CA2889786C - Plate heat exchanger having sealed construction - Google Patents

Plate heat exchanger having sealed construction Download PDF

Info

Publication number
CA2889786C
CA2889786C CA2889786A CA2889786A CA2889786C CA 2889786 C CA2889786 C CA 2889786C CA 2889786 A CA2889786 A CA 2889786A CA 2889786 A CA2889786 A CA 2889786A CA 2889786 C CA2889786 C CA 2889786C
Authority
CA
Canada
Prior art keywords
plate
plates
heat exchanger
force application
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2889786A
Other languages
French (fr)
Other versions
CA2889786A1 (en
Inventor
Marcus Franz
Christoph Koch
Werner SCHWARZBART
Robert Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of CA2889786A1 publication Critical patent/CA2889786A1/en
Application granted granted Critical
Publication of CA2889786C publication Critical patent/CA2889786C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/10Arrangements for sealing the margins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a sealed plate heat exchanger (1), comprising a frame body (2) comprising two frame plates (3), between which a plate stack (4) comprising a plurality of heat-exchange plates (5) is arranged, means for feeding and leading away (6) the fluids that flow through the intermediate space between the heat-exchange plates (5) and exchange heat, means for applying force (7) to the frame plates (3), by means of which a pressure can be applied to the plate stack (4), and means for sealing (8) between the heat-exchange plates (5) of the plate stack (4). The center of area of the area of the force application to the frame plate (3) lies within the area that results from a linear projection of the area of the plate stack (4) onto the frame plate (3).

Description

= 1 WO 2014/083036 Al Plate heat exchanger having sealed construction The present invention relates to a gasketed plate heat exchanger comprising a frame body consisting of two frame plates, between which a plate stack of a plurality of heat exchange plates is arranged, means for feeding and discharging the heat exchange fluids that flow through the space between the heat exchange plates, and means for applying force to the frame plates, by means of which a pressure can be exerted on the plate stack.
Plate heat exchangers contain a stack of heat exchange plates, between which heat transfer takes place. These plates are generally provided with a profile or with flow ducts and through-openings for the media.
With plate heat exchangers, a basic distinction can be made between gasket-free and gasketed designs. In the gasket-free configuration, the spaces between the plates are gasketed by the plates being rigidly connected, for example by welding, soldering or fusion technology.
In the gasketed designs, gaskets, generally elastomer-based gaskets, are used to seal and separate the media chambers between the different plates.
Depending on the media between which the heat exchange takes place, metals or metal alloys such as steel can be used as the material for the plates, or if the media are particularly corrosive, ceramic materials such as graphite or silicon carbide or fibre-reinforced ceramic materials can also be used.
Owing to their high brittleness, graphite-containing or ceramic plate materials such as graphite or silicon carbide place particularly high demands on the seal between the individual plates.
Such plate heat exchangers are generally produced in gasketed configurations owing to the brittleness of the graphite-containing or ceramic materials and to the fact that it is difficult to join these materials.
2 Moreover, gasketed plate heat exchangers are advantageous in that it is easier than in gasket-free configurations to separate the plates for removal or cleaning or for replacing individual plates.
In these plate heat exchangers in particular, a fluoropolymer, preferably based on polytetrafluoroethylene (PTFE), or graphite-based materials are generally used as the material for the gasket material. PTFE is highly ductile and only forms a low gasket thickness owing to its flow properties. As a result of this very low thickness of the gasket material, it is critical to ensure sufficient surface pressure on the gasket in order to achieve reliable sealing and to prevent leakages during operation.
The surface pressure is generally brought about by arranging the plate stack of the heat exchanger between two frame plates, between which the plates are clamped with an adequate force.
To apply the force for this clamping, tie rods are often used in combination with helical springs, which are arranged at a certain distance from the edge of the heat exchange plates.
EP-A203213 disc!oses plate heat exchangers constructed from at least three parallel plate elements which are spaced apart from one another and made of a corrosion-resistant material, and from means for feeding and discharging the heat exchange fluids which flow through the space between the plates, the plate elements being produced from a graphite body bound to a fluoropolymer.
DE 10 2006 009 791 discloses a composite heat exchanger intended for use in the manufacture of chemical equipment and consisting of a metal frame body and a plate stack made of fibre-reinforced or monolithic ceramic, the stacked plates forming at least two duct systems which are arranged one above the other in any given number of layers in a manner separated by at least one plate and are delimited at opposite ends of the plate stack by cover plates which receive supply and outflow devices. In the regions surrounding the flow region and the through-openings for the media, the heat exchange plates comprise rectangular grooves in which sealing systems are arranged.
The structural configuration of the pressure-bearing components in commercially available gasketed plate heat exchangers, in particular those comprising plates based on graphite-
3 containing or ceramic materials such as graphite, silicon carbide or fibre-reinforced ceramic materials, is only suitable for larger models to a limited extent, because when the size of the structure is increased, specifically when the plate width and/or plate length is increased, the bending of the frame plates is increased in the regions that are critical for sealing the heat exchanger, and leakages can thus occur in the heat exchanger.
Therefore, the object of the present invention is to provide gasketed plate heat exchangers in which the above-mentioned problems are avoided or at least reduced.
According to an embodiment, there is provided gasketed plate heat exchanger comprising: a frame body consisting of two frame plates, between which a plate stack of a plurality of graphite-containing or ceramic heat exchange plates is arranged, means for feeding and discharging the heat exchange fluids that flow through the space between the plates, means for applying force to the frame plates, by means of which a pressure can be exerted on the plate stack, and means for sealing between the heat exchange plates of the plate stack, wherein: in at least one of the force application means, the centroid of the surface of this means for applying force to the frame plate is within the area produced from the linear projection of the surface area of the plate stack onto the corresponding frame plate, and the heat exchange plates are provided with at least one recess or groove for receiving a sub-element, arranged between the frame plates, of a force application means.
The gasketed plate heat exchangers (1) according to the invention comprise a frame body consisting of two frame plates (2), between which a plate stack of a plurality of heat exchange plates (4) is arranged, and means (6) for feeding and discharging the heat exchange fluids that flow through the space between the heat exchange plates, means (7) for applying force to the frame plates, by means of which a pressure can be exerted on the plate stack (4), and means (8) for sealing between the heat exchange plates of the plate stack (4).
In contrast with the known heat exchangers of a similar construction, in the plate heat exchangers (1) according to the invention at least one force application means (7) is arranged such that the centroid of the surface for applying force to a frame plate (3) is within the area produced from the linear projection of the surface area of the plate stack (4) onto the corresponding frame plate (3).

