CA2906159A1 - Procede et dispositif d'hydrolyse thermique en continu - Google Patents

Procede et dispositif d'hydrolyse thermique en continu Download PDF

Info

Publication number
CA2906159A1
CA2906159A1 CA2906159A CA2906159A CA2906159A1 CA 2906159 A1 CA2906159 A1 CA 2906159A1 CA 2906159 A CA2906159 A CA 2906159A CA 2906159 A CA2906159 A CA 2906159A CA 2906159 A1 CA2906159 A1 CA 2906159A1
Authority
CA
Canada
Prior art keywords
reactor
sludges
thermal hydrolysis
phase mixture
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2906159A
Other languages
English (en)
Other versions
CA2906159C (fr
Inventor
Cedric Crampon
Malik Djafer
Julien Chauzy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Water Solutions and Technologies Support SAS
Original Assignee
Veolia Water Solutions and Technologies Support SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Water Solutions and Technologies Support SAS filed Critical Veolia Water Solutions and Technologies Support SAS
Publication of CA2906159A1 publication Critical patent/CA2906159A1/fr
Application granted granted Critical
Publication of CA2906159C publication Critical patent/CA2906159C/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/025Thermal hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Procédé, et dispositif associé, d'hydrolyse thermique en continu de boues contenant de la matière organique, ledit procédé comprenant les étapes consistant à : réaliser simultanément l'injection de vapeur (100) sous pression dans lesdites boues et le mélange desdites boues avec ladite vapeur au moyen d'un injecteur-mélangeur dynamique (4) de façon à obtenir un mélange monophasique, acheminer ledit mélange monophasique vers un réacteur tubulaire (5) sous pression et provoquer l'écoulement en flux piston de ce mélange dans ledit réacteur selon un temps de séjour suffisant et à une température suffisante pour permettre l'hydrolyse thermique de la matière organique présente dans lesdites boues, refroidir ledit mélange monophasique à sa sortie dudit réacteur tubulaire à une température permettant la digestion ultérieure de la matière organique hydrolysée qu'il contient.; dépressuriser ledit mélange monophasique refroidi.

Description

PROCESS AND DE VICE FOR CONTINUOUS THERMAL HYDROLYSIS
1. Field of the invention The present invention pertains to a method and a device for continuous thermal hydrolysis of sludges containing organic matter. These sludges can be derived for example from the treatment of domestic wastewater (sludges from cleaning processes, fats derived from pre-treatment operations) or derived from the treatment of industrial wastewater or it can corne from drainage matter or from grease tanks. The term "sludges" shah l be used here below in the document. Such sludges have a dryness of 10% to 50% by weight.
2. Prior art Sludges coming from the treatment of wastewater, whether of domestic or industrial origin, can be treated biological means, especially by anaerobic digestion.
The purpose of biological treatment is to degrade the organic matter contained in these sludges. This degradation can be aimed at stabilizing the sludges, enabling the production of energy and/or again reducing the volume of sludges. However, certain organic compounds are more difficult than others to degrade by biological means and it is known that pre-treatment by thermal hydrolysis accelerates the process of biological degradation. This heat treatment is generally carried out under pressure at a temperature of over 100 C, and in practice capable of going up to 220 C, for a predetermined period of time, in practice generally half an hour.

Through such thermal hydrolysis treatment, the poorly biodegradable organic matter is degraded into compounds that are then more easily biodegradable.
Classically, this subsequent biological degradation can be done by digestion within an anaerobically operating closed reactor called a digester. Such anaerobic digesters cannot work properly unless they operate at an adequate and constant temperature generally requiring a heating system and unless they are properly stirred.

