CA2920363C - Method and apparatus for predicting a need for a blood transfusion - Google Patents

Method and apparatus for predicting a need for a blood transfusion Download PDF

Info

Publication number
CA2920363C
CA2920363C CA2920363A CA2920363A CA2920363C CA 2920363 C CA2920363 C CA 2920363C CA 2920363 A CA2920363 A CA 2920363A CA 2920363 A CA2920363 A CA 2920363A CA 2920363 C CA2920363 C CA 2920363C
Authority
CA
Canada
Prior art keywords
percentile
range
parameters
data
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2920363A
Other languages
English (en)
French (fr)
Other versions
CA2920363A1 (en
Inventor
Peter Fuming HU
Colin Mackenzie
Shiming Yang
Hegang CHEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Maryland at Baltimore
Original Assignee
University of Maryland at Baltimore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Maryland at Baltimore filed Critical University of Maryland at Baltimore
Publication of CA2920363A1 publication Critical patent/CA2920363A1/en
Application granted granted Critical
Publication of CA2920363C publication Critical patent/CA2920363C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02042Determining blood loss or bleeding, e.g. during a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Primary Health Care (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • External Artificial Organs (AREA)
CA2920363A 2013-08-12 2014-08-12 Method and apparatus for predicting a need for a blood transfusion Active CA2920363C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361864832P 2013-08-12 2013-08-12
US61/864,832 2013-08-12
PCT/US2014/050790 WO2015023708A1 (en) 2013-08-12 2014-08-12 Method and apparatus for predicting a need for a blood transfusion

Publications (2)

Publication Number Publication Date
CA2920363A1 CA2920363A1 (en) 2015-02-19
CA2920363C true CA2920363C (en) 2020-03-31

Family

ID=52468644

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2920363A Active CA2920363C (en) 2013-08-12 2014-08-12 Method and apparatus for predicting a need for a blood transfusion

Country Status (4)

Country Link
US (1) US10258292B2 (de)
EP (1) EP3033001B1 (de)
CA (1) CA2920363C (de)
WO (1) WO2015023708A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11191493B2 (en) 2014-08-12 2021-12-07 The University Of Maryland, Baltimore Method and apparatus for predicting a need for a blood transfusion
EP3454728A4 (de) * 2016-05-11 2019-12-11 University of Maryland, Baltimore Verfahren und vorrichtung zur vorhersage der notwendigkeit einer bluttransfusion
RU2657791C1 (ru) * 2017-09-19 2018-06-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Астраханский ГМУ Минздрава России) Способ прогнозирования потребности в аллогенных эритроцитсодержащих компонентах крови при хирургической коррекции клапанной патологии в интраоперационном и раннем послеоперационном периодах у взрослых пациентов
RU2660707C1 (ru) * 2017-09-19 2018-07-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Астраханский ГМУ Минздрава России) Способ прогнозирования потребности в аллогенных эритроцитсодержащих компонентах крови в интраоперационном и раннем послеоперационном периодах при коронарном шунтировании
RU2657771C1 (ru) * 2017-09-19 2018-06-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Астраханский ГМУ Минздрава России) Способ прогнозирования потребности в аллогенных эритроцитсодержащих компонентах крови при плановых кардиохирургических вмешательствах у взрослых пациентов в интраоперационном и раннем послеоперационном периодах
CN112200213B (zh) * 2020-08-20 2024-05-14 北京和兴创联健康科技有限公司 一种实现新生儿精准输血的方法及装置
US20220115132A1 (en) * 2020-10-14 2022-04-14 Etiometry, Inc. System and method for providing clinical decision support
US20240057968A1 (en) * 2020-12-22 2024-02-22 University Of Washington System and method for measuring total blood volume with ultrasound