3a In the known plate heat exchangers having a gasketed configuration, the force is applied to the frame plates in such a way that force is applied to the frame plates via connecting elements which interconnect the two frame plates outside the surface area of the heat exchange plates, and thus a pressure is also exerted on the plate stack of the heat exchange plates. Here, the centroid of the force application surface is outside the area produced from the linear projection of the surface area of the plate stack onto the
4 corresponding frame plate. Depending on the design, this construction results in bending of the frame plates as a result of the applied force, which is most pronounced in the central part of the frame plates. The frame plates bend more the wider and/or longer the frame plates are, i.e. the problem is more severe in larger heat exchangers than in smaller devices.
This bending leads to a sealing force or to a pressure on the gasket surface that is insufficient in the central region of the plate stack of the heat exchange plates to achieve perfect sealing in this region. Since the thickness of the gasket materials used is only very low, as mentioned above, this can result in mixing of the media between which heat is intended to be exchanged, and this leads to malfunction of the entire system and of all downstream units.
Hitherto, the aforementioned problems have limited the maximum size of plate heat exchangers of this design having heat exchange plates which are based on graphite, silicon carbide or other ceramic materials and produced in a gasketed construction.
The plate heat exchangers (1) according to the present invention are distinguished in that at least one of the force application means (7) is arranged such that the centroid of the surface for applying force to a frame plate (3) is within the area produced from the linear projection of the surface area of the plate stack (4) onto the corresponding frame plate
(5).
In the context of the present invention, the centroid of the force application surface is to be understood as being the geometric centre of gravity of the corresponding surface that corresponds mathematically to the average of all the points in the area. The geometric centre of gravity corresponds to the centre of mass of a physical body which consists of a homogenous material. In symmetrical figures, this centre of gravity can be obtained by appropriate geometric considerations; in the case of asymmetrical surfaces, it can be obtained by integration.
The centre of gravity of a non-equilateral polygon can be calculated from the Cartesian coordinates of the corners; the centre of gravity in regular polygons corresponds to the centre of the circumcircle thereof.
In rectangles, parallelograms or squares, the centre of gravity is obtained, for example, from the point of intersection of the diagonals. In triangles, the geometric centre of gravity is the common point of intersection of the three medians. In circular surfaces, the geometric centre of gravity is the centre of the circle.
Therefore, when the shape of the force application surface is known, a person skilled in the art can determine the geometric centre of gravity of the surface and design at least one force application means such that the geometric centre of gravity of its force-applying surface is within the area produced from the linear projection of the surface area of the plate stack (4) onto the corresponding frame plate (3).
In the context of the present invention, the surface area of the plate stack is to be understood as the area defined by the main dimensions of the plate stack (4) or of the individual heat exchange plates. This surface area includes any notches, drilled holes, etc.
present in the plate stack (4) or in the individual heat exchange plates (5), and differs in this respect from the surface area of the plate stack (4) which is defined by the outer contour of the plate stack (4) or of the heat exchange plates (5) and thus does not include any notches or recesses that may be present. Plate heat exchangers (1) according to the invention comprise at least one force application means (7) designed as described above, although it is also possible and covered by the present invention to design a plurality of force application means (7) in this manner.
Preferably, said force application means (7) or said possible plurality of force application means is/are arranged such that the force application surface is in the edge region of the surface area of the plate stack of the heat exchange plates (4), more preferably in the upper or lower region of the heat exchange plates (5), in which region the means (6) for feeding and discharging the heat exchange fluids which flow through the space between the heat exchange plates (5) are preferably also arranged. Good sealing is particularly essential in this region between the through-openings (6a) since this is where the heat exchange fluid flows are introduced into the plates, it being imperative to prevent said fluids from mixing or coming into contact with one another.
In principle, it would also be possible to arrange force application means (7) at different points such that the centre of gravity of the force application surface is arranged according to the invention. Generally, however, the result of this would be that the ducts provided in the plates, in which ducts the fluid media flow, would accordingly have to be designed such that they are not disrupted by the force application means (7). In addition, arranging the force
6 application means (7) in this way would require providing the heat exchange plates (5) with holes or openings in the region of the ducts, which is generally not preferable.
In general, therefore, it is more preferable to provide the force application means (7) such that none of the fluid-carrying ducts touch in the heat exchange plates of the plate stack (4).
Suitable force application means in the plate heat exchangers (1) according to the present invention are known per se to a person skilled in the art and are described in the patent literature, and there is therefore no need to go into further detail here. A
person skilled in the art will use a suitable force application means (7) according to the respective application According to one embodiment, the heat exchange plates (1) can be provided with recesses or grooves (9), in which a sub-element, arranged between the frame plates (3), of a force application means (7) is arranged. Said sub-element is guided through a hole or recess in the frame plates (3) and end elements are connected to the sub-element such that a force can be exerted on the frame plate (3). Since the sub-element is arranged between the frame plates (3) within the surface area of the heat exchange plates of the plate stack (4) either completely or in part, the centroid of the force application surface of the corresponding means is within the area produced from the linear projection of the surface area of the plate stack (4) or of the heat exchange plate (5) onto the frame plate (3).
In an embodiment of this type, tie bolts are preferred force application means
(7). Tie bolts are understood in this case to be a means which can absorb tensile stresses.
Preferably, tie bolts consisting of round metal rods are used, said tie bolts extending between the frame plates (3) and comprising, at the end, devices which can be used to clamp the two frame plates (3) with a defined force by means of the tie bolt. The precise structural design is selected depending on the respective application on the basis of specialist knowledge.
