical preparation or even during a surgical procedure.
[0058] Accordingly, unless for other reasons such as a trauma or immediate post-operative shock wave therapy no localized or general anesthesia is required. Post-operative shock wave therapy typically will be administered without such sedations at low energy.
[0059] If the target site is within the body it may be such that the patient or the generating source must be reoriented relative to the site and a second, third or more treatment dosage can be administered. The fact that the dosage is at a low energy the common problem of localized hemorrhaging is reduced making it more practical to administer multiple dosages of waves from various orientations to further optimize the treatment and cellular stimulation of the target site. Heretofore focused high energy multiple treatments induced pain and discomfort to the patient. The use of low energy focused or un-focused waves at the target site enables multiple sequential treatments. Alternatively, the wave source generators may be deployed in an array wherein the subject patient is effectively enveloped or surrounded by a plurality of low energy wave source generators which can be simultaneously bombarding the target site from multiple directions.
[0060] The goal in such treatments is to provide 100 to 3000 acoustic shock waves at a voltage of 14 kV to 28 kV across a spark gap generator in a single treatment preferably or one or more adjuvant treatments by targeting the site impinging the emitted waves on the desired reflexology target.
100611 The present method, in many cases, does not rely on precise site location per se.
The physician's general understanding of the anatomy of the patient should be sufficient to locate the reflexology target site to be treated. The treated area can withstand a far greater number of shock waves based on the selected energy level being emitted. For example, at very low energy levels the stimulation exposure can be provided over prolonged periods as much as 20 minutes if so desired. At higher energy levels the treatment duration can be shortened to less than a minute, less than a second if so desired.
The limiting factor in the selected treatment dosage is avoidance or minimization of cell hemorrhaging and other kinds of damage to the cells or tissue while still providing a stimulating cellular release or activation of VEGF and other growth factors and most importantly to modulate and regulate hormonal secretions from a specific targeted gland by emitting waves to a desired reflexology zone. In other cases where the precise location must be known, the use of an applicator acoustic wave emission is directed by an ultrasound image, preferably the applicator has a software program coupled to the imaging device to allow the doctor to visualize the area being treated. The applicator can be hand held or manipulated in a fixture, if so desired, in either way the doctor can see the reflexology zone for any gland to be stimulated and the selected reflexology zone reflects the path of the wave transmission to modulate that bone structure, nerve or gland.
[0062] A key advantage of the present inventive methodology is that it is complimentary to conventional medical procedures. In the case of any other procedure, the area of the patient can be post operatively bombarded with these low energy waves to stimulate cellular release of healing agents and growth factors. Most preferably such patients may be provided more than one such ESWT treatment with an intervening dwell time for cellular relaxation prior to secondary and tertiary treatments.
[0063] The underlying principle of these shock wave therapy methods is to stimulate the body's own natural healing capability through the reflexology zone. This is accomplished by deploying shock waves to stimulate strong cells in the tissue to activate a variety of responses. The acoustic shock waves transmit or trigger w hat appears to be a cellular communication throughout the entire anatomical structure, this activates a generalized cellular response at the treatment site, in particular, but more interestingly a systemic response in areas more removed from the wave form pattern. This is believed to be one of the reasons molecular stimulation can be conducted at threshold energies heretofore believed to be well below those commonly accepted as required. Accordingly, not only can the energy intensity be reduced but also the number of applied shock wave impulses can be lowered from several thousand to as few as one or more pulses and still yield a beneficial stimulating response. This allows acoustic wave therapies to be directed to a specific reflexology zone directed toward, for example. an endocrine gland being treated with confidence the signal will be fed back to the entire system via the pituitary gland (hypophysis). This use of acoustic wave stimulation allows a therapy to be given to modulate and adjust glandular secretions of hormones to be regulated and adjusted to achieve a desired adjustment, for example if too low to increase specific secretions, if too high to lessen these secretions. Most importantly, the modulation of and reduction of pain can be achieved in the bone structure and nerves affected by a medical condition and/or medical procedure.
[0064] The biological model motivated the design of sources with low pressure amplitudes and energy densities. First: spherical waves generated between two tips of an electrode;
and second: nearly even waves generated by generated by generalized parabolic reflectors.
Third: divergent shock front characteristics are generated by an ellipsoid behind F2.
Unfocused sources are preferably designed for extended two dimensional areas/volumes like skin. The unfocused sources can provide a divergent wave pattern or a nearly planar wave pattern and can be used in isolation or in combination with focused wave patterns yielding to an improved therapeutic treatment capability that is non-invasive with few if any disadvantageous contraindications. Alternatively, a focused wave emitting treatment may be used wherein the focal point extends to the desired reflexology zone or site, preferably at or beyond the target reflexology treatment site within or even potentially external to the patient. In any event, the beam of acoustic waves transmitted needs to project in a large enough reflexology zone or area to stimulate or modulate the gland. This results in the reduction of or elimination of a localized intensity zone with associated noticeable pain effect while providing a wide or enlarged treatment volume at a variety of depths more closely associated with high energy focused wave treatment. The utilization of a diffuser type lens or a shifted far-sighted focal point for the ellipsoidal reflector enables the spreading of the wave energy to effectively create a convergent but off target focal point. This insures less tissue trauma while insuring cellular stimulation to enhance the healing process.
[0065] This method of treatment has the steps of, locating a reflexology treatment site or zone, generating either focused shock waves or unfocused shock waves, of directing these shock waves to the treatment site; and applying a sufficient number of these shock waves to induce activation of one or more growth factor thereby inducing or accelerating a modulated adjustment to achieve a proper regulated glandular, muscular, bone or nerve response.
[0066] The unfocused shock waves can be of a divergent wave pattern or near planar pattern preferably of a low peak pressure amplitude and density. Typically, the energy density values range as low as 0.000001 mJ/ mm2 and having a high end energy density of below 1.0 mJ/ mm2, preferably 0.40 mJ/mm2 or less, more preferably 0.20 mJ/
mm2 or less. The peak pressure amplitude of the positive part of the cycle should be above 1.0 and its duration is below 1-3 microseconds.
[0067] The treatment depth can vary from the surface to the full depth of the human or animal torso and the treatment site can be defined by a much larger treatment area than the 0.10-3.0 cm 2 commonly produced by focused waves. The above methodology is particularly well suited for surface as well as sub-surface soft tissue treatments in a reflexology zone.
[0068] An exemplary treatment protocol could have emitted shock waves in a broad range of 0.01 mJ/mm2 to 3.0 mJ/mm2 and 200-2500 pulses per treatment with a treatment schedule of 1-3 weekly treatments until symptoms reduce. This can be repeated as symptoms reoccur or continue weekly as a preventative. The post medical treatment is beneficial as a pain suppressor and reduces the need for pain medications and allows less addictive medications to be used to prevent addiction.
[0069] The above methodology is valuable in generation of tissue, vascularization and may be used in combination with stem cell therapies as well as regeneration of tissue and vascularization.
[0070] The following invention description first provides a detailed explanation of acoustic shock waves, as illustrated in figures 1 - 9. As used herein an acoustic shock wave is an asymmetric wave with an exceptionally rapid peak rise time and slower return time from the peak amplitude. Historically, these acoustic shock waves were first used medically to destroy kidney stones. The wave patterns were directed to a focal point with ah a relatively high energy to blast the concrements into small urinary tract passable fragments.
[0071] A whole class of acoustic shock waves for medical treatments were later discovered that employed low energy acoustic shock waves. These low energy acoustic shock waves maintained the asymmetric wave profile, but at much lower energies as described in US2006/0100550 which is incorporated herein in its entirety.
[0072] These low energy acoustic shock waves advantageously could stimulate a substance without requiring a focused beam. The advantage of such an unfocused beam was the acoustic wave could be directed to pass through tissue without causing any cell rupturing which would be evidenced by a lack of a hematoma or bruising. This use of unfocused, low energy acoustic shock waves provided an ability to treat a large volume of tissue virtually painlessly. Furthermore, the acoustic energy caused a short duration anesthetic sensation that effectively numbs the patient's pain over a period of days with a prolonged reduction in pain thereafter.
[0073] The use of low energy acoustic shock waves that employ a focused beam has been spurred on as a viable alternative to the unfocused low energy shock waves because the focal point being of a small point of energy has little or a small region of cell damage as the remaining portions of the wave pattern can provide a stimulating effect similar to the unfocused shock waves. Basically, the effect is the same with the users of focused waves achieving the benefits of the unfocused waves, but with a focal point of peak energy in a tiny localised region. So, for purposes of the present invention, the use of -soft waves-those defined by low energy beams will be applicable to both focused and unfocused beams o acoustic shock waves for the present invention.
[0074] One last and significant point that the reader must appreciate is that an -acoustic shock wave- is not an -ultrasound wave-. Sonic or ultrasound waves are generated with a uniform and symmetrical wave pattern similar to a sinusoidal wave. This type of sonic wave causes a sheer action on tissue as evidenced by a generation of heat within the tissue, for this reason, the use of sonic waves of the ultrasonic type are not considered as efficient in cell survivability rates.
[0075] The present preferred invention avoids the use of such cell damaging sonic waves, most particularly in treating glands, bone structures or nerves via a targeted reflexology zone.
[0076] With reference to figures 1 ¨ 9, a variety of schematic views of acoustic shock waves are described. The following description of the proper amplitude and pressure pulse intensities of the shock waves 200 are provided below along with a description of how the shock waves actually function and have been taken from the co-pending application of the present inventors and replicated herein as described below. For the purpose of describing the shock waves 200 were used as exemplary and are intended to include all of the wave patterns discussed in the figures as possible treatment patterns.
[0077] Figure 1 is a simplified depiction of a pressure pulse / shock wave (PP/SW) generator, such as a shock wave head, showing focusing characteristics of transmitted acoustic pressure pulses. Numeral 1 indicates the position of a generalized pressure pulse generator, which generates the pressure pulse and. via a focusing element, focuses it outside the housing to treat diseases. The affected tissue or organ is generally located in or near the focal point which is located in or near position 6. At position 17 a water cushion or any other kind of exit window for the acoustical energy is located.