This stirring is ail the easier as the sludges entering the digester are fluids, i.e. they have low viscosity.
There are various types of known methods of thermal hydrolysis in the prior art. Certain of them are carried out by treating given quantities of sludges to be hydrolyzed, one by one, that is discontinuously (called batch operation) while other methods are designed to enable the continuous treatment, or at least semi-continuous treatment, of the sludges to be hydrolyzed.
In the prior art pertaining to these devices and methods of thermal hydrolysis, we can cite especially the patent documents W096/09882 and W02006/027062 both of which pertain to batch-treatment methods.
Such batch-treatment methods have the drawback of necessitating the management of the cycles of treatment of the different batches of sludges that have to be treated.
The techniques for the continuous or semi-continuous treatment of sludges by thermal hydrolysis include the techniques described in the patent document EP1198424 and those described in the patent document W02009/121873.
In the technique described in EP1198424, the sludges are conveyed into a reactor where they travel in transit for a period of 5 to 60 min at a temperature of 130 C to 180 C. The sludges hydrolyzed by such treatment are then cooled by means of a heat exchanger so as to make sure that their temperature is low enough to prevent the biomass of a digester from being destroyed. The energy thus recovered is used to heat the sludges before they enter the thermal hydrolysis reactor. This technique however implements steam recovery steps, the management of which, in practice, proves to be difficult and is a constraint for the user. In addition, these steam recovery steps give the method in question a semi-continuous rather than a continuous character.
3 In the technique described in the patent document W02009/121873, the sludges are treated continuously in a tube-shaped thermal hydrolysis reactor into which steam is directly injected.
This method has the advantage of being a truly continuous method. However, although this method has considerably improved commercially existing methods for treating sludges by thermal hydrolysis, it nevertheless has certain drawbacks.
Firstly, if the viscosity of the sludges to be hydrolyzed introduced into the reactor is excessively high, it can be difficult to inject steam into them. In practice, this method can treat sludges that have a high dryness ratio or "dry solids content".
Beyond certain dryness ratios, the thermal hydrolysis could prove to be incomplete or non-optimal, which would limit the performance of the anaerobic digestion placed downstream from the thermal hydrolysis.
Secondly, the experiments conducted by the Applicant have shown that the thermal and mechanical constraints observed within the thermal hydrolysis reactor used in the method described in W02009/121873 could necessitate special constructional arrangements. It has been observed that the steam injected was flot totally condensed in the sludges beyond certain dryness ratios. In practice, the steam injected into the reactor can follow preferred paths. This problem is besides identified in the patent W02009/121873, especially the first paragraph of page 5 of this document which specifies that when the reactor has a horizontal part, the steam and the sludges can tend to get separated into two layers, namely an upper layer containing steam and a lower layer containing sludges.
Now, for ail the methods of thermal hydrolysis and especially for those that work continuously, the critical phase of the method corresponds to the transfer of the steam into the sludge and its condensation therein. Indeed, if this phase is not done properly, the performance of the method of thermal hydrolysis can be considerably impaired whether it is in terms of chemical reaction or in economic terms since the quantity of steam to be used is then greater.
4 The methods of thermal hydrolysis on dewatered sludges therefore corne against the difficulty of injecting steam into the sludges in an efficient way and, as a corollary, against the difficulty of mixing them if they are too viscous.
Since the sludges are viscous by nature, the greater their dryness, the more difficult it is for the steam to be injected into the sludge, to be mixed with it and to transfer its energy to it to bring about the thermal hydrolysis of the poorly biodegradable compounds.
In the batch methods, it is planned to carry out a stirring operation in the treatment tanks to promote the intimate mixing of the steam with the sludges to be treated. Through such a stirred mixture made in the stirring tanks, the mixing of sludge and steam becomes intimate and the steam finally yields its energy in getting condensed in the sludges. However, in continuous-operation methods as well as in batch-operation methods, the problem constituted by the dryness of the sludges is a major one and, in practice, at least in the industrial-scale transposition of the techniques described and claimed in the patent documents described here above, the sludges must be limited to 25 % of dry matter by weight.
The patent document W02009/121873 recommends the use of static or dynamic mixers in the reactor so as to improve the mixing of this steam with the sludges. This is explained in the last paragraph of page 5 of W02009/121873.
Such mixers are particularly recommended when the steam is injected into a horizontal part of the reactor since such a horizontal part is identified, at indicated here above, as a zone in which steam has a special propensity for finding a preferred path of discharge and flot getting fully mixed with sludge, hence not properly yielding its energy to the sludge. This propensity therefore lowers the performance of the thermal hydrolysis reactor. It will be noted however that, to the Applicant' s knowledge, no industrial-scale embodiment implementing such dynamic or static mixers has effectively been implemented in commercial-scale installations until now.
Besides, in these installations, the hydrolysis reactors are of great length.
This great length has a corresponding high retention time or retention time for the sludges and steam in the reactor. Thus, the coefficient of transfer of energy from the steam to the sludge can be optimized. However, such great reactor lengths entail high manufacturing costs.
3. Goals of the present invention
5 The goal of the present invention is to propose a method, and a device associated with the application of this method, that improves the technique disclosed in W02009/121873. This document is considered here to be the prior art closest to the invention, which shah l be described here below.
In particular, it is a goal of the present to describe such a method and such a device that enable the treatment of sludges intended for thermal hydrolysis and having a dry solids content greater than the maximum dry solids content that can be effectively implemented by the prior art, and to achieve this without impairing the performance of the digestion that classically follows the thermal hydrolysis of the sludges.
It is a also a goal of the present invention to propose a method of this kind and a device of this kind making it possible to obtain homogenous temperatures of the mixture of sludges and steam inside the reactor in order to attain high performance values of thermal treatment and thus do away with the mechanical constraints on the reactors related to inhomogenous temperatures.
It is yet another goal of the present invention to disclose such a method and such a device that reduce the consumption of steam necessary for the hydrolysis of the sludges.
It is yet another goal of the invention to describe such a method and such a device that can use reactors of smaller volumes, especially smaller lengths, than in the prior art while at the same time providing for optimized condensation of the steam in the sludges.