In the force application means (7), the centroid of the force application of which is within the area produced from the linear projection of the surface area of the plate stack (4) or of the heat exchange plates (5) onto the frame plate, the tie bolt arranged between the two frame plates is preferably positioned in a groove in the upper or lower side of the heat exchange plates (5), such that, in spite of the arrangement according to the invention of the force application means, individual heat exchange plates can still be replaced without having to completely disassemble the plate heat exchanger (1). In principle, it is also possible for a blind hole to be provided in the upper region of the heat exchange plates, through which hole the tie bolt in guided. However, this then necessitates complete disassembly of the plate heat exchanger (1) when replacing individual plates.
The tie bolt can be guided through the frame plates in a groove in a similar manner as in the heat exchange plates (5), or a corresponding hole can also be provided in the frame plate (3).
According to another embodiment of a plate heat exchanger (1) according to the invention, the elements, arranged between the frame plates (3), of at least one force application means (7) arranged according to the invention are designed such that they are located completely outside the surface area of the plate stack, or possibly even outside the surface area spanned by the frame plate (3). By means of an appropriate structural design, the force application onto the frame plate (3) is designed according to the invention such that the requirement according to the invention is met. This can be achieved, for example, by the elements engaging around the frame plate (3) in the manner of a clip and being attached to the frame plate such that the requirement according to the invention in terms of the centroid of the force application surface is met. Appropriate structural designs are known to a person skilled in the art, who will design a suitable means depending on the specific situation.
According to a further embodiment, at least two force application means (7) are interconnected on the frame plate (3) by means of a clip or the like. This clip can then additionally be connected to the frame plate (3), for example in the centre thereof, so as to apply force, whereby the centre of gravity of the force application surface also comes to rest as required according to the invention.
According to a further, particularly preferable embodiment of the present invention, at least one of the frame plates (3) comprises webs (10a) and/or ribs (10b) mounted thereon or rigidly connected thereto. Said webs (10a) or ribs (10b) further increase the stability and thus allow for use at even higher pressures. They can be produced from any material. Preferably, however, the webs (10a) and/or ribs (10b) are produced, in a similar manner as with the frame plates (3), from metals or metal alloys such as steel, or from plastics materials reinforced with fibres, in particularly carbon fibres, glass fibres or aramid fibres.
8 A person skilled in the art can design variants of the above-mentioned embodiments on the basis of his expertise. It is essential that the centroid of the force application surface of at least one force application means (7) is within the area produced from the linear projection of the surface area of the plate stack (4) or of the heat exchange plates (5) onto the frame plate (3).
In structural terms, the connection dimensions of the means (6) for feeding and discharging the fluid media and the type and shape of the force application means (7) create a minimum distance between the force application means (7) and the means (6) for feeding and discharging fluid flows.
The shape of the force application surface is not subject to any particular restriction, but is preferably substantially rectangular, elliptical, circular, or in the shape of a regular polygon.
Here too, a person skilled in the art will select and use a suitable means, in line with structural specifications, according to the desired application.
According to a preferred embodiment, the distance of the centre of the force application means (7), the centroid of which is within the area produced from the linear projection of the surface area of the plate stack (4) or of the heat exchange plates (5) onto the frame plate (3), to the closest edge of the surface area of the stack of heat exchange plates (5) is at least half the longest diagonal that can be formed in the force application surface.
According to a further preferred embodiment, the force application surface of the means (7) does not intersect with the surface area of the closest means (6) for feeding and discharging the fluid media.
Through-openings (6a) which are not restricted in any particular way in terms of cross section and which can be substantially circular, elliptical, rectangular, or in the shape of a polygon are preferably used as feeding and discharging means (6). The shape of the feeding and discharging means (6) is not critical for the desired effect of improved sealing.
The invention will be described in more detail below on the basis of Fig. 1 to 4, in which:
Fig. 1 is a side view of a plate heat exchanger (1) according to the invention,
9 Fig. 2 is a view of the region of a heat exchanger plate (5), in which it is possible to see the means (6) for feeding and discharging the fluid media and the course of the sealing means (8) provided between the plates, Fig. 3 is a front view of the end face of a frame plate (3) of a plate heat exchanger (1) in which three force application means (7) are arranged according to the prior art, Fig. 4 is a corresponding view of a preferred variant of a plate heat exchanger (1) according to the invention.
Fig. 1 shows a plate heat exchanger (1) according to the invention comprising a frame body (2) consisting of two frame plates (3). A plate stack of heat exchange plates (4) is arranged between the frame plates (3). A force application means (7) is also shown.
Fig. 2 shows the contours of a heat exchange plate (5) of a plate stack (4) (not shown) comprising means (6) for feeding and discharging fluid media and a sealing means (8). It can be seen that the sealing means (8) separates the feeding means and discharging means (6) from one another in a sealed manner.
Fig. 3 shows the contours of a frame plate (3) and a heat exchange plate (5) and two means (6) for feeding and discharging fluid media, and three force application means (7) denoted by way of black circles. It can be seen how the centre of gravity of the force application surface in all the force application means is outside the area produced by a linear projection of the surface area of the heat exchange plate (5) onto the frame plate (3).
Fig. 4 shows the contours of a frame plate (3) and of a heat exchange plate (5), means (6) for feeding and discharging fluid media, and a plurality of force application means (7). It can be seen how one force application means (7) (the means in the centre of the upper row) is arranged such that the centroid of the force application surface thereof is completely within the area produced from the linear projection of the surface area of the heat exchange plate (5) or of the plate stack (4) (not shown) onto the frame plate (3). The material of the heat exchange plates (5) in the plate heat exchangers according to the invention can be selected by a person skilled in the art from the materials which are known for this purpose and described in the prior art. Fig. 4 also shown a plate width (B) and a plate length (L).

