CA2861936A1 - Method and device for mechanical heating of a substance mixture - Google Patents

Method and device for mechanical heating of a substance mixture Download PDF

Info

Publication number
CA2861936A1
CA2861936A1 CA2861936A CA2861936A CA2861936A1 CA 2861936 A1 CA2861936 A1 CA 2861936A1 CA 2861936 A CA2861936 A CA 2861936A CA 2861936 A CA2861936 A CA 2861936A CA 2861936 A1 CA2861936 A1 CA 2861936A1
Authority
CA
Canada
Prior art keywords
substance mixture
ring pump
fluid
mixture
fluid ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2861936A
Other languages
French (fr)
Inventor
Wolfgang Spiess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CATALYTEC
Original Assignee
CATALYTEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CATALYTEC filed Critical CATALYTEC
Publication of CA2861936A1 publication Critical patent/CA2861936A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/005Details concerning the admission or discharge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/06Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/004Details concerning the operating liquid, e.g. nature, separation, cooling, cleaning, control of the supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/24Fluid mixed, e.g. two-phase fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/22Temperature difference
    • F04C2270/225Controlled or regulated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A method for mechanically heating a liquid mixture of substances is described. In a liquid-ring pump (1), a foam phase is compressed and the compression heat is transferred to the mixture of substances. An apparatus designed as a liquid-ring pump (1) for mechanically heating a liquid mixture of substances is also described. Said liquid-ring pump (1) comprises an impeller (12) eccentrically arranged in a cup-shaped pump housing (11) as well as a tangential suction port (13) and a tangential delivery port (14). A gas port (15) for introducing an inert process gas extends into the suction port (13) and/or into the cup-shaped pump housing (1).

Description

=
= PDF Page 1/15 Method and device for mechanical heating of a substance mixture The invention relates to a method and a device for mechanical heating of a substance mixture.
From DE 10 2005 056 735 83 is known a high-performance chamber mixer for catalytic oil suspensions to be used as a reactor for the depolymerization and polymerization of hydrocarbon residues into middle distillates in the circuit. The pump efficiency of the high-performance chamber mixer is low, so that the mechanical energy applied is, for the most part, converted into mixing and frictional energy.
From DE 2008 009 647 A 1 is known a sludge reactor pump for simultaneous transport of solids, liquids, vapours and gases in a common flow stream. The sludge reactor pump is a combination of a fluid ring vacuum pump and a radial pump.

Solid and fluid materials are conveyed to the circumference of the pump, while the gases and vapours are separated in the interior.
The object of the present invention is to provide an improved method and an improved device for the input of energy into a fluid substance mixture and to supply the latter.
According to the invention, this object is achieved by a method for the mechanical heating of a fluid substance mixture, whereby a foam phase is produced by a fluid ring pump, and the foam phase is compressed in order to transfer the compression heat to the substance mixture.
The object is further achieved by a device in the form of a fluid ring pump for the mechanical heating of a fluid substance mixture, whereby the said fluid ring pump comprises an eccentrically-arranged impeller as well as a tangentially-arranged suction nozzle and a tangentially-arranged pressure nozzle in a cup-shaped pump housing, whereby there is a gas nozzle to feed an inert process gas into the suction nozzle and/or the pot-shaped pump housing.
The method and device according to the present invention allow very effective energy input into the fluid substance mixture, whereby, contrary to the reservations of a person skilled in the art, a foam phase is produced in the fluid ring pump. It has been found that the energy expended for the production of the foam phase is directly converted into heat energy in the breakdown of the foam phase, so that introduction losses that occur in the external heating of the fluid may be avoided.

It may be arranged that the substance mixture is a mixture of oil, residues and a catalyst. The oil and residues may be waste products to be recycled. As residues, organic waste such as occur in agriculture and forestry may be used.
The substance mixture can be circulated in a circuit. It may be enriched with hydrocarbons during the continuous or discontinuous addition of residues during the cycle. The residues may be partially or completely dissolved in oil.
It may be arranged that the foam phase is produced by the introduction into the process mixture of an inert gas under low pressure.
The process gas may be introduced into the fuel mixture upstream of the fluid ring pump.
It may be arranged that the process gas is introduced into the fluid ring pump in the fuel mixture.
In an advantageous embodiment, it may be arranged that the proportion of the foam phase is from 10 to 30% by volume, preferably from 10 to 25% by volume.