[0078] Figure 2 is a simplified depiction of a pressure pulse / shock wave generator, such as a shock wave head, with plane wave characteristics. Numeral 1 indicates the position of a pressure pulse generator according to the present invention, which generates a pressure pulse which is leaving the housing at the position 17, which may be a water cushion or any other kind of exit window. Somewhat even (also referred to herein as -disturbed-) wave characteristics can be generated, in case a paraboloid is used as a reflecting element, with a point source (e.g. electrode) that is located in the focal point of the paraboloid. The waves will be transmitted into the patient's body via a coupling media such as, e.g., ultrasound gel or oil and their amplitudes will be attenuated with increasing distance from the exit window 17.
[0079] Figure 3 is a simplified depiction of a pressure pulse shock wave generator (shock wave head) with divergent wave characteristics. The divergent wave fronts may be leaving the exit window 17 at point 11 where the amplitude of the wave front is very high. This point 17 could be regarded as the source point for the pressure pulses. In Fig lc the pressure pulse source may be a point source, that is, the pressure pulse may be generated by an electrical discharge of an electrode under water between electrode tips.
However, the pressure pulse may also be generated, for example, by an explosion, referred to as a ballistic pressure pulse. The divergent characteristics of the wave front may be a consequence of the mechanical setup.
[0080] This apparatus, in certain embodiments, may be adjusted/modified/or the complete shock wave head or part of it may be exchanged so that the desired and/or optimal acoustic profile such as one having wave fronts with focused, planar. nearly plane, convergent or divergent characteristics can be chosen.
[0081] A change of the wave front characteristics may, for example, be achieved by changing the distance of the exit acoustic window relative to the reflector, by changing the reflector geometry, by introducing certain lenses or by removing elements such as lenses that modify the waves produced by a pressure pulse/shock wave generating element.
Exemplary pressure pulse/shock wave sources that can, for example, be exchanged for each other to allow an apparatus to generate waves having different wave front characteristics are described in detail below.
[0082] In one embodiment, mechanical elements that are exchanged to achieve a change in wave front characteristics include the primary pressure pulse generating element, the focusing element, the reflecting element, the housing and the membrane. In another embodiment, the mechanical elements further include a closed fluid volume within the housing in which the pressure pulse is formed and transmitted through the exit window.
[0083] In one embodiment, the apparatus of the present invention is used in combination therapy. Here, the characteristics of waves emitted by the apparatus are switched from, for example, focused to divergent or from divergent with lower energy density to divergent with higher energy density. Thus, effects of a pressure pulse treatment can be optimized by using waves having different characteristics and/or energy densities, respectively.
[0084] While the above described universal toolbox of the various types of acoustic shock waves and types of shock wave generating heads provides versatility, the person skilled in the art will appreciate that apparatuses that produce low energy or soft acoustic shock waves having, for one example, nearly plane characteristics. are less mechanically demanding and fulfill the requirements of many users.
[0085] As the person skilled in the art will also appreciate that embodiments shown in the drawings are independent of the generation principle and thus are valid for not only electro-hydraulic shock wave generation but also for, but not limited to, PP/SW generation based on electromagnetic, piezoceramic and ballistic principles. The pressure pulse generators may, in certain embodiments, be equipped with a water cushion that houses water which defines the path of pressure pulse waves that is, through which those waves are transmitted. In a preferred embodiment, a patient is coupled via ultrasound gel or oil to the acoustic exit window (17), which can, for example, be an acoustic transparent membrane, a water cushion, a plastic plate or a metal plate.
100861 Figure 4a is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having as focusing element an ellipsoid (30). Thus, the generated waves are focused at (6).
[0087] Figure 4b is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having as a focusing element an paraboloid (y2=2px). Thus, the characteristics of the wave fronts generated behind the exit window (33. 34, 35. and 36) are disturbed plane (parallel"), the disturbance resulting from phenomena ranging from electrode burn down, spark ignition spatial variation to diffraction effects.
However, other phenomena might contribute to the disturbance.
100881 Figure 4c is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having as a focusing element a generalized paraboloid (yn=2px, with 1.2<n<2.8 and n 2). Thus, the characteristics of the wave fronts generated behind the exit window (37, 38, 39. and 40) are. compared to the wave fronts generated by a paraboloid (y2=2px), less disturbed. that is, nearly plane (or nearly parallel or nearly even (37, 38, 39, 40)). Thus, conformational adjustments of a regular paraboloid (y2=2px) to produce a generalized paraboloid can compensate for disturbances from, e.g., electrode burn down. Thus, in a generalized paraboloid, the characteristics of the wave front may be nearly plane due to its ability to compensate for phenomena including, but not limited to, burn down of the tips of the electrode and/or for disturbances caused by diffraction at the aperture of the paraboloid. For example, in a regular paraboloid (y2=2px) with p=1.25.
introduction of a new electrode may result in p being about 1.05. If an electrode is used that adjusts itself to maintain the distance between the electrode tips (-adjustable electrode-) and assuming that the electrodes burn down is 4 mm (z=4mm), p will increase to about 1.45. To compensate for this burn down, and here the change of p, and to generate nearly plane wave fronts over the life span of an electrode, a generalized paraboloid having, for example n=1.66 or n=2.5 may be used. An adjustable electrode is, for example, disclosed in United States Patent 6,217.531.
[0089] Figure 4d shows sectional views of a number of paraboloids. Numeral 62 indicates a paraboloid of the shape y2=2px with p=0.9 as indicated by numeral 64 at the x axis which specifies the p/2 value (focal point of the paraboloid). Two electrode tips of a new electrode 66 (inner tip) and 67 (outer tip) are also shown in the Figure. If the electrodes are fired and the tips are burning down the position of the tips change, for example, to position 68 and 69 when using an electrode which adjusts its position to compensate for the tip burn down. In order to generate pressure pulse/shock waves having nearly plane characteristics, the paraboloid has to be corrected in its p value. The p value for the burned down electrode is indicate by 65 as p/2 =1. This value, which constitutes a slight exaggeration, was chosen to allow for an easier interpretation of the Figure.
The corresponding paraboloid has the shape indicated by 61, which is wider than paraboloid 62 because the value of p is increased. An average paraboloid is indicated by numeral 60 in which p=1.25 cm. A generalized paraboloid is indicated by dashed line 63 and constitutes a paraboloid having a shape between paraboloids 61 and 62. This particular generalized paraboloid was generated by choosing a value of n 2 and a p value of about 1.55 cm. The generalized paraboloid compensates for different p values that result from the electrode burn down and/or adjustment of the electrode tips.
[0090] Figure 5 is a simplified depiction of a set-up of the pressure pulse /
shock wave generator (43) (shock wave head) and a control and power supply unit (41) for the shock wave head (43) connected via electrical cables (42) which may also include water hoses that can be used in the context of the present invention. However, as the person skilled in the art will appreciate, other set-ups are possible and within the scope of the present invention.
[00911 Figure 6 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having an electromagnetic flat coil 50 as the generating element.
Because of the plane surface of the accelerated metal membrane of this pressure pulse /
shock wave generating element, it emits nearly plane waves which are indicated by lines 51. In shock wave heads, an acoustic lens 52 is generally used to focus these waves. The shape of the lens might vary according to the sound velocity of the material it is made of.
At the exit window 17 the focused waves emanate from the housing and converge towards focal point 6.
[0092] Figure 7 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having an electromagnetic flat coil 50 as the generating element.
Because of the plane surface of the accelerated metal membrane of this generating element, it emits nearly plane waves which are indicated by lines 51. No focusing lens or reflecting lens is used to modify the characteristics of the wave fronts of these waves, thus nearly plane waves having nearly plane characteristics are leaving the housing at exit window 17.
[0093] Fig 8 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having an piezoceramic flat surface with piezo crystals 55 as the generating element. Because of the plane surface of this generating element, it emits nearly plane waves which are indicated by lines 51. No focusing lens or reflecting lens is used to modify the characteristics of the wave fronts of these waves, thus nearly plane waves are leaving the housing at exit window 17. Emitting surfaces having other shapes might be used, in particular curved emitting surfaces such as those shown in Figs. 4a to 4c as well as spherical surfaces. To generate waves having nearly plane or divergent characteristics, additional reflecting elements or lenses might be used. The crystals might, alternatively, be stimulated via an electronic control circuit at different times, so that waves having plane or divergent wave characteristics can be formed even without additional reflecting elements or lenses.
[0094] Fig 9 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) comprising a cylindrical electromagnet as a generating element 53 and a first reflector having a triangular shape to generate nearly plane waves 54 and 51.
Other shapes of the reflector or additional lenses might be used to generate divergent waves as well.
[0095] Figure 10 shows an exemplary shock wave device generator or source 1 with a control and power supply 41 connected to a hand-held applicator shock wave head 43 via a flexible hose 42 with fluid conduits. The illustrated shock wave applicator 43 has a flexible membrane at an end of the applicator 43 which transmits the acoustic waves when coupled to the skin by using a fluid or acoustic 2-el. As shown, this type of applicator 43 has a hydraulic spark generator using either focused or unfocused shock waves, preferably in a low energy level, less than the range of 0.01 mJ/mm2 to 0.3 mJ/mm2. The flexible hose 42 is connected to a fluid supply that fills the applicator 43 and expands the flexible membrane when filled. Alternatively, a ballistic, piezoelectric or spherical acoustic shock wave device can be used to generate the desired waves.
[0096] Figure 11 is a perspective view of a foot of a patient whose reflexology zone or target 100 is being treated. A shock wave applicator head 43 is brought into contact with the skin Ps preferably an acoustic gel is used to enhance the transmission of the shock waves 200 through the skin Ps. The shock wave applicator head 43 can be hand held and manipulated across the skin Ps to drive the shock waves 200 in the direction the shock wave head 43 is pointed to activate a stimulating response through the reflexology zone 100. As illustrated, the device shown is an electrohydraulic acoustic shock wave generator, however, other devices that generate acoustic shock waves can be used.