The advantages of the design according to the invention are particularly effective when the plates are made from a graphite body impregnated with a polymer, a graphite body bound to a polymer, or from silicon carbide or a composite fibre ceramic.
Preferred graphite-based materials preferably contain at least 50, more preferably at least 55 wt.% graphite.
Suitable materials as a graphite base in the form of polymer-bound graphite bodies can be obtained under the brand name Diabon F, and graphite bodies impregnated with polymers, in particular with phenol resins, are commercially available under the brand name Diabon NS, both from SGL Carbon.
Owing to the brittleness and material properties of all these materials, it is advantageous or necessary to design a plate heat exchanger which is to be built based on said materials in a gasketed construction, and the advantages of the present invention come into effect.
The advantages of the above materials are based on their extraordinarily high corrosion resistance and temperature resistance, for which reason plate heat exchangers made of such materials can be advantageously used in particular when corrosive media or high temperatures are used.
The frame plates (3) of the plate heat exchangers (1) according to the invention have to absorb significant forces owing to the clamping from the force application means (7), and therefore have to be structured to have corresponding levels of stability.
Here too, a person skilled in the art will base their selection of the suitable material on the specific application of the plate heat exchanger (1). On a merely representative basis, suitable materials for frame plates of the frame body (2) in this case are metals or metal alloys such as steel, or plastics materials reinforced with fibres, in particular carbon fibres, glass fibres or aramid fibres. It is essential in any case that the frame plates (3) can absorb the active forces such that the bending does not exceed certain limit values.
In any case, it is essential that the maximum bending generally reached in the centre of the frame plate (3) is kept lower than the thickness of the sealing material used, otherwise leakages occur.

