CA2804883C - Patient selectable knee joint arthroplasty devices - Google Patents
Patient selectable knee joint arthroplasty devices Download PDFInfo
- Publication number
- CA2804883C CA2804883C CA2804883A CA2804883A CA2804883C CA 2804883 C CA2804883 C CA 2804883C CA 2804883 A CA2804883 A CA 2804883A CA 2804883 A CA2804883 A CA 2804883A CA 2804883 C CA2804883 C CA 2804883C
- Authority
- CA
- Canada
- Prior art keywords
- implant
- femoral
- joint
- cartilage
- implant system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000000629 knee joint Anatomy 0.000 title claims abstract description 61
- 238000011882 arthroplasty Methods 0.000 title description 11
- 239000007943 implant Substances 0.000 claims description 381
- 210000000845 cartilage Anatomy 0.000 claims description 155
- 210000000988 bone and bone Anatomy 0.000 claims description 83
- 239000000463 material Substances 0.000 claims description 83
- 210000000689 upper leg Anatomy 0.000 claims description 72
- 230000007547 defect Effects 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 210000000526 facies patellaris femoris Anatomy 0.000 claims description 16
- 210000004285 patellofemoral joint Anatomy 0.000 claims description 11
- 210000003484 anatomy Anatomy 0.000 claims description 7
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 7
- 241001227561 Valgus Species 0.000 claims description 3
- 241000469816 Varus Species 0.000 claims description 3
- 230000008439 repair process Effects 0.000 abstract description 116
- 238000000034 method Methods 0.000 abstract description 72
- 210000004417 patella Anatomy 0.000 description 44
- 210000001519 tissue Anatomy 0.000 description 39
- 210000005065 subchondral bone plate Anatomy 0.000 description 31
- 238000013461 design Methods 0.000 description 28
- 210000003127 knee Anatomy 0.000 description 27
- 239000000523 sample Substances 0.000 description 25
- 230000033001 locomotion Effects 0.000 description 23
- 238000005259 measurement Methods 0.000 description 23
- 238000002513 implantation Methods 0.000 description 22
- 230000013011 mating Effects 0.000 description 18
- 238000004873 anchoring Methods 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000000576 coating method Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 238000011068 loading method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000012620 biological material Substances 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 12
- 210000002303 tibia Anatomy 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 230000005499 meniscus Effects 0.000 description 11
- -1 polyethylene Polymers 0.000 description 11
- 208000008558 Osteophyte Diseases 0.000 description 10
- 239000004696 Poly ether ether ketone Substances 0.000 description 10
- 229920002530 polyetherether ketone Polymers 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000001356 surgical procedure Methods 0.000 description 10
- 210000001188 articular cartilage Anatomy 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000007514 turning Methods 0.000 description 9
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 230000001172 regenerating effect Effects 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002407 tissue scaffold Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 238000002595 magnetic resonance imaging Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 210000003321 cartilage cell Anatomy 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 210000001612 chondrocyte Anatomy 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000002271 resection Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 208000003076 Osteolysis Diseases 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000005021 gait Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 210000003035 hyaline cartilage Anatomy 0.000 description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 208000029791 lytic metastatic bone lesion Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 238000012014 optical coherence tomography Methods 0.000 description 3
- 210000000426 patellar ligament Anatomy 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 230000002980 postoperative effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 206010023204 Joint dislocation Diseases 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 239000012867 bioactive agent Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- AXTNPHLCOKUMDY-UHFFFAOYSA-N chromium cobalt Chemical compound [Co][Cr][Co] AXTNPHLCOKUMDY-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 210000000968 fibrocartilage Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000001258 synovial membrane Anatomy 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 210000004353 tibial menisci Anatomy 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N C1CCCCC1 Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 0 CC1*(C)CCC1 Chemical compound CC1*(C)CCC1 0.000 description 1
- 206010007710 Cartilage injury Diseases 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 102000055008 Matrilin Proteins Human genes 0.000 description 1
- 108010072582 Matrilin Proteins Proteins 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- 102100026933 Myelin-associated neurite-outgrowth inhibitor Human genes 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241000486437 Panolis Species 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000000316 bone substitute Substances 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002729 catgut Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- PRQRQKBNBXPISG-UHFFFAOYSA-N chromium cobalt molybdenum nickel Chemical compound [Cr].[Co].[Ni].[Mo] PRQRQKBNBXPISG-UHFFFAOYSA-N 0.000 description 1
- SZMZREIADCOWQA-UHFFFAOYSA-N chromium cobalt nickel Chemical compound [Cr].[Co].[Ni] SZMZREIADCOWQA-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 210000002745 epiphysis Anatomy 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 201000010934 exostosis Diseases 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000010100 freeform fabrication Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000011458 pharmacological treatment Methods 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002187 poly[N-2-(hydroxypropyl) methacrylamide] polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000011883 total knee arthroplasty Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000602 vitallium Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3859—Femoral components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30756—Cartilage endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3877—Patellae or trochleae
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4504—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4514—Cartilage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
- A61F2002/30952—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
- A61F2002/30957—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
- A61F2002/30962—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using stereolithography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2002/4635—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using minimally invasive surgery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30052—Implant; Prosthesis
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Physical Education & Sports Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Rheumatology (AREA)
- Geometry (AREA)
- Prostheses (AREA)
Abstract
Disclosed herein are methods and devices for repairing articular surfaces in a knee joint. The articular surface repairs are customizable or highly selectable for each patient and geared toward providing optimal fit and function. Kits are also provided to enable customized repairs to be performed.
Description
PATIENT SELECTABLE KNEE JOINT ARTHROPLASTY DEVICES
FIELD OF THE INVENTION
[0001] The present invention relates to orthopedic methods, systems and devices and more particularly relates to methods, systems and devices for articular resurfacing in the knee.
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention relates to orthopedic methods, systems and devices and more particularly relates to methods, systems and devices for articular resurfacing in the knee.
BACKGROUND OF THE INVENTION
[0002] There are various types of cartilage, e.g., hyaline cartilage and fibrocartilage. Hyaline cartilage is found at the articular surfaces of bones, e.g., in the joints, and is responsible for providing the smooth gliding motion characteristic of moveable joints. Articular cartilage is firmly attached to the underlying bones and measures typically less than 5mm in thickness in human joints, with considerable variation depending on the joint and the site within the joint.
[0003] i!kci u I ca rti I ade has a limited ability of repair; thus, damage to = cartilage produced by disease, such as rheumatoid and/or osteoarthritis, or trauma can lead to serious physical deformity and debilitation.
Furthermore, as human articular cartilage ages, its tensile properties change. The superficial zone of the knee articular cartilage exhibits an increase in tensile strength up to the third decade of life, after which it decreases markedly with age as detectable damage to type II collagen occurs at the articular surface. The deep zone cartilage also exhibits a progressive decrease in tensile strength with increasing age, although collagen content does not appear to decrease. These observations indicate that there are changes in mechanical and, hence, structural organization of cartilage with aging that, if sufficiently developed, can predispose cartilage to traumatic damage.
Furthermore, as human articular cartilage ages, its tensile properties change. The superficial zone of the knee articular cartilage exhibits an increase in tensile strength up to the third decade of life, after which it decreases markedly with age as detectable damage to type II collagen occurs at the articular surface. The deep zone cartilage also exhibits a progressive decrease in tensile strength with increasing age, although collagen content does not appear to decrease. These observations indicate that there are changes in mechanical and, hence, structural organization of cartilage with aging that, if sufficiently developed, can predispose cartilage to traumatic damage.
[0004] Once damage occurs, joint repair can be addressed through a number of approaches. One approach includes the use of matrices, tissue scaffolds or other carriers implanted with cells (e.g., chondrocytes, chondrocyte progenitors, stromal cells, mesenchymal stem cells, etc.).
These solutions have been described as a potential treatment for cartilage and meniscal repair or replacement. See, also, International Publications WO 99/51719 to Fofonoff, published October 14, 1999; W001/91672 to Simon et al., published 12/6/2001; and W001/17463 to Mannsmann, published March 15, 2001; U.S. Patent No. 6,283,980 B1 to Vibe-Hansen et al., issued September 4, 2001, U.S. Patent No. 5,842,477 to Naughton issued December 1, 1998, U.S. Patent No. 5,769,899 to Schwartz et al.
issued June 23, 1998, U.S. Patent No. 4,609,551 to Caplan et al. issued September 2, 1986, U.S. Patent No. 5,041,138 to Vacanti et al. issued =
August 29, 1991, U.S. Patent No. 5,197,985 to Caplan et al. issued March 30, 1993, U.S. Patent No. 5,226,914 to Caplan et al. issued July 13, 1993, U.S. Patent No. 6,328,765 to Hardwick et al. issued December 11, 2001, U.S. Patent No. 6,281,195 to Rueger et al. issued August 28, 2001, and U.S. Patent No. 4,846,835 to Grande issued July 11, 1989. However, clinical outcomes with biologic replacement materials such as allograft and autograft systems and tissue scaffolds have been uncertain since most of these materials do not achieve a morphologic arrangement or structure similar to or identical to that of normal, disease-free human tissue it is intended to replace. Moreover, the mechanical durability of these biologic replacement materials remains uncertain.
These solutions have been described as a potential treatment for cartilage and meniscal repair or replacement. See, also, International Publications WO 99/51719 to Fofonoff, published October 14, 1999; W001/91672 to Simon et al., published 12/6/2001; and W001/17463 to Mannsmann, published March 15, 2001; U.S. Patent No. 6,283,980 B1 to Vibe-Hansen et al., issued September 4, 2001, U.S. Patent No. 5,842,477 to Naughton issued December 1, 1998, U.S. Patent No. 5,769,899 to Schwartz et al.
issued June 23, 1998, U.S. Patent No. 4,609,551 to Caplan et al. issued September 2, 1986, U.S. Patent No. 5,041,138 to Vacanti et al. issued =
August 29, 1991, U.S. Patent No. 5,197,985 to Caplan et al. issued March 30, 1993, U.S. Patent No. 5,226,914 to Caplan et al. issued July 13, 1993, U.S. Patent No. 6,328,765 to Hardwick et al. issued December 11, 2001, U.S. Patent No. 6,281,195 to Rueger et al. issued August 28, 2001, and U.S. Patent No. 4,846,835 to Grande issued July 11, 1989. However, clinical outcomes with biologic replacement materials such as allograft and autograft systems and tissue scaffolds have been uncertain since most of these materials do not achieve a morphologic arrangement or structure similar to or identical to that of normal, disease-free human tissue it is intended to replace. Moreover, the mechanical durability of these biologic replacement materials remains uncertain.
[0005] Usually, severe damage or loss of cartilage is treated by replacement of the joint with a prosthetic material, for example, silicone, e.g. for cosmetic repairs, or metal alloys. See, e.g., U.S. Patent No.
6,383,228 to Schmotzer, issued May 7, 2002; U.S. Patent No. 6,203,576 to Afriat et at., issued March 20, 2001; U.S. Patent No. 6,126,690 to Ateshian, at at., issued October 3, 2000. Implantation of these prosthetic devices is usually associated with loss of underlying tissue and bone without recovery of the full function allowed by the original cartilage and, with some devices, serious long-term complications associated with the loss of significant amount of tissue and bone can include infection, osteolysis and also loosening of the implant.
[0006] Further, joint arthroplasties are highly invasive and require surgical resection of the entire articular surface of one or more bones, or a majority thereof. With these procedures, the marrow space is often reamed to fit the stem of the prosthesis. The reaming results in a loss of the patient's bone stock. U.S. Patent 5,593,450 to Scott et al. issued January 14, 1997 discloses an oval domed shaped patella prosthesis. The prosthesis has a femoral component that includes two condyles as articulating surfaces. The two condyles meet to form a second trochlear groove and ride on a tibial component that articulates with respect to the femoral component. A patella component is provided to engage the trochlear groove. U.S. Patent 6,090,144 to Letot et al. issued July 18, 2000 discloses a knee prosthesis that includes a tibial component and a meniscal component that is adapted to be engaged with the tibial component through an asymmetrical engagement.
[0006] Further, joint arthroplasties are highly invasive and require surgical resection of the entire articular surface of one or more bones, or a majority thereof. With these procedures, the marrow space is often reamed to fit the stem of the prosthesis. The reaming results in a loss of the patient's bone stock. U.S. Patent 5,593,450 to Scott et al. issued January 14, 1997 discloses an oval domed shaped patella prosthesis. The prosthesis has a femoral component that includes two condyles as articulating surfaces. The two condyles meet to form a second trochlear groove and ride on a tibial component that articulates with respect to the femoral component. A patella component is provided to engage the trochlear groove. U.S. Patent 6,090,144 to Letot et al. issued July 18, 2000 discloses a knee prosthesis that includes a tibial component and a meniscal component that is adapted to be engaged with the tibial component through an asymmetrical engagement.
[0007] A variety of materials can be used in replacing a joint with a prosthetic, for example, silicone, e.g. for cosmetic repairs, or suitable metal alloys are appropriate. See, e.g., U.S. Patent No. 6,443,991 B1 to Running issued September 3, 2002, U.S. Patent No. 6,387,131 B1 to Miehlke et al. issued May 14, 2002; U.S. Patent No. 6,383,228 to Schmotzer issued May 7, 2002; U.S. Patent No. 6,344,059 B1 to Krakovits et al. issued February 5, 2002; U.S. Patent No. 6,203,576 to Afriat et al.
issued March 20, 2001; U.S. Patent No. 6,126,690 to Ateshian et at.
issued October 3, 2000; U.S. Patent 6,013,103 to Kaufman et al. issued January 11, 2000. Implantation of these prosthetic devices is usually associated with loss of underlying tissue and bone without recovery of the full function allowed by the original cartilage and, with some devices, serious long-term complications associated with the loss of significant amounts of tissue and bone can cause loosening of the implant. One such complication is osteolysis. Once the prosthesis becomes loosened from the joint, regardless of the cause, the prosthesis will then need to be replaced. Since the patient's bone stock is limited, the number of possible replacement surgeries is also limited for joint arthroplasty.
issued March 20, 2001; U.S. Patent No. 6,126,690 to Ateshian et at.
issued October 3, 2000; U.S. Patent 6,013,103 to Kaufman et al. issued January 11, 2000. Implantation of these prosthetic devices is usually associated with loss of underlying tissue and bone without recovery of the full function allowed by the original cartilage and, with some devices, serious long-term complications associated with the loss of significant amounts of tissue and bone can cause loosening of the implant. One such complication is osteolysis. Once the prosthesis becomes loosened from the joint, regardless of the cause, the prosthesis will then need to be replaced. Since the patient's bone stock is limited, the number of possible replacement surgeries is also limited for joint arthroplasty.
[0008] As can be appreciated, joint arthroplasties are highly invasive and require surgical resection of the entire, or a majority of the, articular surface of one or more bones involved in the repair. Typically with these procedures, the marrow space is fairly extensively reamed in order to fit the stem of the prosthesis within the bone. Reaming results in a loss of the patient's bone stock and over time subsequent osteolysis will frequently lead to loosening of the prosthesis. Further, the area where the implant and the bone mate degrades over time requiring the prosthesis to eventually be replaced. Since the patient's bone stock is limited, the number of possible replacement surgeries is also limited for joint arthroplasty. In short, over the course of 15 to 20 years, and in some cases even shorter time periods, the patient can run out of therapeutic options ultimately resulting in a painful, non-functional joint.
(0009] U.S. Patent No. 6,206,927 to Fell, et al., issued March 27, 2001, and U.S. Patent No. 6,558,421 to Fell, et al., issued May 6, 2003, disclose a surgically implantable knee prosthesis that does not require bone resection. This prosthesis is described as substantially elliptical in shape with one or more straight edges. Accordingly, these devices are not designed to substantially conform to the actual shape (contour) of the remaining cartilage in vivo and/or the underlying bone. Thus, integration of the implant Can be extremely difficult due to differences in thickness and curvature between the patient's surrounding cartilage and/or the underlying subchondral bone and the prosthesis. U.S. Patent 6,554,866 to Aicher, et at. issued April 29, 2003 describes a mono-condylar knee joint 5 prosthesis.
[0010] Interpositional knee devices that are not attached to both the tibia and femur have been described. For example, Platt et al. (1969) "Mould Arthroplasty of the Knee," Journal of Bone and Joint Surgery 51B(1):76-87, describes a hemi-arthroplasty with a convex undersurface that was not rigidly attached to the tibia. Devices that are attached to the bone have also been described. Two attachment designs are commonly used. The McKeever design is a cross-bar member, shaped like a "t" from a top perspective view, that extends from the bone mating surface of the device such that the "t" portion penetrates the bone surface while the surrounding surface from which the "t" extends abuts the bone surface.
See McKeever, "Tibial Plateau Prosthesis," Chapter 7, p. 86. An alternative attachment design is the Macintosh design, which replaces the "t" shaped fin for a series of multiple flat serrations or teeth. See Potter, "Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and Macintosh Design," Surg. ans. Of North Am. 49(4): 903-915 (1969).
See McKeever, "Tibial Plateau Prosthesis," Chapter 7, p. 86. An alternative attachment design is the Macintosh design, which replaces the "t" shaped fin for a series of multiple flat serrations or teeth. See Potter, "Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and Macintosh Design," Surg. ans. Of North Am. 49(4): 903-915 (1969).
[0011] U.S. Patent 4,502,161 to Wall issued March 5, 1985, describes a prosthetic meniscus constructed from materials such as silicone rubber or Teflon with reinforcing materials of stainless steel or nylon strands. U.S. Patent 4,085,466 to Goodfellow et at. issued March 25, 1978, describes a meniscal component made from plastic materials.
Reconstruction of meniscal lesions has also been attempted with carbon-fiber-polyurethane-poly (L-lactide). Leeslag, et at., Biological and Biomechanical Performance of Biomaterials (Christel et al., eds.) Elsevier Science Publishers B.V., Amsterdam. 1986. pp. 347-352. Reconstruction of meniscal lesions is also possible with bioresorbable materials and tissue scaffolds.
Reconstruction of meniscal lesions has also been attempted with carbon-fiber-polyurethane-poly (L-lactide). Leeslag, et at., Biological and Biomechanical Performance of Biomaterials (Christel et al., eds.) Elsevier Science Publishers B.V., Amsterdam. 1986. pp. 347-352. Reconstruction of meniscal lesions is also possible with bioresorbable materials and tissue scaffolds.
[0012] However, currently available devices do not always provide ideal alignment with the articular surfaces and the resultant joint congruity.
Poor alignment and poor joint congruity can, for example, lead to instability of the joint. Further, none of these solutions take into account the fact that roughly 80% of patients undergoing knee surgery have a healthy lateral compartment and only need to repair the medial condyle and the patella.
An additional 10% only have damage to the lateral condyle. Thus, 90% of patients do not require the entire condylar surface repaired,
Poor alignment and poor joint congruity can, for example, lead to instability of the joint. Further, none of these solutions take into account the fact that roughly 80% of patients undergoing knee surgery have a healthy lateral compartment and only need to repair the medial condyle and the patella.
An additional 10% only have damage to the lateral condyle. Thus, 90% of patients do not require the entire condylar surface repaired,
[0013] Thus, there remains a need for compositions for joint repair, including methods and compositions that facilitate the integration between the cartilage replacement system and the surrounding cartilage which takes into account the actual damage to be repaired. Further, there is a need for an implant or implant system that improves the anatomic result of the joint correction procedure by providing surfaces that more closely resemble the natural knee joint anatomy of a patient. Additionally, what is needed is an implant or implant system that provides an improved functional joint.
SUMMARY OF THE INVENTION
SUMMARY OF THE INVENTION
[0014] The present invention provides novel devices and methods for replacing a portion (e.g., diseased area and/or area slightly larger than the diseased area) of a knee joint (e.g., cartilage, meniscus and/or bone) with one or more implants, where the implant(s) achieves an anatomic or near anatomic fit with the surrounding structures and tissues. In cases where the devices and/or methods include an element associated with the underlying articular bone, the invention also provides that the bone-associated element can achieve a near anatomic alignment with the 7a subchondral bone. The invention also provides for the preparation of an implantation site with a single cut, or a few relatively small cuts.
Asymmetrical components can also be provided to improve the anatomic functionality of the repaired joint by providing a solution that closely resembles the natural knee joint anatomy. The improved anatomic results, in turn, leads to an improved functional result for the repaired joint. The invention also provides a kit which includes one or more implants used to achieve optimal joint correction.
Moreover, according to a first aspects the invention provides for an implant suitable for a condyle of a femur having a superior surface and an inferior surface wherein the superior surface opposes at least a portion of the condyle of the femur and the troch lea and the inferior surface opposes at least a portion of a weight bearing portion of a tibial surface and a patella and further wherein at least a portion of one of the superior or inferior surfaces has a three-dimensional shape that substantially matches the shape of one of the femur and tibia surfaces.
According to a second aspect, the invention provides for a kit for repairing a knee comprising one or more implants selected from the following: a condylar implant having a superior surface and an inferior surface wherein the superior surface opposes at least a portion of a condyle of the femur and a trochlea and the inferior surface opposes at least a portion of a weight bearing portion of a tibial surface and a patella and further wherein at least one of the superior or inferior surfaces has a three-dimensional shape that substantially matches the shape of one of the femur and tibia surfaces; a condylar implant having a superior surface and an inferior surface wherein the superior surface opposes at least a portion of a condyle of the femur and the inferior surface opposes at least a portion of a weight bearing portion of a tibial surface and further wherein at least one of the superior or inferior surfaces has a three-dimensional shape that substantially matches the shape of one of the femur and tibia surfaces a patellar implant having a first surface that engages the femur mating surface of the patella and a second surface that engages the trochlea; and an implant suitable for the tibial plateau having a superior surface and in inferior surface wherein the superior surface opposes at least a portion of a femur and the inferior portion opposes at least a portion of the tibial surface and further wherein at least one of the superior or inferior surfaces has a 7b three-dimensional shape that substantially matches the shape of one of the femur and tibial surfaces.
According to a third aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a superior surface and an inferior surface and a top portion and a "bottom portion with a curved lateral edge extending therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates prior to a sulcus terminalis on the joint surface.
According to a fourth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates at a sulcus terminalis on the knee joint surface.
According to a fifth aspect, the invention provides for an implant suitable for a distal femur in a knee joint having a superior surface and an inferior surface wherein the superior surface is configured to communicate with the femoral surface of a tibiofemoral articulation surface and the inferior surface is configured to communicate with the tibial surface of the tibiofemoral articulation surface.
According to a sixth aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; and a tibial component, wherein the tibial component replaces a tibial surface of the tibiofemoral articulation surface.
In an embodiment, the invention provides an implant system for repairing a knee joint of a patient comprising:
7c a femoral component, wherein the femoral component includes an inferior, femoral joint-facing surface that replaces a femoral surface of a patellofemoral articulation surface and/or a tibiofemoral articulation surface of the knee joint, wherein the inferior, femoral joint-facing surface has a three-dimensional shape that substantially matches a shape of a corresponding femoral surface of the knee joint of the patient, wherein the shape of the corresponding femoral surface is derived from electronic image data of the knee joint of the patient; and a tibial component, wherein the tibial component includes a tibial joint-facing surface that replaces a tibial surface of the tibiofemoral articulation surface.
According to a seventh aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; a tibial component, wherein the tibial component replaces the tibial surface of the tibiofemoral articulation surface; and a patellar component designed to replace a patellar surface of the patellofemoral articulation surface.
According to a eight aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates before a sulcus terminalis on the knee joint surface.
According to a ninth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates near a sulcus terminalis on the knee joint surface.
According to a tenth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween;and a trochlear groove component along the top portion of 7d the device, wherein the bottom portion of the femoral condyle component terminates beyond a sulcus terminalis on the knee joint surface.
According to an eleventh aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; and a tibial component, wherein the tibial component replaces the tibial surface of the tibiofemoral articulation surface, wherein at least one of the tibial component and femoral component is asymmetric.
According to a twelfth aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; a tibial component, wherein the tibial component replaces the tibial surface of the tibiofemoral articulation surface; and a patellar component designed to replace a patellar surface of the patellofemoral articulation surface, wherein at least one of the tibial, femoral and patellar component is asymetrical.
According to a thirteenth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a superior surface and an inferior surface and a top portion and a bottom portion with a curved surface extending therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates after a sulcus terminalis.
According to a fourteenth aspect, the invention provides for a tibial implant having a first surface having a substantially planar surface and a second surface with a partially planar surface wherein the second surface with a partially planar surface further comprises a dome structure.
According to a fifteenth aspect, the invention provides for a tibial implant having a first surface having a substantially planar surface and a second surface with a partially planar surface wherein the second surface with a partially planar surface further comprises a dome structure located on the partially planar surface such that the planar surface forms a lip around the dome.
7e The invention further provides for an implant suitable for repairing a condyle of a femur of a specific patient having a superior surface and an inferior surface, wherein the superior surface opposes at least a portion of the condyle of the femur and the inferior surface is configured as an articulating surface, and further wherein at least a portion of the superior surface is configured to abut bone of the condyle of the femur and comprises at least one substantially planar portion, and wherein the inferior surfaces has a three-dimensional shape based at least in part on the shape of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on existing cartilage of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on a corrected condition of at least a portion of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on a measurement of at least a portion of the condyle of the femur of the patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on subchondral bone of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on a curvature of the condyle of the femur of the specific patient.
In an embodiment, the above-noted implant further comprises a trochlear groove portion having a bone abutting surface configured and sized to abut at least a portion of an anterior cut of the femur of the specific patient when the superior surface is positioned to abut bone of the portion of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape includes information from a diseased or damaged portion of the condyle of the femur of the specific patient.
7f In an embodiment, the above-noted information includes a measurement of existing cartilage of the condyle of the femur of the specific patient.
In an embodiment, the above-noted information includes a measurement of subchondral bone of the condyle of the femur of the specific patient.
In an embodiment, the above-noted implant is selected from a library of implants.
In an embodiment, the above-noted implant further comprises a tibial implant suitable for implantation on a tibial plateau of a patient, wherein the tibial implant includes a tibial surface of the tibiofemoral articulation.
In an embodiment, at least a portion of the above-noted inferior surface is configured to communicate with the tibial surface of the tibiofemoral articulation surface.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 80-99.9% of normal joint motion.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 90-99.9% of normal joint motion.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 95-99. 9% of normal joint motion.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 98-99.9% of normal joint motion.
In an embodiment, the above-noted implant is formed to oppose at least a portion of a second condyle on the femur.
7g In an embodiment, the above-noted tibial implant further comprises a substantially planar surface having an edge configured in a patient-specific manner.
In an embodiment, the above-noted implant is a system comprised of a condylar implant and a patella mating implant wherein the patellar implant communicates with the femoral surface of the patellofemoral articulation surface.
In an embodiment, the above-noted implant further comprises a tibial implant having a tibial surface that communicates with the femoral surface of the tibiofemoral articulation surface.