The proportion of the foam phase may be so selected that a fluid ring is formed on the inner periphery of the fluid ring pump. In this way, the flow rate of the fluid ring pump is ensured despite the entry of foam.
It may be arranged that the proportion of the foam phase is determined by temperature measurement upstream and downstream of the fluid ring pump and the resulting energy input into the mixture calculated.
Further sub-claims cover the device.
It may be arranged that the gas nozzle is arranged with its axis parallel to or in alignment with the axis of rotation of the impeller.
The outlet of the gas nozzle may be formed as a slot nozzle.
In an advantageous embodiment, it may be arranged that the width of the slot is greater than the diameter of the gas nozzle.
The invention will now be explained in more detail by means of embodiments.
The figures show:
Figure 1 shows a schematic perspective view of an exemplary embodiment of a device according to the invention;
Figure 2 shows a schematic sectional view of the device of Figure 1;
Figure 3 shows a block diagram of an exemplary application of the device of Figures 1 and 2 Figures 1 and 2 show an embodiment of a device in the form of a fluid ring pump 1 for the mechanical heating of a fluid substance mixture, whereby the liquid ring pump 1 comprises an eccentrically arranged impeller 12 as well as a tangentially-arranged suction nozzle 13 and a tangentially-arranged pressure nozzle 14 in a cup-shaped pump housing 11. A gas nozzle 15 feeds into the suction nozzle 13. To this end, the gas nozzle 15 has a slot 15s that is arranged in the axial region of the suction nozzle 13 and opens into it.
The pump housing 11 is cup-shaped. Because of the eccentric arrangement of the impeller 12 in the pump housing 11, the ends of the blades of the paddlewheel-shaped impeller 12 are at a varying distance from the inner wall of the pump housing 11 as a function of the rotational position. The fluid ring pump 1 is a rotary pump, i.e. a continuous flow machine. Fluid entering the fluid ring pump 1 via the suction nozzle 13 is entrained by the rotating impeller 12 and is forced outwards along a circular path because of the centrifugal forces occurring. The kinetic energy of the fluid received in this way increases the pressure within the pump housing 11 and compresses the fluid in the pressure nozzle 14. The inert gas entering the fluid through the gas nozzle 15 produces a foam phase in the fluid which also absorbs the kinetic energy, whereby the gas trapped in the foam bubbles is compressed and heated. Intensive heat transfer takes place between the foam bubbles and the fluid so that the fluid is heated. The gas nozzle 15 is arranged with its axis parallel to or in alignment with the axis of rotation of the impeller (12).

Figure 3 shows an embodiment for use of the fluid ring pump 1 The fluid ring pump 1 is used as a supply and mixing pump in a KDV plant 2 for catalytic pressure-free depolymerization. At a process temperature of 280 to 320 C in KDV plant 2, long-chain hydrocarbons are split into short-chain hydrocarbons under the action of a catalyst, such as those contained in diesel oil. For this purpose, a fluid substance mixture containing oil, residues and a catalyst at the process temperature, is fed into the circuit by the fluid ring pump 1.
The foam phase substance mixture 29 formed in the fluid ring pump 1 is introduced into a separator 21, for example in the form of a funnel-shaped container, on whose inner wall the mixture runs down and thereby evaporates. The diesel vapour 24d flows into a distillation column 22, which is arranged above the separator 21, and then passes into a condenser 23 downstream of the distillation column 22. Condensate thus forms in the condenser 23 in the form of diesel oil 24, which is collected in a product tank 25. The product tank 25 is vented using a vacuum pump 26, whereby the exhaust gas 27 accumulated above the diesel oil 24 is partially supplied to the gas nozzle 15 of the fluid ring pump 1. To begin the process, an inert gas such as nitrogen is fed from a compressed gas container in place of the exhaust gas.

A central container 28 is arranged under the separator 21, into which the evaporated substance mixture 29r flows. The central container 28 may have an inlet nozzle 28e though which residual material 30 from a hydrocarbon residue container 31 may be introduced into the substance mixture 29r. The residue 30 is dissolved in the evaporated substance mixture 29r and homogeneously distributed on the way through the central container 28.
However, the residue 30 may be also fed back into the substance mixture circuit downstream behind the central container 28. In this way, an enriched substance mixture 29a is obtained, which is supplied to the suction nozzle 13 of the fluid ring pump 1 to close the substance mixture circuit.
Sediment particles 32 precipitated from the substance mixture can be removed at the bottom of the central container 28, and may be used as fuel or discarded.
The optimum operation of the fluid ring pump 1 may be adjusted according to two methods.
Firstly, the proportion of the foam phase may be so selected that a fluid ring is formed on the inner periphery of the fluid ring pump 1. Secondly, the proportion of foam phase may be determined from the energy input into the substance mixture. Two temperature sensors are provided for this purpose. A
first temperature sensor 33 is arranged downstream of the fluid ring pump 1 in the substance mixture pipe. A second temperature sensor 34 is arranged upstream of the fluid ring pump 1 in the substance mixture pipe. The signals from both temperature sensors 33, 34 are evaluated in a control device 35, and a control signal is formed for a control valve 36 that is arranged in the connecting pipe between the vacuum pump 26 and the gas nozzle 15 of the fluid ring pump 1 in order to control the quantity of the gas intended for the foam production.