Since the materials used for sealing generally have a thickness of no more than 0.3 mm, preferably no more than 0.15 mm, the maximum bending of the frame plates (3) should also be below 0.3 mm, more preferably below 0.15 mm, to reliably ensure the leak-tightness of the plate heat exchanger (1).
Any sealing material that has the appropriate corrosion-resistance for the desired use and guarantees durable sealing under operating conditions can be used as sealing means (8).
Preferred materials for the sealing means (8) are in particular fluorine-based polymers or graphite-based materials. Preferred fluoropolymers are polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF). Appropriate materials are known to a person skilled in the art and are commercially available from many vendors.
According to a preferred embodiment, the gaskets used to achieve reliable sealing between each two heat exchange plates (5) can be designed as flat gaskets and inserted into peripheral grooves having a rectangular cross section. In this case, the thickness of the flat gaskets is selected such that said gaskets protrude out of the grooves and the leak-tightness is thus produced when the heat exchange plate stack (5) is clamped.
In principle, however, it is also possible to design the sealing means (8) as a sealing cord which can be placed in a simple manner between the heat exchange plates and guided through the force application to form a reliable seal.
The plate heat exchangers (1) according to the invention can be produced having larger plate widths (B) and/or plate lengths (L) than was possible hitherto in such products. Since the bending when force is applied via the corresponding means (7) increases as the plate width (B) and/or plate length (L) increases, until now plate heat exchangers having a gasketed construction and heat exchange plates based on graphite, silicon carbide or other ceramic or fibre-reinforced materials could only be produced having a limited size, which was determined on the basis that the maximum bending of the frame plates (3) was not permitted to exceed the above-mentioned values. By increasing the thickness of the frame plates (3) or increasing the rigidity of the materials, it is possible to obtain some improvement in this respect. Nevertheless, with the plate heat exchangers (1) according to the present invention, larger plate widths (B) and/or plate lengths (L) can be achieved in any case while using the same material, since the maximum bending can be considerably reduced owing to the arrangement, according to the invention, of at least one force application means (7).

