CA2984346C - Support and method of shaping workpiece and support - Google Patents

Support and method of shaping workpiece and support Download PDF

Info

Publication number
CA2984346C
CA2984346C CA2984346A CA2984346A CA2984346C CA 2984346 C CA2984346 C CA 2984346C CA 2984346 A CA2984346 A CA 2984346A CA 2984346 A CA2984346 A CA 2984346A CA 2984346 C CA2984346 C CA 2984346C
Authority
CA
Canada
Prior art keywords
support
workpiece
shaping
sintering
support according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2984346A
Other languages
French (fr)
Other versions
CA2984346A1 (en
Inventor
Kouichi Amaya
Kousuke Ishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuura Machinery Corp
Original Assignee
Matsuura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuura Machinery Corp filed Critical Matsuura Machinery Corp
Priority to CA2984346A priority Critical patent/CA2984346C/en
Publication of CA2984346A1 publication Critical patent/CA2984346A1/en
Application granted granted Critical
Publication of CA2984346C publication Critical patent/CA2984346C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/43Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)

Abstract

[Purpose] Providing a support for supporting a workpiece from below efficiently with reducing the amount of necessary materials , and providing a shaping method for shaping the workpiece and support efficiently. [Solution for Problem] This is achieved by adopting a hollow state support 1 for supporting a workpiece 2 from below has a lattice form with crossing of straight linear or curved columnar bodies, wherein a sintered strength at a connecting region with the workpiece 2 is lower than the sintered strength at the other regions for solving the problem.

Description

SUPPORT AND METHOD OF SHAPING WORKPIECE AND SUPPORT
[Technical Field]
[0001]
The present invention relates to a support that supports a workpiece which is to be produced by a three-dimensional shaping system, and to a method of shaping the workpiece and the support.
[Background Art]
[0002]
A support for supporting a workpiece that is to be worked from below with a tool or the like differs in its shape and size according to the shape and size of the workpiece, and once working of the workpiece has been completed, it is removed from the workpiece and disposed away.
[0003]
In the prior art, however, columnar or tubular shapes are employed as supports for the most part, as a construction exhibiting excess strength beyond what is necessary for support from below the workpiece.
[0004]
Consequently, multiple tools and special machines must necessarily be used for disposal, which requires a great amount of additional labor.
[0005]
Moreover, excessively strong supports incur needless material costs, which is disadvantageous in terms of production cost.
[0006]
Patent Document 1 describes a method for producing a three-dimensional object, wherein a support structure 21 on the lower end is divided into a core region 22 and an external capsule 23 serving as a connecting region, with softer irradiation during solidification of the external capsule 23 by laser light ( [Fig.
2], p.8, lines 20-21, p.91 line 3) .
However, the core region 22 shown in Fig. 2 of the aforementioned publication has a material-filled structure, and this has necessitated excessive material cost.
In regard to the aforementioned core region 22, Patent Document 1 states: "It is solidified in separate distant partial regions. Each region is either completely unconnected, or connected via a connecting web." (p.8, lines 5 to 4 from bottom) thereby disclosing the structure other than the filled structure, but this description is unclear and does not concretely specify the structure of the core region 22.
Patent Document 2 discloses the construction of a lattice-like support structure with thin sheets mutually crossing at a specified angle (Fig. 9, claim 2, p.3, lower left column, line 3 from bottom to lower right column, line 1 from top) .
However, Patent Document 2 does not disclose or suggest in any way the relationship between the strength at the connecting region between the support structure and the object to be supported above, and the strength at the other regions.
[Prior Art Documents]
[Patent Documents]
[0007]
Patent Document 1: Japanese Announced Unexamined Patent Application No. H09-511705A

Patent Document 2: Japanese Published Unexamined Patent Application No. H03-136834A
[Summary of Invention]
[Problem to be solved]
[0008]
An object of the present invention is providing a support for supporting a workpiece from below efficiently with reducing the amount of necessary materials, and providing a shaping method for shaping the workpiece and support efficiently.
[Solution for Problem]
In order to solve the aforementioned problems, the present invention has the following basic features.
(1) A hollow state support for supporting a workpiece from below has a lattice form with crossing of straight linear or curved columnar bodies, wherein a sintered strength at a connecting region with the workpiece is lower than the sintered strength at the other regions, and wherein the thicknesses of the columnar bodies are uniform.
(2) A method of shaping a support, employing a three-dimensional shaping system that carries out lamination consisting of repeating alternation of a powder layer-forming step and a sintering step in which the powder layer is sintered by irradiation with a moving laser beam or electron beam, wherein the object of shaping at the upper region is a workpiece and the object of shaping at the lower region is a support according to (1) above, and wherein the degree of sintering of one or several powder layers formed between the top end of the support and the bottom end of the workpiece is lower than the degree of sintering at the other lower side shaping regions of the support.