Ultrasonic devices may be considered, but there is no data to support a sinusoidal wave form would work and therefore not considered as effective as the asymmetric wave generators. The acoustic shock waves activate a cellular response within the reflexology treatment site. This response or stimulation causes an increase of nitric oxide and a release of a variety of growth factors such as VEGF. As shown, the flexible membrane is protruding outward and the applicator 43 has been filled with fluid, the transmission or emission of acoustic shock waves 200 is directed towards the reflexology zone 100. In order to accomplish a good transmission, it is important the flexible membrane be pressed against the patient's skin Ps and as indicated coupling gels may be used. The zone 100, as illustrated, is the reflexology zone for a bone structure which is a region of the foot located along an outside arch of each foot. By transmitting the shock waves 200 to the zone 100, is it believed that a modulation of the pain near the bone structure can be made. This modulation or adjustment is achieved by transmitting the acoustic waves 200 at low energy directly onto the zone 100. It is believed that a single treatment of the zone 100 will achieve the desired modulation. However, repeated treatments may be administered to help maintain and control this reduced pain level. Having achieved a scheduled pattern of treatments, it is possible to achieve regulation of pain without the use of drugs or other stimulants.
100971 With reference to figure 12. a view of a hand of a patient whose reflexology zone 100 is being treated with acoustic shock waves 200 is illustrated. In this illustration, it is important to note that the applicator 43 presses against the skin Ps of the hand in the reflexology zone 100 for the pancreas which is a region of the right hand in the fatty part below the index finger and a region of the left hand below the middle finger close to the wrist.
[0098] With reference to figures 13 -13C, reflexology foot and ankle area charts are shown detailing the various zones that correspond to organs. nerves, bones or glands of the body.
[0099] With reference to figure 14, a reflexology hand chart is shown detailing the various zones that correspond to organs, nerves, bones or glands of the body.
[00100] The transmission of the shock waves 200 is preferred of a low energy density of 0.2 mJ/mm2 whether using focused or unfocused shock waves. The acoustic shock waves pulse rapidly through the cells penetrating the cell membrane extremely rapidly due to the rapid rise to peak time and pass through exiting slower due to the slower return from peak amplitude. This asymmetric wave pattern rapidly compresses each cell on entry and slow decompresses the cell as it exits. This effective squeezing of each cell is believed to cause the release of growth factors such as VEGF and others and also creates nitric oxide, all beneficial to new blood vessel formation. This occurs as a transmission across the cell membranes without rupturing the native cells.
[00101] Furthermore, such acoustic shock wave forms can be used in combination with drugs, chemical treatments, irradiation therapy or even physical therapy and when so combined the stimulated cells will more rapidly assist the body's natural healing response and thus overcomes the otherwise potentially tissue damaging effects of these complimentary procedures.
[00102] The present invention provides an apparatus for an effective treatment of indications, which benefit from high or low energy pressure pulse/ shock waves having focused or unfocused, nearly plane, convergent or even divergent characteristics. With an unfocused wave having nearly plane. plane. convergent wave characteristic or even divergent wave characteristics, the energy density of the wave may be or may be adjusted to be so low that side effects including pain are very minor or even do not exist at all.
[00103] In certain embodiments, the apparatus of the present invention is able to produce waves having energy density values that are below 0.1 mJ/mm2 or even as low as 0.000 001 m,l/mm2. In a preferred embodiment, those low end values range between 0.1 -0.001 mJ/mm2. With these low energy densities, side effects are reduced and the dose application is much more uniform. Additionally, the possibility of harming surface tissue is reduced when using an apparatus of the present invention that generates unfocused waves having planar, nearly plane, convergent or divergent characteristics and larger transmission areas compared to apparatuses using a focused shock wave source that need to be moved around to cover the affected area. The apparatus of the present invention also may allow the user to make more precise energy density adjustments than an apparatus generating only focused shock waves, which is generally limited in terms of lowering the energy output. Nevertheless, in some cases the first use of a high energy focused shock wave targeting a treatment zone may be the best approach followed by a transmission of lower energy unfocused wave patterns.
1001041 In the use of reflexology zones as the pathway or gate to cure diseases/disorders and/or control pain response, the present invention has actual empirical data showing the effectiveness in the zone directed to a bone. It is therefore further believed that similar modulation and beneficial adjustment can be achieved at other reflexology zones for stimulating, modulating or adjusting other glands, bones, nerves or organs such as the liver, kidney or any of those indicated in figure 13 for the foot zones and figure 14 for the hand zones. It is further believed that the hybrid Eastern medical acupuncture treatments or massages historically used are far less effective and less reliable than the results achieved by the deeper tissue penetrating transmission that are achieved by acoustic shock wave therapy applied to these reflexology zones.
Historically, the inventor initially targeted treatment locations at the organ as in the patent US 7,988,648 B2, but the present invention has found the use of the reflexology zones has achieved unexpected far superior results.
[00105] Included in treatments are all auto immune indications/disorders as well as disorders of chronic local and systemic inflammation, congestive heart or lung failure.
Mechanism is reduction of any systemic inflammation, drastically lower the white blood cell count and causing the body to stop attacking itself Treatments can be applied weekly to hands and feet, maximum 2500 each, treating the entire foot or hand, focusing on those painful points until the pain disappears or decreases substantially.
preferably treating for 4 weeks or less. Also, if patient has heart inflammation/congestive heart failure, focusing on the known reflexology points for hearts and lungs. These spots may be painful at first.
[00106] When treating the hands and feet and noting the painful spots. one can locate areas on the known reflexology point charts to diagnose weaknesses, or injuries in the body at each corresponding point.
[00107] Another treatment includes treating for high or low numbers of eosinophils.
The most common causes of a high number of eosinophils (called eosinophilia or hypereosinophilia) are Allergic disorders, Infections by parasites, or Certain cancers.
Allergic disorders, including asthma, allergic rhinitis. and atopic dermatitis, often increase the number of eosinophils. Many parasites. particularly ones that invade tissue, cause eosinophilia. Cancers that cause eosinophilia include Hodgkin lymphoma, Leukemia, and certain myeloproliferative disorders.
[00108] If the number of eosinophils is only slightly elevated, people usually do not have symptoms, and the high number of eosinophils in the blood is only discovered when a complete blood count is done for other reasons. However, sometimes, particularly when the number of eosinophils is very high, the increased number of eosinophils inflame tissues and cause organ damage. The heart, lungs, skin, and nervous system are most often affected, but any organ can be damaged. Symptoms are related to the organ affected. For example, people may have a rash when the skin is affected, wheezing and shortness of breath when the lungs are affected, shortness of breath and fatigue (symptoms of heart failure) when the heart is affected, or throat and stomach pain when the esophagus or stomach is affected. Accordingly, eosinophilic disorders are diagnosed according to the location where the levels of eosinophils are elevated: Eosinophilic pneumonia (lungs), Eosinophilic cardiomyopathy (heart), Eosinophilic esophagitis (esophagus), Eosinophilic gastritis (stomach), Eosinophilic enteritis (small intestine), Crohns, Rheumatoid arthritis, MS Multiple Sclerosis, IBS irritable bowel syndrome, Primary myelofibrosis, Polycythemia vera, Thrombocythemia, Chronic Myelogenous Leukemia, CML- Chronic Myelocytic Leukemia; Chronic Myeloid Leukemia; Chronic Granulocytic Leukemia, Sickle cell anemia. Treating the feet and hands with 1000 shocks a piece cures the = DN0336PROV
symptoms in these diseases. Currently there are no known cures for any of these disorders.
Treating the patient one time with unfocused wave therapy cures the symptoms of these disease pathologies. In theory the body turns off the eosinophilis in the inventors' opinion.
Another treatment includes treating for Nocturia (excessive urination at night). Treatment reduces swollen prostate. strengthens bladder, reduces inflammation, drastically reducing night time urination in a matter of a few weeks, preferably with four weekly treatments. Nocturia and BPH (benign prostatectomy hyperplasia), incontinence and interstitial cystitis in women, plus vaginal rejuvenation have high treatment demand.
Treatment strengthens muscles, tissue in pelvic floor and the vagina by increasing blood supply, reducing inflammation and recruitment of stem cells. Treatment in males, treating prostate, shrinks prostate, increase urine flow, and need to urinate less frequently. Bladder lies over prostate, the tri-gone area is in between that is what is being treated, also the bladder neck. The trigone (a.k.a. vesical trigone) is a smooth triangular region of the internal urinary bladder formed by the two ureteric orifices and the internal urethral orifice.
The area is very sensitive to expansion and once stretched to a certain degree, the urinary bladder signals the brain of its need to empty. The signals become stronger as the bladder continues to fill. This tri-gone area can be treated in women also for Trigonitis. the condition when the vesical trigone area of the urinary bladder gets inflamed.
The cells in the lower bladder partly change into another kind of cell though the changes are not cancerous in nature. Vesical trigone is the triangular region of the bladder, which is bound by the ureteral orifices and the urethral sphincter. It is a smooth and flat sensitive region and if the bladder fills up, it expands too. If the vesical region expands, the bladder is required to be emptied. Trigonitis is mostly found in women of childbearing age and men develop it occasionally.
100110]
Treatment of the prostate can be targeted through the perineum, or the pelvic opening at the base of the penis. Preferably, it can be targeted through the rectum (picture finger prostate exam).
One would be side firing, and utilize an integrated ultrasound softwave technology that will allow visualization of the target of the sound waves on the ultrasound devices screen (prostate). Picture crosshairs on the screen that will show when the probe is pointed in the correct direction and the correct distance. Both BPH and Nocturia and increased urine flow rates are cured by the device, or any other indication that benefits from a less inflamed, smaller prostate. and nerves regenerated.
Treatment also strengthen the bladder, bladder neck and sphincter. 500 - 2000 shocks have been applied in 3 - 6 treatments at energy densities between .04 mj/mm2 to .14 mj/mm2.