Tests have shown that the plate width (B) and/or plate length (L) can be increased by at least 20-30 % without having to anticipate a higher degree of bending than in the plate heat exchangers of the same design according to the prior art. Therefore, under constant process conditions (pressure, temperature), a corresponding increase in the heat exchanger capacity can be achieved.
A further advantage of the plate heat exchangers (1) according to the invention is that the larger plate width (B) and/or plate length (L) allows the required footprint of the plate heat exchangers (1) to be considerably reduced for a desired heat exchange capacity, which is particularly advantageous in existing systems, of which the capacity is intended to be increased. These configurations often do not offer the possibility of providing a correspondingly larger footprint for increasing the heat exchanger capacity.
Overall, the plate heat exchangers (1) according to the present invention can therefore achieve heat exchanger capacities which, in relation to the required footprint for installing the corresponding heat exchanger, cannot be achieved by the heat exchangers of the same design according to the prior art.

List of reference signs 1 plate heat exchanger 2 frame body comprising two frame plates 3 frame plate 4 plate stack consisting of heat exchange plates heat exchange plate 6 means for feeding and discharging fluid media 6a - through-openings 7 force application means 8 sealing means 9 recess or groove for receiving a sub-element 10a - webs 1 Ob - ribs plate width plate length

Claims (13)

CLAIMS:
1. Gasketed plate heat exchanger comprising:
a frame body consisting of two frame plates, between which a plate stack of a plurality of graphite-containing or ceramic heat exchange plates is arranged, means for feeding and discharging the heat exchange fluids that flow through the space between the plates, means for applying force to the frame plates, by means of which a pressure can be exerted on the plate stack, and means for sealing between the heat exchange plates of the plate stack, wherein:
in at least one of the force application means, the centroid of the surface of this means for applying force to the frame plate is within the area produced from the linear projection of the surface area of the plate stack onto the corresponding frame plate, and the heat exchange plates are provided with at least one recess or groove for receiving a sub-element, arranged between the frame plates, of a force application means.
2. Plate heat exchanger according to claim 1, wherein at least one of the force application means is located outside the plate stack.
3. Plate heat exchanger according to claim 1, wherein the heat exchange plates are provided with at least one recess or groove for receiving a sub-element, arranged between the frame plates, of one of the at least one force application means, and wherein at least one force application means is arranged outside the plate stack.
4. Plate heat exchanger according to any one of claims 1 to 3, wherein the feeding and discharging means in the heat exchange plates of the plate stack are through-openings.
5. Plate heat exchanger according to claim 4, wherein the through-openings are substantially circular, elliptical or rectangular, or are in the shape of a regular polygon.
6. Plate heat exchanger according to any one of claims 1 to 5, wherein the force application surface of the at least one force application means is substantially circular, elliptical or rectangular, or is in the shape of a regular polygon.
7. Plate heat exchanger according to any one of claims 4 to 6, wherein the force application surface of the at least one force application means does not intersect with the surface area of the closest through-opening.
8. Plate heat exchanger according to any one of claims 1 to 7, wherein the heat exchange plates are produced from a graphite body which is either bound to a polymer or impregnated with a polymer.
9. Plate heat exchanger according to any one of claims 1 to 8, wherein the heat exchange plates are made of silicon carbide or a composite fibre ceramic.
10. Plate heat exchanger according to claim 9, wherein the heat exchange plates contain at least 50 wt.% graphite.
11. Plate heat exchanger according to any one of claims 1 to 10, wherein the sealing means contain a fluoropolymer or a graphite material.
12. Plate heat exchanger according to claim 12, wherein the fluoropolymer is a polymer based on polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
13. Plate heat exchanger according to any one of claims 1 to 11, wherein at least one of the frame plates comprises webs and/or ribs mounted thereon or rigidly connected thereto.
CA2889786A 2012-11-30 2013-11-27 Plate heat exchanger having sealed construction Expired - Fee Related CA2889786C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012222019.4A DE102012222019A1 (en) 2012-11-30 2012-11-30 Plate heat exchanger in sealed construction
DE102012222019.4 2012-11-30
PCT/EP2013/074819 WO2014083036A1 (en) 2012-11-30 2013-11-27 Plate heat exchanger having sealed construction