In an embodiment, the above-noted patellofemoral articulation and tibiofemoral articulation are predetermined to restore the range of motion of the specific patients knee joint to between 80-99.9% of normal joint motion.
BRIEF DESCRIPTION OF THE DRAWINGS
[00151 FIG. 1A is a block diagram of a method for assessing a joint in need of repair according to the invention wherein the existing joint surface is unaltered, or substantially unaltered, prior to receiving the selected implant. FIG. 1B is a block diagram of a method for assessing a joint in need of repair according to the invention wherein the existing joint surface is unaltered, or substantially unaltered, prior to designing an implant suitable to achieve the repair. FIG. lc is a block diagram of a method for developing an implant and using the implant in a patient.
10016J FIG. 2A is a perspective view of a joint implant of the invention suitable for implantation at the tibial plateau of the knee joint.
FIG. 2B is a top view of the implant of FIG. 2A. FIG. 2c is a cross-sectional view of the implant of FIG. 2B along the lines C-C shown in FIG. 2B. FIG. 2o is a cross-sectional view along the lines D-D shown in FIG. 26. FIG. 2E is a cross-sectional view along the lines E-E shown in FIG. 2B. FIG. 2F is a side view of the implant of FIG. 2A. FIG. 2G is a cross-sectional view of the implant of FIG. 2A shown implanted taken along a plane parallel to the sagittal plane. FIG. 2H is a cross-sectional view of the implant of FIG. 2A
shown implanted taken along a plane parallel to the corona( plane. FIG. 21 is a cross-sectional view of the implant of FIG. 2A shown implanted taken along a plane parallel to the axial plane. FIG. 2J shows a slightly larger implant that extends closer to the bone medially (towards the edge of the tibial plateau) and anteriorly and posteriorly. FIG. 2K is a side view of an alternate embodiment of the joint implant of FIG. 2A showing an anchor in the form of a keel. FIG. 2L is a bottom view of an alternate embodiment of the joint implant of FIG. 2A showing an anchor. FIG. 2ro shows an anchor in the form of a cross-member. FIG. 2N-0 are alternative embodiments of the implant showing the lower surface have a trough for receiving a cross-bar. FIG. 2P illustrates a variety of cross-bars. FIGS. 2Q-R illustrate the device implanted within a knee joint. FIGS. 2s(1-9) illustrate another implant suitable for the tibial plateau further having a chamfer cut along one edge. FIG. 21(1-8) illustrate an alternate embodiment of the tibial implant wherein the surface of the joint is altered to create a flat or angled surface for the implant to mate with.
[0017] FiGs. 3A and B are perspective views of a joint implant suitable for use on a condyle of the femur from the inferior and superior surface viewpoints, respectively. FIG. 3c is a side view of the implant of FIG. 3A. FIG. 3D is a view of the inferior surface of the implant; FIG. 3E is a view of the superior surface of the implant and FIG. 3P is a cross-section of the implant. FIG. 3G is an axial view of a femur with the implant installed thereon. FIG. 3H is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. FIG. 31 is an anterior view of the knee joint with an implant of FIG. 3A implanted on the femoral condyle along with an implant suitable for the tibial plateau, such as that shown in FIG. 2. Fics. 3J-K illustrate an alternate embodiment of a joint implant for use on a condyle of a femur further having at least one chamfer cut.
[0018] FIG. 4A illustrates an implant suitable for the femoral condyle according to the prior art. FIGS. 4B-I depict another implant suitable for placement on a femoral condyle. FIG. 4B is a slightly perspective view of the implant from the superior surface. FIG. 4c is a side view of the implant of FIG. 4s. FIG. 4D is a top view of the inferior surface of the implant;
FIG. 4E and F are perspective side views of the implant. FIG. 4G is an axial view of a femur with the implant installed thereon. FIG. 4H is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. FIG. 41 is an anterior view of the knee joint with an implant of FIG. 4B implanted on the femoral condyle along with an implant suitable for the tibial plateau, such as that shown in FIG. 2.
[0019] FIGS. 5A-S are depictions of another implant suitable for placement on the femoral condyle. FIG. SA is a top view of the inferior surface of the implant showing a chamfer cut. FIG. 5e is a slightly perspective view of the superior surface of the implant. FIG. 5c is a perspective side view of the implant from a first direction; FIG. 5D is a slightly perspective side view of the implant from a second direction.
FIGS. 5E-F are side views of the implant showing the bearing loads;
FiGs. 5G and H illustrate an alternative embodiment wherein the implant has lateral rails; FIG. 5i illustrates another embodiment wherein the implant has an anchoring keel. FIG. 5j is an axial view of a femur with the implant installed on the femoral condyles. FIG. 5K is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. FIG. 51_ is an anterior view of the knee joint with an implant of FIG. 5A implanted on the femoral condyles along with an implant suitable for the tibial plateau, such as that shown in FIG. 2. FIGS. 5M-N depicts a device implanted within the knee joint. FIG. 50 depicts an alternate embodiment of the device which accommodates an partial removal of the condyle. FIGS. 5P-s illustrate alternative embodiments of the implant having one or more chamfer cuts.
[0020] FIG. 6A-G illustrate a device as shown in FIG. 5 along with a graphical representation of the cross-sectional data points comprising the surface map.
[0021] FIG. 7A-C illustrate an alternate design of a device, suitable 5 for a portion of the femoral condyle, having a two piece configuration.
[0022] FIG. 8A-J depict a whole patella (FIG. 8A) and a patella that has been cut in order to install an implant (FIG. 8e). A top and side view of a suitable patella implant is shown (FIG. 8c-D), and an illustration of the implant superimposed on a whole patella is shown to illustrate the 10 location of the implant dome relative to the patellar ridge. FIGS. 8E-F
illustrate the implant superimposed over a patella. FIGS. 8G-J illustrate an alternate design for the patella implant based on a blank (FIG. 8G).
[0023] FIG. 9A-C depict representative side views of a knee joint with any of the devices taught installed therein. FIG. 9A depicts the knee with a condyle implant and a patella implant. FIG. 9B depicts an alternate view of the knee with a condyle implant and a patella implant wherein the condyle implant covers a greater portion of the surface of the condyle in the posterior direction. FIG. 9C illustrates a knee joint wherein the implant is provided on the condyle, the patella and the tibial plateau.
[0024] FIG. 10A-D depict a frontal view of the knee joint with any of the devices taught installed therein. FIG. 10A depicts the knee with a tibial implant. FIG. 10B depicts the knee with a condyle implant. FIG. 10C
depicts a knee with a tibial implant and a condyle implant. FIG. 10C
depicts a knee with a bicompartemental condyle implant and a tibial implant DETAILED DESCRIPTION OF THE INVENTION
[0025] The following description is presented to enable any person skilled in the art to make and use the invention.
The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed therein. To the extent necessary to achieve a complete understanding of the invention disclosed, see the specification and drawings of all issued patents, patent publications, and patent applications cited in this application.
[0026] As will be appreciated by those of skill in the art, methods recited therein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events.
Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the invention variations described may be set forth and claimed independently, or in combination with any one or more of the features described therein.
[0027] The practice of the present invention can employ, unless otherwise indicated, conventional and digital methods of x-ray imaging and procession x-ray tomosynthesis, ultrasound including A-scan, B-scan and C-scan, computed tomography (CT scan), magnetic resonance imaging (MRI), optical coherence tomography, single photon emission tomography (SPECT) and positron emission tomography (PET) within the skill of the art. Such techniques are explained fully in the literature and need not be described herein. See, e.g., X-Ray Structure Determination:
A Pratical Guide, 2nd Edition, editors Stout and Jensen, 1989, John Wiley & Sons, publisher, Body CT: A Practical Approach, editor Slone, 1999, McGraw-Hill publisher; X-ray Diagnosis: A Physician's Approach, editor Lam, 1998 Springer-Verlag, publisher; and Dental Radiology: Understanding the X-Ray Image, editor Laetitia Brocklebank 1997, Oxford University Press publisher. See also, The Essential Physics of Medical Imaging (2nd Ed.), Jerrold T. Bushberg, et al.
[0028] The present invention provides methods and compositions for repairing joints, particularly for repairing articular cartilage and for facilitating the integration of a wide variety of cartilage repair materials into a subject. Among other things, the techniques described herein allow for the customization of cartilage repair material to suit a particular subject, for example in terms of size, cartilage thickness and/or curvature. When the shape (e.g., size, thickness and/or curvature) of the articular cartilage surface is an exact or near anatomic fit with the non-damaged cartilage or with the subject's original cartilage, the success of repair is enhanced.
The repair material can be shaped prior to implantation and such shaping can be based, for example, on electronic images that provide information regarding curvature or thickness of any "normal" cartilage surrounding the defect and/or on curvature of the bone underlying the defect. Thus, the current invention provides, among other things, for minimally invasive methods for partial joint replacement. The methods will require only minimal or, in some instances, no loss in bone stock. Additionally, unlike with current techniques, the methods described herein will help to restore the integrity of the articular surface by achieving an exact or near anatomic , match between the implant and the surrounding or adjacent cartilage and/or subchondral bone.
[0029] Advantages of the present invention can include, but are not limited to, (i) customization of joint repair, thereby enhancing the efficacy and comfort level for the patient following the repair procedure; (ii) eliminating the need for a surgeon to measure the defect to be repaired intraoperatively in some embodiments; (iii) eliminating the need for a surgeon to shape the material during the implantation procedure; (iv) providing methods of evaluating curvature of the repair material based on bone or tissue images or based on intraoperative probing techniques; (v) providing methods of repairing joints with only minimal or, in some instances, no loss in bone stock; (vi) improving postoperative joint congruity; (vii) improving the postoperative patient recovery in some embodiments and (viii) improving postoperative function, such as range of ' motion.
[0030] Thus, the methods described herein allow for the design and use of joint repair material that more precisely fits the defect (e.g., site of implantation) or the articular surface(s) and, accordingly, provides improved repair of the joint.
[0031] I. ASSESSMENT OF JOINTS AND ALIGNMENT
[0032] The methods and compositions described herein can be used to treat defects resulting from disease of the cartilage (e.g., osteoarthritis), bone damage, cartilage damage, trauma, and/or degeneration due to overuse or age. The invention allows, among other things, a health practitioner to evaluate and treat such defects. The size, volume and shape of the area of interest can include only the region of cartilage that has the defect, but preferably will also include contiguous parts of the cartilage surrounding the cartilage defect.
[0033] As will be appreciated by those of skill in the art, size, curvature and/or thickness measurements can be obtained using any suitable technique. For example, one-dimensional, two-dimensional, and/or three-dimensional measurements can be obtained using suitable mechanical means, laser devices, electromagnetic or optical tracking systems, molds, materials applied to the articular surface that harden and 0-,.... 10 "memorize the surface contour," and/or one or more imaging techniques known in the art. Measurements can be obtained non-invasively and/or intraoperatively (e.g., using a probe or other surgical device). As will be appreciatedby those of skill in the art, the thickness of the repair device can vary at any given point depending upon patient's anatomy and/or the depth of the damage to the cartilage and/or bone to be corrected at any particular location on an articular surface.
[0034] FIG. IA is a flow chart showing steps taken by a practitioner in assessing a joint. First, a practitioner obtains a measurement of a target joint 10. The step of obtaining a measurement can be accomplished by taking an image of the joint. This step can be repeated, as necessary, 11 to obtain a plurality of images in order to further refine the joint assessment process. Once the practitioner has obtained the necessary measurements, the information is used to generate a model representation of the target joint being assessed 30. This model representation can be in the form of a topographical map or image. The model representation of the joint can be in one, two, or three dimensions. It can include a physical model. More than one model can be created 31, if desired. Either the original model, or a subsequently created model, or both can be used.
After the model representation of the joint is generated 30, the practitioner can optionally generate a projected model representation of the target joint in a corrected condition 40, e.g., from the existing cartilage on the joint surface, by providing a mirror of the opposing joint surface, or a combination thereof Again, this step can be repeated 41, as necessary or desired. Using the difference between the topographical condition of the joint and the projected image of the joint, the practitioner can then select a joint implant 50 that is suitable to achieve the corrected joint anatomy. As will be appreciated by those of skill in the art, the selection process 50 can be repeated 51 as often as desired to achieve the desired result.
Additionally, it is contemplated that a practitioner can obtain a measurement of a target joint 10 by obtaining, for example, an x-ray, and then select a suitable joint replacement implant 50.
[0035] As will be appreciated by those of skill in the art, the 5 practitioner can proceed directly from the step of generating a model representation of the target joint 30 to the step of selecting a suitable joint replacement implant 50 as shown by the arrow 32. Additionally, following selection of suitable joint replacement implant 50, the steps of obtaining measurement of target joint 10, generating model representation of target 10 joint 30 and generating projected model 40, can be repeated in series or parallel as shown by the flow 24, 25, 26.
[0036] FIG. la is an alternate flow chart showing steps taken by a practitioner in assessing a joint. First, a practitioner obtains a measurement of a target joint 10. The step of obtaining a measurement
Asymmetrical components can also be provided to improve the anatomic functionality of the repaired joint by providing a solution that closely resembles the natural knee joint anatomy. The improved anatomic results, in turn, leads to an improved functional result for the repaired joint. The invention also provides a kit which includes one or more implants used to achieve optimal joint correction.
Moreover, according to a first aspects the invention provides for an implant suitable for a condyle of a femur having a superior surface and an inferior surface wherein the superior surface opposes at least a portion of the condyle of the femur and the troch lea and the inferior surface opposes at least a portion of a weight bearing portion of a tibial surface and a patella and further wherein at least a portion of one of the superior or inferior surfaces has a three-dimensional shape that substantially matches the shape of one of the femur and tibia surfaces.
According to a second aspect, the invention provides for a kit for repairing a knee comprising one or more implants selected from the following: a condylar implant having a superior surface and an inferior surface wherein the superior surface opposes at least a portion of a condyle of the femur and a trochlea and the inferior surface opposes at least a portion of a weight bearing portion of a tibial surface and a patella and further wherein at least one of the superior or inferior surfaces has a three-dimensional shape that substantially matches the shape of one of the femur and tibia surfaces; a condylar implant having a superior surface and an inferior surface wherein the superior surface opposes at least a portion of a condyle of the femur and the inferior surface opposes at least a portion of a weight bearing portion of a tibial surface and further wherein at least one of the superior or inferior surfaces has a three-dimensional shape that substantially matches the shape of one of the femur and tibia surfaces a patellar implant having a first surface that engages the femur mating surface of the patella and a second surface that engages the trochlea; and an implant suitable for the tibial plateau having a superior surface and in inferior surface wherein the superior surface opposes at least a portion of a femur and the inferior portion opposes at least a portion of the tibial surface and further wherein at least one of the superior or inferior surfaces has a 7b three-dimensional shape that substantially matches the shape of one of the femur and tibial surfaces.
According to a third aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a superior surface and an inferior surface and a top portion and a "bottom portion with a curved lateral edge extending therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates prior to a sulcus terminalis on the joint surface.
According to a fourth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates at a sulcus terminalis on the knee joint surface.
According to a fifth aspect, the invention provides for an implant suitable for a distal femur in a knee joint having a superior surface and an inferior surface wherein the superior surface is configured to communicate with the femoral surface of a tibiofemoral articulation surface and the inferior surface is configured to communicate with the tibial surface of the tibiofemoral articulation surface.
According to a sixth aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; and a tibial component, wherein the tibial component replaces a tibial surface of the tibiofemoral articulation surface.
In an embodiment, the invention provides an implant system for repairing a knee joint of a patient comprising:
7c a femoral component, wherein the femoral component includes an inferior, femoral joint-facing surface that replaces a femoral surface of a patellofemoral articulation surface and/or a tibiofemoral articulation surface of the knee joint, wherein the inferior, femoral joint-facing surface has a three-dimensional shape that substantially matches a shape of a corresponding femoral surface of the knee joint of the patient, wherein the shape of the corresponding femoral surface is derived from electronic image data of the knee joint of the patient; and a tibial component, wherein the tibial component includes a tibial joint-facing surface that replaces a tibial surface of the tibiofemoral articulation surface.
According to a seventh aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; a tibial component, wherein the tibial component replaces the tibial surface of the tibiofemoral articulation surface; and a patellar component designed to replace a patellar surface of the patellofemoral articulation surface.
According to a eight aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates before a sulcus terminalis on the knee joint surface.
According to a ninth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates near a sulcus terminalis on the knee joint surface.
According to a tenth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a top portion and a bottom portion with a curved lateral edge therebetween;and a trochlear groove component along the top portion of 7d the device, wherein the bottom portion of the femoral condyle component terminates beyond a sulcus terminalis on the knee joint surface.
According to an eleventh aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; and a tibial component, wherein the tibial component replaces the tibial surface of the tibiofemoral articulation surface, wherein at least one of the tibial component and femoral component is asymmetric.
According to a twelfth aspect, the invention provides for an implant system comprising: a femoral component, wherein the femoral component replaces a femoral surface of the patellofemoral articulation surface and a tibiofemoral articulation surface; a tibial component, wherein the tibial component replaces the tibial surface of the tibiofemoral articulation surface; and a patellar component designed to replace a patellar surface of the patellofemoral articulation surface, wherein at least one of the tibial, femoral and patellar component is asymetrical.
According to a thirteenth aspect, the invention provides for a prosthetic device for a knee joint comprising: a femoral condyle component having a superior surface and an inferior surface and a top portion and a bottom portion with a curved surface extending therebetween; and a trochlear groove component along the top portion of the device, wherein the bottom portion of the femoral condyle component terminates after a sulcus terminalis.
According to a fourteenth aspect, the invention provides for a tibial implant having a first surface having a substantially planar surface and a second surface with a partially planar surface wherein the second surface with a partially planar surface further comprises a dome structure.
According to a fifteenth aspect, the invention provides for a tibial implant having a first surface having a substantially planar surface and a second surface with a partially planar surface wherein the second surface with a partially planar surface further comprises a dome structure located on the partially planar surface such that the planar surface forms a lip around the dome.
7e The invention further provides for an implant suitable for repairing a condyle of a femur of a specific patient having a superior surface and an inferior surface, wherein the superior surface opposes at least a portion of the condyle of the femur and the inferior surface is configured as an articulating surface, and further wherein at least a portion of the superior surface is configured to abut bone of the condyle of the femur and comprises at least one substantially planar portion, and wherein the inferior surfaces has a three-dimensional shape based at least in part on the shape of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on existing cartilage of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on a corrected condition of at least a portion of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on a measurement of at least a portion of the condyle of the femur of the patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on subchondral bone of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape is based at least in part on a curvature of the condyle of the femur of the specific patient.
In an embodiment, the above-noted implant further comprises a trochlear groove portion having a bone abutting surface configured and sized to abut at least a portion of an anterior cut of the femur of the specific patient when the superior surface is positioned to abut bone of the portion of the condyle of the femur of the specific patient.
In an embodiment, the above-noted three-dimensional shape includes information from a diseased or damaged portion of the condyle of the femur of the specific patient.
7f In an embodiment, the above-noted information includes a measurement of existing cartilage of the condyle of the femur of the specific patient.
In an embodiment, the above-noted information includes a measurement of subchondral bone of the condyle of the femur of the specific patient.
In an embodiment, the above-noted implant is selected from a library of implants.
In an embodiment, the above-noted implant further comprises a tibial implant suitable for implantation on a tibial plateau of a patient, wherein the tibial implant includes a tibial surface of the tibiofemoral articulation.
In an embodiment, at least a portion of the above-noted inferior surface is configured to communicate with the tibial surface of the tibiofemoral articulation surface.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 80-99.9% of normal joint motion.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 90-99.9% of normal joint motion.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 95-99. 9% of normal joint motion.
In an embodiment, the above-noted tibiofemoral articulation is predetermined to restore the range of motion of the specific patient's knee joint to between 98-99.9% of normal joint motion.
In an embodiment, the above-noted implant is formed to oppose at least a portion of a second condyle on the femur.
7g In an embodiment, the above-noted tibial implant further comprises a substantially planar surface having an edge configured in a patient-specific manner.
In an embodiment, the above-noted implant is a system comprised of a condylar implant and a patella mating implant wherein the patellar implant communicates with the femoral surface of the patellofemoral articulation surface.
In an embodiment, the above-noted implant further comprises a tibial implant having a tibial surface that communicates with the femoral surface of the tibiofemoral articulation surface.
In an embodiment, the above-noted patellofemoral articulation and tibiofemoral articulation are predetermined to restore the range of motion of the specific patients knee joint to between 80-99.9% of normal joint motion.
BRIEF DESCRIPTION OF THE DRAWINGS
[00151 FIG. 1A is a block diagram of a method for assessing a joint in need of repair according to the invention wherein the existing joint surface is unaltered, or substantially unaltered, prior to receiving the selected implant. FIG. 1B is a block diagram of a method for assessing a joint in need of repair according to the invention wherein the existing joint surface is unaltered, or substantially unaltered, prior to designing an implant suitable to achieve the repair. FIG. lc is a block diagram of a method for developing an implant and using the implant in a patient.
10016J FIG. 2A is a perspective view of a joint implant of the invention suitable for implantation at the tibial plateau of the knee joint.
FIG. 2B is a top view of the implant of FIG. 2A. FIG. 2c is a cross-sectional view of the implant of FIG. 2B along the lines C-C shown in FIG. 2B. FIG. 2o is a cross-sectional view along the lines D-D shown in FIG. 26. FIG. 2E is a cross-sectional view along the lines E-E shown in FIG. 2B. FIG. 2F is a side view of the implant of FIG. 2A. FIG. 2G is a cross-sectional view of the implant of FIG. 2A shown implanted taken along a plane parallel to the sagittal plane. FIG. 2H is a cross-sectional view of the implant of FIG. 2A
shown implanted taken along a plane parallel to the corona( plane. FIG. 21 is a cross-sectional view of the implant of FIG. 2A shown implanted taken along a plane parallel to the axial plane. FIG. 2J shows a slightly larger implant that extends closer to the bone medially (towards the edge of the tibial plateau) and anteriorly and posteriorly. FIG. 2K is a side view of an alternate embodiment of the joint implant of FIG. 2A showing an anchor in the form of a keel. FIG. 2L is a bottom view of an alternate embodiment of the joint implant of FIG. 2A showing an anchor. FIG. 2ro shows an anchor in the form of a cross-member. FIG. 2N-0 are alternative embodiments of the implant showing the lower surface have a trough for receiving a cross-bar. FIG. 2P illustrates a variety of cross-bars. FIGS. 2Q-R illustrate the device implanted within a knee joint. FIGS. 2s(1-9) illustrate another implant suitable for the tibial plateau further having a chamfer cut along one edge. FIG. 21(1-8) illustrate an alternate embodiment of the tibial implant wherein the surface of the joint is altered to create a flat or angled surface for the implant to mate with.
[0017] FiGs. 3A and B are perspective views of a joint implant suitable for use on a condyle of the femur from the inferior and superior surface viewpoints, respectively. FIG. 3c is a side view of the implant of FIG. 3A. FIG. 3D is a view of the inferior surface of the implant; FIG. 3E is a view of the superior surface of the implant and FIG. 3P is a cross-section of the implant. FIG. 3G is an axial view of a femur with the implant installed thereon. FIG. 3H is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. FIG. 31 is an anterior view of the knee joint with an implant of FIG. 3A implanted on the femoral condyle along with an implant suitable for the tibial plateau, such as that shown in FIG. 2. Fics. 3J-K illustrate an alternate embodiment of a joint implant for use on a condyle of a femur further having at least one chamfer cut.
[0018] FIG. 4A illustrates an implant suitable for the femoral condyle according to the prior art. FIGS. 4B-I depict another implant suitable for placement on a femoral condyle. FIG. 4B is a slightly perspective view of the implant from the superior surface. FIG. 4c is a side view of the implant of FIG. 4s. FIG. 4D is a top view of the inferior surface of the implant;
FIG. 4E and F are perspective side views of the implant. FIG. 4G is an axial view of a femur with the implant installed thereon. FIG. 4H is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. FIG. 41 is an anterior view of the knee joint with an implant of FIG. 4B implanted on the femoral condyle along with an implant suitable for the tibial plateau, such as that shown in FIG. 2.
[0019] FIGS. 5A-S are depictions of another implant suitable for placement on the femoral condyle. FIG. SA is a top view of the inferior surface of the implant showing a chamfer cut. FIG. 5e is a slightly perspective view of the superior surface of the implant. FIG. 5c is a perspective side view of the implant from a first direction; FIG. 5D is a slightly perspective side view of the implant from a second direction.
FIGS. 5E-F are side views of the implant showing the bearing loads;
FiGs. 5G and H illustrate an alternative embodiment wherein the implant has lateral rails; FIG. 5i illustrates another embodiment wherein the implant has an anchoring keel. FIG. 5j is an axial view of a femur with the implant installed on the femoral condyles. FIG. 5K is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. FIG. 51_ is an anterior view of the knee joint with an implant of FIG. 5A implanted on the femoral condyles along with an implant suitable for the tibial plateau, such as that shown in FIG. 2. FIGS. 5M-N depicts a device implanted within the knee joint. FIG. 50 depicts an alternate embodiment of the device which accommodates an partial removal of the condyle. FIGS. 5P-s illustrate alternative embodiments of the implant having one or more chamfer cuts.
[0020] FIG. 6A-G illustrate a device as shown in FIG. 5 along with a graphical representation of the cross-sectional data points comprising the surface map.
[0021] FIG. 7A-C illustrate an alternate design of a device, suitable 5 for a portion of the femoral condyle, having a two piece configuration.
[0022] FIG. 8A-J depict a whole patella (FIG. 8A) and a patella that has been cut in order to install an implant (FIG. 8e). A top and side view of a suitable patella implant is shown (FIG. 8c-D), and an illustration of the implant superimposed on a whole patella is shown to illustrate the 10 location of the implant dome relative to the patellar ridge. FIGS. 8E-F
illustrate the implant superimposed over a patella. FIGS. 8G-J illustrate an alternate design for the patella implant based on a blank (FIG. 8G).
[0023] FIG. 9A-C depict representative side views of a knee joint with any of the devices taught installed therein. FIG. 9A depicts the knee with a condyle implant and a patella implant. FIG. 9B depicts an alternate view of the knee with a condyle implant and a patella implant wherein the condyle implant covers a greater portion of the surface of the condyle in the posterior direction. FIG. 9C illustrates a knee joint wherein the implant is provided on the condyle, the patella and the tibial plateau.
[0024] FIG. 10A-D depict a frontal view of the knee joint with any of the devices taught installed therein. FIG. 10A depicts the knee with a tibial implant. FIG. 10B depicts the knee with a condyle implant. FIG. 10C
depicts a knee with a tibial implant and a condyle implant. FIG. 10C
depicts a knee with a bicompartemental condyle implant and a tibial implant DETAILED DESCRIPTION OF THE INVENTION
[0025] The following description is presented to enable any person skilled in the art to make and use the invention.
The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed therein. To the extent necessary to achieve a complete understanding of the invention disclosed, see the specification and drawings of all issued patents, patent publications, and patent applications cited in this application.