It is yet another goal of the invention to describe such a method and such a device that enable the hygienization of the sludges.
6 4. Summary of the Invention Ail or part of these goals are achieved according to the invention which first of ail relates to a method for the continuous thermal hydrolysis of sludges containing organic matter, said method comprising the steps of:
simultaneously injecting pressurized steam into said sludges and mixing said sludges with said steam by means of a dynamic mixer-injector so as to obtain a single-phase mixture, conveying said single-phase mixture towards a tube reactor under pressure and bringing about the plug flow of this mixture into said reactor for a retention time that is sufficient and at a temperature that is sufficient to enable the thermal hydrolysis of the organic matter present in said sludges, cooling said single-phase mixture at its exit from said tube reactor to a temperature enabling the subsequent digestion of the hydrolyzed organic matter that it contains, depressurizing said cooled single-phase mixture.
It will be noted that, in the present description, the term "dynamic mixer-injector" is understood to refer to any mixer constituted by a preferably cylindrical chamber that continuously receives said sludges, means for injecting steam directly into said chamber and means to prompt the vigorous stirring, through motor-driven mechanical means, of the different phases entering said chamber. The stirring is strong enough to enable a single-phase mixture of sludges and steam to be obtained.
In practice, such means can advantageously be constituted by blades mounted on a rotation shaft moved by a rotor rotating at a speed of over 500 rpm, preferably 1000 rpm to 2000 rpm. It will be noted that the purpose of such stirring means is flot to push the matter into the chamber but only to stir it. Thus, when they include blades,
7 these blades are shaped according to the knowledge of those skilled in the art so that putting them into motion does flot cause matter to move forward into the chamber.
In the method of continuous thermal hydrolysis according to the invention, the retention time of the matter in the dynamic mixer-injector is short. The preferably cylindrical chamber of the mixer-injector therefore advantageously has a small volume. As a corollary, the load loss of this matter when it passes into the chamber is small. In practice, this load loss must be smaller than 10%.
The mixer-injector implemented in the framework of the invention is therefore distinct from the simple mixers constituted by a tank provided with stirring means in which the time of retention of the matter is lengthy and enables the treatment of only a given limited quantity of this matter at a time.
This mixer-injector is also distinct from simple sludge-conveying devices, for example devices using worm screws.
Thus, the invention proposes to carry out the mixing of pressurized steam with the sludges to be hydrolyzed in order to obtain a perfect, single-phase mixture of heated sludges upstream to the thermal hydrolysis step subsequently performed in a tube reactor.
Thus, according to the invention, the phase for mixing sludge with pressurized steam is clearly distinct from the phase of thermal hydrolysis. Besides, both these phases are conducted efficiently in distinct apparatuses.
The single-phase mixing done prior to the thermal hydrolysis enables the steam to get condensed in the sludges at the dynamic mixer-injector This homogeneous mixture is then conveyed to the reactor where it can flow in a plug flow. In the form of single-phase liquid phase, it enters the reactor at uniform or almost uniform temperature at which the poorly biodegradable compounds can undergo thermally hydrolysis efficiently and in an optimized way.
8 Classically, at the exit from the tube reactor, this single-phase mixture which contains hydrolyzed, organic matter is brought to a temperature and a concentration, by dilution if necessary, enabling its subsequent digestion Thus, the invention is clearly distinct from the prior art and especially from the patent document W020069/121873 by the characteristic according to which the mixing of sludges to be hydrolyzed with the steam is done upstream to the thermal hydrolysis reactor and flot within it.
Such an option marks a break with the teaching of this prior art which indicated the possibility of using a static or dynamic mixer integrated with the reactor. This prior art does flot make it possible, however, to obtain a mixture that is homogeneous enough to optimize the thermal hydrolysis. The present invention resolves this problem by making this mixture upstream to the reactor so that the phase that enters this reactor is completely homogenous and so that the energy provided by the steam within this mixture can be transferred to the sludge in such a way that ail the matter capable of being thermally hydrolyzed can be hydrolyzed by providing for a sufficient retention time, i.e. a sufficient length of reactor.
Through the homogeneity of the sludge and steam travelling through the reactor, a homogeneity of temperature of this mixture can be obtained in it.
Such homogeneity of temperature can remove the need for preferred paths to carry steam within the reactor and, as a corollary, remove the thermal and mechanical constraints inherent in the appearance of such preferred paths of flow.
In particular, the perfect mixing of steam and sludges uniformly reduces their viscosity and therefore removes the mechanical effects related to sludge shear.
The obtaining of a single-phase homogeneous mixture of sludges heated upstream to the reactor, obtained from sludges to be hydrolyzed and steam, within a dynamic mixer-injector has the advantage of enabling the treatment of sludges to be hydrolyzed with high dry solids content, and especially a dry solids content of over 20% by weight.
9 According to a preferred variant of the invention, at its exit from said mixer-injector, said single-phase mixture has a temperature of 100 C to 200 C (i.e.
the temperature in the reactor enabling the thermal hydrolysis of the organic matter present in said sludges) and pressure of 1 bar a to 25 bar a. It will be noted that, in the present description, the unit of pressure in the absolute bar or bar a.
Advantageously, at its exit from said mixer-injector, said single-phase mixture has a temperature of 150 C to 170 C (i.e. the temperature in the reactor enabling the thermal hydrolysis of the organic matter present in said sludges) and pressure of 5 bar a to 20 bar a.
According to a preferred variant of the invention, the steam that will be used to make the single-phase mixture will have a temperature of 100 C to 220 C
and a pressure of 1 bar a to 23 bar a. Preferably, among ail the possible values, a temperature of 180 C to 200 C and a pressure of 10 bar a to 16 bar a will be chosen .for this steam.
The quantity of steam thus provided to the sludges will depend on the dry solids content of these sludges as well as on their concentration in organic matter to be hydrolyzed.
As indicated here above, the retention time of the single-phase mixture within the reactor will be sufficient to enable the thermal hydrolysis of the organic matter but, in principle, will preferably range from 10 minutes to 2 hours and preferably, inter alia, from 20 to 40 minutes.
Advantageously, the retention time of said single-phase mixture in said reactor will be at least 20 minutes and the temperature of said mixture in the reactor will be at least 100 C so that the method of the invention will also enable the hygienization of said sludges, the totality of these sludges then being subjected to the steam for a sufficiently lengthy period of time, and at a sufficiently high temperature.