It has proved effective when the proportion of foam phase is from 10 to 30%
by volume, preferably from 10 to 25 vol%.

Reference numeral list 1 fluid ring pump 2 KDV plant 11 pump housing 12 impeller 13 suction nozzle 14 pressure nozzle 15 gas nozzle 15s slot orifice 21 evaporator system 22 distillation column 23 condenser 24 diesel oil 24d diesel vapour 25 product tank 26 vacuum pump =PDF Page 10/15 27 exhaust gas 28 central container 28e inlet nozzle 29 substance mixture 29a enriched substance mixture 29r evaporated mixture 30 residue 31 residue - reservoir 32 sediment particles 33 first temperature sensor 34 second temperature sensor 35 controller

Claims (13)

1. A method for the mechanical heating of a fluid substance mixture, characterized in that a foam layer is produced in a fluid ring pump (1) and the foam phase is compressed in order to transfer the heat of the compression to the substance mixture.
2. A method according to claim 1, characterized in that the mixture is an oil, residue and catalyst mixture.
3. A method according to claim 1 or 2, characterized in that the mixture is circulated in a circuit (12).
4. A method according to one of the preceding claims, characterized in that the foam phase is produced by the introduction (15s) of an inert process gas (15) under low pressure into the substance mixture.
5. A method according to claim 4, characterized in that the process gas (15) is introduced into the substance mixture (13) upstream of the fluid ring pump (1).
6. A method according to claim 4, characterized in that the process gas (15) is introduced into the substance mixture (13) in the fluid ring pump (1).
7. A method according to any one of the preceding claims, characterized in that the proportion of the foam phase is from 10 to 30% by volume, preferably from 10 to 25% by volume.
8. A method according to any one of claims 1 to 6, characterized in that the proportion of the foam phase is so selected that a fluid ring is formed on the inner periphery of the fluid ring pump (1).
9. A method according to any one of claims 1 to 6, characterized in that the proportion of the foam phase is determined by temperature measurement (34, 33) upstream and downstream of the fluid ring pump (1) and the energy transfer to the substance mixture is thus calculated.
10. A device formed as a fluid ring pump (1) for the mechanical heating of a fluid substance mixture, whereby the fluid ring pump (1) has an eccentrically-arranged impeller (12) as well as a tangentially-arranged suction nozzle (13) and a tangentially-arranged pressure nozzle (14) in a pot-shaped pump housing (11), characterized in that a gas nozzle (15) for introducing an inert process gas opens into the suction nozzle (13) and/or in the pot-shaped pump housing (1).
11. A device according to claim 10, characterized in that the gas nozzle (15) is arranged with its axis parallel to or in alignment with the axis of rotation of the impeller (12).
12. A device according to claim 10 or 11, characterized in that the outlet of the gas nozzle (15) is formed as a slot (15s).
13. A device according to claim 12, characterized in that the width of the slot (15s) is greater than the diameter of the gas nozzle (15).
CA2861936A 2012-01-20 2013-01-18 Method and device for mechanical heating of a substance mixture Abandoned CA2861936A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012000980.1 2012-01-20
DE102012000980A DE102012000980A1 (en) 2012-01-20 2012-01-20 Method and device for the mechanical heating of a substance mixture
PCT/EP2013/050980 WO2013107888A1 (en) 2012-01-20 2013-01-18 Method and apparatus for mechanically heating a mixture of substances

Publications (1)

Publication Number Publication Date
CA2861936A1 true CA2861936A1 (en) 2013-07-25

Family

ID=47632997

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2861936A Abandoned CA2861936A1 (en) 2012-01-20 2013-01-18 Method and device for mechanical heating of a substance mixture

Country Status (5)