[0026] As will be appreciated by those of skill in the art, methods recited therein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events.
Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the invention variations described may be set forth and claimed independently, or in combination with any one or more of the features described therein.
[0027] The practice of the present invention can employ, unless otherwise indicated, conventional and digital methods of x-ray imaging and procession x-ray tomosynthesis, ultrasound including A-scan, B-scan and C-scan, computed tomography (CT scan), magnetic resonance imaging (MRI), optical coherence tomography, single photon emission tomography (SPECT) and positron emission tomography (PET) within the skill of the art. Such techniques are explained fully in the literature and need not be described herein. See, e.g., X-Ray Structure Determination:
A Pratical Guide, 2nd Edition, editors Stout and Jensen, 1989, John Wiley & Sons, publisher, Body CT: A Practical Approach, editor Slone, 1999, McGraw-Hill publisher; X-ray Diagnosis: A Physician's Approach, editor Lam, 1998 Springer-Verlag, publisher; and Dental Radiology: Understanding the X-Ray Image, editor Laetitia Brocklebank 1997, Oxford University Press publisher. See also, The Essential Physics of Medical Imaging (2nd Ed.), Jerrold T. Bushberg, et al.
[0028] The present invention provides methods and compositions for repairing joints, particularly for repairing articular cartilage and for facilitating the integration of a wide variety of cartilage repair materials into a subject. Among other things, the techniques described herein allow for the customization of cartilage repair material to suit a particular subject, for example in terms of size, cartilage thickness and/or curvature. When the shape (e.g., size, thickness and/or curvature) of the articular cartilage surface is an exact or near anatomic fit with the non-damaged cartilage or with the subject's original cartilage, the success of repair is enhanced.
The repair material can be shaped prior to implantation and such shaping can be based, for example, on electronic images that provide information regarding curvature or thickness of any "normal" cartilage surrounding the defect and/or on curvature of the bone underlying the defect. Thus, the current invention provides, among other things, for minimally invasive methods for partial joint replacement. The methods will require only minimal or, in some instances, no loss in bone stock. Additionally, unlike with current techniques, the methods described herein will help to restore the integrity of the articular surface by achieving an exact or near anatomic , match between the implant and the surrounding or adjacent cartilage and/or subchondral bone.
[0029] Advantages of the present invention can include, but are not limited to, (i) customization of joint repair, thereby enhancing the efficacy and comfort level for the patient following the repair procedure; (ii) eliminating the need for a surgeon to measure the defect to be repaired intraoperatively in some embodiments; (iii) eliminating the need for a surgeon to shape the material during the implantation procedure; (iv) providing methods of evaluating curvature of the repair material based on bone or tissue images or based on intraoperative probing techniques; (v) providing methods of repairing joints with only minimal or, in some instances, no loss in bone stock; (vi) improving postoperative joint congruity; (vii) improving the postoperative patient recovery in some embodiments and (viii) improving postoperative function, such as range of ' motion.
[0030] Thus, the methods described herein allow for the design and use of joint repair material that more precisely fits the defect (e.g., site of implantation) or the articular surface(s) and, accordingly, provides improved repair of the joint.
[0031] I. ASSESSMENT OF JOINTS AND ALIGNMENT
[0032] The methods and compositions described herein can be used to treat defects resulting from disease of the cartilage (e.g., osteoarthritis), bone damage, cartilage damage, trauma, and/or degeneration due to overuse or age. The invention allows, among other things, a health practitioner to evaluate and treat such defects. The size, volume and shape of the area of interest can include only the region of cartilage that has the defect, but preferably will also include contiguous parts of the cartilage surrounding the cartilage defect.
[0033] As will be appreciated by those of skill in the art, size, curvature and/or thickness measurements can be obtained using any suitable technique. For example, one-dimensional, two-dimensional, and/or three-dimensional measurements can be obtained using suitable mechanical means, laser devices, electromagnetic or optical tracking systems, molds, materials applied to the articular surface that harden and 0-,.... 10 "memorize the surface contour," and/or one or more imaging techniques known in the art. Measurements can be obtained non-invasively and/or intraoperatively (e.g., using a probe or other surgical device). As will be appreciatedby those of skill in the art, the thickness of the repair device can vary at any given point depending upon patient's anatomy and/or the depth of the damage to the cartilage and/or bone to be corrected at any particular location on an articular surface.
[0034] FIG. IA is a flow chart showing steps taken by a practitioner in assessing a joint. First, a practitioner obtains a measurement of a target joint 10. The step of obtaining a measurement can be accomplished by taking an image of the joint. This step can be repeated, as necessary, 11 to obtain a plurality of images in order to further refine the joint assessment process. Once the practitioner has obtained the necessary measurements, the information is used to generate a model representation of the target joint being assessed 30. This model representation can be in the form of a topographical map or image. The model representation of the joint can be in one, two, or three dimensions. It can include a physical model. More than one model can be created 31, if desired. Either the original model, or a subsequently created model, or both can be used.
After the model representation of the joint is generated 30, the practitioner can optionally generate a projected model representation of the target joint in a corrected condition 40, e.g., from the existing cartilage on the joint surface, by providing a mirror of the opposing joint surface, or a combination thereof Again, this step can be repeated 41, as necessary or desired. Using the difference between the topographical condition of the joint and the projected image of the joint, the practitioner can then select a joint implant 50 that is suitable to achieve the corrected joint anatomy. As will be appreciated by those of skill in the art, the selection process 50 can be repeated 51 as often as desired to achieve the desired result.
Additionally, it is contemplated that a practitioner can obtain a measurement of a target joint 10 by obtaining, for example, an x-ray, and then select a suitable joint replacement implant 50.
[0035] As will be appreciated by those of skill in the art, the 5 practitioner can proceed directly from the step of generating a model representation of the target joint 30 to the step of selecting a suitable joint replacement implant 50 as shown by the arrow 32. Additionally, following selection of suitable joint replacement implant 50, the steps of obtaining measurement of target joint 10, generating model representation of target 10 joint 30 and generating projected model 40, can be repeated in series or parallel as shown by the flow 24, 25, 26.
[0036] FIG. la is an alternate flow chart showing steps taken by a practitioner in assessing a joint. First, a practitioner obtains a measurement of a target joint 10. The step of obtaining a measurement
15 can be accomplished by taking an image of the joint This step can be repeated, as necessary, 11 to obtain a plurality of images in order to further refine the joint assessment process. Once the practitioner has obtained the necessary measurements, the information is used to generate a model representation of the target joint being assessed 30.
This model representation can be in the form of a topographical map or image. The model representation of the joint can be in one, two, or three dimensions. The process can be repeated 31 as necessary or desired. It can include a physical model. After the model representation of the joint is assessed 30, the practitioner can optionally generate a projected model representation of the target joint in a corrected condition 40. This step can be repeated 41 as necessary or desired. Using the difference between the topographical condition of the joint and the projected image of the joint, the practitioner can then design a joint implant 52 that is suitable to achieve the corrected joint anatomy, repeating the design process 53 as often as
This model representation can be in the form of a topographical map or image. The model representation of the joint can be in one, two, or three dimensions. The process can be repeated 31 as necessary or desired. It can include a physical model. After the model representation of the joint is assessed 30, the practitioner can optionally generate a projected model representation of the target joint in a corrected condition 40. This step can be repeated 41 as necessary or desired. Using the difference between the topographical condition of the joint and the projected image of the joint, the practitioner can then design a joint implant 52 that is suitable to achieve the corrected joint anatomy, repeating the design process 53 as often as
16 necessary to achieve the desired implant design. The practitioner can also assess whether providing additional features, such as rails, keels, lips, pegs, cruciate stems, or anchors, cross-bars, etc. will enhance the implants' performance in the target joint.
[0037] As will be appreciated by those of skill in the art, the practitioner can proceed directly from the step of generating a model representation of the target joint 30 to the step of designing a suitable joint replacement implant 52 as shown by the arrow 38. Similar to the flow shown above, following the design of a suitable joint replacement implant 52, the steps of obtaining measurement of target joint 10, generating model representation of target joint 30 and generating projected model 40, can be repeated in series or parallel as shown by the flow 42, 43, 44.
[0038] FIG. 1c is a flow chart illustrating the process of selecting an implant for a patient. First, using the techniques described above or those suitable and known in the art at the time the invention is practiced, the size of area of diseased cartilage or cartilage loss is measured 100. This step can be repeated multiple times 101, as desired. Once the size of the cartilage defect is measured, the thickness of adjacent cartilage can optionally be measured 110. This process can also be repeated as desired 111. Either after measuring the cartilage loss or measuring the thickness of adjacent cartilage, the curvature of the articular surface is then measured 120. Alternatively, the subchondral bone can be measured. As will be appreciated measurements can be taken of the surface of the joint being repaired, or of the mating surface in order to facilitate development of the best design for the implant surface.
[0039] Once the surfaces have been measured, the user either selects the best fitting implant contained in a library of implants 130 or generates a patient-specific implant 132. These steps can be repeated as
[0037] As will be appreciated by those of skill in the art, the practitioner can proceed directly from the step of generating a model representation of the target joint 30 to the step of designing a suitable joint replacement implant 52 as shown by the arrow 38. Similar to the flow shown above, following the design of a suitable joint replacement implant 52, the steps of obtaining measurement of target joint 10, generating model representation of target joint 30 and generating projected model 40, can be repeated in series or parallel as shown by the flow 42, 43, 44.
[0038] FIG. 1c is a flow chart illustrating the process of selecting an implant for a patient. First, using the techniques described above or those suitable and known in the art at the time the invention is practiced, the size of area of diseased cartilage or cartilage loss is measured 100. This step can be repeated multiple times 101, as desired. Once the size of the cartilage defect is measured, the thickness of adjacent cartilage can optionally be measured 110. This process can also be repeated as desired 111. Either after measuring the cartilage loss or measuring the thickness of adjacent cartilage, the curvature of the articular surface is then measured 120. Alternatively, the subchondral bone can be measured. As will be appreciated measurements can be taken of the surface of the joint being repaired, or of the mating surface in order to facilitate development of the best design for the implant surface.
[0039] Once the surfaces have been measured, the user either selects the best fitting implant contained in a library of implants 130 or generates a patient-specific implant 132. These steps can be repeated as
17 desired or necessary to achieve the best fitting implant for a patient, 131, 133. As will be appreciated by those of skill in the art, the process of selecting or designing an implant can be tested against the information contained in the MRI or x-ray of the patient to ensure that the surfaces of the device achieves a good fit relative to the patient's joint surface.
Testing can be accomplished by, for example, superimposing the implant image over the image for the patient's joint. Once it has been determined that a suitable implant has been selected or designed, the implant site can be prepared 140, for example by removing cartilage or bone from the joint surface, or the implant can be placed into the joint 150.
[0040] The joint implant selected or designed achieves anatomic or near anatomic fit with the existing surface of the joint while presenting a mating surface for the opposing joint surface that replicates the natural joint anatomy. In this instance, both the existing surface of the joint can be assessed as well as the desired resulting surface of the joint. This technique is particularly useful for implants that are not anchored into the bone.
[0041] As will be appreciated by those of skill in the art, the physician, or other person practicing the invention, can obtain a measurement of a target joint 10 and then either design 52 or select 50 a suitable joint replacement implant.
[0042] II. REPAIR MATERIALS
[0.043] A wide variety of materials find use in the practice of the present invention, including, but not limited to, plastics, metals, crystal free metals, ceramics, biological materials (e.g., collagen or other extracellular matrix materials), hydroxyapatite, cells (e.g., stem cells, chondrocyte cells or the like), or combinations thereof. Based on the information (e.g., measurements) obtained regarding the defect and the articular surface
Testing can be accomplished by, for example, superimposing the implant image over the image for the patient's joint. Once it has been determined that a suitable implant has been selected or designed, the implant site can be prepared 140, for example by removing cartilage or bone from the joint surface, or the implant can be placed into the joint 150.
[0040] The joint implant selected or designed achieves anatomic or near anatomic fit with the existing surface of the joint while presenting a mating surface for the opposing joint surface that replicates the natural joint anatomy. In this instance, both the existing surface of the joint can be assessed as well as the desired resulting surface of the joint. This technique is particularly useful for implants that are not anchored into the bone.
[0041] As will be appreciated by those of skill in the art, the physician, or other person practicing the invention, can obtain a measurement of a target joint 10 and then either design 52 or select 50 a suitable joint replacement implant.
[0042] II. REPAIR MATERIALS
[0.043] A wide variety of materials find use in the practice of the present invention, including, but not limited to, plastics, metals, crystal free metals, ceramics, biological materials (e.g., collagen or other extracellular matrix materials), hydroxyapatite, cells (e.g., stem cells, chondrocyte cells or the like), or combinations thereof. Based on the information (e.g., measurements) obtained regarding the defect and the articular surface
18 and/or the subchondral bone, a repair material can be formed or selected.
Further, using one or more of these techniques described herein, a cartilage replacement or regenerating material having a curvature that will fit into a particular cartilage defect, will follow the contour and shape of the articular surface, and will match the thickness of the surrounding cartilage.
The repair material can include any combination of materials, and typically includes at least one non-pliable material, for example materials that are not easily bent or changed.
[0044] A. METAL AND POLYMERIC REPAIR MATERIALS
[0045] Currently, joint repair systems often employ metal and/or polymeric materials including, for example, prostheses which are anchored into the underlying bone (e.g., a femur in the case of a knee prosthesis).
See, e.g., U.S. Patent No. 6,203,576 to Afriat, et at. issued March 20, 2001 and 6,322,588 to Ogle, et al. issued November 27, 2001, and references cited therein. A wide-variety of metals are useful in the practice of the present invention, and can be selected based on any criteria. For example, material selection can be based on resiliency to impart a desired degree of rigidity. Non-limiting examples of suitable metals include silver, gold, platinum, palladium, iridium, copper, tin, lead, antimony, bismuth, zinc, titanium, cobalt, stainless steel, nickel, iron alloys, cobalt alloys, such as Elgiloye, a cobalt-chromium-nickel alloy, and MP35N, a nickel-cobalt-chromium-molybdenum alloy, and NitinolTM, a nickel-titanium alloy, aluminum, manganese, iron, tantalum, crystal free metals, such as Liquidmetal alloys (available from LiquidMetal Technologies, www.liquidmetal.com), other metals that can slowly form polyvalent metal ions, for example to inhibit calcification of implanted substrates in contact with a patient's bodily fluids or tissues, and combinations thereof.
Further, using one or more of these techniques described herein, a cartilage replacement or regenerating material having a curvature that will fit into a particular cartilage defect, will follow the contour and shape of the articular surface, and will match the thickness of the surrounding cartilage.
The repair material can include any combination of materials, and typically includes at least one non-pliable material, for example materials that are not easily bent or changed.
[0044] A. METAL AND POLYMERIC REPAIR MATERIALS
[0045] Currently, joint repair systems often employ metal and/or polymeric materials including, for example, prostheses which are anchored into the underlying bone (e.g., a femur in the case of a knee prosthesis).
See, e.g., U.S. Patent No. 6,203,576 to Afriat, et at. issued March 20, 2001 and 6,322,588 to Ogle, et al. issued November 27, 2001, and references cited therein. A wide-variety of metals are useful in the practice of the present invention, and can be selected based on any criteria. For example, material selection can be based on resiliency to impart a desired degree of rigidity. Non-limiting examples of suitable metals include silver, gold, platinum, palladium, iridium, copper, tin, lead, antimony, bismuth, zinc, titanium, cobalt, stainless steel, nickel, iron alloys, cobalt alloys, such as Elgiloye, a cobalt-chromium-nickel alloy, and MP35N, a nickel-cobalt-chromium-molybdenum alloy, and NitinolTM, a nickel-titanium alloy, aluminum, manganese, iron, tantalum, crystal free metals, such as Liquidmetal alloys (available from LiquidMetal Technologies, www.liquidmetal.com), other metals that can slowly form polyvalent metal ions, for example to inhibit calcification of implanted substrates in contact with a patient's bodily fluids or tissues, and combinations thereof.
19 [0046] Suitable synthetic polymers include, without limitation, polyamides (e.g., nylon), polyesters, polystyrenes, polyacrylates, vinyl polymers (e.g., polyethylene, polytetrafluoroethylene, polypropylene and polyvinyl chloride), polycarbonates, polyurethanes, poly dimethyl siloxanes, cellulose acetates, polymethyl methacrylates, polyether ether ketones, ethylene vinyl acetates, polysulfones, nitrocelluloses, similar copolymers and mixtures thereof. Bioresorbable synthetic polymers can also be used such as dextran, hydroxyethyl starch, derivatives of gelatin, polyvinylpyrrolidone, polyvinyl alcohol, poly[N-(2-hydroxypropyl) methacrylamide], poly(hydroxy acids), poly(epsilon-caprolactone), polylactic acid, polyglycolic acid, poly(dimethyl glycolic acid), poly(hydroxy butyrate), and similar copolymers can also be used.
[0047] Other materials would also be appropriate, for example, the polyketone known as polyetheretherketone (PEEKTm). This includes the material PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (mAni.ghardapolymers.com).
[0048] It should be noted that the material selected can also be filled. For example, other grades of PEEK are also available and contemplated, such as 30% glass-filled or 30% carbon filled, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. Glass filled PEEK reduces the expansion rate and increases the flexural modulus of PEEK relative to that portion which is unfilled. The resulting product is known to be ideal for improved strength, stiffness, or stability. Carbon filled PEEK is known to enhance the compressive strength and stiffness of PEEK and lower its expansion rate.
Carbon filled PEEK offers wear resistance and load carrying capability.
[0049] As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be 5 used without departing from the scope of the invention. The implant can also be comprised of polyetherketoneketone (PEKK).
[0050] Other materials that can be used include polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK), and generally a 10 polyaryletheretherketone. Further other polyketones can be used as well as other thermoplastics.
[0051] Reference to appropriate polymers that can be used for the implant can be made to the following documents:
PCT
15 Publication WO 02/02158 Al, dated Jan. 10, 2002 and entitled Bio-Compatible Polymeric Materials; PCT Publication WO 02/00275 Al, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials; and PCT
Publication WO 02/00270 Al, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials.
[0047] Other materials would also be appropriate, for example, the polyketone known as polyetheretherketone (PEEKTm). This includes the material PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (mAni.ghardapolymers.com).
[0048] It should be noted that the material selected can also be filled. For example, other grades of PEEK are also available and contemplated, such as 30% glass-filled or 30% carbon filled, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. Glass filled PEEK reduces the expansion rate and increases the flexural modulus of PEEK relative to that portion which is unfilled. The resulting product is known to be ideal for improved strength, stiffness, or stability. Carbon filled PEEK is known to enhance the compressive strength and stiffness of PEEK and lower its expansion rate.
Carbon filled PEEK offers wear resistance and load carrying capability.
[0049] As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be 5 used without departing from the scope of the invention. The implant can also be comprised of polyetherketoneketone (PEKK).
[0050] Other materials that can be used include polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK), and generally a 10 polyaryletheretherketone. Further other polyketones can be used as well as other thermoplastics.
[0051] Reference to appropriate polymers that can be used for the implant can be made to the following documents:
PCT
15 Publication WO 02/02158 Al, dated Jan. 10, 2002 and entitled Bio-Compatible Polymeric Materials; PCT Publication WO 02/00275 Al, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials; and PCT
Publication WO 02/00270 Al, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials.
20 [0052] The polymers can be prepared by any of a variety of approaches including conventional polymer processing methods.
Preferred approaches include, for example, injection molding, which is suitable for the production of polymer components with significant structural features, and rapid prototyping approaches, such as reaction injection molding and stereo-lithography. The substrate can be textured or made porous by either physical abrasion or chemical alteration to facilitate incorporation of the metal coating. Other processes are also appropriate, such as extrusion, injection, compression molding and/or machining
Preferred approaches include, for example, injection molding, which is suitable for the production of polymer components with significant structural features, and rapid prototyping approaches, such as reaction injection molding and stereo-lithography. The substrate can be textured or made porous by either physical abrasion or chemical alteration to facilitate incorporation of the metal coating. Other processes are also appropriate, such as extrusion, injection, compression molding and/or machining
21 techniques. Typically, the polymer is chosen for its physical and mechanical properties and is suitable for carrying and spreading the physical load between the joint surfaces.
[0053] More than one metal and/or polymer can be used in combination with each other. For example, one or more metal-containing substrates can be coated with polymers in one or more regions or, alternatively, one or more polymer-containing substrate can be coated in one or more regions with one or more metals.
[0054] The system or prosthesis can be porous or porous coated.
The porous surface components can be made of various materials including metals, ceramics, and polymers. These surface components can, in turn, be secured by various means to a multitude of structural cores formed of various metals. Suitable porous coatings include, but are not limited to, metal, ceramic, polymeric (e.g., biologically neutral elastomers such as silicone rubber, polyethylene terephthalate and/or combinations thereof) or combinations thereof. See, e.g., U.S. Pat. No. 3,605,123 to Hahn, issued September 20, 1971. U.S. Pat. No. 3,808,606 to Tronzo issued May 7, 1974 and U.S. Pat. No. 3,843,975 to Tronzo issued October 29, 1974; U.S. Pat. No. 3,314,420 to Smith issued April 18, 1967; U.S.
Pat. No. 3,987,499 to Scharbach issued October 26, 1976; and German Offenlegungsschrift 2,306,552. There can be more then one coating layer and the layers can have the same or different porosities. See, e.g., U.S.
Pat. No. 3,938,198 to Kahn, et al., issued February 17, 1976.
[0055] The coating can be applied by surrounding a core with powdered polymer and heating until cured to form a coating with an internal network of interconnected pores. The tortuosity of the pores (e.g., a measure of length to diameter of the paths through the pores) can be important in evaluating the probable success of such a coating in use on a Parip 21 nf 147
[0053] More than one metal and/or polymer can be used in combination with each other. For example, one or more metal-containing substrates can be coated with polymers in one or more regions or, alternatively, one or more polymer-containing substrate can be coated in one or more regions with one or more metals.
[0054] The system or prosthesis can be porous or porous coated.
The porous surface components can be made of various materials including metals, ceramics, and polymers. These surface components can, in turn, be secured by various means to a multitude of structural cores formed of various metals. Suitable porous coatings include, but are not limited to, metal, ceramic, polymeric (e.g., biologically neutral elastomers such as silicone rubber, polyethylene terephthalate and/or combinations thereof) or combinations thereof. See, e.g., U.S. Pat. No. 3,605,123 to Hahn, issued September 20, 1971. U.S. Pat. No. 3,808,606 to Tronzo issued May 7, 1974 and U.S. Pat. No. 3,843,975 to Tronzo issued October 29, 1974; U.S. Pat. No. 3,314,420 to Smith issued April 18, 1967; U.S.
Pat. No. 3,987,499 to Scharbach issued October 26, 1976; and German Offenlegungsschrift 2,306,552. There can be more then one coating layer and the layers can have the same or different porosities. See, e.g., U.S.
Pat. No. 3,938,198 to Kahn, et al., issued February 17, 1976.
[0055] The coating can be applied by surrounding a core with powdered polymer and heating until cured to form a coating with an internal network of interconnected pores. The tortuosity of the pores (e.g., a measure of length to diameter of the paths through the pores) can be important in evaluating the probable success of such a coating in use on a Parip 21 nf 147
22 prosthetic device. See, also, U.S. Pat. No. 4,213,816 to Morris issued July 22, 1980. The porous coating can be applied in the form of a powder and the article as a whole subjected to an elevated temperature that bonds the powder to the substrate. Selection of suitable polymers and/or powder coatings can be determined in view of the teachings and references cited herein, for example based on the melt index of each.
[0056] B. BIOLOGICAL REPAIR MATERIAL
[0057] Repair materials can also include one or more biological material either alone or in combination with non-biological materials. For example, any base material can be designed or shaped and suitable cartilage replacement or regenerating material(s) such as fetal cartilage cells can be applied to be the base. The cells can be then be grown in conjunction with the base until the thickness (and/or curvature) of the cartilage surrounding the cartilage defect has been reached. Conditions for growing cells (e.g., chondrocytes) on various substrates in culture, ex vivo and in vivo are described, for example, in U.S. Patent Nos. 5,478,739 to Slivka et at. issued December 26, 1995; 5,842,477 to Naughton et at.
issued December 1, 1998; 6,283,980 to Vibe-Hansen et al., issued September 4, 2001, and 6,365,405 to Salzmann et al. issued April 2, 2002.
Non-limiting examples of suitable substrates include plastic, tissue scaffold, a bone replacement material (e.g., a hydroxyapatite, a bioresorbable material), or any other material suitable for growing a cartilage replacement or regenerating material on it.
[0058] Biological polymers can be naturally occurring or produced in vitro by fermentation and the like. Suitable biological polymers include, without limitation, collagen, elastin, silk, keratin, gelatin, polyamino acids, cat gut sutures, polysaccharides (e.g., cellulose and starch) and mixtures thereof. Biological polymers can be bioresorbable.
[0056] B. BIOLOGICAL REPAIR MATERIAL
[0057] Repair materials can also include one or more biological material either alone or in combination with non-biological materials. For example, any base material can be designed or shaped and suitable cartilage replacement or regenerating material(s) such as fetal cartilage cells can be applied to be the base. The cells can be then be grown in conjunction with the base until the thickness (and/or curvature) of the cartilage surrounding the cartilage defect has been reached. Conditions for growing cells (e.g., chondrocytes) on various substrates in culture, ex vivo and in vivo are described, for example, in U.S. Patent Nos. 5,478,739 to Slivka et at. issued December 26, 1995; 5,842,477 to Naughton et at.
issued December 1, 1998; 6,283,980 to Vibe-Hansen et al., issued September 4, 2001, and 6,365,405 to Salzmann et al. issued April 2, 2002.
Non-limiting examples of suitable substrates include plastic, tissue scaffold, a bone replacement material (e.g., a hydroxyapatite, a bioresorbable material), or any other material suitable for growing a cartilage replacement or regenerating material on it.
[0058] Biological polymers can be naturally occurring or produced in vitro by fermentation and the like. Suitable biological polymers include, without limitation, collagen, elastin, silk, keratin, gelatin, polyamino acids, cat gut sutures, polysaccharides (e.g., cellulose and starch) and mixtures thereof. Biological polymers can be bioresorbable.
23 [0059] Biological materials used in the methods described herein can be autografts (from the same subject); allografts (from another individual of the same species) and/or xenografts (from another species).
See, also, International Patent Publications WO 02/22014 to Alexander et al. published March 21, 2002 and WO 97/27885 to Lee published August 7, 1997. In certain embodiments autologous materials are preferred, as they can carry a reduced risk of immunological complications to the host, including re-absorption of the materials, inflammation and/or scarring of the tissues surrounding the implant site.