A temperature of over 70 C for at least 20 minutes applied to the sludges is necessary to hygienize them.
According to a prefeffed variant of the invention, the step for cooling the single-phase mixture at its exit from the tube reactor at a temperature enabling the 5 subsequent digestion of the hydrolyzed organic matter that it contains will be carried out by addition of water and/or sludges and/or by the use of a heat exchanger.
This will also enable the dilution of this single-phase mixture. Such dilution is indeed necessary to enable efficient subsequent digestion of these thermally hydrolyzed sludges. This mixture will then attain a sufficiently low temperature and will be
10 diluted enough to comply with the biology of the digester.
Also preferably, the method according to the invention comprises preliminary steps for dewatering and homogenizing the sludges in order to convey them to the dynamic mixer-injector, these preliminary steps leading to sludges having a dry solids content of 10% to 50% by weight, advantageously 20% to 35% by weight. It may be recalled that, in practice, the prior-art devices do flot enable the efficient hydrolysis of sludges having a dry solids content of over 25 by weight.
According to one advantageous variant of the method of the invention, it comprises a step for adapting the conditions of implementation of the dynamic mixture according to the dry solids content of the sludges. Thus, the dynamic mixer-injector will include a bladed rotor. The speed of rotation of these blades could be modified according to the dry solids content so that the single-phase mixture can be made even when this dry solids content is high According to another aspect, the invention also covers any method for implementing the above-described method comprising:
means for intake of sludges containing organic matter, means for intake of pressurized steam,
11 a tube reactor for thermal hydrolysis, means for injecting dilution water and/or sludges provided downstream from said tube reactor, means for cooling provided downstream from said tube reactor, characterized in that it comprises at least one dynamic mixer-injector provided upstream to said tube reactor for thermal hydrolysis and, means for depressurizing provided downstream from said cooling means.
Such a device according to the present invention can be clearly distinguished from the prior art disclosed W02009/121873 by the characteristic according to which a dynamic mixer-injector is planned upstream to the technical hydrolysis tube reactor and flot integrated with the thermal hydrolysis reactor. As specified here above, the use of instrumentation to mix the sludges to be thermally hydrolyzed and the steam, namely the use of the dynamic mixer, and a distinct instrumentation to carry out the thermal hydrolysis of the thermally hydrolysable compounds contained in these sludges, namely a tube reactor, optimizes the working of this thermal hydrolysis tube reactor. This optimization leads to obtaining hydrolyzed sludges having a higher content in hydrolyzed compounds easily digestible within a digester and to the possibility of being able to give this tube reactor a smaller volume.
Such a device according to the invention therefore enables the treatment of the sludges by thermal hydrolysis in a smaller reactor volume. This is a non-negligible economic advantage over the prior art.
As already specified, different types of dynamic mixers could be used in the implementing of the present invention. However, the device according to the invention will advantageously be provided with a dynamic mixer-injector that has a chamber provided with a bladed rotor, the speed of rotation of which could be adapted to the dry solids content of the sludges as indicated here above and in
12 practice rotating at more than 500 rpm and preferably between 1000 rpm and rpm. It will be noted that the geometry of the blades could itself be adapted to the dry solids content and viscosity of the sludges.
The prior art according to the patent W02009/121873 provides, in its general descriptive part, for approximately ail the possible shapes of tube reactor.
However, the embodiments of this technique given in this patent document recommend that this reactor be made horizontally. One embodiment described in this patent document W02009/121873 provides for an entry of sludges into one end of the tube reactor, with an injection of steam in proximity to this end, an exit of hydrolyzed sludges being provided at the other end of this tube reactor, means for injecting cooling water being provided at this second end. In another embodiment described in this patent document W02009/121873, the thermal hydrolysis tube reactor has a first vertical part extended by a second longer horizontal part. The reason why each of these prefeffed embodiments has a relatively long horizontal part results from the need to put the sludge into contact with steam for a sufficiently lengthy retention time so that not only does the thermal hydrolysis occur but, prior to this hydrolysis, within the tube reactor, the steam injected at the start of the reactor can get condensed in the sludges in order to transfer to them the energy needed for their hydrolysis.
Through the invention, since the injection of steam has taken place upstream to the reactor, through the use of the dynamic mixer-injector, it is a perfectly mixed single-phase mixture that arrives into the reactor so much so that the reactor in question no longer has to act as a condenser but only as a thermal hydrolysis reactor.
Its volume can therefore be reduced as compared with the prior art. Indeed, in the prior art, the reactor must act both as a condenser and as a reactor, and this gives it a great volume and especially a great length.
According to the invention, the thermal hydrolysis reactors implemented could have varied shapes. However, according to a preferred variant, the tube reactor