In treatments, success rates on the first 20 patients exceeds 75%.
[00111] For interstitial cystitis, and vaginal tightening/rejuvenation, treatment is very similar to the above protocol. The pelvic floor, bladder neck, sphincter, and bladder can all be targeted directed through the skin surface, above and below the vaginal opening.
The same number of shocks and ranges as above. Another type of probe that does not have a lens but fires a spherical wave targeting all of the walls of the vagina at the same time could be used. This version does not have to be incorporated with the ultrasound imaging as above although that probe would work. Tissue is strengthened, inflammation reduced, nerves regenerated, and stem cells recruited and activated. All acoustic waves, focused and unfocused, spherical, radial, ballistic, etc. could be used for treatments.
[00112] The data from the first 14 patient interviews showed some interesting statistics: For ED: The average improvement of the 14 patients was 48%, 13/14 showed some improvement. Counting only those who showed improvement, the average improvement was 52%, 9/14 showed at least a 50% improvement, Nocturia: The overall average improvement of the 10 patients who complained of Nocturia was 46%.
Nocturia was defined as those patients who urinated at least 2 times per night for the sake of this study. 7/10 showed improvement, all over 50%. Counting only those who improved (7/10), the average improvement was 65%, Improved Urine Flow: The average improvement of the 10 patients who cited poor urine flow was 51%, 7/10 patients showed some improvement, all greater than 50%, Counting only those patient who improved, the average improvement was 72%. It is important to note that Nocturia and increased urine flows were not the original targets. Initially, a maximum energy density of .1 MJ was not thought high enough to reach the prostate/bladder interface to affect these symptoms via the perineum, surprisingly, the low energy density did work. These results were not intended or anticipated. Future results should improve as we target these critical areas and new results confirm this. These results are amazing. The fact that 3 patients showed no improvement might be explained that the random nature of the perineum treatment did not direct enough energy to the prostate and bladder.
[00113] Final summary: No patients complained of pain. All patients expressed interest in additional treatments. 12/14 patients had at least 1 improvement of symptom scores of at least 50% when you include ED and Nocturia. 1 patient had a 100%
improvement in ED, 83% reduction in the number of times urinating each night (6 to 1), and a 90% increase in urine flow.
[00114]
Reflexology methods of treating both feet and hands to generate total wellness, and more specifically this treatment reduces inflammation systemically. No device can do that. This reduction in systemic inflammation cures all auto immune disorders. A body stops attacking itself. Reflexology treats a specific part of the foot to treat a specific target/organ. We are treating all of the points to reset a body's overall wellness.
[00115] It will be appreciated that the apparatuses and processes of the present invention can have a variety of embodiments, only a few of which are disclosed herein. It will be apparent to the artisan that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.
[00116]
Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims.
Detailed Description of the Invention 100481 In recently filed co-pending US patent application serial number 15/984,505 filed May 21, 2018 entitled **Improved Acoustic Shock Wave Therapeutic Methods-which is also being incorporated herein by reference in its entirety discloses a method of modulating glandular secretions by administering acoustic shock waves to a gland.
includes the steps of activating acoustic shock waves of an acoustic shock wave generator to emit acoustic shock waves and subjecting the gland to acoustic shock waves stimulating the gland to have a modulated response. The modulated response is one of an adjustment in hormonal release which increases low level output, decreases high level output or stabilizes erratic output.
[0049] This evolved into a method of modulating glandular secretions by administering acoustic shock waves to a reflexology zone or region has been discovered. In one preferred embodiment, a treatment method achieves one or more of a) modulating blood sugar levels, b) stimulating insulin production levels or c) normalizing A IC levels by using the step of administering acoustic shock waves to a reflexology zone or region.
This treatment method, US application 16/009,807 filed on June 15, 2018 entitled -Improved Acoustic Shock Wave Therapeutic Methods- is also incorporated herein by reference in its entirety.
[0050] These most recent inventions have recently and quite unexpectedly discovered an improved treatment therapy that achieves all the objectives of the earlier work in a newly discovered and remarkably efficient way which directs acoustic shock waves to reflexology regions to achieve a desired response.
[0051] The present invention has built upon this large volume of work with a discovery that a treatment of acoustic shock wave therapy to treat medical conditions using reflexology zones.
[0052] The present methodology uses an acoustic shock wave form directed to specific reflexology zones to stimulate a modulated response. The present invention described herein in addition to treating medical conditions, also in a related patent application teaches a therapy to reduce the number of opioid addictions following surgery by reducing the need for pain medication post-surgery; and. aiding in the recovery from addiction of pain medications and opioids by elimination chronic pain in the addict and minimizing the withdrawal symptoms in the addict.
[0053] The present inventors have treated hundreds of "addicts", those individuals suffering from prescription or opioid addiction. successfully including those patients who require pain medication and/or opiates daily to manage their pain such that a patient can participate in daily activities. A huge success rate is being achieved as they only treat those motivated patients who seek out treatment for their chronic injuries and want to get off pain medication or opiates. Two million new addicts are created annually following elective surgery in the USA. These people are target patients. Additionally, the present invention has had substantial success in treating long term addicts as well.
This is especially true when an added incentive of a job treating other addicts is afforded with this technology upon the successful "kicking" of the addiction. This effort is part of a Kentucky project.
[0054] The inventors have also proven the ability to prevent long term chronic pain not only in their clinical experiences but in their published skin flap rat model.
By treating the standardized skin flap of the mouse with shock waves they reduced the area of necrosis post-surgery by 75% and accelerated complete healing by 50%. This must translate into pain reduction and the need for pain meds. They treated the mouse a day prior to, or during surgery to reduce healing time and necrosis. This is the preferred embodiment.
Treat a patient during surgery to (1) prevent adverse effects and prevent infection (2) reduce the recovery time and (3) reduce post-surgical pain. All 3 factor in long term pain medication usage. The advantage of treating during surgery is that treating a patient in the acute injury phase is painful. During surgery one can increase the energy level and the number of shocks to improve outcomes and reduce the amount of future pain medication, thus reducing the likelihood of addiction.
[0055] Treating the reflexology points in both hands and feet of the addict can minimize the anxiety and pain during the withdrawal period and generally just make the addict feel better. The inventors have seen this in numerous cases and this is included in this patent which is directed to reduce or eliminate a patient's symptoms caused by a medical condition. The medical condition as a result of this therapy is often remarkably eradicated leading to a cure of said condition.
[0056] In the Extracorporeal Shock wave method of treating a patient at a target site on the anatomy. In this invention, the term target site refers to a reflexology location for a specific orthopedic bone structure, nerve, gland and the tissue of the hand or foot at the desired reflexology zone or region being in the path of the shock wave applicator. The patient is placed in a convenient orientation to permit the source of the emitted waves to most directly send the waves to the target site to initiate shock wave stimulation of the target area. Assuming the target area is within a projected area of the wave transmission, a single transmission dosage of wave energy may be used. The transmission dosage can be from a few seconds to 20 minutes or more dependent on the condition.
Preferably the waves are generated from an unfocused or focused source. The unfocused waves can be divergent or near planar and having a low-pressure amplitude and density in the range of 0.00001 mJ/mm2 to 1.0 mJ/mm2 or less, most typically below 0.2 mJ/mm2. The focused source can use a focused beam of waves or can optionally use a diffusing lens or have a far-sight focus to minimize if not eliminate having the localized focus point within the tissue. Preferably the focused shock waves are used at a similarly effective low energy transmission or alternatively can be at higher energy but wherein the tissue target site is disposed pre-convergence inward of the geometric focal point of the emitted wave transmission. Understanding the higher the energy used, the more sensation of pain the patient may experience.
[0057] These shock wave energy transmissions are effective in stimulating a cellular response and in some cases, such as unfocused low energy. and even low energy focused emissions can be accomplished without creating the localized hemorrhaging caused by rupturing cavitation bubbles in the tissue of the target site. This effectively insures the patient does not have to experience the sensation of pain so common in the higher energy focused wave forms having a focal point at or within the targeted treatment site. Higher energy acoustic shock waves including focused ways can be used if the patient is adequately sedated such as during a surgical preparation or even during a surgical procedure.
[0058] Accordingly, unless for other reasons such as a trauma or immediate post-operative shock wave therapy no localized or general anesthesia is required. Post-operative shock wave therapy typically will be administered without such sedations at low energy.
[0059] If the target site is within the body it may be such that the patient or the generating source must be reoriented relative to the site and a second, third or more treatment dosage can be administered. The fact that the dosage is at a low energy the common problem of localized hemorrhaging is reduced making it more practical to administer multiple dosages of waves from various orientations to further optimize the treatment and cellular stimulation of the target site. Heretofore focused high energy multiple treatments induced pain and discomfort to the patient. The use of low energy focused or un-focused waves at the target site enables multiple sequential treatments. Alternatively, the wave source generators may be deployed in an array wherein the subject patient is effectively enveloped or surrounded by a plurality of low energy wave source generators which can be simultaneously bombarding the target site from multiple directions.
[0060] The goal in such treatments is to provide 100 to 3000 acoustic shock waves at a voltage of 14 kV to 28 kV across a spark gap generator in a single treatment preferably or one or more adjuvant treatments by targeting the site impinging the emitted waves on the desired reflexology target.
100611 The present method, in many cases, does not rely on precise site location per se.
The physician's general understanding of the anatomy of the patient should be sufficient to locate the reflexology target site to be treated. The treated area can withstand a far greater number of shock waves based on the selected energy level being emitted. For example, at very low energy levels the stimulation exposure can be provided over prolonged periods as much as 20 minutes if so desired. At higher energy levels the treatment duration can be shortened to less than a minute, less than a second if so desired.