[0060] In one embodiment of the invention, a probe is used to harvest tissue from a donor site and to prepare a recipient site. The donor site can be located in a xenograft, an allograft or an autograft. The probe is used to achieve a good anatomic match between the donor tissue sample and the recipient site. The probe is specifically designed to achieve a seamless or near seamless match between the donor tissue sample and the recipient site. The probe can, for example, be cylindrical. The distal end of the probe is typically sharp in order to facilitate tissue penetration.
Additionally, the distal end of the probe is typically hollow in order to accept the tissue. The probe can have an edge at a defined distance from its distal end, e.g. at 1 cm distance from the distal end and the edge can be used to achieve a defined depth of tissue penetration for harvesting.
The edge can be external or can be inside the hollow portion of the probe.
For example, an orthopedic surgeon can take the probe and advance it with physical pressure into the cartilage, the subchondral bone and the underlying marrow in the case of a joint such as a knee joint. The surgeon can advance the probe until the external or internal edge reaches the cartilage surface. At that point, the edge will prevent further tissue penetration thereby achieving a constant and reproducible tissue penetration. The distal end of the probe can include one or more blades,
See, also, International Patent Publications WO 02/22014 to Alexander et al. published March 21, 2002 and WO 97/27885 to Lee published August 7, 1997. In certain embodiments autologous materials are preferred, as they can carry a reduced risk of immunological complications to the host, including re-absorption of the materials, inflammation and/or scarring of the tissues surrounding the implant site.
[0060] In one embodiment of the invention, a probe is used to harvest tissue from a donor site and to prepare a recipient site. The donor site can be located in a xenograft, an allograft or an autograft. The probe is used to achieve a good anatomic match between the donor tissue sample and the recipient site. The probe is specifically designed to achieve a seamless or near seamless match between the donor tissue sample and the recipient site. The probe can, for example, be cylindrical. The distal end of the probe is typically sharp in order to facilitate tissue penetration.
Additionally, the distal end of the probe is typically hollow in order to accept the tissue. The probe can have an edge at a defined distance from its distal end, e.g. at 1 cm distance from the distal end and the edge can be used to achieve a defined depth of tissue penetration for harvesting.
The edge can be external or can be inside the hollow portion of the probe.
For example, an orthopedic surgeon can take the probe and advance it with physical pressure into the cartilage, the subchondral bone and the underlying marrow in the case of a joint such as a knee joint. The surgeon can advance the probe until the external or internal edge reaches the cartilage surface. At that point, the edge will prevent further tissue penetration thereby achieving a constant and reproducible tissue penetration. The distal end of the probe can include one or more blades,
24 saw-like structures, or tissue cutting mechanism. For example, the distal end of the probe can include an iris-like mechanism consisting of several small blades. The blade or blades can be moved using a manual, motorized or electrical mechanism thereby cutting through the tissue and separating the tissue sample from the underlying tissue. Typically, this will be repeated in the donor and the recipient. In the case of an iris-shaped blade mechanism, the individual blades can be moved so as to close the iris thereby separating the tissue sample from the donor site.
[0061] In another embodiment of the invention, a laser device or a radiofrequency device can be integrated inside the distal end of the probe.
The laser device or the radiofrequency device can be used to cut through the tissue and to separate the tissue sample from the underlying tissue.
[0062] In one embodiment of the invention, the same probe can be used in the donor and in the recipient. In another embodiment, similarly shaped probes of slightly different physical dimensions can be used. For example, the probe used in the recipient can be slightly smaller than that used in the donor thereby achieving a tight fit between the tissue sample or tissue transplant and the recipient site. The probe used in the recipient can also be slightly shorter than that used in the donor thereby correcting for any tissue lost during the separation or cutting of the tissue sample from the underlying tissue in the donor material.
[0063] Any biological repair material can be sterilized to inactivate biological contaminants such as bacteria, viruses, yeasts, molds, mycoplasmas and parasites. Sterilization can be performed using any suitable technique, for example radiation, such as gamma radiation.
[0064] Any of the biological materials described herein can be harvested with use of a robotic device. The robotic device can use information from an electronic image for tissue harvesting.
[0065] In certain embodiments, the cartilage replacement material has a particular biochemical composition. For instance, the biochemical composition of the cartilage surrounding a defect can be assessed by taking tissue samples and chemical analysis or by imaging techniques.
5 For example, WO 02/22014 to Alexander describes the use of gadolinium for imaging of articular cartilage to monitor glycosaminoglycan content within the cartilage. The cartilage replacement or regenerating material can then be made or cultured in a manner, to achieve a biochemical composition similar to that of the cartilage surrounding the implantation 10 site. The culture conditions used to achieve the desired biochemical compositions can include, for example, varying concentrations.
Biochemical composition of the cartilage replacement or regenerating material can, for example, be influenced by controlling concentrations and exposure times of certain nutrients and growth factors.
15 [0066] Ill. DEVICE DESIGN
[0067] A. CARTILAGE MODELS
[0068] Using information on thickness and curvature of the cartilage, a physical model of the surfaces of the articular cartilage and of the underlying bone can be created. This physical model can be 20 representative of a limited area within the joint or it can encompass the entire joint. This model can also take into consideration the presence or absence of a meniscus as well as the presence or absence of some or all of the cartilage. For example, in the knee joint, the physical model can encompass only the medial or lateral femoral condyle, both femoral
[0061] In another embodiment of the invention, a laser device or a radiofrequency device can be integrated inside the distal end of the probe.
The laser device or the radiofrequency device can be used to cut through the tissue and to separate the tissue sample from the underlying tissue.
[0062] In one embodiment of the invention, the same probe can be used in the donor and in the recipient. In another embodiment, similarly shaped probes of slightly different physical dimensions can be used. For example, the probe used in the recipient can be slightly smaller than that used in the donor thereby achieving a tight fit between the tissue sample or tissue transplant and the recipient site. The probe used in the recipient can also be slightly shorter than that used in the donor thereby correcting for any tissue lost during the separation or cutting of the tissue sample from the underlying tissue in the donor material.
[0063] Any biological repair material can be sterilized to inactivate biological contaminants such as bacteria, viruses, yeasts, molds, mycoplasmas and parasites. Sterilization can be performed using any suitable technique, for example radiation, such as gamma radiation.
[0064] Any of the biological materials described herein can be harvested with use of a robotic device. The robotic device can use information from an electronic image for tissue harvesting.
[0065] In certain embodiments, the cartilage replacement material has a particular biochemical composition. For instance, the biochemical composition of the cartilage surrounding a defect can be assessed by taking tissue samples and chemical analysis or by imaging techniques.
5 For example, WO 02/22014 to Alexander describes the use of gadolinium for imaging of articular cartilage to monitor glycosaminoglycan content within the cartilage. The cartilage replacement or regenerating material can then be made or cultured in a manner, to achieve a biochemical composition similar to that of the cartilage surrounding the implantation 10 site. The culture conditions used to achieve the desired biochemical compositions can include, for example, varying concentrations.
Biochemical composition of the cartilage replacement or regenerating material can, for example, be influenced by controlling concentrations and exposure times of certain nutrients and growth factors.
15 [0066] Ill. DEVICE DESIGN
[0067] A. CARTILAGE MODELS
[0068] Using information on thickness and curvature of the cartilage, a physical model of the surfaces of the articular cartilage and of the underlying bone can be created. This physical model can be 20 representative of a limited area within the joint or it can encompass the entire joint. This model can also take into consideration the presence or absence of a meniscus as well as the presence or absence of some or all of the cartilage. For example, in the knee joint, the physical model can encompass only the medial or lateral femoral condyle, both femoral
25 condyles and the notch region, the medial tibial plateau, the lateral tibial plateau, the entire tibial plateau, the medial patella, the lateral patella, the entire patella or the entire joint. The location of a diseased area of
26 cartilage can be determined, for example using a 3D coordinate system or a 3D Euclidian distance as described in WO 02/22014.
[0069] In this way, the size of the defect to be repaired can be determined. This process takes into account that, for example, roughly 80% of patients have a healthy lateral component. As will be apparent, some, but not all, defects will include less than the entire cartilage. Thus, in one embodiment of the invention, the thickness of the normal or only mildly diseased cartilage surrounding one or more cartilage defects is measured. This thickness measurement can be obtained at a single point or, preferably, at multiple points, for example 2 point, 4-6 points, 7-10 points, more than 10 points or over the length of the entire remaining cartilage. Furthermore, once the size of the defect is determined, an appropriate therapy (e.g., articular repair system) can be selected such that as much as possible of the healthy, surrounding tissue is preserved.
[0070] In other embodiments, the curvature of the articular surface can be measured to design and/or shape the repair material. Further, both the thickness of the remaining cartilage and the curvature of the articular surface can be measured to design and/or shape the repair material.
Alternatively, the curvature of the subchondral bone can be measured and the resultant measurement(s) can be used to either select or shape a cartilage replacement material. For example, the contour of the subchondral bone can be used to re-create a virtual cartilage surface: the margins of an area of diseased cartilage can be identified. The subchondral bone shape in the diseased areas can be measured. A virtual contour can then be created by copying the subchondral bone surface into the cartilage surface, whereby the copy of the subchondral bone surface connects the margins of the area of diseased cartilage. In shaping the device, the contours can be configured to mate with existing cartilage or to account for the removal of some or all of the cartilage.
[0069] In this way, the size of the defect to be repaired can be determined. This process takes into account that, for example, roughly 80% of patients have a healthy lateral component. As will be apparent, some, but not all, defects will include less than the entire cartilage. Thus, in one embodiment of the invention, the thickness of the normal or only mildly diseased cartilage surrounding one or more cartilage defects is measured. This thickness measurement can be obtained at a single point or, preferably, at multiple points, for example 2 point, 4-6 points, 7-10 points, more than 10 points or over the length of the entire remaining cartilage. Furthermore, once the size of the defect is determined, an appropriate therapy (e.g., articular repair system) can be selected such that as much as possible of the healthy, surrounding tissue is preserved.
[0070] In other embodiments, the curvature of the articular surface can be measured to design and/or shape the repair material. Further, both the thickness of the remaining cartilage and the curvature of the articular surface can be measured to design and/or shape the repair material.
Alternatively, the curvature of the subchondral bone can be measured and the resultant measurement(s) can be used to either select or shape a cartilage replacement material. For example, the contour of the subchondral bone can be used to re-create a virtual cartilage surface: the margins of an area of diseased cartilage can be identified. The subchondral bone shape in the diseased areas can be measured. A virtual contour can then be created by copying the subchondral bone surface into the cartilage surface, whereby the copy of the subchondral bone surface connects the margins of the area of diseased cartilage. In shaping the device, the contours can be configured to mate with existing cartilage or to account for the removal of some or all of the cartilage.
27 [0071] FIG. 2A shows a slightly perspective top view of a joint implant 200 of the invention suitable for implantation at the tibial plateau of the knee joint. As shown in FIG. 2A, the implant can be generated using, for example, a dual surface assessment, as described above with respect to FIGS. 1A and B.
[0072] The implant 200 has an upper surface 202, a lower surface 204 and a peripheral edge 206. The upper surface 202 is formed so that it forms a mating surface for receiving the opposing joint surface; in this instance partially concave to receive the femur. The concave surface can be variably concave such that it presents a surface to the opposing joint surface, e.g. a negative surface of the mating surface of the femur it communicates with. As will be appreciated by those of skill in the art, the negative impression, need not be a perfect one.
[0073] The upper surface 202 of the implant 200 can be shaped by any of a variety of means. For example, the upper surface 202 can be shaped by projecting the surface from the existing cartilage and/or bone surfaces on the tibial plateau, or it can be shaped to mirror the femoral condyle in order to optimize the complimentary surface of the implant when it engages the femoral condyle. Alternatively, the superior surface 202 can be configured to mate with an inferior surface of an implant configured for the opposing femoral condyle.
[0074] The lower surface 204 has a convex surface that matches, or nearly matches, the tibial plateau of the joint such that it creates an anatomic or near anatomic fit with the tibial plateau. Depending on the shape of the tibial plateau, the lower surface can be partially convex as well. Thus, the lower surface 204 presents a surface to the tibial plateau that fits within the existing surface. It can be formed to match the existing surface or to match the surface after articular resurfacing.
[0072] The implant 200 has an upper surface 202, a lower surface 204 and a peripheral edge 206. The upper surface 202 is formed so that it forms a mating surface for receiving the opposing joint surface; in this instance partially concave to receive the femur. The concave surface can be variably concave such that it presents a surface to the opposing joint surface, e.g. a negative surface of the mating surface of the femur it communicates with. As will be appreciated by those of skill in the art, the negative impression, need not be a perfect one.
[0073] The upper surface 202 of the implant 200 can be shaped by any of a variety of means. For example, the upper surface 202 can be shaped by projecting the surface from the existing cartilage and/or bone surfaces on the tibial plateau, or it can be shaped to mirror the femoral condyle in order to optimize the complimentary surface of the implant when it engages the femoral condyle. Alternatively, the superior surface 202 can be configured to mate with an inferior surface of an implant configured for the opposing femoral condyle.
[0074] The lower surface 204 has a convex surface that matches, or nearly matches, the tibial plateau of the joint such that it creates an anatomic or near anatomic fit with the tibial plateau. Depending on the shape of the tibial plateau, the lower surface can be partially convex as well. Thus, the lower surface 204 presents a surface to the tibial plateau that fits within the existing surface. It can be formed to match the existing surface or to match the surface after articular resurfacing.
28 [0075] As will be appreciated by those of skill in the art, the convex surface of the lower surface 204 need not be perfectly convex. Rather, the lower surface 204 is more likely consist of convex and concave portions that fit within the existing surface of the tibial plateau or the re-surfaced plateau. Thus, the surface is essentially variably convex and concave.
[0076] FIG. 26 shows a top view of the joint implant of FIG. 2A. As shown in FIG. 2B the exterior shape 208 of the implant can be elongated.
The elongated form can take a variety of shapes including elliptical, quasi-elliptical, race-track, etc. However, as will be appreciated the exterior dimension is typically irregular thus not forming a true geometric shape, e.g. ellipse. As will be appreciated by those of skill in the art, the actual exterior shape of an implant can vary depending on the nature of the joint defect to be corrected. Thus the ratio of the length L to the width W can vary from, for example, between 0.25 to 2.0, and more specifically from 0.5 to 1.5. As further shown in FIG. 2B, the length across an axis of the implant 200 varies when taken at points along the width of the implant. For example, as shown in FIG. 2B, Li L2 L3.
[0077] Turning now to FIGS. 2C-E, cross-sections of the implant shown in FIG. 2B are depicted along the lines of C-C, D-D, and E-E. The implant has a thickness ti, t2 and t3 respectively. As illustrated by the cross-sections, the thickness of the implant varies along both its length L
and width W. The actual thickness at a particular location of the implant 200 is a function of the thickness of the cartilage and/or bone to be replaced and the joint mating surface to be replicated. Further, the profile of the implant 200 at any location along its length L or width W is a function of the cartilage and/or bone to be replaced.
[0078] FIG. 2F is a lateral view of the implant 200 of FIG. 2A. In this instance, the height of the implant 200 at a first end h1 is different than the
[0076] FIG. 26 shows a top view of the joint implant of FIG. 2A. As shown in FIG. 2B the exterior shape 208 of the implant can be elongated.
The elongated form can take a variety of shapes including elliptical, quasi-elliptical, race-track, etc. However, as will be appreciated the exterior dimension is typically irregular thus not forming a true geometric shape, e.g. ellipse. As will be appreciated by those of skill in the art, the actual exterior shape of an implant can vary depending on the nature of the joint defect to be corrected. Thus the ratio of the length L to the width W can vary from, for example, between 0.25 to 2.0, and more specifically from 0.5 to 1.5. As further shown in FIG. 2B, the length across an axis of the implant 200 varies when taken at points along the width of the implant. For example, as shown in FIG. 2B, Li L2 L3.
[0077] Turning now to FIGS. 2C-E, cross-sections of the implant shown in FIG. 2B are depicted along the lines of C-C, D-D, and E-E. The implant has a thickness ti, t2 and t3 respectively. As illustrated by the cross-sections, the thickness of the implant varies along both its length L
and width W. The actual thickness at a particular location of the implant 200 is a function of the thickness of the cartilage and/or bone to be replaced and the joint mating surface to be replicated. Further, the profile of the implant 200 at any location along its length L or width W is a function of the cartilage and/or bone to be replaced.
[0078] FIG. 2F is a lateral view of the implant 200 of FIG. 2A. In this instance, the height of the implant 200 at a first end h1 is different than the
29 height of the implant at a second end h2. Further the upper edge 208 can have an overall slope in a downward direction. However, as illustrated the actual slope of the upper edge 208 varies along its length and can, in some instances, be a positive slope. Further the lower edge 210 can have an overall slope in a downward direction. As illustrated the actual slope of the lower edge 210 varies along its length and can, in some instances, be a positive slope. As will be appreciated by those of skill In the art, depending on the anatomy of an individual patient, an implant can be created wherein h1 and h2 are equivalent, or substantially equivalent without departing from the scope of the invention.
[0079] FIG. 2o is a cross-section taken along a sagittal plane in a body showing the implant 200 implanted within a knee joint 1020 such that the lower surface 204 of the implant 200 lies on the tibial plateau 1022 and the femur 1024 rests on the upper surface 202 of the implant 200. FIG. 2H
is a cross-section taken along a coronal plane in a body showing the implant 200 implanted within a knee joint 1020. As is apparent from this view, the implant 200 is positioned so that it fits within a superior articular surface 224. As will be appreciated by those of skill in the art, the articular surface could be the medial or lateral facet, as needed.
[0080] FIG. 21 is a view along an axial plane of the body showing the implant 200 implanted within a knee joint 1020 showing the view taken from an aerial, or upper, view. FIG. 2J is a view of an alternate embodiment where the implant is a bit larger such that it extends closer to the bone medially, i.e. towards the edge 1023 of the tibial plateau, as well as extending anteriorly and posteriorly.
[0081] FIG. 2K is a cross-section of an implant 200 of the invention according to an alternate embodiment. In this embodiment, the lower surface 204 further includes a joint anchor 212. As illustrated in this embodiment, the joint anchor 212 forms a protrusion, keel or vertical member that extends from the lower surface 204 of the implant 200 and projects into, for example, the bone of the joint. As will be appreciated by those of skill in the art, the keel can be perpendicular or lie within a plane 5 of the body.
[0082] Additionally, as shown in FIG. 2L the joint anchor 212 can have a cross-member 214 so that from a bottom perspective, the joint anchor 212 has the appearance of a cross or an "x." As will be appreciated by those of skill in the art, the joint anchor 212 could take on a variety of 10 other forms while still accomplishing the same objective of providing increased stability of the implant 200 in the joint. These forms include, but are not limited to, pins, bulbs, balls, teeth, etc. Additionally, one or more joint anchors 212 can be provided as desired. FIG. 2m and N illustrate cross-sections of alternate embodiments of a dual component implant from 15 a side view and a front view.
[0083] In an alternate embodiment shown in FIG. 2m it may be desirable to provide a one or more cross-members 220 on the lower surface 204 in order to provide a bit of translation movement of the implant relative to the surface of the femur, or femur implant. In that event, the 20 cross-member can be formed integral to the surface of the implant or can be one or more separate pieces that fit within a groove 222 on the lower surface 204 of the implant 200. The groove can form a single channel as shown in FIG. 2N1, or can have more than one channel as shown in 2N2. In either event, the cross-bar then fits within the channel as 25 - shown in FIGS. 2N1-N2. The cross-bar members 220 can form a solid or hollow tube or pipe structure as shown in FIG. 2P. Where two, or more, tubes 220 communicate to provide translation, a groove 221 can be provided along the surface of one or both cross-members to interlock the tubes into a cross-bar member further stabilizing the motion of the cross-bar relative to the implant 200. As will be appreciated by those of skill in the art, the cross-bar member 220 can be formed integrally with the implant without departing from the scope of the invention.
[0084] As shown in FiGs. 2Q-R, it is anticipated that the surface of the tibial plateau will be prepared by forming channels thereon to receive the cross-bar members. Thus facilitating the ability of the implant to seat securely within the joint while still providing movement about an axis when the knee joint is in motion.
[0085] FIG. 2s(1-9) illustrate an alternate embodiment of implant 200. As illustrated in FIG. 2s the edges are beveled to relax a sharp corner.
FIG. 2s(1) illustrates an implant having a single fillet or bevel 230. The fillet is placed on the implant anterior to the posterior portion of the tibial spine.
As shown in FIG. 2s(2) two fillets 230, 231 are provided and used for the posterior chamfer. In FIG. 2s(3) a third fillet 234 is provided to create two cut surfaces for the posterior chamfer.
[0086] Turning now to FIG. 2s(4) a tangent of the implant is deselected, leaving three posterior curves. FIG. 2s(5) shows the result of tangent propagation. FIG. 2s(6) illustrates the effect on the design when the bottom curve is selected.without tangent propagation. The result of tangent propagation and selection is shown in FIG. 2s(7). As can be seen in FIG. 2s(8-9) the resulting corner has a softer edge but sacrifices less than 0.5 mm of joint space. As will be appreciated by those of skill in the art, additional cutting planes can be added without departing from the scope of the invention.
[0087] FIG. 21. illustrates an alternate embodiment of an implant 200 wherein the surface of the tibial plateau 250 is altered to accommodate the implant. As illustrated in FIG. 2T(1-2) the tibial plateau can be altered for only half of the joint surface 251 or for the full surface 252. As illustrate in FIG. 21(3-4) the posterior-anterior surface can be flat 260 or graded 262.
Grading can be either positive or negative relative to the anterior surface.
Grading can also be used with respect to the implants of FIG. 2T where the grading either lies within a plane or a body or is angled relative to a plane of the body. Additionally, attachment mechanisms can be provided to anchor the implant to the altered surface. As shown in FIG. 2r(5-7) keels 264 can be provided. The keels 264 can either sit within a plane, e.g.
sagittal or coronal plane, or not sit within a plane (as shown in FIG. 2T(7)).
FIG. 21(8) illustrates an implant which covers the entire tibial plateau. The upper surface of these implants are designed to conform to the projected shape of the joint as determined under the steps described with respect to FIG. 1, while the lower surface is designed to be flat, or substantially fiat to correspond to the modified surface of the joint.
[0088] Turning now to FIGS. 3A-I an implant suitable for providing an opposing joint surface to the implant of FIG. 2A is shown. This implant corrects a defect on an inferior surface of the femur 1024 (e.g., the condyle of the femur that mates with the tibial plateau) and can be used alone, i.e., on the femur 1024, or in combination with another joint repair device. Formation of the surfaces of the devices can be achieved using the techniques described above with respect to the implant of FIG. 2.
[0089] FIG. 3A shows a perspective view of an implant 300 having a curved mating surface 302 and convex joint abutting surface 304. The joint abutting surface 304 need not form an anatomic or near anatomic fit with the femur in view of the anchors 306 provided to facilitate connection of the implant to the bone. In this instance, the anchors 306 are shown as pegs having notched heads. The notches facilitate the anchoring process within the bone. However, pegs without notches can be used as well as pegs with other configurations that facilitate the anchoring processor cruciate stems. Pegs and other portions of the implant can be porous coated. The implant can be inserted without bone cement or with use of bone cement. The implant can be designed to abut the subchondral bone, i.e. it can substantially follow the contour of the subchondral bone. This has the advantage that no bone needs to be removed other than for the placement of the peg holes thereby significantly preserving bone stock.
[0090] The anchors 306 could take on a variety of other forms without departing from the scope of the invention while still accomplishing the same objective of providing increased stability of the implant 300 in the joint. These forms include, but are not limited to, pins, bulbs, balls, teeth, etc. Additionally, one or more joint anchors 306 can be provided as desired. As illustrated in FIG. 3, three pins are used to anchor the implant 300. However, more or fewer joint anchors, cruciate stems, or pins, can be used without departing from the scope of the invention.
[0091] FIG. 3s shows a slightly perspective superior view of the bone mating surface 304 further illustrating the use of three anchors 306 to anchor the implant to the bone. Each anchor 306 has a stem3/0 with a head 312 on top. As shown in Flo. 3c, the stem 310 has parallel walls such that it forms a tube or cylinder that extends from the bone mating surface 304. A section of the stem forms a narrowed neck 314 proximal to the head 312. As will be appreciated by those of skill in the art, the wails need not be parallel, but rather can be sloped to be shaped like a cone.
Additionally, the neck 314 need not be present, nor the head 3/2. As discussed above, other configurations suitable for anchoring can be used without departing from the scope of the invention.
[0092] Turning now to FIG. 3D, a view of the tibial plateau mating surface 302 of the implant 300 is illustrated. As is apparent from this view, the surface is curved such that it is convex or substantially convex in order to mate with the concave surface of the plateau. FIG. 3E illustrates the upper surface 304 of the implant 300 further illustrating the use of three pegs 306 for anchoring the implant 300 to the bone. As illustrated, the three pegs 306 are positioned to form a triangle. However, as will be appreciated by those of skill in the art, one or more pegs can be used, and the orientation of the pegs 306 to one another can be as shown, or any other suitable orientation that enables the desired anchoring. FIG. 3F
illustrated a cross section of the implant 300 taken along the lines F-F
shown in FIG. 3E. Typically the pegs are oriented on the surface of the implant so that the peg is perpendicular to the femoral condyle, which may not result in the peg being perpendicular to the surface of the implant.
[0093] FIG. 3G illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008 and medial epicondyle 1010. Also shown is the patellar surface of the femur 1012.
The implant 300 illustrated in FIG. 3A, is illustrated covering a portion of the lateral condyle. The pegs 306 are also shown that facilitate anchoring the implant 300 to the condyle.
[0094] FIG. 3H illustrates a knee joint 1020 from an anterior =
perspective. The implant 300 is implanted over a condyle. As shown in FIG. 31 the implant 300 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in FIGS. 2.
[0095] FIGS. 3J-K illustrate an implant 300 for placement on a condyle. In this embodiment, at least one flat surface or chamfer cut 360 is provided to mate with a cut made on the surface of the condyle in preparing the joint. The flat surface 360 typically does not encompass the entire proximal surface 304 of the implant 300.
[0096] FIG. 4A illustrates the design of a typical total knee arthroplasty ("TKA") primary knee 499. Posterior cuts 498, anterior cuts 497 and distal cuts 496 are provided as well as chamfer cuts 495.
[0097] FIGS. 4B and 4c illustrate another implant 400. As shown in 5 FIG. 4e, the implant 400 is configured such that it covers both the lateral and medial femoral condyle along with the patellar surface of the femur 1012. The implant 400 has a lateral condyle component 410 and a medial condyle component 420 and a bridge 430 that connects the lateral condyle component 410 to the medial condyle component 420 while covering at 10 least a portion of the patellar surface of the femur 1012. The implant can optionally oppose one or more implants, such as those shown in FIG. 2, if desired. FIG. 4c is a side view of the implant of FIG. 48. As shown in FIG, 4c, the superior surface 402 of the implant 400 is curved to correspond to the curvature of the femoral condyles. The curvature can be 15 configured such that it corresponds to the actual curvature of one or both of the existing femoral condyles, or to the curvature of one or both of the femoral condyles after resurfacing of the joint. One or more pegs 430 can be provided to assist in anchoring the implant to the bone. As will be appreciated by those of skill in the art, the implant can be configured such 20 that the superior surface contacting a first condyle is configured to male with the existing condule while a surface contacting a second condyle has one or more flat surfaces to mate with a condyle surface that has been modified.