13 for thermal hydrolysis will be vertical and will have an inlet at its lower end and an outlet at its upper end.
According to another preferred variant, this tube reactor for thermal hydrolysis will have a first vertical section directly extended by a second vertical section, the inlet of the reactor being provided at the foot of said first vertical section and the outlet of said reactor being provided at the foot of said second vertical section. It will be noted that, in the context of the present invention, the expression first vertical section "directly extended by a second vertical section" will be understood to cover the embodiments in which there is no straight horizontal section provided between the first vertical section and the second vertical section.
Indeed, such a horizontal section is urmecessary inasmuch as the tube reactor of the device according to the invention is a thermal hydrolysis reactor and flot a reactor also acting as a condenser.
According to yet another variant, said tube reactor for thermal hydrolysis has a first vertical section connected to a second vertical section, the inlet of the reactor being provided at the head of said vertical section and the outlet of said reactor being provided at the foot of said second vertical section.
According to an interesting variant, the device according to the invention also comprises a heat exchanger provided downstream from the reactor.
Also advantageously, the device comprises a pump and a valve, preferably a progressing cavity pump, intended to maintain the pressure in the tube reactor for thermal hydrolysis.
5. List of figures The invention as well as its different advantages will be understood more easily from the description of embodiments given with reference to the figures, of which:
14 Figure 1 is a schematic view of a device for the thermal hydrolysis of sludges according to the invention (surrounded by a une of dots and dashes) integrated into an installation including a digester provided downstream from this digester;
Figure 2 represents a form of thermal hydrolysis tube reactor that can be implemented in the present invention;
Figure 3 represents another form of a thermal hydrolysis tube reactor that can be implemented in the present invention;
Figure 4 represents yet another form of thermal hydrolysis tube reactor that can be implemented in the present invention;;
Figure 5 is a graph showing, on the one hand, the development of the temperature within the tube reactor of a prior-art installation according to the patent documents W02009/121873 that does not integrate a dynamic mixer-injector but in which steam and sludge are conveyed to the head of the reactor and, on the other hand, the development of the temperature within the tube reactor of an installation corresponding to the invention integrating a dynamic mixer-injector in which steam and sludge are mixed and then conveyed in the form of a homogeneous single-phase mixture to the head of the reactor.
6. Description of embodiments Referring to figure 1, a device according to the invention is described schematically. This device 1000 is integrated into an installation including a digester 9 that is flot a part as such of the device according to the invention.
Such an installation can be used to implement a method of lysis-digestion (LD) but it will be noted that it is also possible to integrate the method according to the invention into known prior-art configurations called digestion-lysis (DL) or digestion-lysis-digestion (DLD), given that in the configuration called DL a part of the sludge is hydrolyzed and then returned to the digester.
Referring to figure 1, centrifuged sludges are conveyed by a pipe 1 to a hopper 2 provided with two worm screws enabling these sludges to be homogenized.
5 These two worm screws also serve to cram a feeder pump 3 feeding sludges to the dynamic mixer-injector 4. The dewatered and homogenized sludges coming from the hopper 2 are thus pumped by means of the pump 3 into a pipe using means for leading these sludges into the dynamic mixer-injector 4. This dynamic mixer-injector 4 is also provided with means for injecting steam 100 generated by a steam generator 10 flot shown in figure 1. The mixer-injector comprises a cylindrical chamber provided with stitTing means constituted by blades mounted on a rotation shaft moved by a rotor rotating at a speed of 1000 rpm to 2000 rpm, this speed being adjustable according to the dry solids content of the sludges. The retention time of the matter travelling continuously through the mixer-injector is short and, in practice, shorter
15 than 10 min. The blades do flot make the matter move forward in the chamber but only stir it vigorously.
A wash water intake 200 is planned upstream to the dynamic mixer-injector 4.
Through such water inflow means 200, the dynamic mixer-injector could be cleaned if need be.
At the exit from the dynamic mixer, a pipe enables the single-phase mixture made within this mixer to be conveyed towards a thermal hydrolysis reactor 5.
The treatment within this thermal hydrolysis reactor 5 is done at a temperature of 165 C to 180 C, the interior of the reactor being maintained at a pressure of 8 bar a to 10 bar a (in this respect, it will be noted that lower or higher pressures could be implemented, depending especially on the dry solids content of the sludges).
16 A water inlet 101 situated at the entry to the reactor 5 is provided to enable cleaning water to be led into the reactor during the cleaning phases that can be carried out when starting up the installation or during phases of maintenance of the installation.
At the exit from the reactor 5, a drain 102 is, for its part, provided in order to remove non-condensable gases if any.
The hydrolyzed sludges in the reactor 5 are then conveyed by a pipe to a heat exchanger 7. Before reaching this heat exchanger 7 cooling and dilution water is led into the hydrolyzed sludges by water injection means 201. If need be, this dilution could also be done after the exchanger 7.