[Advantageous Effects of Invention]
[0009]
In the basic construction (1) , the support is hollow, whereby the load of the workpiece is distributed in an essentially uniform state so that both bearing of the load and economy of materials is achieved.
It may be apparently grounded by the fact that the columnar bodies forming the lattice form according to basic construction (1) does not have a thin sheet in-between as in Patent Document 2.
Furthermore, since the sintered strength in the region in contact with the workpiece is lower than in the other regions, it is possible to easily cut off the support of the columnar bodies from the workpiece.
[0010]
According to basic construction (2) , it is possible to efficiently accomplish the operation of employing a three-dimensional shaping system and shaping the workpiece and the support of basic construction (1) at the same time.
[Brief Description of the Drawings]
[0011]
Fig. 1 is a lateral cross-sectional view showing an embodiment that employs a lattice form created by crossing of columnar bodies, as the hollow form of the support of basic construction (1) , wherein (a) shows a case of a lattice form in which each lattice section is obliquely crossing with the vertical direction, (b) shows a case of a lattice form in which portions coincide with the vertical direction and the remaining portions are perpendicular to that direction, and (c) shows a case of a lattice form in which each lattice section is in the vertical direction at the bottom end and, due to successive curving, is in the horizontal direction at the top end.
Fig. 2 is a cross-sectional view in the vertical direction, for an embodiment of a support with a lattice form according to basic construction (1) , wherein the surface that is to support the workpiece is formed at the top end.
Fig. 3 is a lateral cross-sectional view, for an embodiment of the shaping method of basic construction (2) wherein a support with a lattice form is shaped.
Note that the dotted lines indicate the state of control data transmission from a controller to different operating parts.
[Description of Embodiments of the Invention]
[0012]
To compare again the construction of basic construction (1) and a lattice form produced by crossing the thin sheet-like supports described in Patent Document 2 (hereunder referred to as "thin sheet-like lattice form") , if it is considered that the linear crossing portions of the thin sheet-like lattice form exhibit the necessary indispensable function for supporting a weight while preventing their own deformation, the columnar lattice form employed by basic construction (1) is evaluated as a structure in which the region of the thin sheet itself is abstracted from the thin sheet-like lattice form, selecting linear crossing sections that support a weight while preventing deformation.
By thus abstracting the region of the thin sheet itself while selecting linear crossing sections from the lattice form, it is possible to achieve both support of the load of the workpiece 2 and reduction in materials.
[0013]
In basic configuration (1), a columnar lattice form with a uniform thickness is employed, as shown in Fig. 1(a), (b) and.
(c) So, in basic configuration (1), the cross-sectional area of each region does not change, it is possible to avoid the excessive use of material for formation of extra regions with insignificant and unnecessary thicknesses, resulting from the use of prescribed thicknesses for small sections that is necessary to prevent breakage caused by concentration of strain at sections with small cross-sectional areas when the thickness is not uniform.
[0014]
In basic construction (1), for an embodiment in which the cross-sectional area in the horizontal direction gradually increases toward the lower side, it is possible to prevent overturning of the support 1 even when the location supporting the workpiece 2 is high, and this likewise applies to the lattice forms of Fig. 1(a), (b) and (c).
[0015]
Fig. 1(a) shows the state of an embodiment wherein each lattice section is set in a slanted direction with respect to the vertical direction along the direction in which the workpiece 2 is supported.
As shown in Fig. 1(a), vertical lattice sections are set crossing with each lattice section at the horizontal ends, and horizontal lattice sections are set crossing with each lattice section at the lower end, thereby allowing stable support of the workpiece 2 to be achieved, and this likewise applies for the embodiment shown in Fig. 1(c) .
[0016]
In the case of a lattice form obliquely crossing with the vertical direction, a bending moment M is generated in each cross-section of the lattice form due to the load of the workpiece 2, and if the curvature radius with bending by bending moment M is represented as p, then the following basic general formula is valid:
[0017]
[Formula 1]
/M
(where E is the modulus of longitudinal elasticity, or Young's modulus, and I is the secondary moment of the cross-section) .
[0018]
As clearly seen from this general formula, in order to reduce deformation with a larger value for the curvature radius p, a material may be selected having a cross-sectional shape (specifically, a cross-sectional circular shape) with a large Young's modulus E and a large secondary moment I.
[0019]
Such a material is selected based on whether, in concrete experimentation using lattice-shaped supports 1 conforming to different workpieces 2, the support 1 does not only not break but also essentially does not deform.
[0020]
Fig. 1(b) shows the state of an embodiment in which sections of each lattice match the vertical direction along the direction in which the workpiece 2 is supported, and the remaining sections are perpendicular to the vertical direction.
[0021]
For this embodiment, if the load of the workpiece 2 acting on the cross-section of each lattice form is represented as F
and the length of displacement in the vertical direction at the top end of the cross-section of the lattice form is represented as x, then the following basic general formula is valid:
[0022]
[Formula 2]
F/-Ex0 S- L
(where S is the cross-sectional area, E is the Young's modulus and L is the length of the support in the vertical direction).
[0023]
As clearly seen from this general formula, in order to reduce x which represents the degree of deformation, a material may be selected having a high Young's modulus for a given cross-sectional area S.
[0024]
Fig. 1(c) shows an embodiment set so that each lattice section is in the vertically oriented at the bottom end, and successively curves to change oriented horizontally at the top end.
[0025]
In this embodiment, at the lower end and its vicinity, displacement occurs according to the general formula of [Formula 2] above, while the other regions resolve to a bending moment M according to the general formula of [Formula 1] above.
[0026]