[0098] FIG. 4D illustrates a top view of the implant 400 shown in 25 FIG. 4B. As is should be appreciated from this view, the inferior surface 404 of the implant 400 is configured to conform to the shape of the femoral condyles, e.g. the shape healthy femoral condyles would present to the tibial surface in a non-damaged joint.
[0099] FIGS. 4E and F illustrate perspective views of the implant from the inferior surface (i.e., tibial plateau mating surface).
[0100] FIG. 4o illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008. The implant 400 illustrated in FIG. 4a, is illustrated covering both condyles and the patellar surface of the femur 1012. The pegs 430 are also shown that facilitate anchoring the implant 400 to the condyle.
[0101] FIG. 4H illustrates a knee joint 1050 from an anterior perspective. The implant 400 is implanted over both condyles. As shown in FIG. 4i the implant 400 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in nos. 2.
[0102] As will be appreciated by those of skill in the art, the implant 400 can be manufactured from a Material that has memory such that the implant can be configured to snap-fit over the condyle. Alternatively, it can be shaped such that it conforms to the surface without the need of a snap-fit.
[0103] FIGS. 5A and 5e illustrate yet another implant 500 suitable for repairing a damaged condyle. As shown in Flo. 5A, the implant 500 is configured such that it covers only one of the lateral or medial femoral condyles 510. The implant differs from the implant of FIG. 3 in that the implant 500 also covers at least a portion of the patellar surface of the femur 512.
[0104] Similar to the implant of FIG. 4, the implant can optionally oppose one or more implants or opposing joint surfaces, such as those shown in FIG. 2, and can be combined with other implants, such as the implants of FIG. 3. FIG. 5c is a perspective side view of the implant of FIG. 5A. As shown in FiG.5c, the superior surface 502 of the implant 500 is curved to correspond to the curvature of the femoral condyle that it mates with and the portion of the patellar surface of the femur that it covers. One or more pegs 530 can be provided to assist in anchoring the implant to the bone. Additionally, an angled surface 503 can be provided on an interior surface 502 of the condyle component that conforms to an optionally provided cut made on the surface of the joint surface with which the implant mates.
[0105] FIG. 6D illustrates a perspective top view of the implant shown in FIG. 5A. As is should be appreciated from this view, the inferior surface 504 of the implant 500 is configured to conform to the projected shape of the femoral condyles, e.g. the shape healthy femoral condyles would present to the tibial surface in a non-damaged joint.
[0106] FIG. SE is a view of the implant 500 showing a hatched three point loading support area which extends from a top portion 513 to a line (plane 17) and from a line (plane 18) to a bottom portion 515. Also illustrated are the pegs 530 extending from the superior surface. FIG. 5F
illustrates the superior surface of the implant 500 with the pegs 530 extending from the superior surface. FIG. SF also illustrates the hatched cantilever loading support area, which extends from the line (plane 18) to the top portion 513 of the implant. The loading forces and directions for each support condition are based on physiological load encounters. Table 1 shows the Physiological Loadings taken from a study by Seth Greenwald Table 1 Physiological Loadingsl Set-up u1 if lir 11311 Flexion Angle 0 60 900 (degree) Normal Force N 2,900 3,263 3,625 (lbs.) (652) (733.5) (815) Normal Force Walking Stair Descent Stair Ascent Case (4.0 x BVV*) (4.5 x BW*) (5.0 x BIM) _ *Body Weight (BW) taken as a 60 year old male, with 173 cm height for an average body weight of 74 kg (163 lbs).
1"Tibial Plateau Surface Stress in TKA: A Factor Influencing Polymer Failure Series III ¨ Posterior Stabilized Designs;" Paul D. Postak, B.Sc., Christine S. Heim, B.Sc., A. Seth Greenwald, D. Phil.; Orthopaedic Research Laboratories, The Mt. Sinai Medical Center, Cleveland, Ohio.
Presented at the 62nd Annual AAOS Meeting, 1995.
[0107] Using the implant 500 described in this application, the three point loading will occur from set-up 1 (2900 N). To replicate a worst case loading scenario, a 75/25 load distribution (75% of 2900 N = 2175 N) will be used. The loading will be concentrated on a 6mm diameter circular area located directly below and normal to the ped on the bearing surface.
[0108] Turning to the cantilever loading shown in FIG. 6F, the loading will occur from set-up 3, or 90 , at a 75/25 load distribution (75% of 3625 N = 2719 N). As with the above example, the loading will be concentrated on a 6 mm diameter circular area located at the center of the posterior-most portion of the medial condyle normal to the flat cut surface of the posterior condyle.
[0109] FIGS. So and H illustrate alternate embodiments of the implant 500 having a rail design that provides one or more rails 521 along medial and/or lateral sides of the implant 500. The rail 521 can be positioned so that it extends along a portion of the medial 517 and/or lateral 519 sides before communicating with the angled surface 503. As will be appreciate, a single side rail 52/can be provided without departing from the scope of the invention.
[01101 FIG. 51 illustrates another embodiment of an implant 500 having a keel design. A keel 523 (or centrally formed rail) is provided on the superior surface of the implant. In this embodiment, the keel 523 is located on the surface of the implant, but not at the sides. As will be appreciated, the keel can be centered, as shown, substantially centered, or located off-center. An angled surface 503 can be provided to communicate with a modified joint surface. Alternatively, where the joint surface is worn or modified, the cut 503 could be configured to mate with the worn or modified surface.
[0111] FIG. 5.iillustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008 and the medial epicondyle 1010. The patellar surface of the femur 1012 is also illustrated.
The implant 500, illustrated in FIG. 5A, is shown covering the lateral condyle and a portion of the patellar surface of the femur 1012. The pegs 530 are also shown that facilitate anchoring the implant 500 to the condyle and patellar surface.
[0112] FIG. 5K illustrates a knee joint 1020 from an anterior perspective. The implant 500 is implanted over the lateral condyle. FIG. 6L
illustrates a knee joint 1020 with the implant 500 covering the medial condyle 1004. As illustrated in FIGS. 5K and L the shape of the implant 500 corresponding to the patella surface can take on a variety of curvatures without departing from the scope of the invention.
[0113] Turning now to FIG. 5ro and N the implant 500 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in FIGS. 2.
[0114] In another embodiment of the invention, the implant 500 can have a superior surface 502 which substantially conforms to the surface of the condyle but which has at one flat portion corresponding to an oblique cut on the bone as shown in FIG. 50.
[0115] Turning now to FIG. 5P-Q an implant 500 is shown from a side view with a 70 difference between the anterior and posterior cuts.
[0116] FIG. 5R-S illustrate an implant 500 having a contoured surface 560 for mating with the joint surface and an anterior cut 561 and a 5 posterior cut 562. FIG. 5s shows the same implant 500 from a slightly different angle. FIG. 5T illustrates another implant 500 having a contoured surface 560 for mating with the joint surface and posterior cut 562, a distal cut 563, and a chamfer cut 564. In this embodiment no anterior cut is provided. FIG. 5u illustrates the implant 500 of FIG. 5T from a side 10 perspective. The cuts are typically less than the cut required for a TKA, i.e., typically less than 10mm. The design of the cuts for this implant allow for a revision surgery to the knee, if required, at a later date.
[0117] FIGS. 6A-G illustrate the implant 500 of FIG. 5 with a graphical representation of the cross-sections 610, 620 from which a surface shape 15 of the implant is derived. FIG. 6A illustrates a top view of the implant sitting on top of the extracted surface shape 600. This view of the implant 500 illustrates a notch 514 associated with the bridge section of the implant 5/2 which covers the patellar surface of the femur (or the trochlea region) to provide a mating surface that approximates the cartilage 20 surface. As will be appreciated by those of skill in the art, the shape of an implant designed for the medial condyle would not necessarily be a mirror image of the implant designed for the lateral condyle because of differences in anatomy. Thus, for example, the notch 514 would not be present in an implant designed for the medial condyle and the patellar 25 surface of the femur. Therefore, the implant can be designed to include all or part of the troclea region or to exclude it entirely.
[0118] FIG. 6B illustrates a bottom view of the implant 500 layered over another derived surface shape 601. FIG. 6c is a bottom view showing the implant 500 extending through the extracted surface shape 600 shown in FIG. 6A. FIG. 6D is a close-up view of the FIG. 6c showing the condylar wing of the implant covering the extracted surface 600. FIG. 6E illustrates a top posterior view of the implant 500 positioned over the graphical representation of the surface shape 600. FIG. 6F is an anterior view and FIG. 6G is a bottom-posterior view.
[0119] FIG. 7A-c illustrate an implant 700 for correcting a joint similar to the implant 500 above. However, implant 700 consists of two components. The first component 710 engages a condyle of the femur, either medial or lateral depending on the design. The second component 720 engages the patellar surface of the femur. As discussed with the previous embodiments, the surfaces of the implant 700 can be configured such that the distal surface 722 (e.g., the surface that faces the tibial plateau) is shaped based on a projection of the natural shape of the femur compensating the design for valgus or varus deformities and/or flattening of the surface of the femur. Alternatively, the distal surface can be shaped based on the shape of the tibial plateau to provide a surface designed to optimally mate with the tibial plateau. The proximal surface 724 (e.g., the surface that engages the femoral condyle) can be configured such that it mirrors the surface of the femur in either its damaged condition or its modified condition. Likewise, the proximal surface can have one or more flattened sections 726 that form, e.g., chamfer cuts. Additionally the surface can include mechanisms facilitating attachment 728 to the femur, such as keels, teeth, cruciate stems, and the like. The medial facing portion of the condyle implant has a tapered surface 730 while the lateral facing portion of the patellar component also has a tapered surface such that each component presents tapered surfaces 730 to the other component.
[01201 By dividing the surfaces of the medial and lateral compartments into independent articulating surfaces, as shown in FIG. 7, the implant provides improved fit of the conformal surfaces to the subchondral bone. Additionally, the lateral-anterior portion of the femur is shielded from stress which could cause bone loss. Also, the smaller size of each component of the implant, enables the implant to be placed within the joint using a smaller incision. Finally, the wear of the patellar component is improved.
[0121] FIGS. 8A-F illustrate a patella 00 with an implants 810. The implant 810 can have one or more pegs, cruciate stems, or other anchoring mechanisms, if desired. As will be appreciated by those of skill in the art, other designs can be arrived at using the teachings of this disclosure without departing from the scope of the invention. FIG. 8A
illustrates a perspective view of an intact patella 800. FIG. 8e illustrates the patella 800 wherein one surface of the patella 800 has been cut for form a smooth surface 802 to mate with an implant. FIG. 8c illustrates the patella 800 with an implant 810 positioned on the smooth surface 802. The implant 810 has a plate structure 812 that abuts the smooth surface of the patella 802 and a dome 814 positioned on the plate 812 so that the dome is positioned in situ such that it will match the location of the patellar ridge.
The implant 810 can be configured such that the edge of the plate is offset 1 mm from the actual edge of the patella, as illustrated. As wIl be appreciated by those of skill in the art, the plate 812 and dome 814 can be formed as a single unit or formed from multiple components. Fie. 80 is a side view of the implant 810 positioned on the patella 800. As shown, the dome is positioned on the implant such that it is off-center. Optimal positioning of the dome will be determined by the position of the patellar ridge.
. .
. , [0122] Turning now to FIGS. 8E-F, the implant 810 is shown superimposed on the unaltered patella 800 in order to illustrate that the position of the dome 814 of the implant corresponds to the location of the patellar ridge.
[0123] FIGS. 8G-J illustrate an alternative design for the patellar implant. FIG. 8G illustrates the implant 850 in its beginning stages as a blank with a flat inferior surface 852 having pegs 854 extending therefrom for anchoring to the patella. The articular or superior surface 860 has a rounded dome 856, and a round plate section 858 that can be machined to match the bone cut. The articular surface 860 takes on the appearance of a "hat" or somberero, having a dome with a rim. The center of the dome 856 is also the center of the bearing surface. The rim 858 is cut to conform to the needs of the particular patient. FIG. 8.1 illustrates an implant which has been formed from the blank shown in FIGS. 8G-1. FIG. 81 shows a plurality of possible cut lines 862, 862' for purposes of illustration.
[0124] FIGS. 9A-C illustrate a lateral view of a knee 1020 having a combination of the implants of implanted thereof. In FIG. 9A, an implant covering the condyle 900, is illustrated. Suitable implants can be, for example, those shown in Fics. 3-8, as will be appreciated the portion of the condyle covered anterior to posterior can include the entire weight bearing surface, a portion thereof, or a surface greater than the weight bearing surface. Thus, for example, the implant can be configured to terminate prior to the sulcus terminalis or after the sulcus terminalis (e.g., the groove on the femur that coincides with the area where load bearing on the joint surface stops). As shown in FIGS. 9A-B, a patellar implant 900 can also be provided. FIG. 9c illustrates a knee having a condyle implant 900, a patellar implant 800 and an implant for the tibial plateau 200.
. 44 [0125] FIGS. 10A-D provide an alternate view of the coronal plane of a knee joint with one or more implants described above implanted therein.
FIG. 10A illustrates a knee having a tibial implant 200 placed therein.
FIG. 10B illustrates a knee with a condyle implant 300 placed therein. As described above, a plurality of the implants taught herein can be provided within a joint in order to restore joint movement. FIG. 10C illustrates a knee joint having two implants therein. First, a tibial implant 200 is provided on the tibial plateau and a second implant 300 is provided on the facing condyle. As will be appreciated by those of skill in the art. The implants can be installed such that the implants present each other mating surfaces (as illustrated), or not. For example, where the tibial implant 200 is placed in the medial compartment of the knee and the condyle implant 300 is placed in the lateral compartment. Other combinations will be appreciated by those of skill in the art. Turning now to FIG. 10D, a tibial implant 200 is provided along with a bicompartmental condyle implant 500. As discussed above, these implants can be associated with the same compartment of the knee joint, but need not be.
[0126] The arthroplasty system can be designed to reflect aspects .
of the tibial shape, femoral shape and/or patellar shape. Tibial shape and femoral shape can include cartilage, bone or both. Moreover, the shape of the implant can also include portions or all components of other articular structures such as the menisci. The menisci are compressible, in particular during gait or loading. For this reason, the implant can be designed to incorporate aspects of the meniscal shape accounting for compression of the menisci during loading or physical activities. For example, the undersurface 204 of the implant 200 can be designed to match the shape of the tibial plateau including cartilage or bone or both. The superior surface 202 of the implant 200 can be a composite of the articular surface of the tibia (in particular in areas that are not covered by menisci) and the meniscus. Thus, the outer aspects of the device can be a reflection of meniscal height. Accounting for compression, this can be, for example, 20%, 40%, 60% or 80% of uncompressed meniscal height.
[0127] Similarly the superior surface 304 of the implant 300 can be 5 designed to match the shape of the femoral condyle including cartilage or bone or both. The inferior surface 302 of the implant 300 can be a composite of the surface of the tibial plateau (in particular in areas that are not covered by menisci) and the meniscus. Thus, at least a portion of the outer aspects of the device can be a reflection of meniscal height.
10 Accounting for compression, this can be, for example, 20%, 40%, 60% or 80% of uncompressed meniscal height. These same properties can be applied to the implants shown in FIGS. 4-8, as well.
[0128] In some embodiments, the outer aspect of the device reflecting the meniscal shape can be made of another, preferably 15 compressible material. If a compressible material is selected it is preferably designed to substantially match the compressibility and biomechanical behavior of the meniscus. The entire device can be made of such a material or non-metallic materials in general.
[0129] The height and shape of the menisci for any joint surface to 20 be repaired can be measured directly on an imaging test. If portions, or all, of the meniscus are torn, the meniscal height and shape can be derived from measurements of a contralateral joint or using measurements of other articular structures that can provide an estimate on meniscal dimensions.
25 [0130] In another embodiment, the superior face of the implants 300, 400 or 500 can be shaped according to the femur. The shape can preferably be derived from the movement patterns of the femur relative to the tibial plateau thereby accounting for variations in femoral shape and tibiofemoral contact area as the femoral condyle flexes, extends, rotates, translates and glides on the tibia and menisci.
[0131] The movement patterns can be measured using any current or future test know in the art such as fluoroscopy, MRI, gait analysis and combinations thereof.
[0132] The arthroplasty can have two or more components, one essentially mating with the tibial surface and the other substantially articulating with the femoral component. The two components can have a flat opposing surface. Alternatively, the opposing surface can be curved.
The curvature can be a reflection of the tibial shape, the femoral shape including during joint motion, and the meniscal shape and combinations thereof.
[0133] Examples of single-component systems include, but are not limited to, a plastic, a polymer, a metal, a metal alloy, crystal free metals, a biologic material or combinations thereof. In certain embodiments, the surface of the repair system facing the underlying bone can be smooth. In other embodiments, the surface of the repair system facing the underlying bone can be porous or porous-coated. In another aspect, the surface of the repair system facing the underlying bone is designed with one or more grooves, for example to facilitate the in-growth of the surrounding tissue.
The external surface of the device can have a step-like design, which can be advantageous for altering biomechanical stresses. Optionally, flanges can also be added at one or more positions on the device (e.g., to prevent the repair system from rotating, to control toggle and/or prevent settling into the marrow cavity). The flanges can be part of a conical or a cylindrical design. A portion or all of the repair system facing the underlying bone can also be flat which can help to control depth of the implant and to prevent toggle.
[0134] Non-limiting examples of multiple-component systems include combinations of metal, plastic, metal alloys, crystal free metals, and one or more biological materials. One or more components of the articular surface repair system can be composed of a biologic material (e.g. a tissue scaffold with cells such as cartilage cells or stem cells alone or seeded within a substrate such as a bioresorable material or a tissue scaffold, allograft, autograft or combinations thereof) and/or a non-biological material (e.g., polyethylene or a chromium alloy such as chromium cobalt).
[0135] Thus, the repair system can include one or more areas of a single material or a combination of materials, for example, the articular surface repair system can have a first and a second component. The first component is typically designed to have size, thickness and curvature similar to that of the cartilage tissue lost while the second component is typically designed to have a curvature similar to the subchondral bone. In addition, the first component can have biomechanical properties similar to articular cartilage, including but not limited to similar elasticity and resistance to axial loading or shear forces. The first and the second component can consist of two different metals or metal alloys. One or more components of the system (e.g., the second portion) can be composed of a biologic material including, but not limited to bone, or a non-biologic material including, but not limited to hydroxyapatite, tantalum, a chromium alloy, chromium cobalt or other metal alloys.
[0136] One or more regions of the articular surface repair system (e.g., the outer margin of the first portion and/or the second portion) can be bioresorbable, for example to allow the interface between the articular surface repair system and the patient's normal cartilage, over time, to be filled in with hyaline or fibrocartilage. Similarly, one or more regions (e.g., the outer margin of the first portion of the articular surface repair system and/or the second portion) can be porous. The degree of porosity can change throughout the porous region, linearly or non-linearly, for where the degree of porosity will typically decrease towards the center of the articular surface repair system. The pores can be designed for in-growth of cartilage cells, cartilage matrix, and connective tissue thereby achieving a smooth interface between the articular surface repair system and the surrounding cartilage.
[0137] The repair system (e.g., the second component in multiple component systems) can be attached to the patient's bone with use of a cement-like material such as methylmethacrylate, injectable hydroxy- or calcium-apatite materials and the like.
[0138] In certain embodiments, one or more portions of the articular surface repair system can be pliable or liquid or deformable at the time of implantation and can harden later. Hardening can occur, for example, within 1 second to 2 hours (or any time period therebetween), preferably with in 1 second to 30 minutes (or any time period therebetween), more preferably between 1 second and 10 minutes (or any time period therebetween).
[0139] One or more components of the articular surface repair system can be adapted to receive injections. For example, the external surface of the articular surface repair system can have one or more openings therein. The openings can be sized to receive screws, tubing, needles or other devices which can be inserted and advanced to the desired depth, for example, through the articular surface repair system into the marrow space. lnjectables such as methylmethacrylate and injectable hydroxy- or calcium-apatite materials can then be introduced through the opening (or tubing inserted therethrough) into the marrow space thereby bonding the articular surface repair system with the marrow space.
Similarly, screws or pins, or other anchoring mechanisms, can be inserted into the openings and advanced to the underlying subchondral bone and the bone marrow or epiphysis to achieve fixation of the articular surface repair system to the bone. Portions or all components of the screw or pin can be bioresorbable, for example, the distal portion of a screw that protrudes into the marrow space can be bioresorbable. During the initial period after the surgery, the screw can provide the primary fixation of the articular surface repair system. Subsequently, ingrowth of bone into a porous coated area along the undersurface of the articular cartilage repair system can take over as the primary stabilizer of the articular surface repair system against the bone.
[0140] The articular surface repair system can be anchored to the patient's bone with use of a pin or screw or other attachment mechanism.
The attachment mechanism can be bioresorbable. The screw or pin or attachment mechanism can be inserted and advanced towards the articular surface repair system. from a non-cartilage covered portion of the bone or from a non-weight-bearing surface of the joint [0141] The interface between the articular surface repair system and the surrounding normal cartilage can be at an angle, for example oriented at an angle of 90 degrees relative to the underlying subchondral bone. Suitable angles can be determined in view of the teachings herein, and in certain cases, non-90 degree angles can have advantages with regard to load distribution along the interface between the articular surface repair system and the surrounding normal cartilage.
[0142] The interface between the articular surface repair system and the surrounding normal cartilage and/or bone can be covered with a pharmaceutical or bioactive agent, for example a material that stimulates the biological integration of the repair system into the normal cartilage and/or bone. The surface area of the interface can be irregular, for example, to increase exposure of the interface to pharmaceutical or bioactive agents.
[0143] E. PRE-EXISTING REPAIR SYSTEMS
5 [0144] As described herein, repair systems of various sizes, curvatures and thicknesses can be obtained. These repair systems can be catalogued and stored to create a library of systems from which an appropriate system for an individual patient can then be selected. In other words, a defect, or an articular surface, is assessed in a particular subject 10 and a pre-existing repair system having a suitable shape and size is selected from the library for further manipulation (e.g., shaping) and implantation.
[0145] F. MINI-PROSTHESIS
[0146] As noted above, the methods and compositions described 15 herein can be used to replace only a portion of the articular surface, for example, an area of diseased cartilage or lost cartilage on the articular surface. In these systems, the articular surface repair system can be designed to replace only the area of diseased or lost cartilage or it can extend beyond the area of diseased or lost cartilage, e.g., 3 or 5 mm into 20 normal adjacent cartilage. In certain embodiments, the prosthesis replaces less than about 70% to 80% (or any value therebetween) of the articular surface (e.g., any given articular surface such as a single femoral condyle, etc.), preferably, less than about 50% to 70% (or any value therebetween), more preferably, less than about 30% to 50% (or any value 25 therebetween), more preferably less than about 20% to 30% (or any value therebetween), even more preferably less than about 20% of the articular surface.
[0147] The prosthesis can include multiple components, for example a component that is implanted into the bone (e.g., a metallic device) attached to a component that is shaped to cover the defect of the cartilage overlaying the bone. Additional components, for example intermediate plates, meniscal repair systems and the like can also be included. It is contemplated that each component replaces less than all of the corresponding articular surface. However, each component need not replace the same portion of the articular surface. In other words, the prosthesis can have a bone-implanted component that replaces less than
[0079] FIG. 2o is a cross-section taken along a sagittal plane in a body showing the implant 200 implanted within a knee joint 1020 such that the lower surface 204 of the implant 200 lies on the tibial plateau 1022 and the femur 1024 rests on the upper surface 202 of the implant 200. FIG. 2H
is a cross-section taken along a coronal plane in a body showing the implant 200 implanted within a knee joint 1020. As is apparent from this view, the implant 200 is positioned so that it fits within a superior articular surface 224. As will be appreciated by those of skill in the art, the articular surface could be the medial or lateral facet, as needed.
[0080] FIG. 21 is a view along an axial plane of the body showing the implant 200 implanted within a knee joint 1020 showing the view taken from an aerial, or upper, view. FIG. 2J is a view of an alternate embodiment where the implant is a bit larger such that it extends closer to the bone medially, i.e. towards the edge 1023 of the tibial plateau, as well as extending anteriorly and posteriorly.
[0081] FIG. 2K is a cross-section of an implant 200 of the invention according to an alternate embodiment. In this embodiment, the lower surface 204 further includes a joint anchor 212. As illustrated in this embodiment, the joint anchor 212 forms a protrusion, keel or vertical member that extends from the lower surface 204 of the implant 200 and projects into, for example, the bone of the joint. As will be appreciated by those of skill in the art, the keel can be perpendicular or lie within a plane 5 of the body.
[0082] Additionally, as shown in FIG. 2L the joint anchor 212 can have a cross-member 214 so that from a bottom perspective, the joint anchor 212 has the appearance of a cross or an "x." As will be appreciated by those of skill in the art, the joint anchor 212 could take on a variety of 10 other forms while still accomplishing the same objective of providing increased stability of the implant 200 in the joint. These forms include, but are not limited to, pins, bulbs, balls, teeth, etc. Additionally, one or more joint anchors 212 can be provided as desired. FIG. 2m and N illustrate cross-sections of alternate embodiments of a dual component implant from 15 a side view and a front view.
[0083] In an alternate embodiment shown in FIG. 2m it may be desirable to provide a one or more cross-members 220 on the lower surface 204 in order to provide a bit of translation movement of the implant relative to the surface of the femur, or femur implant. In that event, the 20 cross-member can be formed integral to the surface of the implant or can be one or more separate pieces that fit within a groove 222 on the lower surface 204 of the implant 200. The groove can form a single channel as shown in FIG. 2N1, or can have more than one channel as shown in 2N2. In either event, the cross-bar then fits within the channel as 25 - shown in FIGS. 2N1-N2. The cross-bar members 220 can form a solid or hollow tube or pipe structure as shown in FIG. 2P. Where two, or more, tubes 220 communicate to provide translation, a groove 221 can be provided along the surface of one or both cross-members to interlock the tubes into a cross-bar member further stabilizing the motion of the cross-bar relative to the implant 200. As will be appreciated by those of skill in the art, the cross-bar member 220 can be formed integrally with the implant without departing from the scope of the invention.
[0084] As shown in FiGs. 2Q-R, it is anticipated that the surface of the tibial plateau will be prepared by forming channels thereon to receive the cross-bar members. Thus facilitating the ability of the implant to seat securely within the joint while still providing movement about an axis when the knee joint is in motion.
[0085] FIG. 2s(1-9) illustrate an alternate embodiment of implant 200. As illustrated in FIG. 2s the edges are beveled to relax a sharp corner.