At the exit from the exchanger 7, the diluted sludges are conveyed to the digester 9. The depressurizing unit 8 which, by definition, causes a drop in pressure, is used to maintain the pressure prevailing in the thermal hydrolysis reactor 5. In the present example, this unit is constituted by a progressing cavity pump provided between the heat exchanger and the digester. In other embodiments, it could be constituted by a valve or any other unit used to carry out this function.
At the exit from the device according to the invention, the thermally hydrolyzed sludges are sent to the digester 9 where they can be easily digested because they have undergone thermal hydrolysis.
It is clearly specified that the representation in figure 1 of an installation integrating a device according to the invention is a schematic representation.
In particular, the reactor 5 in which the thermal hydrolysis of the single-phase mixture of sludges and steam is carried out could have different shapes. Three of these shapes are given with reference to figures 2, 3 and 4.
As shown in figure 2, the reactor 5 has a vertical shape. The reactor is provided, in its lower part, with an intake of single-phase mixture of sludges heated
17 with steam 501 and, in its upper part, with an outlet from the reactor 502. A
drain 503 is provided to remove any non-condensable gases and means for measuring the pressure prevailing inside the reactor are also provided in its upper part.
Referring to figure 3, the thermal hydrolysis reactor has a first vertical section provided at its base with an intake of single-phase mixture of sludges and steam 401, directly connected to a second vertical part provided at its foot with a discharge feature 402 for hydrolyzed sludges. A drain 403 is provided at the junction between these two vertical parts to remove the non-condensable gases if any. Means for measuring the pressure and the temperature in the reactor are also planned. It will be noted that, in this configuration, the second vertical section part is directly connected to the first vertical section without a horizontal section between the two.
Referring to figure 4, the thermal hydrolysis reactor has a first vertical section provided at its head with an intake of single-phase mixture of sludges and steam 601, directly connected to a second vertical part provided at its foot with a discharge 602 of the hydrolyzed sludges. A drain 603 is provided at the junction between these two vertical parts to remove the non-condensable gases if any. Means for measuring the pressure and the temperature in the reactor are also planned. It will be noted that, in this configuration, the second vertical section part is directly connected to the first vertical section without a horizontal section between the two.
Figure 5 shows the progress in time of the temperature prevailing within the thermal hydrolysis reactor:
- on the one hand, in the invention, implementing a dynamic mixer-injector provided upstream to the thermal hydrolysis reactor and;
- on the other hand, in a similar installation according to the prior art in which no dynamic mixer-injector is used, the steam being injected at the foot of the reactor.
18 Referring to this figure 5, it can be seen that, in the present invention, the temperature prevailing within the reactor gradually rises until it reaches and keeps the set-value temperature enabling the optimized thermal lysis of the hydrolysable organic compounds contained in the treated sludges.
In the prior art, the temperature observed in the reactor is, at the outset, that of the injected steam. The temperature then undergoes major variations. This results from the fact that, in the technique according to this prior art, there is no systematic occurrence of an intimate mixing of steam with the sludges. On the contrary, the temperature fluctuations observed within the reactor result from the existence of polyphase flows within it. In the example described here, since the steam is injected at a speed (in practice above 5 m/s) far greater than that of the sludges (in practice below 3m/s), it finds preferred passage through this sludge and does not intimately mix with this sludge, and does not efficiently yield its energy to the sludge.
Quite to the contrary, through the use of a dynamic mixer-injector according to the invention upstream to the hydrolysis reactor, the mixture reaching this reactor is a perfectly liquid and homogenous single-phase mixture. It can therefore flow in a plug flow in this reactor. The set-value temperature is kept throughout the retention time in the reactor. The energy of the steam is therefore transferred in an optimized way to the sludges and the hydrolysis of the poorly biodegradable compounds can be donc efficiently.
It will also be noted that, through the invention, the theoretical quantity of energy to hydrolyze a given quantity of sludges corresponds more or less to the quantity effectively implemented to obtain this hydrolysis. In this respect, it will be noted that it is easy to compute the energy needed to increase the temperature of a fluid from a temperature A to a temperature B. In the framework of trials made by the Applicant, the computed theoretical flow rate of steam was 25 kilograms of steam at
19 13 bar a per hour, and the trials have shown that it was exactly this flow rate of steam that was effectively necessary to efficiently hydrolyze the sludges.
In the prior-art installation, it was shown that the mixture between the sludge to be hydrolyzed and the steam was imperfect since the quantity of steam effectively injected to heat the sludge (15kg/h) was smaller than the theoretically computed quantity (25kg/h). A certain quantity of steam was therefore flot condensed in the sludge. The presently described trials confirm the interest of the pre sent invention.
Finally-, it will be noted that the invention enables the use of reactors having a volume 20% to 25 % smaller than the volumes of the prior-art reactor.