The limiting factor in the selected treatment dosage is avoidance or minimization of cell hemorrhaging and other kinds of damage to the cells or tissue while still providing a stimulating cellular release or activation of VEGF and other growth factors and most importantly to modulate and regulate hormonal secretions from a specific targeted gland by emitting waves to a desired reflexology zone. In other cases where the precise location must be known, the use of an applicator acoustic wave emission is directed by an ultrasound image, preferably the applicator has a software program coupled to the imaging device to allow the doctor to visualize the area being treated. The applicator can be hand held or manipulated in a fixture, if so desired, in either way the doctor can see the reflexology zone for any gland to be stimulated and the selected reflexology zone reflects the path of the wave transmission to modulate that bone structure, nerve or gland.
[0062] A key advantage of the present inventive methodology is that it is complimentary to conventional medical procedures. In the case of any other procedure, the area of the patient can be post operatively bombarded with these low energy waves to stimulate cellular release of healing agents and growth factors. Most preferably such patients may be provided more than one such ESWT treatment with an intervening dwell time for cellular relaxation prior to secondary and tertiary treatments.
[0063] The underlying principle of these shock wave therapy methods is to stimulate the body's own natural healing capability through the reflexology zone. This is accomplished by deploying shock waves to stimulate strong cells in the tissue to activate a variety of responses. The acoustic shock waves transmit or trigger w hat appears to be a cellular communication throughout the entire anatomical structure, this activates a generalized cellular response at the treatment site, in particular, but more interestingly a systemic response in areas more removed from the wave form pattern. This is believed to be one of the reasons molecular stimulation can be conducted at threshold energies heretofore believed to be well below those commonly accepted as required. Accordingly, not only can the energy intensity be reduced but also the number of applied shock wave impulses can be lowered from several thousand to as few as one or more pulses and still yield a beneficial stimulating response. This allows acoustic wave therapies to be directed to a specific reflexology zone directed toward, for example. an endocrine gland being treated with confidence the signal will be fed back to the entire system via the pituitary gland (hypophysis). This use of acoustic wave stimulation allows a therapy to be given to modulate and adjust glandular secretions of hormones to be regulated and adjusted to achieve a desired adjustment, for example if too low to increase specific secretions, if too high to lessen these secretions. Most importantly, the modulation of and reduction of pain can be achieved in the bone structure and nerves affected by a medical condition and/or medical procedure.
[0064] The biological model motivated the design of sources with low pressure amplitudes and energy densities. First: spherical waves generated between two tips of an electrode;
and second: nearly even waves generated by generated by generalized parabolic reflectors.
Third: divergent shock front characteristics are generated by an ellipsoid behind F2.
Unfocused sources are preferably designed for extended two dimensional areas/volumes like skin. The unfocused sources can provide a divergent wave pattern or a nearly planar wave pattern and can be used in isolation or in combination with focused wave patterns yielding to an improved therapeutic treatment capability that is non-invasive with few if any disadvantageous contraindications. Alternatively, a focused wave emitting treatment may be used wherein the focal point extends to the desired reflexology zone or site, preferably at or beyond the target reflexology treatment site within or even potentially external to the patient. In any event, the beam of acoustic waves transmitted needs to project in a large enough reflexology zone or area to stimulate or modulate the gland. This results in the reduction of or elimination of a localized intensity zone with associated noticeable pain effect while providing a wide or enlarged treatment volume at a variety of depths more closely associated with high energy focused wave treatment. The utilization of a diffuser type lens or a shifted far-sighted focal point for the ellipsoidal reflector enables the spreading of the wave energy to effectively create a convergent but off target focal point. This insures less tissue trauma while insuring cellular stimulation to enhance the healing process.
[0065] This method of treatment has the steps of, locating a reflexology treatment site or zone, generating either focused shock waves or unfocused shock waves, of directing these shock waves to the treatment site; and applying a sufficient number of these shock waves to induce activation of one or more growth factor thereby inducing or accelerating a modulated adjustment to achieve a proper regulated glandular, muscular, bone or nerve response.
[0066] The unfocused shock waves can be of a divergent wave pattern or near planar pattern preferably of a low peak pressure amplitude and density. Typically, the energy density values range as low as 0.000001 mJ/ mm2 and having a high end energy density of below 1.0 mJ/ mm2, preferably 0.40 mJ/mm2 or less, more preferably 0.20 mJ/
mm2 or less. The peak pressure amplitude of the positive part of the cycle should be above 1.0 and its duration is below 1-3 microseconds.
[0067] The treatment depth can vary from the surface to the full depth of the human or animal torso and the treatment site can be defined by a much larger treatment area than the 0.10-3.0 cm 2 commonly produced by focused waves. The above methodology is particularly well suited for surface as well as sub-surface soft tissue treatments in a reflexology zone.
[0068] An exemplary treatment protocol could have emitted shock waves in a broad range of 0.01 mJ/mm2 to 3.0 mJ/mm2 and 200-2500 pulses per treatment with a treatment schedule of 1-3 weekly treatments until symptoms reduce. This can be repeated as symptoms reoccur or continue weekly as a preventative. The post medical treatment is beneficial as a pain suppressor and reduces the need for pain medications and allows less addictive medications to be used to prevent addiction.
[0069] The above methodology is valuable in generation of tissue, vascularization and may be used in combination with stem cell therapies as well as regeneration of tissue and vascularization.
[0070] The following invention description first provides a detailed explanation of acoustic shock waves, as illustrated in figures 1 - 9. As used herein an acoustic shock wave is an asymmetric wave with an exceptionally rapid peak rise time and slower return time from the peak amplitude. Historically, these acoustic shock waves were first used medically to destroy kidney stones. The wave patterns were directed to a focal point with ah a relatively high energy to blast the concrements into small urinary tract passable fragments.
[0071] A whole class of acoustic shock waves for medical treatments were later discovered that employed low energy acoustic shock waves. These low energy acoustic shock waves maintained the asymmetric wave profile, but at much lower energies as described in US2006/0100550 which is incorporated herein in its entirety.
[0072] These low energy acoustic shock waves advantageously could stimulate a substance without requiring a focused beam. The advantage of such an unfocused beam was the acoustic wave could be directed to pass through tissue without causing any cell rupturing which would be evidenced by a lack of a hematoma or bruising. This use of unfocused, low energy acoustic shock waves provided an ability to treat a large volume of tissue virtually painlessly. Furthermore, the acoustic energy caused a short duration anesthetic sensation that effectively numbs the patient's pain over a period of days with a prolonged reduction in pain thereafter.
[0073] The use of low energy acoustic shock waves that employ a focused beam has been spurred on as a viable alternative to the unfocused low energy shock waves because the focal point being of a small point of energy has little or a small region of cell damage as the remaining portions of the wave pattern can provide a stimulating effect similar to the unfocused shock waves. Basically, the effect is the same with the users of focused waves achieving the benefits of the unfocused waves, but with a focal point of peak energy in a tiny localised region. So, for purposes of the present invention, the use of -soft waves-those defined by low energy beams will be applicable to both focused and unfocused beams o acoustic shock waves for the present invention.
[0074] One last and significant point that the reader must appreciate is that an -acoustic shock wave- is not an -ultrasound wave-. Sonic or ultrasound waves are generated with a uniform and symmetrical wave pattern similar to a sinusoidal wave. This type of sonic wave causes a sheer action on tissue as evidenced by a generation of heat within the tissue, for this reason, the use of sonic waves of the ultrasonic type are not considered as efficient in cell survivability rates.
[0075] The present preferred invention avoids the use of such cell damaging sonic waves, most particularly in treating glands, bone structures or nerves via a targeted reflexology zone.
[0076] With reference to figures 1 ¨ 9, a variety of schematic views of acoustic shock waves are described. The following description of the proper amplitude and pressure pulse intensities of the shock waves 200 are provided below along with a description of how the shock waves actually function and have been taken from the co-pending application of the present inventors and replicated herein as described below. For the purpose of describing the shock waves 200 were used as exemplary and are intended to include all of the wave patterns discussed in the figures as possible treatment patterns.
[0077] Figure 1 is a simplified depiction of a pressure pulse / shock wave (PP/SW) generator, such as a shock wave head, showing focusing characteristics of transmitted acoustic pressure pulses. Numeral 1 indicates the position of a generalized pressure pulse generator, which generates the pressure pulse and. via a focusing element, focuses it outside the housing to treat diseases. The affected tissue or organ is generally located in or near the focal point which is located in or near position 6. At position 17 a water cushion or any other kind of exit window for the acoustical energy is located.
[0078] Figure 2 is a simplified depiction of a pressure pulse / shock wave generator, such as a shock wave head, with plane wave characteristics. Numeral 1 indicates the position of a pressure pulse generator according to the present invention, which generates a pressure pulse which is leaving the housing at the position 17, which may be a water cushion or any other kind of exit window. Somewhat even (also referred to herein as -disturbed-) wave characteristics can be generated, in case a paraboloid is used as a reflecting element, with a point source (e.g. electrode) that is located in the focal point of the paraboloid. The waves will be transmitted into the patient's body via a coupling media such as, e.g., ultrasound gel or oil and their amplitudes will be attenuated with increasing distance from the exit window 17.
[0079] Figure 3 is a simplified depiction of a pressure pulse shock wave generator (shock wave head) with divergent wave characteristics. The divergent wave fronts may be leaving the exit window 17 at point 11 where the amplitude of the wave front is very high. This point 17 could be regarded as the source point for the pressure pulses. In Fig lc the pressure pulse source may be a point source, that is, the pressure pulse may be generated by an electrical discharge of an electrode under water between electrode tips.
However, the pressure pulse may also be generated, for example, by an explosion, referred to as a ballistic pressure pulse. The divergent characteristics of the wave front may be a consequence of the mechanical setup.
[0080] This apparatus, in certain embodiments, may be adjusted/modified/or the complete shock wave head or part of it may be exchanged so that the desired and/or optimal acoustic profile such as one having wave fronts with focused, planar. nearly plane, convergent or divergent characteristics can be chosen.
[0081] A change of the wave front characteristics may, for example, be achieved by changing the distance of the exit acoustic window relative to the reflector, by changing the reflector geometry, by introducing certain lenses or by removing elements such as lenses that modify the waves produced by a pressure pulse/shock wave generating element.