FIG. 2s(1) illustrates an implant having a single fillet or bevel 230. The fillet is placed on the implant anterior to the posterior portion of the tibial spine.
As shown in FIG. 2s(2) two fillets 230, 231 are provided and used for the posterior chamfer. In FIG. 2s(3) a third fillet 234 is provided to create two cut surfaces for the posterior chamfer.
[0086] Turning now to FIG. 2s(4) a tangent of the implant is deselected, leaving three posterior curves. FIG. 2s(5) shows the result of tangent propagation. FIG. 2s(6) illustrates the effect on the design when the bottom curve is selected.without tangent propagation. The result of tangent propagation and selection is shown in FIG. 2s(7). As can be seen in FIG. 2s(8-9) the resulting corner has a softer edge but sacrifices less than 0.5 mm of joint space. As will be appreciated by those of skill in the art, additional cutting planes can be added without departing from the scope of the invention.
[0087] FIG. 21. illustrates an alternate embodiment of an implant 200 wherein the surface of the tibial plateau 250 is altered to accommodate the implant. As illustrated in FIG. 2T(1-2) the tibial plateau can be altered for only half of the joint surface 251 or for the full surface 252. As illustrate in FIG. 21(3-4) the posterior-anterior surface can be flat 260 or graded 262.
Grading can be either positive or negative relative to the anterior surface.
Grading can also be used with respect to the implants of FIG. 2T where the grading either lies within a plane or a body or is angled relative to a plane of the body. Additionally, attachment mechanisms can be provided to anchor the implant to the altered surface. As shown in FIG. 2r(5-7) keels 264 can be provided. The keels 264 can either sit within a plane, e.g.
sagittal or coronal plane, or not sit within a plane (as shown in FIG. 2T(7)).
FIG. 21(8) illustrates an implant which covers the entire tibial plateau. The upper surface of these implants are designed to conform to the projected shape of the joint as determined under the steps described with respect to FIG. 1, while the lower surface is designed to be flat, or substantially fiat to correspond to the modified surface of the joint.
[0088] Turning now to FIGS. 3A-I an implant suitable for providing an opposing joint surface to the implant of FIG. 2A is shown. This implant corrects a defect on an inferior surface of the femur 1024 (e.g., the condyle of the femur that mates with the tibial plateau) and can be used alone, i.e., on the femur 1024, or in combination with another joint repair device. Formation of the surfaces of the devices can be achieved using the techniques described above with respect to the implant of FIG. 2.
[0089] FIG. 3A shows a perspective view of an implant 300 having a curved mating surface 302 and convex joint abutting surface 304. The joint abutting surface 304 need not form an anatomic or near anatomic fit with the femur in view of the anchors 306 provided to facilitate connection of the implant to the bone. In this instance, the anchors 306 are shown as pegs having notched heads. The notches facilitate the anchoring process within the bone. However, pegs without notches can be used as well as pegs with other configurations that facilitate the anchoring processor cruciate stems. Pegs and other portions of the implant can be porous coated. The implant can be inserted without bone cement or with use of bone cement. The implant can be designed to abut the subchondral bone, i.e. it can substantially follow the contour of the subchondral bone. This has the advantage that no bone needs to be removed other than for the placement of the peg holes thereby significantly preserving bone stock.
[0090] The anchors 306 could take on a variety of other forms without departing from the scope of the invention while still accomplishing the same objective of providing increased stability of the implant 300 in the joint. These forms include, but are not limited to, pins, bulbs, balls, teeth, etc. Additionally, one or more joint anchors 306 can be provided as desired. As illustrated in FIG. 3, three pins are used to anchor the implant 300. However, more or fewer joint anchors, cruciate stems, or pins, can be used without departing from the scope of the invention.
[0091] FIG. 3s shows a slightly perspective superior view of the bone mating surface 304 further illustrating the use of three anchors 306 to anchor the implant to the bone. Each anchor 306 has a stem3/0 with a head 312 on top. As shown in Flo. 3c, the stem 310 has parallel walls such that it forms a tube or cylinder that extends from the bone mating surface 304. A section of the stem forms a narrowed neck 314 proximal to the head 312. As will be appreciated by those of skill in the art, the wails need not be parallel, but rather can be sloped to be shaped like a cone.
Additionally, the neck 314 need not be present, nor the head 3/2. As discussed above, other configurations suitable for anchoring can be used without departing from the scope of the invention.
[0092] Turning now to FIG. 3D, a view of the tibial plateau mating surface 302 of the implant 300 is illustrated. As is apparent from this view, the surface is curved such that it is convex or substantially convex in order to mate with the concave surface of the plateau. FIG. 3E illustrates the upper surface 304 of the implant 300 further illustrating the use of three pegs 306 for anchoring the implant 300 to the bone. As illustrated, the three pegs 306 are positioned to form a triangle. However, as will be appreciated by those of skill in the art, one or more pegs can be used, and the orientation of the pegs 306 to one another can be as shown, or any other suitable orientation that enables the desired anchoring. FIG. 3F
illustrated a cross section of the implant 300 taken along the lines F-F
shown in FIG. 3E. Typically the pegs are oriented on the surface of the implant so that the peg is perpendicular to the femoral condyle, which may not result in the peg being perpendicular to the surface of the implant.
[0093] FIG. 3G illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008 and medial epicondyle 1010. Also shown is the patellar surface of the femur 1012.
The implant 300 illustrated in FIG. 3A, is illustrated covering a portion of the lateral condyle. The pegs 306 are also shown that facilitate anchoring the implant 300 to the condyle.
[0094] FIG. 3H illustrates a knee joint 1020 from an anterior =
perspective. The implant 300 is implanted over a condyle. As shown in FIG. 31 the implant 300 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in FIGS. 2.
[0095] FIGS. 3J-K illustrate an implant 300 for placement on a condyle. In this embodiment, at least one flat surface or chamfer cut 360 is provided to mate with a cut made on the surface of the condyle in preparing the joint. The flat surface 360 typically does not encompass the entire proximal surface 304 of the implant 300.
[0096] FIG. 4A illustrates the design of a typical total knee arthroplasty ("TKA") primary knee 499. Posterior cuts 498, anterior cuts 497 and distal cuts 496 are provided as well as chamfer cuts 495.
[0097] FIGS. 4B and 4c illustrate another implant 400. As shown in 5 FIG. 4e, the implant 400 is configured such that it covers both the lateral and medial femoral condyle along with the patellar surface of the femur 1012. The implant 400 has a lateral condyle component 410 and a medial condyle component 420 and a bridge 430 that connects the lateral condyle component 410 to the medial condyle component 420 while covering at 10 least a portion of the patellar surface of the femur 1012. The implant can optionally oppose one or more implants, such as those shown in FIG. 2, if desired. FIG. 4c is a side view of the implant of FIG. 48. As shown in FIG, 4c, the superior surface 402 of the implant 400 is curved to correspond to the curvature of the femoral condyles. The curvature can be 15 configured such that it corresponds to the actual curvature of one or both of the existing femoral condyles, or to the curvature of one or both of the femoral condyles after resurfacing of the joint. One or more pegs 430 can be provided to assist in anchoring the implant to the bone. As will be appreciated by those of skill in the art, the implant can be configured such 20 that the superior surface contacting a first condyle is configured to male with the existing condule while a surface contacting a second condyle has one or more flat surfaces to mate with a condyle surface that has been modified.
[0098] FIG. 4D illustrates a top view of the implant 400 shown in 25 FIG. 4B. As is should be appreciated from this view, the inferior surface 404 of the implant 400 is configured to conform to the shape of the femoral condyles, e.g. the shape healthy femoral condyles would present to the tibial surface in a non-damaged joint.
[0099] FIGS. 4E and F illustrate perspective views of the implant from the inferior surface (i.e., tibial plateau mating surface).
[0100] FIG. 4o illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008. The implant 400 illustrated in FIG. 4a, is illustrated covering both condyles and the patellar surface of the femur 1012. The pegs 430 are also shown that facilitate anchoring the implant 400 to the condyle.
[0101] FIG. 4H illustrates a knee joint 1050 from an anterior perspective. The implant 400 is implanted over both condyles. As shown in FIG. 4i the implant 400 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in nos. 2.
[0102] As will be appreciated by those of skill in the art, the implant 400 can be manufactured from a Material that has memory such that the implant can be configured to snap-fit over the condyle. Alternatively, it can be shaped such that it conforms to the surface without the need of a snap-fit.
[0103] FIGS. 5A and 5e illustrate yet another implant 500 suitable for repairing a damaged condyle. As shown in Flo. 5A, the implant 500 is configured such that it covers only one of the lateral or medial femoral condyles 510. The implant differs from the implant of FIG. 3 in that the implant 500 also covers at least a portion of the patellar surface of the femur 512.
[0104] Similar to the implant of FIG. 4, the implant can optionally oppose one or more implants or opposing joint surfaces, such as those shown in FIG. 2, and can be combined with other implants, such as the implants of FIG. 3. FIG. 5c is a perspective side view of the implant of FIG. 5A. As shown in FiG.5c, the superior surface 502 of the implant 500 is curved to correspond to the curvature of the femoral condyle that it mates with and the portion of the patellar surface of the femur that it covers. One or more pegs 530 can be provided to assist in anchoring the implant to the bone. Additionally, an angled surface 503 can be provided on an interior surface 502 of the condyle component that conforms to an optionally provided cut made on the surface of the joint surface with which the implant mates.
[0105] FIG. 6D illustrates a perspective top view of the implant shown in FIG. 5A. As is should be appreciated from this view, the inferior surface 504 of the implant 500 is configured to conform to the projected shape of the femoral condyles, e.g. the shape healthy femoral condyles would present to the tibial surface in a non-damaged joint.
[0106] FIG. SE is a view of the implant 500 showing a hatched three point loading support area which extends from a top portion 513 to a line (plane 17) and from a line (plane 18) to a bottom portion 515. Also illustrated are the pegs 530 extending from the superior surface. FIG. 5F
illustrates the superior surface of the implant 500 with the pegs 530 extending from the superior surface. FIG. SF also illustrates the hatched cantilever loading support area, which extends from the line (plane 18) to the top portion 513 of the implant. The loading forces and directions for each support condition are based on physiological load encounters. Table 1 shows the Physiological Loadings taken from a study by Seth Greenwald Table 1 Physiological Loadingsl Set-up u1 if lir 11311 Flexion Angle 0 60 900 (degree) Normal Force N 2,900 3,263 3,625 (lbs.) (652) (733.5) (815) Normal Force Walking Stair Descent Stair Ascent Case (4.0 x BVV*) (4.5 x BW*) (5.0 x BIM) _ *Body Weight (BW) taken as a 60 year old male, with 173 cm height for an average body weight of 74 kg (163 lbs).
1"Tibial Plateau Surface Stress in TKA: A Factor Influencing Polymer Failure Series III ¨ Posterior Stabilized Designs;" Paul D. Postak, B.Sc., Christine S. Heim, B.Sc., A. Seth Greenwald, D. Phil.; Orthopaedic Research Laboratories, The Mt. Sinai Medical Center, Cleveland, Ohio.
Presented at the 62nd Annual AAOS Meeting, 1995.
[0107] Using the implant 500 described in this application, the three point loading will occur from set-up 1 (2900 N). To replicate a worst case loading scenario, a 75/25 load distribution (75% of 2900 N = 2175 N) will be used. The loading will be concentrated on a 6mm diameter circular area located directly below and normal to the ped on the bearing surface.
[0108] Turning to the cantilever loading shown in FIG. 6F, the loading will occur from set-up 3, or 90 , at a 75/25 load distribution (75% of 3625 N = 2719 N). As with the above example, the loading will be concentrated on a 6 mm diameter circular area located at the center of the posterior-most portion of the medial condyle normal to the flat cut surface of the posterior condyle.
[0109] FIGS. So and H illustrate alternate embodiments of the implant 500 having a rail design that provides one or more rails 521 along medial and/or lateral sides of the implant 500. The rail 521 can be positioned so that it extends along a portion of the medial 517 and/or lateral 519 sides before communicating with the angled surface 503. As will be appreciate, a single side rail 52/can be provided without departing from the scope of the invention.
[01101 FIG. 51 illustrates another embodiment of an implant 500 having a keel design. A keel 523 (or centrally formed rail) is provided on the superior surface of the implant. In this embodiment, the keel 523 is located on the surface of the implant, but not at the sides. As will be appreciated, the keel can be centered, as shown, substantially centered, or located off-center. An angled surface 503 can be provided to communicate with a modified joint surface. Alternatively, where the joint surface is worn or modified, the cut 503 could be configured to mate with the worn or modified surface.
[0111] FIG. 5.iillustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008 and the medial epicondyle 1010. The patellar surface of the femur 1012 is also illustrated.
The implant 500, illustrated in FIG. 5A, is shown covering the lateral condyle and a portion of the patellar surface of the femur 1012. The pegs 530 are also shown that facilitate anchoring the implant 500 to the condyle and patellar surface.
[0112] FIG. 5K illustrates a knee joint 1020 from an anterior perspective. The implant 500 is implanted over the lateral condyle. FIG. 6L
illustrates a knee joint 1020 with the implant 500 covering the medial condyle 1004. As illustrated in FIGS. 5K and L the shape of the implant 500 corresponding to the patella surface can take on a variety of curvatures without departing from the scope of the invention.
[0113] Turning now to FIG. 5ro and N the implant 500 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in FIGS. 2.
[0114] In another embodiment of the invention, the implant 500 can have a superior surface 502 which substantially conforms to the surface of the condyle but which has at one flat portion corresponding to an oblique cut on the bone as shown in FIG. 50.
[0115] Turning now to FIG. 5P-Q an implant 500 is shown from a side view with a 70 difference between the anterior and posterior cuts.
[0116] FIG. 5R-S illustrate an implant 500 having a contoured surface 560 for mating with the joint surface and an anterior cut 561 and a 5 posterior cut 562. FIG. 5s shows the same implant 500 from a slightly different angle. FIG. 5T illustrates another implant 500 having a contoured surface 560 for mating with the joint surface and posterior cut 562, a distal cut 563, and a chamfer cut 564. In this embodiment no anterior cut is provided. FIG. 5u illustrates the implant 500 of FIG. 5T from a side 10 perspective. The cuts are typically less than the cut required for a TKA, i.e., typically less than 10mm. The design of the cuts for this implant allow for a revision surgery to the knee, if required, at a later date.
[0117] FIGS. 6A-G illustrate the implant 500 of FIG. 5 with a graphical representation of the cross-sections 610, 620 from which a surface shape 15 of the implant is derived. FIG. 6A illustrates a top view of the implant sitting on top of the extracted surface shape 600. This view of the implant 500 illustrates a notch 514 associated with the bridge section of the implant 5/2 which covers the patellar surface of the femur (or the trochlea region) to provide a mating surface that approximates the cartilage 20 surface. As will be appreciated by those of skill in the art, the shape of an implant designed for the medial condyle would not necessarily be a mirror image of the implant designed for the lateral condyle because of differences in anatomy. Thus, for example, the notch 514 would not be present in an implant designed for the medial condyle and the patellar 25 surface of the femur. Therefore, the implant can be designed to include all or part of the troclea region or to exclude it entirely.
[0118] FIG. 6B illustrates a bottom view of the implant 500 layered over another derived surface shape 601. FIG. 6c is a bottom view showing the implant 500 extending through the extracted surface shape 600 shown in FIG. 6A. FIG. 6D is a close-up view of the FIG. 6c showing the condylar wing of the implant covering the extracted surface 600. FIG. 6E illustrates a top posterior view of the implant 500 positioned over the graphical representation of the surface shape 600. FIG. 6F is an anterior view and FIG. 6G is a bottom-posterior view.
[0119] FIG. 7A-c illustrate an implant 700 for correcting a joint similar to the implant 500 above. However, implant 700 consists of two components. The first component 710 engages a condyle of the femur, either medial or lateral depending on the design. The second component 720 engages the patellar surface of the femur. As discussed with the previous embodiments, the surfaces of the implant 700 can be configured such that the distal surface 722 (e.g., the surface that faces the tibial plateau) is shaped based on a projection of the natural shape of the femur compensating the design for valgus or varus deformities and/or flattening of the surface of the femur. Alternatively, the distal surface can be shaped based on the shape of the tibial plateau to provide a surface designed to optimally mate with the tibial plateau. The proximal surface 724 (e.g., the surface that engages the femoral condyle) can be configured such that it mirrors the surface of the femur in either its damaged condition or its modified condition. Likewise, the proximal surface can have one or more flattened sections 726 that form, e.g., chamfer cuts. Additionally the surface can include mechanisms facilitating attachment 728 to the femur, such as keels, teeth, cruciate stems, and the like. The medial facing portion of the condyle implant has a tapered surface 730 while the lateral facing portion of the patellar component also has a tapered surface such that each component presents tapered surfaces 730 to the other component.
[01201 By dividing the surfaces of the medial and lateral compartments into independent articulating surfaces, as shown in FIG. 7, the implant provides improved fit of the conformal surfaces to the subchondral bone. Additionally, the lateral-anterior portion of the femur is shielded from stress which could cause bone loss. Also, the smaller size of each component of the implant, enables the implant to be placed within the joint using a smaller incision. Finally, the wear of the patellar component is improved.
[0121] FIGS. 8A-F illustrate a patella 00 with an implants 810. The implant 810 can have one or more pegs, cruciate stems, or other anchoring mechanisms, if desired. As will be appreciated by those of skill in the art, other designs can be arrived at using the teachings of this disclosure without departing from the scope of the invention. FIG. 8A
illustrates a perspective view of an intact patella 800. FIG. 8e illustrates the patella 800 wherein one surface of the patella 800 has been cut for form a smooth surface 802 to mate with an implant. FIG. 8c illustrates the patella 800 with an implant 810 positioned on the smooth surface 802. The implant 810 has a plate structure 812 that abuts the smooth surface of the patella 802 and a dome 814 positioned on the plate 812 so that the dome is positioned in situ such that it will match the location of the patellar ridge.
The implant 810 can be configured such that the edge of the plate is offset 1 mm from the actual edge of the patella, as illustrated. As wIl be appreciated by those of skill in the art, the plate 812 and dome 814 can be formed as a single unit or formed from multiple components. Fie. 80 is a side view of the implant 810 positioned on the patella 800. As shown, the dome is positioned on the implant such that it is off-center. Optimal positioning of the dome will be determined by the position of the patellar ridge.
. .
. , [0122] Turning now to FIGS. 8E-F, the implant 810 is shown superimposed on the unaltered patella 800 in order to illustrate that the position of the dome 814 of the implant corresponds to the location of the patellar ridge.
[0123] FIGS. 8G-J illustrate an alternative design for the patellar implant. FIG. 8G illustrates the implant 850 in its beginning stages as a blank with a flat inferior surface 852 having pegs 854 extending therefrom for anchoring to the patella. The articular or superior surface 860 has a rounded dome 856, and a round plate section 858 that can be machined to match the bone cut. The articular surface 860 takes on the appearance of a "hat" or somberero, having a dome with a rim. The center of the dome 856 is also the center of the bearing surface. The rim 858 is cut to conform to the needs of the particular patient. FIG. 8.1 illustrates an implant which has been formed from the blank shown in FIGS. 8G-1. FIG. 81 shows a plurality of possible cut lines 862, 862' for purposes of illustration.
[0124] FIGS. 9A-C illustrate a lateral view of a knee 1020 having a combination of the implants of implanted thereof. In FIG. 9A, an implant covering the condyle 900, is illustrated. Suitable implants can be, for example, those shown in Fics. 3-8, as will be appreciated the portion of the condyle covered anterior to posterior can include the entire weight bearing surface, a portion thereof, or a surface greater than the weight bearing surface. Thus, for example, the implant can be configured to terminate prior to the sulcus terminalis or after the sulcus terminalis (e.g., the groove on the femur that coincides with the area where load bearing on the joint surface stops). As shown in FIGS. 9A-B, a patellar implant 900 can also be provided. FIG. 9c illustrates a knee having a condyle implant 900, a patellar implant 800 and an implant for the tibial plateau 200.
. 44 [0125] FIGS. 10A-D provide an alternate view of the coronal plane of a knee joint with one or more implants described above implanted therein.
FIG. 10A illustrates a knee having a tibial implant 200 placed therein.
FIG. 10B illustrates a knee with a condyle implant 300 placed therein. As described above, a plurality of the implants taught herein can be provided within a joint in order to restore joint movement. FIG. 10C illustrates a knee joint having two implants therein. First, a tibial implant 200 is provided on the tibial plateau and a second implant 300 is provided on the facing condyle. As will be appreciated by those of skill in the art. The implants can be installed such that the implants present each other mating surfaces (as illustrated), or not. For example, where the tibial implant 200 is placed in the medial compartment of the knee and the condyle implant 300 is placed in the lateral compartment. Other combinations will be appreciated by those of skill in the art. Turning now to FIG. 10D, a tibial implant 200 is provided along with a bicompartmental condyle implant 500. As discussed above, these implants can be associated with the same compartment of the knee joint, but need not be.
[0126] The arthroplasty system can be designed to reflect aspects .
of the tibial shape, femoral shape and/or patellar shape. Tibial shape and femoral shape can include cartilage, bone or both. Moreover, the shape of the implant can also include portions or all components of other articular structures such as the menisci. The menisci are compressible, in particular during gait or loading. For this reason, the implant can be designed to incorporate aspects of the meniscal shape accounting for compression of the menisci during loading or physical activities. For example, the undersurface 204 of the implant 200 can be designed to match the shape of the tibial plateau including cartilage or bone or both. The superior surface 202 of the implant 200 can be a composite of the articular surface of the tibia (in particular in areas that are not covered by menisci) and the meniscus. Thus, the outer aspects of the device can be a reflection of meniscal height. Accounting for compression, this can be, for example, 20%, 40%, 60% or 80% of uncompressed meniscal height.
[0127] Similarly the superior surface 304 of the implant 300 can be 5 designed to match the shape of the femoral condyle including cartilage or bone or both. The inferior surface 302 of the implant 300 can be a composite of the surface of the tibial plateau (in particular in areas that are not covered by menisci) and the meniscus. Thus, at least a portion of the outer aspects of the device can be a reflection of meniscal height.
10 Accounting for compression, this can be, for example, 20%, 40%, 60% or 80% of uncompressed meniscal height. These same properties can be applied to the implants shown in FIGS. 4-8, as well.
[0128] In some embodiments, the outer aspect of the device reflecting the meniscal shape can be made of another, preferably 15 compressible material. If a compressible material is selected it is preferably designed to substantially match the compressibility and biomechanical behavior of the meniscus. The entire device can be made of such a material or non-metallic materials in general.
[0129] The height and shape of the menisci for any joint surface to 20 be repaired can be measured directly on an imaging test. If portions, or all, of the meniscus are torn, the meniscal height and shape can be derived from measurements of a contralateral joint or using measurements of other articular structures that can provide an estimate on meniscal dimensions.
25 [0130] In another embodiment, the superior face of the implants 300, 400 or 500 can be shaped according to the femur. The shape can preferably be derived from the movement patterns of the femur relative to the tibial plateau thereby accounting for variations in femoral shape and tibiofemoral contact area as the femoral condyle flexes, extends, rotates, translates and glides on the tibia and menisci.
[0131] The movement patterns can be measured using any current or future test know in the art such as fluoroscopy, MRI, gait analysis and combinations thereof.
[0132] The arthroplasty can have two or more components, one essentially mating with the tibial surface and the other substantially articulating with the femoral component. The two components can have a flat opposing surface. Alternatively, the opposing surface can be curved.
The curvature can be a reflection of the tibial shape, the femoral shape including during joint motion, and the meniscal shape and combinations thereof.
[0133] Examples of single-component systems include, but are not limited to, a plastic, a polymer, a metal, a metal alloy, crystal free metals, a biologic material or combinations thereof. In certain embodiments, the surface of the repair system facing the underlying bone can be smooth. In other embodiments, the surface of the repair system facing the underlying bone can be porous or porous-coated. In another aspect, the surface of the repair system facing the underlying bone is designed with one or more grooves, for example to facilitate the in-growth of the surrounding tissue.
The external surface of the device can have a step-like design, which can be advantageous for altering biomechanical stresses. Optionally, flanges can also be added at one or more positions on the device (e.g., to prevent the repair system from rotating, to control toggle and/or prevent settling into the marrow cavity). The flanges can be part of a conical or a cylindrical design. A portion or all of the repair system facing the underlying bone can also be flat which can help to control depth of the implant and to prevent toggle.
[0134] Non-limiting examples of multiple-component systems include combinations of metal, plastic, metal alloys, crystal free metals, and one or more biological materials. One or more components of the articular surface repair system can be composed of a biologic material (e.g. a tissue scaffold with cells such as cartilage cells or stem cells alone or seeded within a substrate such as a bioresorable material or a tissue scaffold, allograft, autograft or combinations thereof) and/or a non-biological material (e.g., polyethylene or a chromium alloy such as chromium cobalt).
[0135] Thus, the repair system can include one or more areas of a single material or a combination of materials, for example, the articular surface repair system can have a first and a second component. The first component is typically designed to have size, thickness and curvature similar to that of the cartilage tissue lost while the second component is typically designed to have a curvature similar to the subchondral bone. In addition, the first component can have biomechanical properties similar to articular cartilage, including but not limited to similar elasticity and resistance to axial loading or shear forces. The first and the second component can consist of two different metals or metal alloys. One or more components of the system (e.g., the second portion) can be composed of a biologic material including, but not limited to bone, or a non-biologic material including, but not limited to hydroxyapatite, tantalum, a chromium alloy, chromium cobalt or other metal alloys.
[0136] One or more regions of the articular surface repair system (e.g., the outer margin of the first portion and/or the second portion) can be bioresorbable, for example to allow the interface between the articular surface repair system and the patient's normal cartilage, over time, to be filled in with hyaline or fibrocartilage. Similarly, one or more regions (e.g., the outer margin of the first portion of the articular surface repair system and/or the second portion) can be porous. The degree of porosity can change throughout the porous region, linearly or non-linearly, for where the degree of porosity will typically decrease towards the center of the articular surface repair system. The pores can be designed for in-growth of cartilage cells, cartilage matrix, and connective tissue thereby achieving a smooth interface between the articular surface repair system and the surrounding cartilage.
[0137] The repair system (e.g., the second component in multiple component systems) can be attached to the patient's bone with use of a cement-like material such as methylmethacrylate, injectable hydroxy- or calcium-apatite materials and the like.
[0138] In certain embodiments, one or more portions of the articular surface repair system can be pliable or liquid or deformable at the time of implantation and can harden later. Hardening can occur, for example, within 1 second to 2 hours (or any time period therebetween), preferably with in 1 second to 30 minutes (or any time period therebetween), more preferably between 1 second and 10 minutes (or any time period therebetween).