In the case of this embodiment, the support 1 may support the workpiece 2 in a pressure-resistant state at the lower end and its vicinity, while at the upper end, it may support the workpiece 2 in a stable manner by the horizontal lattice sections.
[0027]
Such a material is selected based on whether, in concrete experimentation using lattice-shaped supports 1 conforming to different workpieces 2, the support 1 does not only not break but also essentially does not deform.
[0028]
From the viewpoint of convenience of removing the support 1 in basic construction (1) , as shown in Fig. 1 (a) , an embodiment may be employed wherein a notch 11 for inserting the operator's fingers when cutting the support 1 off from the workpiece 2, is provided horizontally at or near the top end of the lattice form.
[0029]
In the case of this embodiment, the operator inserts his/her own hand into the notch 11 to allow smooth removal of the support 1 from the workpiece 2.
[0030]
When the lattice form extends up to the top end of the support 1 in basic construction (1), support of the workpiece 2 may be unstable.
[0031]
Considering such conditions, basic construction (1) may employ an embodiment in which a flat surface or curved surface 14 for supporting the workpiece 2 is formed at the top end of the lattice form, as shown in Fig. 2 (a flat surface is shown in Fig. 2) .
[0032]
When the workpiece 2 has been situated on the flat surface or curved surface 14, the support 1 supports the workpiece 2 in a stable manner.
[0033]
In the shaping method according to basic construction (2) , as shown in Fig. 3, a three-dimensional shaping system is employed and the workpiece 2 is shaped in the upper region, while the support 1 of basic construction (1) is shaped in the lower region.
[0034]
In this three-dimensional shaping system, similar to a common three-dimensional shaping system, a laser beam or electron beam supply 5, a scanner 6, a powder supply tool 7, a squeegee 8, a table 9 and a controller 10 are employed as essential constituent elements.
[0035]
In basic configuration (2) , the degree of sintering of one or several powder layers formed between the top end of the support 1 and the bottom end of the workpiece 2 is lower than the degree of sintering at the other lower side shaping regions of the support 1.
[0036]
In basic configuration (2) having this feature, at the stage of completion of the single step in which the support 1 and the workpiece 2 have both been shaped, a region is formed between them wherein the degree of sintering is lower than the degree of sintering of the support 1, and it is possible to easily separate the two.
[0037]