Claims (15)

20
1. Method for the continuous thermal hydrolysis of sludges containing organic matter, said method comprising the steps of:
simultaneously injecting pressurized steam into said sludges and mixing said sludges with said steam by means of a dynamic mixer-injector so as to obtain a single-phase mixture, conveying said single-phase mixture towards a tube reactor under pressure and bringing about the plug flow of this mixture into said reactor for a retention time that is sufficient and at a temperature that is sufficient to enable the thermal hydrolysis of the organic matter present in said sludges, cooling said single-phase mixture at its exit from said tube reactor to a temperature enabling the subsequent digestion of the hydrolyzed organic matter that it contains, depressurizing said cooled single-phase mixture.
2. Method according to claim 1, characterized in that, at exit from said mixer-injector, said single-phase mixture has a temperature of 100°C to 200°C and a pressure of 1 bar a to 25 bar a.
3. Method according to claim 2, characterized in that, at exit from said mixer-injector, said single-phase mixture has a temperature of 150°C to 170°C and a pressure of 5 bar a to 20 bar a.
4. Method according to any one of the claims 2 or 3 characterized in that the steam used to make the single-phase mixture has a temperature of 100 °C to 220°C, preferably 180 °C to 200 °C, and a pressure of 1 bar a to 23 bar a, preferably bar a to 16 bar a.
5. Method according to any one of the above claims characterized in that said retention time for said single-phase mixture in said reactor is from 10 minutes to 2 hours, preferably from 20 minutes to 40 minutes.
6. Method according to claim 5 characterized in that said retention time for said single-phase mixture in said reactor is at least 20 minutes and in that the temperature of said mixture in said reactor is at least 100°C so that it enables the hygienization of said sludges.
7. Method according to any one of the above claims characterized in that said single-phase mixture is cooled and diluted downstream from the reactor by addition of water or sludges.
8. Method according to any one of the above claims characterized in that it comprises preliminary steps for dewa tering and homogenizing sludges leading to sludges having a dry solids content of 10% to 50% by weight, preferably 20%
to 35%.
9. Device for implementing the method according to any one of the above claims comprising:
means for intake of sludges containing organic matter, means for intake of pressurized steam, a tube reactor for thermal hydrolysis, means for injecting dilution water and/or sludges provided downstream from said tube reactor, means for cooling provided downstream from said tube reactor, characterized in that it comprises at least one dynamic mixer-injector provided upstream from said tube reactor for thermal hydrolysis and, means for depressurizing provided downstream from said cooling means.
10. Device according to claim 9, characterized in that said dynamic mixer-injector has a chamber and a bladed rotor rotating at over 500 rpm, preferably rpm to 2000 rpm.
11. Device according to either of the claims 9 or 10 characterized in that said tube reactor for thermal hydrolysis is vertical and has an inlet at its lower end and an outlet at its upper end.
12. Device according to either of the claims 9 and 10 characterized in that said tube reactor for thermal hydrolysis has a first vertical section directly extended by a second vertical section, the inlet of the reactor being provided at the base of said first vertical section and the outlet of said reactor being provided at the base of said second vertical section.
13. Device according to either of the claims 9 or 10 characterized in that said tube reactor for thermal hydrolysis has a first vertical section directly extended by a second vertical section, the inlet of the reactor being provided at the top of said first vertical section and the outlet of said reactor being provided at the base of said second vertical section.
14. Device according to any one of the claims 9 to 13 characterized in that it comprises a heat exchanger provided downstream from said reactor.
15. Device according to any one of the claims 9 to 14 characterized in that it comprises a pump or a valve intended to maintain the pressure in said tube reactor for thermal hydrolysis.
CA2906159A 2013-03-25 2014-03-06 Procede et dispositif d'hydrolyse thermique en continu Active CA2906159C (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1352686 2013-03-25
FR1352686A FR3003558B1 (fr) 2013-03-25 2013-03-25 Procede et dispositif d’hydrolyse thermique en continu
PCT/EP2014/054388 WO2014154466A1 (fr) 2013-03-25 2014-03-06 Procédé et dispositif d'hydrolyse thermique en continu