[0139] One or more components of the articular surface repair system can be adapted to receive injections. For example, the external surface of the articular surface repair system can have one or more openings therein. The openings can be sized to receive screws, tubing, needles or other devices which can be inserted and advanced to the desired depth, for example, through the articular surface repair system into the marrow space. lnjectables such as methylmethacrylate and injectable hydroxy- or calcium-apatite materials can then be introduced through the opening (or tubing inserted therethrough) into the marrow space thereby bonding the articular surface repair system with the marrow space.
Similarly, screws or pins, or other anchoring mechanisms, can be inserted into the openings and advanced to the underlying subchondral bone and the bone marrow or epiphysis to achieve fixation of the articular surface repair system to the bone. Portions or all components of the screw or pin can be bioresorbable, for example, the distal portion of a screw that protrudes into the marrow space can be bioresorbable. During the initial period after the surgery, the screw can provide the primary fixation of the articular surface repair system. Subsequently, ingrowth of bone into a porous coated area along the undersurface of the articular cartilage repair system can take over as the primary stabilizer of the articular surface repair system against the bone.
[0140] The articular surface repair system can be anchored to the patient's bone with use of a pin or screw or other attachment mechanism.
The attachment mechanism can be bioresorbable. The screw or pin or attachment mechanism can be inserted and advanced towards the articular surface repair system. from a non-cartilage covered portion of the bone or from a non-weight-bearing surface of the joint [0141] The interface between the articular surface repair system and the surrounding normal cartilage can be at an angle, for example oriented at an angle of 90 degrees relative to the underlying subchondral bone. Suitable angles can be determined in view of the teachings herein, and in certain cases, non-90 degree angles can have advantages with regard to load distribution along the interface between the articular surface repair system and the surrounding normal cartilage.
[0142] The interface between the articular surface repair system and the surrounding normal cartilage and/or bone can be covered with a pharmaceutical or bioactive agent, for example a material that stimulates the biological integration of the repair system into the normal cartilage and/or bone. The surface area of the interface can be irregular, for example, to increase exposure of the interface to pharmaceutical or bioactive agents.
[0143] E. PRE-EXISTING REPAIR SYSTEMS
5 [0144] As described herein, repair systems of various sizes, curvatures and thicknesses can be obtained. These repair systems can be catalogued and stored to create a library of systems from which an appropriate system for an individual patient can then be selected. In other words, a defect, or an articular surface, is assessed in a particular subject 10 and a pre-existing repair system having a suitable shape and size is selected from the library for further manipulation (e.g., shaping) and implantation.
[0145] F. MINI-PROSTHESIS
[0146] As noted above, the methods and compositions described 15 herein can be used to replace only a portion of the articular surface, for example, an area of diseased cartilage or lost cartilage on the articular surface. In these systems, the articular surface repair system can be designed to replace only the area of diseased or lost cartilage or it can extend beyond the area of diseased or lost cartilage, e.g., 3 or 5 mm into 20 normal adjacent cartilage. In certain embodiments, the prosthesis replaces less than about 70% to 80% (or any value therebetween) of the articular surface (e.g., any given articular surface such as a single femoral condyle, etc.), preferably, less than about 50% to 70% (or any value therebetween), more preferably, less than about 30% to 50% (or any value 25 therebetween), more preferably less than about 20% to 30% (or any value therebetween), even more preferably less than about 20% of the articular surface.
[0147] The prosthesis can include multiple components, for example a component that is implanted into the bone (e.g., a metallic device) attached to a component that is shaped to cover the defect of the cartilage overlaying the bone. Additional components, for example intermediate plates, meniscal repair systems and the like can also be included. It is contemplated that each component replaces less than all of the corresponding articular surface. However, each component need not replace the same portion of the articular surface. In other words, the prosthesis can have a bone-implanted component that replaces less than
30% of the bone and a cartilage component that replaces 60% of the cartilage. The prosthesis can include any combination, provided each component replaces less than the entire articular surface.
[0148] The articular surface repair system can be formed or selected so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage or bone. Typically, the articular surface repair system is formed and/or selected so that its outer margin located at the external surface will be aligned with the surrounding or adjacent cartilage.
[0149] Thus, the articular repair system can be designed to replace the weight-bearing portion (or more or less than the weight bearing portion) of an articular surface, for example in a femoral condyle. The weight-bearing surface refers to the contact area between two opposing articular surfaces during activities of normal daily living (e.g., normal gait).
At least one or more weight-bearing portions can be replaced in this manner, e.g., on a femoral condyle and on a tibia.
[0150] In other embodiments, an area of diseased cartilage or cartilage loss can be identified in a weight-bearing area and only a portion of the weight-bearing area, specifically the portion containing the diseased cartilage or area of cartilage loss, can be replaced with an articular surface repair system.
[0151] In another embodiment, the articular repair system can be designed or selected to replace substantially all of the articular surface, e.g. a condyle.
[0152] In another embodiment, for example, in patients with diffuse cartilage loss, the articular repair system can be designed to replace an area slightly larger than the weight-bearing surface.
[0153] In certain aspects, the defect to be repaired is located only on one articular surface, typically the most diseased surface. For example, in a patient with severe cartilage loss in the medial femoral condyle but less severe disease in the tibia, the articular surface repair system can only be applied to the medial femoral condyle. Preferably, in any methods described herein, the articular surface repair system is designed to achieve an exact or a near anatomic fit with the adjacent normal cartilage.
[0154] In other embodiments, more than one articular surface can be repaired. The area(s) of repair will be typically limited to areas of diseased cartilage or cartilage loss or areas slightly greater than the area of diseased cartilage or cartilage loss within the weight-bearing surface(s).
[0155] In another embodiment, one or more components of the articular surface repair (e.g., the surface of the system that is pointing towards the underlying bone or bone marrow) can be porous or porous coated. A variety of different porous metal coatings have been proposed for enhancing fixation of a metallic prosthesis by bone tissue in-growth.
Thus, for example, U.S. Pat. No. 3,855,638 to Pilliar issued December 24, 1974, discloses a surgical prosthetic device, which can be used as a bone prosthesis, comprising a composite structure consisting of a solid metallic material substrate and a porous coating of the same solid metallic material adhered to and extending over at least a portion of the surface of the substrate. The porous coating consists of a plurality of small discrete particles of metallic material bonded together at their points of contact with each other to define a plurality of connected interstitial pores in the coating. The size and spacing of the particles, which can be distributed in a plurality of monolayers, can be such that the average interstitial pore size is not more than about 200 microns. Additionally, the pore size distribution can be substantially uniform from the substrate-coating interface to the surface of the coating. In another embodiment, the articular surface repair system can contain one or more polymeric materials that can be loaded with and release therapeutic agents including drugs or other -pharmacological treatments that can be used for drug delivery. The polymeric materials can, for example, be placed inside areas of porous coating. The polymeric materials can be used to release therapeutic drugs, e.g. bone or cartilage growth stimulating drugs. This embodiment can be combined with other embodiments, wherein portions of the articular surface repair system can be bioresorbable. For example, the first layer of an articular surface repair system or portions of its first layer can be bioresorbable. As the first layer gets increasingly resorbed, local release of a cartilage growth-stimulating drug can facilitate in-growth of cartilage cells and matrix formation.
[0156] In any of the methods or compositions described herein, the articular surface repair system can be pre-manufactured with a range of sizes, curvatures and thicknesses. Alternatively, the articular surface repair system can be custom-made for an individual patient.
[0157] IV. MANUFACTURING
[0158] A. SHAPING
[0159] In certain instances shaping of the repair material will be required before or after formation (e.g., growth to desired thickness), for example where the thickness of the required cartilage material is not uniform (e.g., where different sections of the cartilage replacement or regenerating material require different thicknesses).
[0160] The replacement material can be shaped by any suitable technique including, but not limited to, casting techniques, mechanical abrasion, laser abrasion or ablation, radiofrequency treatment, cryoablation, variations in exposure time and concentration of nutrients, enzymes or growth factors and any other means suitable for influencing or changing cartilage thickness. See, e.g., WO 00/15153 to Mansmann published March 23, 2000; If enzymatic digestion is used, certain sections of the cartilage replacement or regenerating material can be exposed to higher doses of the enzyme or can be exposed longer as a means of achieving different thicknesses and curvatures of the cartilage replacement or regenerating material in different sections of said material.
[0161] The material can be shaped manually and/or automatically, for example using a device into which a pre-selected thickness and/or curvature has been input and then programming the device using the input information to achieve the desired shape.
[0162] In addition to, or instead of, shaping the cartilage repair material, the site of implantation (e.g., bone surface, any cartilage material remaining, etc.) can also be shaped by any suitable technique in order to enhance integration of the repair material.
[0163] B. SIZING
[0164] The articular repair system can be formed or selected so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage, subchondral bone, menisci and/or other tissue. The shape of the 5 repair system can be based on the analysis of an electronic image (e.g.
MR1, CT, digital tomosynthesis, optical coherence tomography or the like).
If the articular repair system is intended to replace an area of diseased cartilage or lost cartilage, the near anatomic fit can be achieved using a method that provides a virtual reconstruction of the shape of healthy 10 cartilage in an electronic image.
[0165] In one embodiment of the invention, a near normal cartilage surface at the position of the cartilage defect can be reconstructed by interpolating the healthy cartilage surface across the cartilage defect or area of diseased cartilage. This can, for example, be achieved by 15 describing the healthy cartilage by means of a parametric surface (e.g.
a B-spline surface), for which the control points are placed such that the parametric surface follows the contour of the healthy cartilage and bridges the cartilage defect or area of diseased cartilage. The continuity properties of the parametric surface will provide a smooth integration of 20 the part that bridges the cartilage defect or area of diseased cartilage with the contour of the surrounding healthy cartilage. The part of the . parametric surface over the area of the cartilage defect or area of diseased cartilage can be used to determine the shape or part of the shape of the articular repair system to match with the surrounding 25 cartilage'.
[0166] In another embodiment, a near normal cartilage surface at the position of the cartilage defect or area of diseased cartilage can be reconstructed using morphological image processing. In a first step, the cartilage can be extracted from the electronic image using manual, semi-automated and/or automated segmentation techniques (e.g., manual tracing, region growing, live wire, model-based segmentation), resulting in a binary image. Defects in the cartilage appear as indentations that can be filled with a morphological closing operation performed in 2-D or 3-D
with an appropriately selected structuring element. The closing operation is typically defined as a dilation followed by an erosion. A dilation operator sets the current pixel in the output image to 1 if at least one pixel of the structuring element lies inside a region in the source image. An erosion operator sets the current pixel in the output image to 1 if the whole structuring element lies inside a region in the source image. The filling of the cartilage defect or area of diseased cartilage creates a new surface over the area of the cartilage defect or area of diseased cartilage that can be used to determine the shape or part of the shape of the articular repair system to match with the surrounding cartilage or subchondral bone.
[0167] As described above, the articular repair system can be formed or selected from a library or database of systems of various sizes, curvatures and thicknesses so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage and/or subchondral bone.
These systems can be pre-made or made to order for an individual patient.
In order to control the fit or match of the articular repair system with the surrounding or adjacent cartilage or subchondral bone or menisci and other tissues preoperatively, a software program can be used that projects the articular repair system over the anatomic position where it will be implanted. Suitable software is commercially available and/or readily modified or designed by a skilled programmer.
[0168] In yet another embodiment, the articular surface repair system can be projected over the implantation site using one or more 3-D
images. The cartilage and/or subchondral bone and other anatomic structures are extracted from a 3-D electronic image such as an MRI or a CT using manual, semi-automated and/or automated segmentation techniques. A 3-D representation of the cartilage and/or subchondral bone and other anatomic structures as well as the articular repair system is generated, for example using a polygon or NURBS surface or other parametric surface representation. For a description of various parametric surface representations see, for example Foley, J.D. et al., Computer Graphics: Principles and Practice in C; Addison-Wesley, 2nd edition, 1995).
[0169] The 3-D representations of the cartilage and/or subchondral bone and other anatomic structures and the articular repair system can be merged into a common coordinate system. The articular repair system can then be placed at the desired implantation site. The representations of the cartilage, subchondral bone, menisci and other anatomic structures and the articular repair system are rendered into a 3-D image, for example application programming interfaces (APIs) OpenGLO (standard library of advanced 3-D graphics functions developed by SGI, Inc.; available as part of the drivers for PC-based video cards, for example from www.nvidia.com for NVIDIA video cards or www.3dlabs.com for 3Dlabs products, or as part of the system software for Unix workstations) or DirectX (multimedia API
for Microsoft Windows based PC systems; available from www.microsoft.com). The 3-D image can be rendered showing the cartilage, subchondral bone, menisci or other anatomic objects, and the articular repair system from varying angles, e.g. by rotating or moving them interactively or non-interactively, in real-time or non-real-time.
[0170] The software can be designed so that the articular repair system, including surgical tools and instruments with the best fit relative to the cartilage and/or subchondral bone is automatically selected, for example using some of the techniques described above. Alternatively, the operator can select an articular repair system, including surgical tools and instruments and project it or drag it onto the implantation site using suitable tools and techniques. The operator can move and rotate the articular repair systems in three dimensions relative to the implantation site and can perform a visual inspection of the fit between the articular repair system and the implantation site. The visual inspection can be computer assisted. The procedure can be repeated until a satisfactory fit has been achieved. The procedure can be performed manually by the operator; or it can be computer-assisted in whole or part. For example, the software can select a first trial implant that the operator can test. The operator can evaluate the fit. The software can be designed and used to highlight areas of poor alignment between the implant and the surrounding cartilage or subchondral bone or menisci or other tissues. Based on this information, the software or the operator can then select another implant and test its alignment. One of skill in the art will readily be able to select, modify and/or create suitable computer programs for the purposes described herein.
[0171] In another embodiment, the implantation site can be visualized using one or more cross-sectional 2-0 images. Typically, a series of 2-0 cross-sectional images will be used. The 2-D images can be generated with imaging tests such as CT, MRI, digital tomosynthesis, ultrasound, or optical coherence tomography using methods and tools known to those of skill in the art. The articular repair system can then be superimposed onto one or more of these 2-0 images. The 2-0 cross-sectional images can be reconstructed in other planes, e.g. from sagittal to coronal, etc. Isotropic data sets (e.g., data sets where the slice thickness is the same or nearly the same as the in-plane resolution) or near isotropic data sets can also be used. Multiple planes can be displayed simultaneously, for example using a split screen display. The operator can also scroll through the 2-0 images in any desired orientation in real time or near real time; the operator can rotate the imaged tissue volume while doing this. The articular repair system can be displayed in cross-section utilizing different display planes, e.g. sagittal, coronal or axial, typically matching those of the 2-D images demonstrating the cartilage, subchondral bone, menisci or other tissue. Alternatively, a three-dimensional display can be used for the articular repair system. The 2-D
electronic image and the 2-D or 3-0 representation of the articular repair system can be merged into a common coordinate system. The articular repair system can then be placed at the desired implantation site. The series of 2-D cross-sections of the anatomic structures, the implantation site and the articular repair system can be displayed interactively (e.g. the operator can scroll through a series of slices) or non-interactively (e.g. as an animation that moves through the series of slices), in real-time or non-real-time.
[0172] C. RAPID PROTOTYPING
[0173] Rapid protyping is a technique for fabricating a three-dimensional object from a computer model of the object. A special printer is used to fabricate the prototype from a plurality of two-dimensional layers. Computer software sections the representations of the object into a plurality of distinct two-dimensional layers and then a three-dimensional printer fabricates a layer of material for each layer sectioned by the software. Together the various fabricated layers form the desired prototype. More information about rapid prototyping techniques is available in US Patent Publication No 2002/0079601A1 to Russell et at., published June 27, 2002. An advantage to using rapid prototyping is that it enables the use of free form fabrication techniques that use toxic or potent compounds safely. These compounds can be safely incorporated in an excipient envelope, which reduces worker exposure [0174] A powder piston and build bed are provided. Powder includes any material (metal, plastic, etc.) that can be made into a powder or bonded with a liquid. The power is rolled from a feeder source with a spreader onto a surface of a bed. The thickness of the layer is controlled 5 by the computer. The print head then deposits a binder fluid onto the powder layer at a location where it is desired that the powder bind. Powder is again rolled into the build bed and the process is repeated, with the binding fluid deposition being controlled at each layer to correspond to the three-dimensional location of the device formation. For a further discussion 10 of this process see, for example, US Patent Publication No 2003/017365A1 to Monkhouse et al. published September 18, 2003.
[0175] The rapid prototyping can use the two dimensional images obtained, as described above in Section I, to determine each of the two-dimensional shapes for each of the layers of the prototyping machine. In 15 this scenario, each two dimensional image slice would correspond to a two dimensional prototype slide. Alternatively, the three-dimensional shape of the defect can be determined, as described above, and then broken down into two dimensional slices for the rapid prototyping process. The advantage of using the three-dimensional model is that the two-20 dimensional slices used for the rapid prototyping machine can be along the same plane as the two-dimensional images taken or along a different plane altogether.
[0176] Rapid prototyping can be combined or used in conjunction with casting techniques. For example, a shell or container with inner 25 dimensions corresponding to an articular repair system can be made using rapid prototyping. Plastic or wax-like materials are typically used for this purpose. The inside of the container can subsequently be coated, for example with a ceramic, for subsequent casting. Using this process, personalized casts can be generated.
[0177] Rapid prototyping can be used for producing articular repair systems. Rapid prototyping can be performed at a manufacturing facility.
Alternatively, it may be performed in the operating room after an intraoperative measurement has been performed.
[0178] V. SURGICAL. TECHNIQUES
[0179] Prior to performing surgery on a patient, the surgeon can preoperatively make a determination of the alignment of the knee using, for example, an erect AP x-ray. In performing preoperative assessment any lateral and patella spurs that are present can be identified.
[0180] Using standard surgical techniques, the patient is anesthetized and an incision is made in order to provide access to the portion or portions of the knee joint to be repaired. A medial portal can be used initially to enable arthroscopy of the joint. Thereafter, the medial portal can be incorporated into the operative incision and/or standard lateral portals can be used.
[0181] Once an appropriate incision has been made, the exposed compartment is inspected for integrity, including the integrity of the ligament structures. If necessary, portions of the meniscus can be removed as well as any spurs or osteophytes that were identified in the AP
x-ray or that may be present within the joint. In order to facilitate removal of osteophytes, the surgeon may flex the knee to gain exposure to additional medial and medial-posterior osteophytes. Additionally, osteophytes can be removed from the patella during this process. If necessary, the medial and/or lateral meniscus can also be removed at this point, if desired, along with the rim of the meniscus.
[0182] As would be appreciated by those of skill in the art, evaluation of the medial cruciate ligament may be required to facilitate tibial osteophyte removal.
[0183] Once the joint surfaces have been prepared, the desired implants can be inserted into the joint.
[0184] A. Tibial Plateau [0185] To insert the device 200 of FIG. 2 into the medial compartment, perform a mini-incision arthrotomy medial to the patella tendon. Once the incision is made, expose the medial condyle and prepare a medial sleeve to about 1 cm below the joint line using a suitable knife and curved osteotome. After preparing the medial sleeve, place a Z-retractor around the medial tibial plateau and remove anterior portions of the meniscus and the osteophytes along the tibia and femur. At this point, the knee should be flexed to about 60 or more. Remove the Z-retractor and place the implant against the most distal aspect of the femur and over the tibial plateau edge. Push the implant straight back. In some instances, application of valgus stress may ease insertion of the implant.
[0186] To insert the device of FIG. 2 into the lateral compartment, perform a mini-incision arthrotomy lateral to the patella tendon. Once the incision is made, expose the lateral condyle and prepare a lateral sleeve to about 1 cm below the joint line using a suitable knife and curved osteotome. After preparing the lateral sleeve, .place a Z-retractor around the lateral tibial plateau and remove anterior portions of the meniscus and the osteophytes along the tibia and femur. Remove the Z-retractor and place the implant against the distal aspect of the femur and over the tibial plateau edge. Hold the implant at a 450 angle and rotate the implant against the lateral condyle using a lateral to medial push toward the lateral spine. In some instances, application of varus stress may ease insertion of the implant.
[0187] Once any implant shown in FIG. 2 is implanted, the device should be positioned within 0 to 2mm of the AP boundaries of the tibial plateau and superimposed over the boundary. Verification of the range of motion should then be performed to confirm that there is minimal translation of the implant. Once positioning is confirmed, closure of the wound is performed using techniques known in the art.
[0188] As will be appreciated by those of skill in the art, additional treatment of the surface of the tibial plateau may be desirable depending on the configuration of the implant 200. For example, one or more channels or grooves may be formed on the surface of the tibial plateau to accommodate anchoring mechanisms such as the keel 212 shown in FIG. 2K or the translational movement cross-members 222, 221 shown in FIGS. 2M-N.
[0189] B. Condylar Repair Systems [0190] To insert the device 300 shown in FIG. 3, depending on the condyle to be repaired either an antero-medial or antero-lateral skin incisions is made which begins approximately 1 cm proximal to the superior border of the patella. The incision typically can range from, for example, 6-10 cm along the edge of the patella. As will be appreciated by those of skill in the art, a longer incision may be required under some circumstances.
[0191] It may be required to excise excess deep synovium to improve access to the joint. Additionally, all or part of the fat pad may also be excused and to enable inspection of the opposite joint compartment.
[0192] Typically, osteophytes are removed from the entire medial and/or lateral edge of the femur and the tibia as well as any osteophytes on the edge of the patella that might be significant.
[0193] Although it is possible, typically the devices 300 do not require resection of the distal femur prior to implanting the device.
Dona Al rtf1A7 However, if desired, bone cuts can be performed to provide a surface for the implant.
[0194] At this juncture, the patient's leg is placed in 900 flexion position. I guide can then be placed on the condyle which covers the distal femoral cartilage. The guide enables the surgeon to determine placement of apertures that enable the implant 300 to be accurately placed on the condyle. With the guide in place, holes are drilled into the condyle to create apertures from 1-3mm in depth. Once the apertures have been created, the guide is removed and the implant 300 is installed on the surface of the condyle. Cement can be used to facilitate adherence of the implant 300 to the condyle.
[0195] Where more than one condyle is to be repaired, e.g., using two implants 300 of FIG. 3, or the implant 400 of FIG. 4, or where a condyle and a portion of the patellar surface is to be repaired, e.g., using the implant 500 of FIG. 5, the surgical technique described herein would be modified to, for example, provide a greater incision for accessing the joint, provide additional apertures for receiving the pegs of the implant, etc.
[0196] C. Patellar Repair System [0197] To insert the device shown in FIG. 7, it may be appropriate to use the incisions made laterally or medially to the patella tendon and described above with respect to FIG. 2. First the patella is everted laterally and the fat pad and synovium are bent back from around the periphery of the patella. If desired, osteophytes can be removed. Prior to resurfacing the natural patella 620, the knee should be manually taken through several range of motion maneuvers to determine whether subluxation is present. If subluxation is present, then it may be necessary to medialize the implant 600. The natural patella can then be cut in a planar, or flat, manner such that a flat surface is presented to the implant. The geometric center of the patella 620 is then typically aligned with the geometric center of the implant 600. In order to anchor the implant 600 to the patella 620, one or more holes or apertures 612 can be created in the patellar surface to accept the pegs 610 of the implant 600.
5 [0198] VI. Kin [0199] One ore more of the implants described above can be combined together in a kit such that the surgeon can select one or more implants to be used during surgery.
[0200] The foregoing description of embodiments of the present 10 invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the 15 invention and its practical application, thereby enabling others skilled in the art to understand the invention and the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims equivalents thereof.
[0148] The articular surface repair system can be formed or selected so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage or bone. Typically, the articular surface repair system is formed and/or selected so that its outer margin located at the external surface will be aligned with the surrounding or adjacent cartilage.
[0149] Thus, the articular repair system can be designed to replace the weight-bearing portion (or more or less than the weight bearing portion) of an articular surface, for example in a femoral condyle. The weight-bearing surface refers to the contact area between two opposing articular surfaces during activities of normal daily living (e.g., normal gait).
At least one or more weight-bearing portions can be replaced in this manner, e.g., on a femoral condyle and on a tibia.
[0150] In other embodiments, an area of diseased cartilage or cartilage loss can be identified in a weight-bearing area and only a portion of the weight-bearing area, specifically the portion containing the diseased cartilage or area of cartilage loss, can be replaced with an articular surface repair system.
[0151] In another embodiment, the articular repair system can be designed or selected to replace substantially all of the articular surface, e.g. a condyle.
[0152] In another embodiment, for example, in patients with diffuse cartilage loss, the articular repair system can be designed to replace an area slightly larger than the weight-bearing surface.
[0153] In certain aspects, the defect to be repaired is located only on one articular surface, typically the most diseased surface. For example, in a patient with severe cartilage loss in the medial femoral condyle but less severe disease in the tibia, the articular surface repair system can only be applied to the medial femoral condyle. Preferably, in any methods described herein, the articular surface repair system is designed to achieve an exact or a near anatomic fit with the adjacent normal cartilage.
[0154] In other embodiments, more than one articular surface can be repaired. The area(s) of repair will be typically limited to areas of diseased cartilage or cartilage loss or areas slightly greater than the area of diseased cartilage or cartilage loss within the weight-bearing surface(s).
[0155] In another embodiment, one or more components of the articular surface repair (e.g., the surface of the system that is pointing towards the underlying bone or bone marrow) can be porous or porous coated. A variety of different porous metal coatings have been proposed for enhancing fixation of a metallic prosthesis by bone tissue in-growth.
Thus, for example, U.S. Pat. No. 3,855,638 to Pilliar issued December 24, 1974, discloses a surgical prosthetic device, which can be used as a bone prosthesis, comprising a composite structure consisting of a solid metallic material substrate and a porous coating of the same solid metallic material adhered to and extending over at least a portion of the surface of the substrate. The porous coating consists of a plurality of small discrete particles of metallic material bonded together at their points of contact with each other to define a plurality of connected interstitial pores in the coating. The size and spacing of the particles, which can be distributed in a plurality of monolayers, can be such that the average interstitial pore size is not more than about 200 microns. Additionally, the pore size distribution can be substantially uniform from the substrate-coating interface to the surface of the coating. In another embodiment, the articular surface repair system can contain one or more polymeric materials that can be loaded with and release therapeutic agents including drugs or other -pharmacological treatments that can be used for drug delivery. The polymeric materials can, for example, be placed inside areas of porous coating. The polymeric materials can be used to release therapeutic drugs, e.g. bone or cartilage growth stimulating drugs. This embodiment can be combined with other embodiments, wherein portions of the articular surface repair system can be bioresorbable. For example, the first layer of an articular surface repair system or portions of its first layer can be bioresorbable. As the first layer gets increasingly resorbed, local release of a cartilage growth-stimulating drug can facilitate in-growth of cartilage cells and matrix formation.
[0156] In any of the methods or compositions described herein, the articular surface repair system can be pre-manufactured with a range of sizes, curvatures and thicknesses. Alternatively, the articular surface repair system can be custom-made for an individual patient.