Exemplary pressure pulse/shock wave sources that can, for example, be exchanged for each other to allow an apparatus to generate waves having different wave front characteristics are described in detail below.
[0082] In one embodiment, mechanical elements that are exchanged to achieve a change in wave front characteristics include the primary pressure pulse generating element, the focusing element, the reflecting element, the housing and the membrane. In another embodiment, the mechanical elements further include a closed fluid volume within the housing in which the pressure pulse is formed and transmitted through the exit window.
[0083] In one embodiment, the apparatus of the present invention is used in combination therapy. Here, the characteristics of waves emitted by the apparatus are switched from, for example, focused to divergent or from divergent with lower energy density to divergent with higher energy density. Thus, effects of a pressure pulse treatment can be optimized by using waves having different characteristics and/or energy densities, respectively.
[0084] While the above described universal toolbox of the various types of acoustic shock waves and types of shock wave generating heads provides versatility, the person skilled in the art will appreciate that apparatuses that produce low energy or soft acoustic shock waves having, for one example, nearly plane characteristics. are less mechanically demanding and fulfill the requirements of many users.
[0085] As the person skilled in the art will also appreciate that embodiments shown in the drawings are independent of the generation principle and thus are valid for not only electro-hydraulic shock wave generation but also for, but not limited to, PP/SW generation based on electromagnetic, piezoceramic and ballistic principles. The pressure pulse generators may, in certain embodiments, be equipped with a water cushion that houses water which defines the path of pressure pulse waves that is, through which those waves are transmitted. In a preferred embodiment, a patient is coupled via ultrasound gel or oil to the acoustic exit window (17), which can, for example, be an acoustic transparent membrane, a water cushion, a plastic plate or a metal plate.
100861 Figure 4a is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having as focusing element an ellipsoid (30). Thus, the generated waves are focused at (6).
[0087] Figure 4b is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having as a focusing element an paraboloid (y2=2px). Thus, the characteristics of the wave fronts generated behind the exit window (33. 34, 35. and 36) are disturbed plane (parallel"), the disturbance resulting from phenomena ranging from electrode burn down, spark ignition spatial variation to diffraction effects.
However, other phenomena might contribute to the disturbance.
100881 Figure 4c is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having as a focusing element a generalized paraboloid (yn=2px, with 1.2<n<2.8 and n 2). Thus, the characteristics of the wave fronts generated behind the exit window (37, 38, 39. and 40) are. compared to the wave fronts generated by a paraboloid (y2=2px), less disturbed. that is, nearly plane (or nearly parallel or nearly even (37, 38, 39, 40)). Thus, conformational adjustments of a regular paraboloid (y2=2px) to produce a generalized paraboloid can compensate for disturbances from, e.g., electrode burn down. Thus, in a generalized paraboloid, the characteristics of the wave front may be nearly plane due to its ability to compensate for phenomena including, but not limited to, burn down of the tips of the electrode and/or for disturbances caused by diffraction at the aperture of the paraboloid. For example, in a regular paraboloid (y2=2px) with p=1.25.
introduction of a new electrode may result in p being about 1.05. If an electrode is used that adjusts itself to maintain the distance between the electrode tips (-adjustable electrode-) and assuming that the electrodes burn down is 4 mm (z=4mm), p will increase to about 1.45. To compensate for this burn down, and here the change of p, and to generate nearly plane wave fronts over the life span of an electrode, a generalized paraboloid having, for example n=1.66 or n=2.5 may be used. An adjustable electrode is, for example, disclosed in United States Patent 6,217.531.
[0089] Figure 4d shows sectional views of a number of paraboloids. Numeral 62 indicates a paraboloid of the shape y2=2px with p=0.9 as indicated by numeral 64 at the x axis which specifies the p/2 value (focal point of the paraboloid). Two electrode tips of a new electrode 66 (inner tip) and 67 (outer tip) are also shown in the Figure. If the electrodes are fired and the tips are burning down the position of the tips change, for example, to position 68 and 69 when using an electrode which adjusts its position to compensate for the tip burn down. In order to generate pressure pulse/shock waves having nearly plane characteristics, the paraboloid has to be corrected in its p value. The p value for the burned down electrode is indicate by 65 as p/2 =1. This value, which constitutes a slight exaggeration, was chosen to allow for an easier interpretation of the Figure.
The corresponding paraboloid has the shape indicated by 61, which is wider than paraboloid 62 because the value of p is increased. An average paraboloid is indicated by numeral 60 in which p=1.25 cm. A generalized paraboloid is indicated by dashed line 63 and constitutes a paraboloid having a shape between paraboloids 61 and 62. This particular generalized paraboloid was generated by choosing a value of n 2 and a p value of about 1.55 cm. The generalized paraboloid compensates for different p values that result from the electrode burn down and/or adjustment of the electrode tips.
[0090] Figure 5 is a simplified depiction of a set-up of the pressure pulse /
shock wave generator (43) (shock wave head) and a control and power supply unit (41) for the shock wave head (43) connected via electrical cables (42) which may also include water hoses that can be used in the context of the present invention. However, as the person skilled in the art will appreciate, other set-ups are possible and within the scope of the present invention.
[00911 Figure 6 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having an electromagnetic flat coil 50 as the generating element.
Because of the plane surface of the accelerated metal membrane of this pressure pulse /
shock wave generating element, it emits nearly plane waves which are indicated by lines 51. In shock wave heads, an acoustic lens 52 is generally used to focus these waves. The shape of the lens might vary according to the sound velocity of the material it is made of.
At the exit window 17 the focused waves emanate from the housing and converge towards focal point 6.
[0092] Figure 7 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having an electromagnetic flat coil 50 as the generating element.
Because of the plane surface of the accelerated metal membrane of this generating element, it emits nearly plane waves which are indicated by lines 51. No focusing lens or reflecting lens is used to modify the characteristics of the wave fronts of these waves, thus nearly plane waves having nearly plane characteristics are leaving the housing at exit window 17.
[0093] Fig 8 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) having an piezoceramic flat surface with piezo crystals 55 as the generating element. Because of the plane surface of this generating element, it emits nearly plane waves which are indicated by lines 51. No focusing lens or reflecting lens is used to modify the characteristics of the wave fronts of these waves, thus nearly plane waves are leaving the housing at exit window 17. Emitting surfaces having other shapes might be used, in particular curved emitting surfaces such as those shown in Figs. 4a to 4c as well as spherical surfaces. To generate waves having nearly plane or divergent characteristics, additional reflecting elements or lenses might be used. The crystals might, alternatively, be stimulated via an electronic control circuit at different times, so that waves having plane or divergent wave characteristics can be formed even without additional reflecting elements or lenses.
[0094] Fig 9 is a simplified depiction of the pressure pulse / shock wave generator (shock wave head) comprising a cylindrical electromagnet as a generating element 53 and a first reflector having a triangular shape to generate nearly plane waves 54 and 51.
Other shapes of the reflector or additional lenses might be used to generate divergent waves as well.
[0095] Figure 10 shows an exemplary shock wave device generator or source 1 with a control and power supply 41 connected to a hand-held applicator shock wave head 43 via a flexible hose 42 with fluid conduits. The illustrated shock wave applicator 43 has a flexible membrane at an end of the applicator 43 which transmits the acoustic waves when coupled to the skin by using a fluid or acoustic 2-el. As shown, this type of applicator 43 has a hydraulic spark generator using either focused or unfocused shock waves, preferably in a low energy level, less than the range of 0.01 mJ/mm2 to 0.3 mJ/mm2. The flexible hose 42 is connected to a fluid supply that fills the applicator 43 and expands the flexible membrane when filled. Alternatively, a ballistic, piezoelectric or spherical acoustic shock wave device can be used to generate the desired waves.
[0096] Figure 11 is a perspective view of a foot of a patient whose reflexology zone or target 100 is being treated. A shock wave applicator head 43 is brought into contact with the skin Ps preferably an acoustic gel is used to enhance the transmission of the shock waves 200 through the skin Ps. The shock wave applicator head 43 can be hand held and manipulated across the skin Ps to drive the shock waves 200 in the direction the shock wave head 43 is pointed to activate a stimulating response through the reflexology zone 100. As illustrated, the device shown is an electrohydraulic acoustic shock wave generator, however, other devices that generate acoustic shock waves can be used.
Ultrasonic devices may be considered, but there is no data to support a sinusoidal wave form would work and therefore not considered as effective as the asymmetric wave generators. The acoustic shock waves activate a cellular response within the reflexology treatment site. This response or stimulation causes an increase of nitric oxide and a release of a variety of growth factors such as VEGF. As shown, the flexible membrane is protruding outward and the applicator 43 has been filled with fluid, the transmission or emission of acoustic shock waves 200 is directed towards the reflexology zone 100. In order to accomplish a good transmission, it is important the flexible membrane be pressed against the patient's skin Ps and as indicated coupling gels may be used. The zone 100, as illustrated, is the reflexology zone for a bone structure which is a region of the foot located along an outside arch of each foot. By transmitting the shock waves 200 to the zone 100, is it believed that a modulation of the pain near the bone structure can be made. This modulation or adjustment is achieved by transmitting the acoustic waves 200 at low energy directly onto the zone 100. It is believed that a single treatment of the zone 100 will achieve the desired modulation. However, repeated treatments may be administered to help maintain and control this reduced pain level. Having achieved a scheduled pattern of treatments, it is possible to achieve regulation of pain without the use of drugs or other stimulants.
100971 With reference to figure 12. a view of a hand of a patient whose reflexology zone 100 is being treated with acoustic shock waves 200 is illustrated. In this illustration, it is important to note that the applicator 43 presses against the skin Ps of the hand in the reflexology zone 100 for the pancreas which is a region of the right hand in the fatty part below the index finger and a region of the left hand below the middle finger close to the wrist.