Publications (2)

Publication Number Publication Date
CA2889786A1 CA2889786A1 (en) 2014-06-05
CA2889786C true CA2889786C (en) 2017-10-31

Family

ID=49674301

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2889786A Expired - Fee Related CA2889786C (en) 2012-11-30 2013-11-27 Plate heat exchanger having sealed construction

Country Status (8)

Country Link
US (1) US20150260461A1 (en)
EP (1) EP2926075A1 (en)
JP (1) JP2015535587A (en)
CN (1) CN104813134A (en)
BR (1) BR112015011992A2 (en)
CA (1) CA2889786C (en)
DE (1) DE102012222019A1 (en)
WO (1) WO2014083036A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137212B2 (en) * 2016-06-23 2021-10-05 Hanon Systems Bypass seal for plate heater matrix
JP6911469B2 (en) * 2017-03-31 2021-07-28 株式会社Ihi Heat treatment equipment
US10976120B2 (en) 2017-10-13 2021-04-13 Hamilton Sundstrand Corporation Net shape moldable thermally conductive materials
KR101897927B1 (en) * 2017-11-23 2018-09-12 조형석 The plate heat exchanger of welding type for high pressure condition
CN108120327B (en) * 2018-01-19 2023-12-05 佛山市科蓝环保科技股份有限公司 Plate heat exchanger

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015819A (en) * 1933-12-09 1935-10-01 Aluminium Plant And Vessel Com Heat exchange apparatus and mounting therefor
US2424792A (en) * 1944-02-14 1947-07-29 Mt Vernon Farm Dairy Cooling apparatus
US2582871A (en) * 1948-07-31 1952-01-15 Pfaudler Co Inc Heat exchanger
US2677531A (en) * 1950-08-04 1954-05-04 Hock Sr Built-up, plate type heat exchanger having spiral flow
US3404733A (en) * 1967-06-21 1968-10-08 John E. Pottharst Jr. Plate-type heat exchanger
US3444926A (en) * 1967-11-28 1969-05-20 Rosenblads Patenter Ab Arrangement in heat exchangers of the plate type
US4432408A (en) * 1982-07-19 1984-02-21 The Dow Chemical Co. Method and compressed vermicular expanded graphite apparatus for heat exchanging
EP0203213B1 (en) 1985-05-29 1988-08-10 SIGRI GmbH Procedure for manufacturing a plate heat exchanger
IT1204157B (en) * 1986-02-07 1989-03-01 Fonderie E Officine San Giorgi HEAT EXCHANGER PARTICULARLY SUITABLE FOR USE AS A HEAT RECOVERY FROM WET GASES
JP2515119Y2 (en) * 1991-02-05 1996-10-30 株式会社日阪製作所 Plate heat exchanger
FR2705445B1 (en) * 1993-05-18 1995-07-07 Vicarb Sa Plate heat exchanger.
SE9504586D0 (en) * 1995-12-21 1995-12-21 Tetra Laval Holdings & Finance plate heat exchangers
CN2281513Y (en) * 1996-01-02 1998-05-13 缪志先 Panel heat exchanger with internal fasten screw bolt
SE522500C2 (en) * 2002-09-17 2004-02-10 Valeo Engine Cooling Ab Arrangement with plate heat exchanger is for connection to system in which exchanger is to be installed and involves exchanger conventionally formed with reciprocal parallel plates comprising plate packet
CN100417911C (en) * 2002-11-07 2008-09-10 缪志先 Plate heat exchanger possessing exterior passageway and welded structure in new type sealing way
DE10361346A1 (en) * 2003-12-16 2005-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Plate heat exchanger, method for producing a plate heat exchanger and ceramic fiber composite material, in particular for a plate heat exchanger
PL1757887T3 (en) * 2005-08-25 2012-04-30 Sgl Carbon Se Heat exchanger block
DE102006009791A1 (en) 2006-03-01 2007-09-06 Dr. Schnabel Gmbh & Co Kg Fluid heat exchanger has a stack of plates forming flow paths and having inset O ring seals
DE102006013503A1 (en) * 2006-03-23 2008-01-24 Esk Ceramics Gmbh & Co. Kg Plate heat exchanger, process for its preparation and its use
DE102006028852A1 (en) * 2006-06-23 2007-12-27 Dr. Schnabel Gmbh & Co. Kg Heat exchanging method for use in plate-type heat exchanger, involves passing flow areas of plates of disk pack in heat exchanger according to direct current principle and/or reverse current principle
JP2008051390A (en) * 2006-08-24 2008-03-06 Fuiisa Kk Heat exchanger
CN201155933Y (en) * 2007-12-27 2008-11-26 北京思诚翰盛机械制造有限责任公司 Improved super large plate heat exchanger
DE102008048014A1 (en) * 2008-09-12 2010-04-15 Esk Ceramics Gmbh & Co. Kg Component of a stack of ceramic plates
CN201302404Y (en) * 2008-10-19 2009-09-02 四平维克斯换热设备有限公司 V-type plate heat exchanger
SE534915C2 (en) * 2010-06-18 2012-02-14 Alfa Laval Corp Ab Plate heat exchanger and method for manufacturing a plate heat exchanger
JP2012107804A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd Laminated heat exchanger, and heat medium heating apparatus and in-vehicle air-conditioning apparatus using the laminated heat exchanger
EP2474804A1 (en) * 2011-01-10 2012-07-11 Alfa Laval Corporate AB Plate heat exchanger