Country Link
US (1) US20150030467A1 (en)
EP (1) EP2804928A1 (en)
CA (1) CA2861936A1 (en)
DE (1) DE102012000980A1 (en)
WO (1) WO2013107888A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007345A1 (en) 2013-07-19 2015-01-22 Catalytec Method for producing biodiesel
US10723956B2 (en) 2017-07-21 2020-07-28 1888711 Alberta Inc. Enhanced distillate oil recovery from thermal processing and catalytic cracking of biomass slurry
EP3441136B1 (en) 2017-08-08 2020-12-23 Tuma Pumpensysteme GmbH Device for crushing and mixing, system and method for catalytic pressureless oiling
GB2571968B (en) * 2018-03-14 2020-09-16 Edwards Tech Vacuum Engineering (Qingdao) Co Ltd Liquid ring pump control
GB2571971B (en) * 2018-03-14 2020-09-23 Edwards Tech Vacuum Engineering Qingdao Co Ltd Liquid ring pump control
GB2571970B (en) * 2018-03-14 2020-09-16 Edwards Tech Vacuum Engineering (Qingdao) Co Ltd A liquid ring pump manifold with integrated non-return valve
CN108980042B (en) * 2018-09-30 2024-05-07 山东康诚医用设备工程有限公司 Water ring type vacuum pump
NL2027919B1 (en) * 2021-04-06 2022-10-19 B B A Participaties B V Pump installation with removable silencer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481529A (en) * 1966-05-12 1969-12-02 Siemens Ag Method and apparatus for pumping with a liquid-ring in series with a jet ejector
DE2242626B2 (en) * 1972-08-30 1977-06-23 Bayer Ag, 5090 Leverkusen PROCESS FOR EVAPORATING PHOSGENIC SOLUTIONS
US4083658A (en) * 1976-09-08 1978-04-11 Siemens Aktiengesellschaft Liquid ring compressor including a calibrated gas input opening
DE3204784A1 (en) * 1982-02-11 1983-08-25 Siemens AG, 1000 Berlin und 8000 München LIQUID RING VACUUM PUMP WITH UPstream COMPRESSOR
DE3436022A1 (en) * 1984-10-01 1986-04-03 Sihi Gmbh & Co Kg, 2210 Itzehoe LIQUID RING COMPRESSOR
US5043079A (en) * 1989-07-13 1991-08-27 Solarchem Enterprises Inc. Wastewater treatment process with an ozone contactor
DK0494041T3 (en) * 1991-01-02 1996-01-02 Berendsen Teknik As Liquid Ring Pump
SE502127C2 (en) * 1993-12-01 1995-08-28 Kvaerner Pulping Tech Device at a vacuum pump for venting the suspension pump
NO20010345L (en) * 2001-01-19 2002-07-22 Abb Gas Technology As Method and apparatus for the treatment of gases and their use
DE102005056735B3 (en) 2005-11-29 2006-08-10 Koch, Christian, Dr. Preparation of diesel oil from hydrocarbon containing residual substances in an oil circulation with solid separation and product distillation, comprises providing heat through main energy carriers by one or more high speed mixing chambers
DE102008009647B4 (en) * 2008-02-18 2011-04-14 Christian Dr. Koch Sludge reactor pump for simultaneous transport of solids, liquids, vapors and gases

Also Published As

Publication number Publication date
DE102012000980A1 (en) 2013-07-25
US20150030467A1 (en) 2015-01-29
WO2013107888A1 (en) 2013-07-25
EP2804928A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
US20150030467A1 (en) Method and apparatus for mechanically heating a mixture of substances
US20070131585A1 (en) High-speed chamber mixer for catalytic oil suspensions as a reactor for the depolymerization and polymerization of hydrocarbon-containing residues in the oil circulation to obtain middle distillate
CN102711939B (en) The mixing carried out by the main vaporization in different mixing and kneading machines and degassing is without thermal release
US8003059B2 (en) Continuous processing reactors and methods of using same
EP2969089B1 (en) Mobile mechanical vapor recompression evaporator
US20150047962A1 (en) Device and method for the catalytic depolymerization of material containing hydrocarbon
EP2850150B1 (en) Method for controlling the water content in pyrolysis liquids
CN101935079A (en) Vacuum flash evaporation enhanced mass transfer deoxidation equipment and deoxidation process
CN102470336A (en) Continuous processing reactors and methods of using same
CN105194898A (en) Rectification device
EP2585557A2 (en) Method and system for hydrocarbon extraction
AU2010295221B2 (en) An assembly for reducing slurry pressure in a slurry processing system
RU2441694C1 (en) Emulsion preparation plant
US9662594B2 (en) Systems and methods for treating fractionated water
RU2015145411A (en) METHOD FOR SEPARATING POLYMER FROM SOLUTION OF POLYMERS OR DISPERSION OF POLYMERS
CN202554970U (en) Oil liquid vacuum flash device
EP3573750B1 (en) Method for thermal conversion of hydrocarbons using a reaction pump
UA96400C2 (en) Process for preparation of bio-masut
RU159757U1 (en) DEVICE FOR CLEANING WASTE OILS FROM WATER AND LOW-BOILING FRACTIONS
IT202100028121A1 (en) PLANT AND PROCESS FOR THERMAL-CATALYTIC DEPOLYMERIZATION OF POLYOLEFIN PLASTIC MATERIALS FOR THE PRODUCTION OF HYDROCARBONS
JP7051088B2 (en) Liquid-liquid extraction method and equipment using high-pressure carbon dioxide using a micromixer
RU2513196C1 (en) Method of oil sludge processing
US6277247B1 (en) Operation method of a plant for distilling liquid products and plant for realizing the same
CN207822656U (en) A kind of small-sized efficient gas-liquid separator
SU1632452A1 (en) A system of well products complex preparation

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20170118