The small degree of sintering referred to here, which is sufficient for the need, is a degree of sintering that may barely maintain bonding between the workpiece 2 and the support 1 without separation between them even when vibration is produced during working of the workpiece 2.
[0038]
The criteria for setting such a sintered state may only be confirmed by accumulated experimentation based on trial and error for combinations of different workpieces 2 and the support 1.
[0039]
Normally, the shape of the support 1 at each height position is designed for shaping by a CAN system or CAE system to adapt the shape and load of the workpiece 2.
[0040]
When the shape is specifically designed using a CAN system or CAE system, the most suitable shape to adapt the shape and load of a given workpiece 2 is selected based on previously accumulated data.
However, when the shape at different heights is to be designed adapting a new shape and load of a workpiece 2, the nearest data and the shape of the support 1 at different heights corresponding to those data are selected from the previously accumulated data of workpiece 2 shape and load, and a program is employed that corrects the dimensions of the shape at different height positions selected as described above, based on proportional distribution using the proportion between the two sets of data, to allow further automatic design.
An embodiment may of course be employed in which the notch 11 shown in Fig. 1(a) is also designed by a CAN system or CAE

system.
[0041]
With basic construction (2) using a CAM and CAE system, therefore, it is possible to very efficiently shape the support 1.
[0042]
Similar to the requirement for selection of the material composing the workpiece 2 to adapt the function of the workpiece 2, a suitable material is also preferably selected for the support 1 as well, for support of the workpiece 2.
[0043]
In basic construction (2) , an appropriate material may be selected to adapt the thickness of the support 1 and the direction at each height position.
[0044]
The support 1 and workpiece 2 will naturally differ in the properties of the necessary materials.
That is, since the strength required per unit volume is lower for the support 1 than for the workpiece 2, an embodiment may be employed in which the degree of sintering of the support 1 is lower than the degree of sintering of the workpiece 2.
[0045]
A specific method for obtaining different degrees of sintering for this purpose may be selected from among:
(1) a method of setting the thickness of the support 1 to be larger than the thickness of the workpiece 2 at each laminating unit 4, (2) a method of using the same thickness for the laminating units 4, and setting the radiation dose of the laser beam or electron beam per unit area for the support 1 to be lower than for the workpiece 2, and (3) a method of setting the thicknesses of the laminating units 4 and the radiation dose per unit area to be the same, while conducting irradiation every several laminating units for the support 1 and conducting irradiation every single laminating unit for the workpiece 2.
[0046]
Based on this selection, it is possible to select a condition for basic construction (2) which does not require as powerful a degree of sintering for the workpiece 2 as for the support 1, thereby allowing efficient production to be carried out.
[0047]
A description will be given below according to Example.
[Example]
[0048]
As a feature of Example, in order to finally achieve the feature described above, sintering is omitted in some of the powder layers among the plurality of powder layers formed between the top end of the support 1 and the bottom end of the workpiece 2.
[0049]
Even if sintering is omitted for some of the powder layers, the sintering of the other regions may maintain bonding between the unsintered powder layers, although the degree of bonding is very minimal compared to that by the actual sintering.
[0050]
As a result, Example also allows easy separation between the support 1 and the workpiece 2.
[0051]
The region range for the degree to which sintering of some of the powder layers may be omitted while still allowing maintenance of the bonded state between the support 1 and the workpiece 2 and easy separation, must also be confirmed by accumulated experimentation based on trial and error.
[Industrial Applicability]
[0052]
Thus, the present invention achieves both the necessary strength and low economic cost for a support that supports a workpiece, while also creating efficient production conditions for both workpieces and supports, and it is therefore of tremendous value in the field of machine tools.
[Reference Signs List]
[0053]
1: Support 11: Notch 14: Flat surface or curved surface 2: Workpiece 3: Container 4: Laminating unit by powder layer 5: Laser beam or electron beam supply 6: Scanner 7: Powder supply tool 8: Squeegee 9: Table 10: Controller

Claims (11)