Also Published As

Publication number Publication date
WO2014083036A1 (en) 2014-06-05
DE102012222019A1 (en) 2014-06-05
EP2926075A1 (en) 2015-10-07
JP2015535587A (en) 2015-12-14
BR112015011992A2 (en) 2017-07-11
CN104813134A (en) 2015-07-29
CA2889786A1 (en) 2014-06-05
US20150260461A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
CA2889786C (en) Plate heat exchanger having sealed construction
JP5065383B2 (en) Plates and gaskets for plate heat exchangers
EP1998132B1 (en) Rib plate type heat exchanger
EP2394129B1 (en) A plate heat exchanger
EP2527775A1 (en) Heat transfer plate for a plate-and-shell heat exchanger
JPH06508914A (en) flat plate heat exchanger
EP2672215B1 (en) Plate heat exchanger
US7896064B2 (en) Plate-type heat exchanger
US10156405B2 (en) Plate heat exchanger
US10145625B2 (en) Dimple pattern gasketed heat exchanger
US10544991B2 (en) Heat exchangers
JP4874365B2 (en) Plate heat exchanger and refrigeration cycle apparatus using the heat exchanger
EP0699292B1 (en) Heat exchanger
KR101458156B1 (en) Plate type heat exchanger using refrigerant gas
WO2003006909A1 (en) Plate heat exchanger and end plate associated therewith
JP2008275210A (en) Heat exchanger
KR101987600B1 (en) The plate heat exchanger of welding type
KR101897927B1 (en) The plate heat exchanger of welding type for high pressure condition
US20230142382A1 (en) Plate heat exchanger
KR102447879B1 (en) Tube bundle type heat exchanger, tube base, and sealing method thereof
US11428474B2 (en) Plate heat exchanger
EP3816567A1 (en) Plate-type heat exchanger
EP3792577A1 (en) A retaining means for a heat exchanger plate, a gasket arrangement for a heat exchanger plate, a heat exchanger plate with an edge portion and a plate heat exchanger
JP5779800B2 (en) Plate heat exchanger and its manufacturing method
US20160146543A1 (en) Plate heat exchanger

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20150428

MKLA Lapsed

Effective date: 20201127