[0098] With reference to figures 13 -13C, reflexology foot and ankle area charts are shown detailing the various zones that correspond to organs. nerves, bones or glands of the body.
[0099] With reference to figure 14, a reflexology hand chart is shown detailing the various zones that correspond to organs, nerves, bones or glands of the body.
[00100] The transmission of the shock waves 200 is preferred of a low energy density of 0.2 mJ/mm2 whether using focused or unfocused shock waves. The acoustic shock waves pulse rapidly through the cells penetrating the cell membrane extremely rapidly due to the rapid rise to peak time and pass through exiting slower due to the slower return from peak amplitude. This asymmetric wave pattern rapidly compresses each cell on entry and slow decompresses the cell as it exits. This effective squeezing of each cell is believed to cause the release of growth factors such as VEGF and others and also creates nitric oxide, all beneficial to new blood vessel formation. This occurs as a transmission across the cell membranes without rupturing the native cells.
[00101] Furthermore, such acoustic shock wave forms can be used in combination with drugs, chemical treatments, irradiation therapy or even physical therapy and when so combined the stimulated cells will more rapidly assist the body's natural healing response and thus overcomes the otherwise potentially tissue damaging effects of these complimentary procedures.
[00102] The present invention provides an apparatus for an effective treatment of indications, which benefit from high or low energy pressure pulse/ shock waves having focused or unfocused, nearly plane, convergent or even divergent characteristics. With an unfocused wave having nearly plane. plane. convergent wave characteristic or even divergent wave characteristics, the energy density of the wave may be or may be adjusted to be so low that side effects including pain are very minor or even do not exist at all.
[00103] In certain embodiments, the apparatus of the present invention is able to produce waves having energy density values that are below 0.1 mJ/mm2 or even as low as 0.000 001 m,l/mm2. In a preferred embodiment, those low end values range between 0.1 -0.001 mJ/mm2. With these low energy densities, side effects are reduced and the dose application is much more uniform. Additionally, the possibility of harming surface tissue is reduced when using an apparatus of the present invention that generates unfocused waves having planar, nearly plane, convergent or divergent characteristics and larger transmission areas compared to apparatuses using a focused shock wave source that need to be moved around to cover the affected area. The apparatus of the present invention also may allow the user to make more precise energy density adjustments than an apparatus generating only focused shock waves, which is generally limited in terms of lowering the energy output. Nevertheless, in some cases the first use of a high energy focused shock wave targeting a treatment zone may be the best approach followed by a transmission of lower energy unfocused wave patterns.
1001041 In the use of reflexology zones as the pathway or gate to cure diseases/disorders and/or control pain response, the present invention has actual empirical data showing the effectiveness in the zone directed to a bone. It is therefore further believed that similar modulation and beneficial adjustment can be achieved at other reflexology zones for stimulating, modulating or adjusting other glands, bones, nerves or organs such as the liver, kidney or any of those indicated in figure 13 for the foot zones and figure 14 for the hand zones. It is further believed that the hybrid Eastern medical acupuncture treatments or massages historically used are far less effective and less reliable than the results achieved by the deeper tissue penetrating transmission that are achieved by acoustic shock wave therapy applied to these reflexology zones.
Historically, the inventor initially targeted treatment locations at the organ as in the patent US 7,988,648 B2, but the present invention has found the use of the reflexology zones has achieved unexpected far superior results.
[00105] Included in treatments are all auto immune indications/disorders as well as disorders of chronic local and systemic inflammation, congestive heart or lung failure.
Mechanism is reduction of any systemic inflammation, drastically lower the white blood cell count and causing the body to stop attacking itself Treatments can be applied weekly to hands and feet, maximum 2500 each, treating the entire foot or hand, focusing on those painful points until the pain disappears or decreases substantially.
preferably treating for 4 weeks or less. Also, if patient has heart inflammation/congestive heart failure, focusing on the known reflexology points for hearts and lungs. These spots may be painful at first.
[00106] When treating the hands and feet and noting the painful spots. one can locate areas on the known reflexology point charts to diagnose weaknesses, or injuries in the body at each corresponding point.
[00107] Another treatment includes treating for high or low numbers of eosinophils.
The most common causes of a high number of eosinophils (called eosinophilia or hypereosinophilia) are Allergic disorders, Infections by parasites, or Certain cancers.
Allergic disorders, including asthma, allergic rhinitis. and atopic dermatitis, often increase the number of eosinophils. Many parasites. particularly ones that invade tissue, cause eosinophilia. Cancers that cause eosinophilia include Hodgkin lymphoma, Leukemia, and certain myeloproliferative disorders.
[00108] If the number of eosinophils is only slightly elevated, people usually do not have symptoms, and the high number of eosinophils in the blood is only discovered when a complete blood count is done for other reasons. However, sometimes, particularly when the number of eosinophils is very high, the increased number of eosinophils inflame tissues and cause organ damage. The heart, lungs, skin, and nervous system are most often affected, but any organ can be damaged. Symptoms are related to the organ affected. For example, people may have a rash when the skin is affected, wheezing and shortness of breath when the lungs are affected, shortness of breath and fatigue (symptoms of heart failure) when the heart is affected, or throat and stomach pain when the esophagus or stomach is affected. Accordingly, eosinophilic disorders are diagnosed according to the location where the levels of eosinophils are elevated: Eosinophilic pneumonia (lungs), Eosinophilic cardiomyopathy (heart), Eosinophilic esophagitis (esophagus), Eosinophilic gastritis (stomach), Eosinophilic enteritis (small intestine), Crohns, Rheumatoid arthritis, MS Multiple Sclerosis, IBS irritable bowel syndrome, Primary myelofibrosis, Polycythemia vera, Thrombocythemia, Chronic Myelogenous Leukemia, CML- Chronic Myelocytic Leukemia; Chronic Myeloid Leukemia; Chronic Granulocytic Leukemia, Sickle cell anemia. Treating the feet and hands with 1000 shocks a piece cures the = DN0336PROV
symptoms in these diseases. Currently there are no known cures for any of these disorders.
Treating the patient one time with unfocused wave therapy cures the symptoms of these disease pathologies. In theory the body turns off the eosinophilis in the inventors' opinion.
Another treatment includes treating for Nocturia (excessive urination at night). Treatment reduces swollen prostate. strengthens bladder, reduces inflammation, drastically reducing night time urination in a matter of a few weeks, preferably with four weekly treatments. Nocturia and BPH (benign prostatectomy hyperplasia), incontinence and interstitial cystitis in women, plus vaginal rejuvenation have high treatment demand.
Treatment strengthens muscles, tissue in pelvic floor and the vagina by increasing blood supply, reducing inflammation and recruitment of stem cells. Treatment in males, treating prostate, shrinks prostate, increase urine flow, and need to urinate less frequently. Bladder lies over prostate, the tri-gone area is in between that is what is being treated, also the bladder neck. The trigone (a.k.a. vesical trigone) is a smooth triangular region of the internal urinary bladder formed by the two ureteric orifices and the internal urethral orifice.
The area is very sensitive to expansion and once stretched to a certain degree, the urinary bladder signals the brain of its need to empty. The signals become stronger as the bladder continues to fill. This tri-gone area can be treated in women also for Trigonitis. the condition when the vesical trigone area of the urinary bladder gets inflamed.
The cells in the lower bladder partly change into another kind of cell though the changes are not cancerous in nature. Vesical trigone is the triangular region of the bladder, which is bound by the ureteral orifices and the urethral sphincter. It is a smooth and flat sensitive region and if the bladder fills up, it expands too. If the vesical region expands, the bladder is required to be emptied. Trigonitis is mostly found in women of childbearing age and men develop it occasionally.
100110]
Treatment of the prostate can be targeted through the perineum, or the pelvic opening at the base of the penis. Preferably, it can be targeted through the rectum (picture finger prostate exam).
One would be side firing, and utilize an integrated ultrasound softwave technology that will allow visualization of the target of the sound waves on the ultrasound devices screen (prostate). Picture crosshairs on the screen that will show when the probe is pointed in the correct direction and the correct distance. Both BPH and Nocturia and increased urine flow rates are cured by the device, or any other indication that benefits from a less inflamed, smaller prostate. and nerves regenerated.
Treatment also strengthen the bladder, bladder neck and sphincter. 500 - 2000 shocks have been applied in 3 - 6 treatments at energy densities between .04 mj/mm2 to .14 mj/mm2.
In treatments, success rates on the first 20 patients exceeds 75%.
[00111] For interstitial cystitis, and vaginal tightening/rejuvenation, treatment is very similar to the above protocol. The pelvic floor, bladder neck, sphincter, and bladder can all be targeted directed through the skin surface, above and below the vaginal opening.
The same number of shocks and ranges as above. Another type of probe that does not have a lens but fires a spherical wave targeting all of the walls of the vagina at the same time could be used. This version does not have to be incorporated with the ultrasound imaging as above although that probe would work. Tissue is strengthened, inflammation reduced, nerves regenerated, and stem cells recruited and activated. All acoustic waves, focused and unfocused, spherical, radial, ballistic, etc. could be used for treatments.
[00112] The data from the first 14 patient interviews showed some interesting statistics: For ED: The average improvement of the 14 patients was 48%, 13/14 showed some improvement. Counting only those who showed improvement, the average improvement was 52%, 9/14 showed at least a 50% improvement, Nocturia: The overall average improvement of the 10 patients who complained of Nocturia was 46%.
Nocturia was defined as those patients who urinated at least 2 times per night for the sake of this study. 7/10 showed improvement, all over 50%. Counting only those who improved (7/10), the average improvement was 65%, Improved Urine Flow: The average improvement of the 10 patients who cited poor urine flow was 51%, 7/10 patients showed some improvement, all greater than 50%, Counting only those patient who improved, the average improvement was 72%. It is important to note that Nocturia and increased urine flows were not the original targets. Initially, a maximum energy density of .1 MJ was not thought high enough to reach the prostate/bladder interface to affect these symptoms via the perineum, surprisingly, the low energy density did work. These results were not intended or anticipated. Future results should improve as we target these critical areas and new results confirm this. These results are amazing. The fact that 3 patients showed no improvement might be explained that the random nature of the perineum treatment did not direct enough energy to the prostate and bladder.