Publications (2)

Publication Number Publication Date
CA2906159A1 true CA2906159A1 (fr) 2014-10-02
CA2906159C CA2906159C (fr) 2020-02-11

Family

ID=48856786

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2906159A Active CA2906159C (fr) 2013-03-25 2014-03-06 Procede et dispositif d'hydrolyse thermique en continu

Country Status (12)

Country Link
US (1) US10322959B2 (fr)
EP (1) EP2978715A1 (fr)
JP (1) JP6458001B2 (fr)
KR (1) KR102067167B1 (fr)
CN (2) CN105050967A (fr)
AU (1) AU2014243326B2 (fr)
CA (1) CA2906159C (fr)
FR (1) FR3003558B1 (fr)
HK (1) HK1217476A1 (fr)
MX (1) MX369384B (fr)
RU (1) RU2654013C2 (fr)
WO (1) WO2014154466A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027895B1 (fr) * 2014-10-31 2018-11-09 Veolia Water Solutions & Technologies Support Procede et installation pour l'hydrolyse thermique des boues.
ES2570812B1 (es) * 2014-11-19 2017-09-05 Aquatec, Proyectos Para El Sector Del Agua, S.A.U. Procedimiento para la hidrólisis térmica en continuo de materia orgánica y una instalación apta para la puesta en práctica del procedimiento
FR3032193B1 (fr) * 2015-02-02 2020-01-31 Degremont Optimisation d'un procede de traitement de pulpe
CN105923969A (zh) * 2016-07-13 2016-09-07 同济大学 连续式污泥高温热水解装置
CN106237879A (zh) * 2016-08-31 2016-12-21 上海同济普兰德生物质能股份有限公司 一种高干度污泥管式蒸汽喷射浆化装置及方法
WO2018167370A1 (fr) * 2017-03-15 2018-09-20 Biogts Oy Unité d'hygiénisation et procédé d'hygiénisation de matière première introduite dans un réacteur à biogaz
BR112019023492B1 (pt) 2017-05-11 2024-03-12 BL Technologies, Inc Método para pré-tratamento de lama antes da digestão anaeróbica
CN107867787A (zh) * 2017-12-23 2018-04-03 北京达源环保科技有限公司 用于污泥热水解处理的旋流式反应器
CN110272177A (zh) * 2019-07-09 2019-09-24 上海东振环保工程技术有限公司 一种工业园区污水厂生化剩余污泥减量方法及应用
CN112876022B (zh) * 2021-01-19 2022-05-27 重庆科技学院 一种利用热固载体处理轧钢油泥的热解装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687646A (en) * 1970-12-21 1972-08-29 Texaco Development Corp Sewage disposal process
SU1564196A1 (ru) * 1987-07-28 1990-05-15 Северо-Кавказский Филиал Всесоюзного Научно-Исследовательского Института Гидролиза Растительных Материалов Способ двухстадийного гидролиза растительного сырь
US4983296A (en) * 1989-08-03 1991-01-08 Texaco Inc. Partial oxidation of sewage sludge
NO310717B1 (no) * 1999-05-31 2001-08-20 Cambi As Fremgangsmate og anordning for kontinuerlig hydrolyse av avlopsvann
JP2005205252A (ja) * 2004-01-20 2005-08-04 Kobe Steel Ltd バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
JP4812261B2 (ja) * 2004-05-10 2011-11-09 日鉄環境エンジニアリング株式会社 高濃度有機性物質中の固形分の可溶化処理方法、及び高濃度有機性物質の処理方法
CZ17066U1 (cs) * 2006-07-24 2006-12-12 Coramexport S. R. O. Zařízení pro diskontinuální nebo kontinuální hydrolýzu organické hmoty
US7968760B2 (en) * 2007-03-16 2011-06-28 Ch2M Hill, Inc. Treatment of particulate biodegradable organic waste by thermal hydrolysis using condensate recycle
EP2107108A1 (fr) * 2008-03-31 2009-10-07 KRÜGER Off-Shore A/S Appareil et procédé pour l'hydrolyse thermique en continu de matière biologique
AT507469B1 (de) * 2008-10-16 2010-08-15 Biogas Systems Gmbh Vorrichtung zur kontinuierlichen oder diskontinuierlichen hydrolyse von organischen substraten
CN102428044A (zh) * 2009-03-18 2012-04-25 克莉雅沃特泰科有限公司 污泥水解设备、使用该设备的方法及在该污泥水解设备中提供的接触式热交换单元和蒸汽式热交换单元
AT509319B1 (de) 2010-05-25 2011-08-15 Biogas Systems Gmbh Verfahren und vorrichtung zur hydrolyse von vorzugsweise festen, organischen substraten
CN101979349B (zh) * 2010-08-06 2012-05-30 安徽合协生态环境科技有限公司 一种污泥管式热水解处理方法及其装置
JP5347133B2 (ja) * 2010-08-30 2013-11-20 株式会社テクノプラン 汚泥処理方法及び汚泥処理システム
CN102381820B (zh) * 2011-09-20 2012-12-05 福州开发区三水环保科技有限公司 基于水热改性技术的污泥处理工艺
CN102417285B (zh) * 2011-10-20 2013-05-01 同济大学 一种高含固生物污泥连续热水解装置与方法
CN102515454B (zh) * 2011-12-22 2013-09-25 湖北国新天汇能源有限公司 采用旋转方式实现热水解发酵处理的装置与方法
CN102718377B (zh) * 2012-06-21 2013-09-11 上海同济普兰德生物质能股份有限公司 一种城市污泥除砂消毒预处理的装置与方法
ES2551144T3 (es) * 2013-03-08 2015-11-16 Aquatec, Proyectos Para El Sector Del Agua, S.A.U. Procedimiento que opera en continuo para la hidrólisis térmica de materia orgánica e instalación para la puesta en práctica del procedimiento

Also Published As

Publication number Publication date
JP6458001B2 (ja) 2019-01-23
US10322959B2 (en) 2019-06-18
WO2014154466A1 (fr) 2014-10-02
CA2906159C (fr) 2020-02-11
AU2014243326B2 (en) 2018-03-15
FR3003558A1 (fr) 2014-09-26
AU2014243326A1 (en) 2015-11-12
EP2978715A1 (fr) 2016-02-03
RU2654013C2 (ru) 2018-05-15
KR102067167B1 (ko) 2020-01-17
MX2015013302A (es) 2015-12-15
KR20150133207A (ko) 2015-11-27
US20160185640A1 (en) 2016-06-30
FR3003558B1 (fr) 2015-04-24
JP2016517792A (ja) 2016-06-20
CN111302602A (zh) 2020-06-19
RU2015145809A (ru) 2017-05-03
CN105050967A (zh) 2015-11-11
CN111302602B (zh) 2023-04-28
MX369384B (es) 2019-11-06
HK1217476A1 (zh) 2017-01-13

Similar Documents

Publication Publication Date Title
CA2906159C (fr) Procede et dispositif d'hydrolyse thermique en continu
CA2922777C (fr) Procede et dispositif d'hydrolyse thermique en continu avec recirculation de vapeur de recuperation
AU2014372506B2 (en) Method for the continuous thermal hydrolysis of sludge with a high dryness value
CN106687418B (zh) 污泥与蒸汽最佳混合的水热碳化方法和装置
EP2774894A1 (fr) Procédé fonctionnant en continu pour l'hydrolyse thermique de matières organiques et installation pour la mise en 'uvre de ce procédé
CN106904806B (zh) 一种污泥湿式氧化的一体化处理反应器及处理方法
KR102422954B1 (ko) 고농도유기물 처리를 위한 고효율 열분해반응조가 구비된 순환과 혼합교차교반운전 혐기소화시스템
KR100972219B1 (ko) 내부격벽과 스파징 교반기로 완전 순환기능을 갖는 혐기성 소화 장치 및 방법
JP4861383B2 (ja) 有機性汚泥のオゾン処理装置
JP4240655B2 (ja) 有機性汚泥のオゾン処理装置
KR102460251B1 (ko) 바이오매스를 고품위 연료화하기 위한 수열탄화 반응기 및 수열탄화 반응시스템
KR20190104849A (ko) 바이오매스, 축산폐기물, 하수슬러지, 음식폐기물 또는 의료 폐기물을 처리할 수 있는 수열 처리 장치

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190228