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035679B2 (en) 2001-06-22 2006-04-25 Cardiodigital Limited Wavelet-based analysis of pulse oximetry signals
US20080082366A1 (en) * 2006-10-02 2008-04-03 Siemens Medical Solutions Usa, Inc. Automated Medical Treatment Order Processing System
WO2009063446A2 (en) * 2007-11-13 2009-05-22 Oridion Medical (1987) Ltd. Medical system, apparatus and method
US20100099964A1 (en) 2008-09-15 2010-04-22 Masimo Corporation Hemoglobin monitor
US8246546B2 (en) 2008-09-30 2012-08-21 General Electric Company Method, arrangement and apparatus for monitoring fluid balance status of a subject
US8512260B2 (en) 2008-10-29 2013-08-20 The Regents Of The University Of Colorado, A Body Corporate Statistical, noninvasive measurement of intracranial pressure
US20110172545A1 (en) 2008-10-29 2011-07-14 Gregory Zlatko Grudic Active Physical Perturbations to Enhance Intelligent Medical Monitoring
US20110201905A1 (en) * 2010-02-12 2011-08-18 David Spencer Decision support method for casualty treatment using vital sign combinations
US20120016685A1 (en) 2010-07-13 2012-01-19 Cerner Innovation, Inc. Blood management for outpatient procedures
WO2013016212A1 (en) 2011-07-22 2013-01-31 Flashback Technologies, Inc. Hemodynamic reserve monitor and hemodialysis control
US20130172759A1 (en) * 2011-08-08 2013-07-04 Richard J. Melker Systems And Methods For Using Photoplethysmography In The Administration Of Narcotic Reversal Agents
CA2854663A1 (en) * 2011-11-08 2013-05-16 J&M Shuler, Inc. Method and system for providing versatile nirs sensors

Also Published As

Publication number Publication date
US20160183885A1 (en) 2016-06-30
EP3033001A4 (de) 2017-06-21
EP3033001B1 (de) 2021-01-06
CA2920363A1 (en) 2015-02-19
WO2015023708A1 (en) 2015-02-19
US10258292B2 (en) 2019-04-16
EP3033001A1 (de) 2016-06-22
WO2015023708A9 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
CA2920363C (en) Method and apparatus for predicting a need for a blood transfusion
Miao et al. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques
Fine et al. Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring
US11191493B2 (en) Method and apparatus for predicting a need for a blood transfusion
Almarshad et al. Diagnostic features and potential applications of PPG signal in healthcare: A systematic review
Chowdhury et al. Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques
Wang et al. A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram
US11033237B2 (en) Method and apparatus for predicting a use for a blood transfusion
Allen et al. Deep learning-based photoplethysmography classification for peripheral arterial disease detection: A proof-of-concept study
Tjahjadi et al. Noninvasive blood pressure classification based on photoplethysmography using k-nearest neighbors algorithm: a feasibility study
Jarchi et al. Validation of instantaneous respiratory rate using reflectance PPG from different body positions
Wu et al. Improving the accuracy in classification of blood pressure from photoplethysmography using continuous wavelet transform and deep learning
Lim et al. Adaptive template matching of photoplethysmogram pulses to detect motion artefact
Convertino et al. Wearable sensors incorporating compensatory reserve measurement for advancing physiological monitoring in critically injured trauma patients
Laurin et al. Accurate and consistent automatic seismocardiogram annotation without concurrent ECG
Fati et al. A continuous cuffless blood pressure estimation using tree-based pipeline optimization tool
Yuan et al. An experimental study of the effects of external physiological parameters on the photoplethysmography signals in the context of local blood pressure (hydrostatic pressure changes)
Hu et al. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal
Scully et al. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood
Samimi et al. Cuffless blood pressure estimation using calibrated cardiovascular dynamics in the photoplethysmogram
Man et al. Blood pressure measurement: From cuff-based to contactless monitoring
Hutton et al. Sensor technologies to detect out-of-hospital cardiac arrest: A systematic review of diagnostic test performance
Mamun Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique
Tarifi et al. A Machine Learning Approach to the Non-Invasive Estimation of Continuous Blood Pressure Using Photoplethysmography
Georgieva-Tsaneva et al. Cardiodiagnostics based on photoplethysmographic signals

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160203