[00113] Final summary: No patients complained of pain. All patients expressed interest in additional treatments. 12/14 patients had at least 1 improvement of symptom scores of at least 50% when you include ED and Nocturia. 1 patient had a 100%
improvement in ED, 83% reduction in the number of times urinating each night (6 to 1), and a 90% increase in urine flow.
[00114]
Reflexology methods of treating both feet and hands to generate total wellness, and more specifically this treatment reduces inflammation systemically. No device can do that. This reduction in systemic inflammation cures all auto immune disorders. A body stops attacking itself. Reflexology treats a specific part of the foot to treat a specific target/organ. We are treating all of the points to reset a body's overall wellness.
[00115] It will be appreciated that the apparatuses and processes of the present invention can have a variety of embodiments, only a few of which are disclosed herein. It will be apparent to the artisan that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.
[00116]
Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims.
Claims (21)
1. A treatment method to reduce or eliminate a patient's symptoms caused by a medical condition; the treatment comprises the step of:
administering acoustic shock waves directed to an area near a source of the pain, if any is exhibited, or to a reflexology zone to treat the medical condition.
administering acoustic shock waves directed to an area near a source of the pain, if any is exhibited, or to a reflexology zone to treat the medical condition.
2. The treatment method of claim 1 further comprises the steps of:
activating acoustic shock waves of an acoustic shock wave generator to emit acoustic shock waves;
subjecting the area at or near the reflexology zone to acoustic shock waves stimulating the area near the reflexology zone: and wherein the emitted acoustic shock waves are focused or unfocused acoustic shock waves.
activating acoustic shock waves of an acoustic shock wave generator to emit acoustic shock waves;
subjecting the area at or near the reflexology zone to acoustic shock waves stimulating the area near the reflexology zone: and wherein the emitted acoustic shock waves are focused or unfocused acoustic shock waves.
3. The treatment method of claim 1 wherein the reflexology zone underlies the patient's skin in a region of a foot or hand or ear.
4. The treatment method of claim 3 wherein the shock wave generator is acoustically coupled to the patient's skin using a coupling gel or liquid.
5. The treatment method of claim 1 wherein the reflexology zone for an orthopedic structure in a region of the foot is located in an outer surface of each foot between a toe and a heel reduces pain in shoulder joint, upper arm, elbow, forearm, and at an ankle reduces pain in the hip, above the ankle reduces pain in the knee.
6. The treatment method of claim 1 wherein the reflexology zone for an orthopedic structure in a region of the foot is located in an inner surface of each foot progressively between a large toe and a heel reduces pain at a location adjacent the large toe in the cervical spine, the thoracic spine, lumbar spine, the sacral bone, and the tail bone near the heel.
7. The treatment method of claim 1 wherein the reflexology zone for an orthopedic structure is a region of the right hand.
8. The treatment method of claim 1 wherein the stimulating of the area causes a release of nitric oxide, secretion of digestive enzymes, hormones and other fluids.
9. The treatment method of claim 8 wherein the stimulating of the area causes a release of growth factors including, but not limited to VGEF.
10. The treatment method of claim 9 wherein the stimulating of the area causes new blood vessels to be created increasing vascularization.
11. The treatment method of claim 2 is repeated one or more times prior to or during the medical procedure or after the medical procedure.
12. The treatment method of claim 2 wherein the emitted acoustic shock waves are low energy soft waves.
13. The treatment method of claim 12 wherein the low energy soft waves have an energy density in the range of 0.01 mJ/min2 to 1.0 mJ/mm2.
14. The treatment method of claim 13 wherein the low energy soft waves have an energy density in the range of 0.04 mJ/mm2 to 0.3 mJ/mm2.
15. The treatment method of claim 2 wherein each subjected reflexology zone receives between 100 and 2000 acoustic shock waves per therapy session.
16. The treatment method of claim 2 wherein the emitted acoustic shock waves are spherical, radial, convergent, divergent, planar, near planar, focused or unfocused from a source with or without a lens that is one of electrohydraulic, electromagnetic, piezoelectric, ballistic or water jets configured to produce an acoustic shock wave and wherein the acoustic shock waves are administered invasively or noninvasively.
17. The treatment method of claim 11 wherein the number of repeated treatments occur on a schedule over a period of three or more weeks, and treatments can be repeated over time as a pain prevention protocol over longer durations of time between repeated treatments.
18. The treatment method of claim 2 wherein the medical condition is one of auto immune indications/disorders as well as disorders of chronic local and systemic inflammation, congestive heart or lung failure; high or low eosinophils;
Nocturia and benign prostatectomy hyperplasia, incontinence, interstitial cystitis, Trigonitis, Crohns, Rheumatoid arthritis, Multiple Sclerosis, irritable bowel syndrome, Primary myelofibrosis, Polycythemia vera, Thrombocythemia, Chronic Myelogenous Leukemia, Chronic Myelocytic Leukemia; Chronic Myeloid Leukemia; Chronic Granulocytic Leukemia, Sickle cell anemia..
Nocturia and benign prostatectomy hyperplasia, incontinence, interstitial cystitis, Trigonitis, Crohns, Rheumatoid arthritis, Multiple Sclerosis, irritable bowel syndrome, Primary myelofibrosis, Polycythemia vera, Thrombocythemia, Chronic Myelogenous Leukemia, Chronic Myelocytic Leukemia; Chronic Myeloid Leukemia; Chronic Granulocytic Leukemia, Sickle cell anemia..
19. The treatment method of claim 2 wherein the medical condition is one of erectile dysfunction, Nocturia, Nocturia defined as urinating at least 2 times per night; reduced urine flow.
20. The treatment method of claim 2 wherein the medical condition is an eosinophilic disorder with elevated levels of eosinophils including one or more of Allergic disorders, Infections by parasites, Certain cancers, asthma, allergic rhinitis, atopic dermatitis, Hodgkin lymphoma, leukemia, certain myeloproliferative disorders, Eosinophilic pneumonia (lungs), Eosinophilic cardiomyopathy (heart), Eosinophilic esophagitis, (esophagus), Eosinophilic gastritis (stomach), Eosinophilic enteritis (small intestine).
21. The treatment method of claim 2 wherein the emitted acoustic shock waves have an energy density in the range of 0.01 mJ/mm2 to 50 mJ/mm2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862730608P | 2018-09-13 | 2018-09-13 | |
US62730608 | 2018-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3026371A1 true CA3026371A1 (en) | 2020-03-13 |
Family
ID=69777762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3026371A Pending CA3026371A1 (en) | 2018-09-13 | 2018-12-04 | Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA3026371A1 (en) |
WO (1) | WO2020055458A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0683657B2 (en) * | 1993-02-10 | 2005-06-15 | Siemens Aktiengesellschaft | Apparatus for analgesic therapy and/or for influencing the vegetative nervous system |
WO2016172433A1 (en) * | 2015-04-24 | 2016-10-27 | Sanuwave, Inc. | Tissue disinfection with acoustic pressure shock waves |
US11389372B2 (en) * | 2016-04-18 | 2022-07-19 | Softwave Tissue Regeneration Technologies, Llc | Acoustic shock wave therapeutic methods |
-
2018
- 2018-12-04 CA CA3026371A patent/CA3026371A1/en active Pending
-
2019
- 2019-05-01 WO PCT/US2019/030148 patent/WO2020055458A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020055458A1 (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11389372B2 (en) | Acoustic shock wave therapeutic methods | |
US11458069B2 (en) | Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones | |
US11826301B2 (en) | Acoustic shock wave therapeutic methods | |
US7470240B2 (en) | Pressure pulse/shock wave therapy methods and an apparatus for conducting the therapeutic methods | |
US11771620B2 (en) | Acoustic shock wave therapeutic methods to prevent or treat opioid addiction | |
US20140330174A1 (en) | Method of acoustic shock wave treatments for complications associated with surgical mesh implants | |
JP2002519162A (en) | Method and apparatus for stimulating the immune system and generating healing at the cellular level | |
US20240206894A1 (en) | Device and methods to treat infections, inflammations and tumors in organs and tissues and to extend the utility of antibiotics | |
US20200368377A1 (en) | Device and methods to destroy bacteria, molds, fungi and viruses and for reducing inflammation and markers in organs and tissue and to extend the utility of antibiotics | |
CA3026371A1 (en) | Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones | |
US20210022956A1 (en) | Method of treating the lower spine to reduce or eliminate referred or non-specific pain (ghost pain) in the pelvis and abdomen including the bladder, prostate, testicles, genitalia and digestive tract | |
RU2380124C2 (en) | Method of treating patients with tubo-peritoneal infertility | |
CA3026905A1 (en) | Acoustic shock wave therapeutic methods to prevent or treat opioid addiction | |
CA3028059A1 (en) | Improved acoustic shock wave therapeutic methods | |
CN117500471A (en) | Method for treating urination dysfunction | |
US20210393476A1 (en) | Improved acoustic shock wave therapeutic methods | |
US20230372742A1 (en) | Acoustic shock wave treatment for erectile dysfunction | |
RU2525619C1 (en) | Method of treating patients with chronic prostatitis | |
US20240024704A1 (en) | Acoustic shock wave treatment and devices for appendages | |
RU2408399C1 (en) | Method of treating benign prostatic hyperplasia | |
RU2145244C1 (en) | Method for treating the cases of chronic prostatitis | |
Straut | Extracorporeal Shock Wave Therapy (ESWT) A Non-Invasive Treatment Option in Veterinary Medicine | |
RU2657931C2 (en) | Method for treatment of chronic prostatitis associated with sexually transmitted infections | |
UA126057U (en) | METHOD OF TREATMENT OF MYOFASIAL PAIN PAIN SYNDROME | |
Blake | Electrotherapy and hydrotherapy in chronic pelvic pain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20231201 |