  1. [Claim 1]
    A hollow state support for supporting a workpiece from below has a lattice form with crossing of straight linear or curved columnar bodies, wherein a sintered strength at a connecting region with the workpiece is lower than the sintered strength at the other regions, and wherein the thicknesses of the columnar bodies are uniform.
  2. [Claim 2]
    The support according to claim 1, wherein the lattice form created by crossing of columnar bodies is one of a lattice form which is set in a slanted direction with respect to the vertical direction, or a lattice form which partially matches the vertical direction while the remainder is perpendicular to that direction, or a lattice form in which each lattice section is oriented vertically at the bottom end and successively curves to change oriented horizontally at the top end.
  3. [Claim 3]
    The support according to any one of claim 1 or claim 2, wherein a cross-sectional area in the horizontal direction is formed to successively increases toward the lower side.
  4. [Claim 4]
    The support according to any one of claims 1-3, wherein a notch is formed horizontally at or near the top end for inserting fingers of the operator when the support is to be cut off from the workpiece.
  5. [Claim 5]
    The support according to any one of claims 1, 2, 3, or 4, wherein a flat surface or curved surface for supporting a workpiece is formed at the top end.
  6. [Claim 6]
    A method of shaping a support, employing a three-dimensional shaping system that carries out lamination consisting of repeating alternation of a powder layer-forming step and a sintering step in which the powder layer is sintered by irradiation with a moving laser beam or electron beam, wherein the object of shaping at the upper region is a workpiece and the object of shaping at the lower region is a support according to any one of claims 1-5, and wherein the degree of sintering of one or several powder layers formed between the top end of the support and the bottom end of the workpiece is lower than the degree of sintering at the other lower side shaping regions of the support.
  7. [Claim 7]
    The method of shaping a support according to claim 6, wherein the shape of the support at each height position is designed by a CAM system or CAE system to adapt the shape and weight of the workpiece.
  8. [Claim 8]
    The method of shaping a support according to claim 7, wherein the CAM system or CAE system selects the material that is to compose the support.
  9. [Claim 9]
    The method of shaping a support according to claim 7, wherein the notch of claim 4 is designed by the CAM system or CAE system.
  10. [Claim 10]
    The method of shaping a support according to any one of claims 7-9, wherein the degree of sintering of each layer in a support shaping region is lower than the degree of sintering of each layer in a workpiece shaping region.
  11. [Claim 11]
    The method of shaping a support according to any one of claims 7-10, wherein sintering is omitted in some of the powder layers among the plurality of powder layers formed between the top end of the support and the bottom end of the workpiece.
CA2984346A 2017-10-31 2017-10-31 Support and method of shaping workpiece and support Active CA2984346C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2984346A CA2984346C (en) 2017-10-31 2017-10-31 Support and method of shaping workpiece and support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2984346A CA2984346C (en) 2017-10-31 2017-10-31 Support and method of shaping workpiece and support

Publications (2)

Publication Number Publication Date
CA2984346A1 CA2984346A1 (en) 2018-01-17
CA2984346C true CA2984346C (en) 2018-09-11

Family

ID=60989382

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2984346A Active CA2984346C (en) 2017-10-31 2017-10-31 Support and method of shaping workpiece and support

Country Status (1)

Country Link
CA (1) CA2984346C (en)

Also Published As

Publication number Publication date
CA2984346A1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
US11097497B2 (en) Support and method of shaping workpiece and support
JP6236112B2 (en) Support and work and modeling method of the support
US10232604B2 (en) Manufacturing method of metal member
CA2917334C (en) Method of reducing and optimising printed support structures in 3d printing processes
CA2419225C (en) Method for precision bending of a sheet of material and slit sheet therefor
KR101307053B1 (en) Method for separating finished parts and residual scrap grid during laser cutting of sheet metal panel
EP2511021B1 (en) Method of manufacturing truss structure and method of manufacturing a truss core sandwich panel
CN109702196B (en) Metal additive manufacturing method for overhanging structure of workpiece
CA3054512A1 (en) Three-dimensional molding method
CA2984346C (en) Support and method of shaping workpiece and support
CN101686738B (en) Cutting frame of high cutting efficiency
JP2015077609A (en) Press device, manufacturing line, and method for manufacturing press device
CN101985184B (en) Method for cutting materials by using numerical control flame-cutting machine
KR101480874B1 (en) Aluminum access floor panel for high load equipment
US11351612B2 (en) Manufacturing support and method for additive manufacturing process
JP6413997B2 (en) Work trim method and trim mold
CN111069777A (en) Additive manufacturing method and additive manufacturing equipment
CN218396541U (en) Steel laser cutting fixing device
CN109070223A (en) A kind of method and apparatus for manufacturing three dimensional object
KR101545842B1 (en) Manufacturing technology of unit-cell structure, a sandwich plate comprising the unit cell structure and its manufacturing method
JP7100913B1 (en) Scrap removal device
JP5753976B2 (en) Punch material punching method, punching device and printed circuit board
JP7432651B2 (en) Press mold
CN219276666U (en) Auxiliary structure of part with internal bevel angle
JP2023083048A (en) Laminate molding method