[0157] IV. MANUFACTURING
[0158] A. SHAPING
[0159] In certain instances shaping of the repair material will be required before or after formation (e.g., growth to desired thickness), for example where the thickness of the required cartilage material is not uniform (e.g., where different sections of the cartilage replacement or regenerating material require different thicknesses).
[0160] The replacement material can be shaped by any suitable technique including, but not limited to, casting techniques, mechanical abrasion, laser abrasion or ablation, radiofrequency treatment, cryoablation, variations in exposure time and concentration of nutrients, enzymes or growth factors and any other means suitable for influencing or changing cartilage thickness. See, e.g., WO 00/15153 to Mansmann published March 23, 2000; If enzymatic digestion is used, certain sections of the cartilage replacement or regenerating material can be exposed to higher doses of the enzyme or can be exposed longer as a means of achieving different thicknesses and curvatures of the cartilage replacement or regenerating material in different sections of said material.
[0161] The material can be shaped manually and/or automatically, for example using a device into which a pre-selected thickness and/or curvature has been input and then programming the device using the input information to achieve the desired shape.
[0162] In addition to, or instead of, shaping the cartilage repair material, the site of implantation (e.g., bone surface, any cartilage material remaining, etc.) can also be shaped by any suitable technique in order to enhance integration of the repair material.
[0163] B. SIZING
[0164] The articular repair system can be formed or selected so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage, subchondral bone, menisci and/or other tissue. The shape of the 5 repair system can be based on the analysis of an electronic image (e.g.
MR1, CT, digital tomosynthesis, optical coherence tomography or the like).
If the articular repair system is intended to replace an area of diseased cartilage or lost cartilage, the near anatomic fit can be achieved using a method that provides a virtual reconstruction of the shape of healthy 10 cartilage in an electronic image.
[0165] In one embodiment of the invention, a near normal cartilage surface at the position of the cartilage defect can be reconstructed by interpolating the healthy cartilage surface across the cartilage defect or area of diseased cartilage. This can, for example, be achieved by 15 describing the healthy cartilage by means of a parametric surface (e.g.
a B-spline surface), for which the control points are placed such that the parametric surface follows the contour of the healthy cartilage and bridges the cartilage defect or area of diseased cartilage. The continuity properties of the parametric surface will provide a smooth integration of 20 the part that bridges the cartilage defect or area of diseased cartilage with the contour of the surrounding healthy cartilage. The part of the . parametric surface over the area of the cartilage defect or area of diseased cartilage can be used to determine the shape or part of the shape of the articular repair system to match with the surrounding 25 cartilage'.
[0166] In another embodiment, a near normal cartilage surface at the position of the cartilage defect or area of diseased cartilage can be reconstructed using morphological image processing. In a first step, the cartilage can be extracted from the electronic image using manual, semi-automated and/or automated segmentation techniques (e.g., manual tracing, region growing, live wire, model-based segmentation), resulting in a binary image. Defects in the cartilage appear as indentations that can be filled with a morphological closing operation performed in 2-D or 3-D
with an appropriately selected structuring element. The closing operation is typically defined as a dilation followed by an erosion. A dilation operator sets the current pixel in the output image to 1 if at least one pixel of the structuring element lies inside a region in the source image. An erosion operator sets the current pixel in the output image to 1 if the whole structuring element lies inside a region in the source image. The filling of the cartilage defect or area of diseased cartilage creates a new surface over the area of the cartilage defect or area of diseased cartilage that can be used to determine the shape or part of the shape of the articular repair system to match with the surrounding cartilage or subchondral bone.
[0167] As described above, the articular repair system can be formed or selected from a library or database of systems of various sizes, curvatures and thicknesses so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage and/or subchondral bone.
These systems can be pre-made or made to order for an individual patient.
In order to control the fit or match of the articular repair system with the surrounding or adjacent cartilage or subchondral bone or menisci and other tissues preoperatively, a software program can be used that projects the articular repair system over the anatomic position where it will be implanted. Suitable software is commercially available and/or readily modified or designed by a skilled programmer.
[0168] In yet another embodiment, the articular surface repair system can be projected over the implantation site using one or more 3-D
images. The cartilage and/or subchondral bone and other anatomic structures are extracted from a 3-D electronic image such as an MRI or a CT using manual, semi-automated and/or automated segmentation techniques. A 3-D representation of the cartilage and/or subchondral bone and other anatomic structures as well as the articular repair system is generated, for example using a polygon or NURBS surface or other parametric surface representation. For a description of various parametric surface representations see, for example Foley, J.D. et al., Computer Graphics: Principles and Practice in C; Addison-Wesley, 2nd edition, 1995).
[0169] The 3-D representations of the cartilage and/or subchondral bone and other anatomic structures and the articular repair system can be merged into a common coordinate system. The articular repair system can then be placed at the desired implantation site. The representations of the cartilage, subchondral bone, menisci and other anatomic structures and the articular repair system are rendered into a 3-D image, for example application programming interfaces (APIs) OpenGLO (standard library of advanced 3-D graphics functions developed by SGI, Inc.; available as part of the drivers for PC-based video cards, for example from www.nvidia.com for NVIDIA video cards or www.3dlabs.com for 3Dlabs products, or as part of the system software for Unix workstations) or DirectX (multimedia API
for Microsoft Windows based PC systems; available from www.microsoft.com). The 3-D image can be rendered showing the cartilage, subchondral bone, menisci or other anatomic objects, and the articular repair system from varying angles, e.g. by rotating or moving them interactively or non-interactively, in real-time or non-real-time.
[0170] The software can be designed so that the articular repair system, including surgical tools and instruments with the best fit relative to the cartilage and/or subchondral bone is automatically selected, for example using some of the techniques described above. Alternatively, the operator can select an articular repair system, including surgical tools and instruments and project it or drag it onto the implantation site using suitable tools and techniques. The operator can move and rotate the articular repair systems in three dimensions relative to the implantation site and can perform a visual inspection of the fit between the articular repair system and the implantation site. The visual inspection can be computer assisted. The procedure can be repeated until a satisfactory fit has been achieved. The procedure can be performed manually by the operator; or it can be computer-assisted in whole or part. For example, the software can select a first trial implant that the operator can test. The operator can evaluate the fit. The software can be designed and used to highlight areas of poor alignment between the implant and the surrounding cartilage or subchondral bone or menisci or other tissues. Based on this information, the software or the operator can then select another implant and test its alignment. One of skill in the art will readily be able to select, modify and/or create suitable computer programs for the purposes described herein.
[0171] In another embodiment, the implantation site can be visualized using one or more cross-sectional 2-0 images. Typically, a series of 2-0 cross-sectional images will be used. The 2-D images can be generated with imaging tests such as CT, MRI, digital tomosynthesis, ultrasound, or optical coherence tomography using methods and tools known to those of skill in the art. The articular repair system can then be superimposed onto one or more of these 2-0 images. The 2-0 cross-sectional images can be reconstructed in other planes, e.g. from sagittal to coronal, etc. Isotropic data sets (e.g., data sets where the slice thickness is the same or nearly the same as the in-plane resolution) or near isotropic data sets can also be used. Multiple planes can be displayed simultaneously, for example using a split screen display. The operator can also scroll through the 2-0 images in any desired orientation in real time or near real time; the operator can rotate the imaged tissue volume while doing this. The articular repair system can be displayed in cross-section utilizing different display planes, e.g. sagittal, coronal or axial, typically matching those of the 2-D images demonstrating the cartilage, subchondral bone, menisci or other tissue. Alternatively, a three-dimensional display can be used for the articular repair system. The 2-D
electronic image and the 2-D or 3-0 representation of the articular repair system can be merged into a common coordinate system. The articular repair system can then be placed at the desired implantation site. The series of 2-D cross-sections of the anatomic structures, the implantation site and the articular repair system can be displayed interactively (e.g. the operator can scroll through a series of slices) or non-interactively (e.g. as an animation that moves through the series of slices), in real-time or non-real-time.
[0172] C. RAPID PROTOTYPING
[0173] Rapid protyping is a technique for fabricating a three-dimensional object from a computer model of the object. A special printer is used to fabricate the prototype from a plurality of two-dimensional layers. Computer software sections the representations of the object into a plurality of distinct two-dimensional layers and then a three-dimensional printer fabricates a layer of material for each layer sectioned by the software. Together the various fabricated layers form the desired prototype. More information about rapid prototyping techniques is available in US Patent Publication No 2002/0079601A1 to Russell et at., published June 27, 2002. An advantage to using rapid prototyping is that it enables the use of free form fabrication techniques that use toxic or potent compounds safely. These compounds can be safely incorporated in an excipient envelope, which reduces worker exposure [0174] A powder piston and build bed are provided. Powder includes any material (metal, plastic, etc.) that can be made into a powder or bonded with a liquid. The power is rolled from a feeder source with a spreader onto a surface of a bed. The thickness of the layer is controlled 5 by the computer. The print head then deposits a binder fluid onto the powder layer at a location where it is desired that the powder bind. Powder is again rolled into the build bed and the process is repeated, with the binding fluid deposition being controlled at each layer to correspond to the three-dimensional location of the device formation. For a further discussion 10 of this process see, for example, US Patent Publication No 2003/017365A1 to Monkhouse et al. published September 18, 2003.
[0175] The rapid prototyping can use the two dimensional images obtained, as described above in Section I, to determine each of the two-dimensional shapes for each of the layers of the prototyping machine. In 15 this scenario, each two dimensional image slice would correspond to a two dimensional prototype slide. Alternatively, the three-dimensional shape of the defect can be determined, as described above, and then broken down into two dimensional slices for the rapid prototyping process. The advantage of using the three-dimensional model is that the two-20 dimensional slices used for the rapid prototyping machine can be along the same plane as the two-dimensional images taken or along a different plane altogether.
[0176] Rapid prototyping can be combined or used in conjunction with casting techniques. For example, a shell or container with inner 25 dimensions corresponding to an articular repair system can be made using rapid prototyping. Plastic or wax-like materials are typically used for this purpose. The inside of the container can subsequently be coated, for example with a ceramic, for subsequent casting. Using this process, personalized casts can be generated.
[0177] Rapid prototyping can be used for producing articular repair systems. Rapid prototyping can be performed at a manufacturing facility.
Alternatively, it may be performed in the operating room after an intraoperative measurement has been performed.
[0178] V. SURGICAL. TECHNIQUES
[0179] Prior to performing surgery on a patient, the surgeon can preoperatively make a determination of the alignment of the knee using, for example, an erect AP x-ray. In performing preoperative assessment any lateral and patella spurs that are present can be identified.
[0180] Using standard surgical techniques, the patient is anesthetized and an incision is made in order to provide access to the portion or portions of the knee joint to be repaired. A medial portal can be used initially to enable arthroscopy of the joint. Thereafter, the medial portal can be incorporated into the operative incision and/or standard lateral portals can be used.
[0181] Once an appropriate incision has been made, the exposed compartment is inspected for integrity, including the integrity of the ligament structures. If necessary, portions of the meniscus can be removed as well as any spurs or osteophytes that were identified in the AP
x-ray or that may be present within the joint. In order to facilitate removal of osteophytes, the surgeon may flex the knee to gain exposure to additional medial and medial-posterior osteophytes. Additionally, osteophytes can be removed from the patella during this process. If necessary, the medial and/or lateral meniscus can also be removed at this point, if desired, along with the rim of the meniscus.
[0182] As would be appreciated by those of skill in the art, evaluation of the medial cruciate ligament may be required to facilitate tibial osteophyte removal.
[0183] Once the joint surfaces have been prepared, the desired implants can be inserted into the joint.
[0184] A. Tibial Plateau [0185] To insert the device 200 of FIG. 2 into the medial compartment, perform a mini-incision arthrotomy medial to the patella tendon. Once the incision is made, expose the medial condyle and prepare a medial sleeve to about 1 cm below the joint line using a suitable knife and curved osteotome. After preparing the medial sleeve, place a Z-retractor around the medial tibial plateau and remove anterior portions of the meniscus and the osteophytes along the tibia and femur. At this point, the knee should be flexed to about 60 or more. Remove the Z-retractor and place the implant against the most distal aspect of the femur and over the tibial plateau edge. Push the implant straight back. In some instances, application of valgus stress may ease insertion of the implant.
[0186] To insert the device of FIG. 2 into the lateral compartment, perform a mini-incision arthrotomy lateral to the patella tendon. Once the incision is made, expose the lateral condyle and prepare a lateral sleeve to about 1 cm below the joint line using a suitable knife and curved osteotome. After preparing the lateral sleeve, .place a Z-retractor around the lateral tibial plateau and remove anterior portions of the meniscus and the osteophytes along the tibia and femur. Remove the Z-retractor and place the implant against the distal aspect of the femur and over the tibial plateau edge. Hold the implant at a 450 angle and rotate the implant against the lateral condyle using a lateral to medial push toward the lateral spine. In some instances, application of varus stress may ease insertion of the implant.
[0187] Once any implant shown in FIG. 2 is implanted, the device should be positioned within 0 to 2mm of the AP boundaries of the tibial plateau and superimposed over the boundary. Verification of the range of motion should then be performed to confirm that there is minimal translation of the implant. Once positioning is confirmed, closure of the wound is performed using techniques known in the art.
[0188] As will be appreciated by those of skill in the art, additional treatment of the surface of the tibial plateau may be desirable depending on the configuration of the implant 200. For example, one or more channels or grooves may be formed on the surface of the tibial plateau to accommodate anchoring mechanisms such as the keel 212 shown in FIG. 2K or the translational movement cross-members 222, 221 shown in FIGS. 2M-N.
[0189] B. Condylar Repair Systems [0190] To insert the device 300 shown in FIG. 3, depending on the condyle to be repaired either an antero-medial or antero-lateral skin incisions is made which begins approximately 1 cm proximal to the superior border of the patella. The incision typically can range from, for example, 6-10 cm along the edge of the patella. As will be appreciated by those of skill in the art, a longer incision may be required under some circumstances.
[0191] It may be required to excise excess deep synovium to improve access to the joint. Additionally, all or part of the fat pad may also be excused and to enable inspection of the opposite joint compartment.
[0192] Typically, osteophytes are removed from the entire medial and/or lateral edge of the femur and the tibia as well as any osteophytes on the edge of the patella that might be significant.
[0193] Although it is possible, typically the devices 300 do not require resection of the distal femur prior to implanting the device.
Dona Al rtf1A7 However, if desired, bone cuts can be performed to provide a surface for the implant.
[0194] At this juncture, the patient's leg is placed in 900 flexion position. I guide can then be placed on the condyle which covers the distal femoral cartilage. The guide enables the surgeon to determine placement of apertures that enable the implant 300 to be accurately placed on the condyle. With the guide in place, holes are drilled into the condyle to create apertures from 1-3mm in depth. Once the apertures have been created, the guide is removed and the implant 300 is installed on the surface of the condyle. Cement can be used to facilitate adherence of the implant 300 to the condyle.
[0195] Where more than one condyle is to be repaired, e.g., using two implants 300 of FIG. 3, or the implant 400 of FIG. 4, or where a condyle and a portion of the patellar surface is to be repaired, e.g., using the implant 500 of FIG. 5, the surgical technique described herein would be modified to, for example, provide a greater incision for accessing the joint, provide additional apertures for receiving the pegs of the implant, etc.
[0196] C. Patellar Repair System [0197] To insert the device shown in FIG. 7, it may be appropriate to use the incisions made laterally or medially to the patella tendon and described above with respect to FIG. 2. First the patella is everted laterally and the fat pad and synovium are bent back from around the periphery of the patella. If desired, osteophytes can be removed. Prior to resurfacing the natural patella 620, the knee should be manually taken through several range of motion maneuvers to determine whether subluxation is present. If subluxation is present, then it may be necessary to medialize the implant 600. The natural patella can then be cut in a planar, or flat, manner such that a flat surface is presented to the implant. The geometric center of the patella 620 is then typically aligned with the geometric center of the implant 600. In order to anchor the implant 600 to the patella 620, one or more holes or apertures 612 can be created in the patellar surface to accept the pegs 610 of the implant 600.
5 [0198] VI. Kin [0199] One ore more of the implants described above can be combined together in a kit such that the surgeon can select one or more implants to be used during surgery.
[0200] The foregoing description of embodiments of the present 10 invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the 15 invention and its practical application, thereby enabling others skilled in the art to understand the invention and the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims equivalents thereof.
Claims (18)
1. An implant system for repairing a knee joint of a patient comprising:
a femoral component, wherein the femoral component includes an inferior, femoral joint-facing surface that replaces a femoral surface of a patellofemoral articulation surface and/or a tibiofemoral articulation surface of the knee joint, wherein the inferior, femoral joint-facing surface has a three-dimensional shape that substantially matches a shape of a corresponding femoral surface of the knee joint of the patient, wherein the shape of the corresponding femoral surface is derived from electronic image data of the knee joint of the patient; and a tibial component, wherein the tibial component includes a tibial joint-facing surface that replaces a tibial surface of the tibiofemoral articulation surface.
a femoral component, wherein the femoral component includes an inferior, femoral joint-facing surface that replaces a femoral surface of a patellofemoral articulation surface and/or a tibiofemoral articulation surface of the knee joint, wherein the inferior, femoral joint-facing surface has a three-dimensional shape that substantially matches a shape of a corresponding femoral surface of the knee joint of the patient, wherein the shape of the corresponding femoral surface is derived from electronic image data of the knee joint of the patient; and a tibial component, wherein the tibial component includes a tibial joint-facing surface that replaces a tibial surface of the tibiofemoral articulation surface.
2. The implant system of claim 1, wherein the femoral component has a thickness determined by a cartilage defect in a patient.
3. The implant system of claim 1, wherein the tibial component has a thickness determined by a cartilage defect in a patient.
4. The implant system of claim 1, wherein the femoral component has a thickness of the cartilage defect in a patient plus a predetermined offset value.
5. The implant system of claim 1, wherein the femoral component is constructed of a material comprising a metal or a metal alloy.
6. The implant system of claim 1, further comprising a structure for attachment on at least one surface.
7. The implant system of claim 1, wherein the structure for attachment is one or more ridges, pegs, pins, cross-members, cruciate stems, teeth or protrusions.
8. The implant system of claim 1, wherein the femoral component includes a bone-facing surface that has one or more substantially flat sections designed to mate with one or more bone cut surfaces on a corresponding femur of the knee joint of the patient.
9. The implant system of claim 8, wherein the bone-facing surface further has a chamfer cut.
10. The implant system of claim 1, wherein prior to receiving the implant system, the femoral surface of the knee joint of the patient has been prepared, and wherein the femoral surface includes a condylar surface and a trochlear surface.
11. The implant system of claim 10, wherein the femoral surface has been prepared by removing cartilage and/or bone.
12. The implant system of claim 10, wherein the femoral surface has been prepared by forming at least one planar surface to mate with at least one planar surface of a superior, bone-facing surface of the femoral component.
13. The implant system of claim 10, wherein the inferior, femoral joint-facing surface mimics an anatomy of a femoral surface of a healthy knee joint.
14. The implant system of claim 1, wherein a thickness of the femoral and/or tibial component at a location is capable of being adjusted to account for at least one of valgus deformity, varus deformity and flattening.
15. The implant system of claim 1, wherein the femoral component further has a beveled edge.
16. The implant system of claim 1, further comprising a patellar component designed to replace a patellar surface of the patellofemoral articulation surface.
17. The implant system of claim 1, wherein at least one of the tibial component and femoral component is asymmetric.
18. The implant system of claim 16, wherein at least one of the tibial, femoral and patellar component is asymmetric.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/724,010 | 2003-11-25 | ||
US10/724,010 US7618451B2 (en) | 2001-05-25 | 2003-11-25 | Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty |
US10/752,438 | 2004-01-05 | ||
US10/752,438 US8545569B2 (en) | 2001-05-25 | 2004-01-05 | Patient selectable knee arthroplasty devices |
CA2546965A CA2546965C (en) | 2003-11-25 | 2004-11-24 | Patient selectable knee joint arthroplasty devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2546965A Division CA2546965C (en) | 2003-11-25 | 2004-11-24 | Patient selectable knee joint arthroplasty devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2804883A1 CA2804883A1 (en) | 2005-06-09 |
CA2804883C true CA2804883C (en) | 2016-06-21 |
Family
ID=34636735
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2804883A Active CA2804883C (en) | 2003-11-25 | 2004-11-24 | Patient selectable knee joint arthroplasty devices |
CA2546965A Active CA2546965C (en) | 2003-11-25 | 2004-11-24 | Patient selectable knee joint arthroplasty devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2546965A Active CA2546965C (en) | 2003-11-25 | 2004-11-24 | Patient selectable knee joint arthroplasty devices |
Country Status (8)
Country | Link |
---|---|
US (5) | US8545569B2 (en) |
EP (2) | EP2335654B1 (en) |
JP (3) | JP5074036B2 (en) |
CN (2) | CN105287049B (en) |
AU (1) | AU2004293104A1 (en) |
CA (2) | CA2804883C (en) |
HK (1) | HK1087323A1 (en) |
WO (1) | WO2005051240A1 (en) |
Families Citing this family (375)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110071802A1 (en) * | 2009-02-25 | 2011-03-24 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
US8545569B2 (en) | 2001-05-25 | 2013-10-01 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US7468075B2 (en) | 2001-05-25 | 2008-12-23 | Conformis, Inc. | Methods and compositions for articular repair |
US8771365B2 (en) | 2009-02-25 | 2014-07-08 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs, and related tools |
US8083745B2 (en) | 2001-05-25 | 2011-12-27 | Conformis, Inc. | Surgical tools for arthroplasty |
US7534263B2 (en) | 2001-05-25 | 2009-05-19 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US8735773B2 (en) | 2007-02-14 | 2014-05-27 | Conformis, Inc. | Implant device and method for manufacture |
US8234097B2 (en) | 2001-05-25 | 2012-07-31 | Conformis, Inc. | Automated systems for manufacturing patient-specific orthopedic implants and instrumentation |
US8882847B2 (en) | 2001-05-25 | 2014-11-11 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
US8617242B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Implant device and method for manufacture |
US20070233269A1 (en) * | 2001-05-25 | 2007-10-04 | Conformis, Inc. | Interpositional Joint Implant |
US8480754B2 (en) | 2001-05-25 | 2013-07-09 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US20090222103A1 (en) * | 2001-05-25 | 2009-09-03 | Conformis, Inc. | Articular Implants Providing Lower Adjacent Cartilage Wear |
US7618451B2 (en) | 2001-05-25 | 2009-11-17 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty |
US8556983B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US9603711B2 (en) | 2001-05-25 | 2017-03-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
JP2002532126A (en) | 1998-09-14 | 2002-10-02 | スタンフォード ユニバーシティ | Joint condition evaluation and damage prevention device |
US7184814B2 (en) | 1998-09-14 | 2007-02-27 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and assessing cartilage loss |
US9289153B2 (en) * | 1998-09-14 | 2016-03-22 | The Board Of Trustees Of The Leland Stanford Junior University | Joint and cartilage diagnosis, assessment and modeling |
US7239908B1 (en) | 1998-09-14 | 2007-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US6702821B2 (en) | 2000-01-14 | 2004-03-09 | The Bonutti 2003 Trust A | Instrumentation for minimally invasive joint replacement and methods for using same |
US7163541B2 (en) * | 2002-12-03 | 2007-01-16 | Arthrosurface Incorporated | Tibial resurfacing system |
US7678151B2 (en) * | 2000-05-01 | 2010-03-16 | Ek Steven W | System and method for joint resurface repair |
US8177841B2 (en) | 2000-05-01 | 2012-05-15 | Arthrosurface Inc. | System and method for joint resurface repair |
EP2314257B9 (en) | 2000-05-01 | 2013-02-27 | ArthroSurface, Inc. | System for joint resurface repair |
US7896883B2 (en) | 2000-05-01 | 2011-03-01 | Arthrosurface, Inc. | Bone resurfacing system and method |
US6610067B2 (en) | 2000-05-01 | 2003-08-26 | Arthrosurface, Incorporated | System and method for joint resurface repair |
US6904123B2 (en) | 2000-08-29 | 2005-06-07 | Imaging Therapeutics, Inc. | Methods and devices for quantitative analysis of x-ray images |
US7467892B2 (en) | 2000-08-29 | 2008-12-23 | Imaging Therapeutics, Inc. | Calibration devices and methods of use thereof |
AU9088801A (en) | 2000-09-14 | 2002-03-26 | Univ Leland Stanford Junior | Assessing the condition of a joint and devising treatment |
US7660453B2 (en) | 2000-10-11 | 2010-02-09 | Imaging Therapeutics, Inc. | Methods and devices for analysis of x-ray images |
US8639009B2 (en) | 2000-10-11 | 2014-01-28 | Imatx, Inc. | Methods and devices for evaluating and treating a bone condition based on x-ray image analysis |
ATE431110T1 (en) * | 2001-02-27 | 2009-05-15 | Smith & Nephew Inc | SURGICAL NAVIGATION SYSTEM FOR PARTIAL KNEE JOINT RECONSTRUCTION |
US8951260B2 (en) | 2001-05-25 | 2015-02-10 | Conformis, Inc. | Surgical cutting guide |
ATE440536T1 (en) | 2001-05-25 | 2009-09-15 | Imaging Therapeutics Inc | METHODS FOR DIAGNOSIS, TREATMENT AND PREVENTION OF BONE LOSS |
US8439926B2 (en) | 2001-05-25 | 2013-05-14 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
CN100502808C (en) | 2001-05-25 | 2009-06-24 | 肯弗默斯股份有限公司 | Compositions for articular resurfacing |
US6482209B1 (en) | 2001-06-14 | 2002-11-19 | Gerard A. Engh | Apparatus and method for sculpting the surface of a joint |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US8801720B2 (en) * | 2002-05-15 | 2014-08-12 | Otismed Corporation | Total joint arthroplasty system |
US7001433B2 (en) | 2002-05-23 | 2006-02-21 | Pioneer Laboratories, Inc. | Artificial intervertebral disc device |
US8388684B2 (en) | 2002-05-23 | 2013-03-05 | Pioneer Signal Technology, Inc. | Artificial disc device |
US20100185294A1 (en) * | 2002-06-04 | 2010-07-22 | Arthrosurface Incorporated | Nanorough Alloy Substrate |
ATE464028T1 (en) | 2002-08-29 | 2010-04-15 | St Jude Medical Cardiology Div | IMPLANTABLE DEVICES FOR CONTROLLING THE INNER DIAMETER OF AN OPENING IN THE BODY |
US8758372B2 (en) * | 2002-08-29 | 2014-06-24 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US7840247B2 (en) * | 2002-09-16 | 2010-11-23 | Imatx, Inc. | Methods of predicting musculoskeletal disease |
US8965075B2 (en) | 2002-09-16 | 2015-02-24 | Imatx, Inc. | System and method for predicting future fractures |
JP2006501977A (en) | 2002-10-07 | 2006-01-19 | コンフォーミス・インコーポレイテッド | Minimally invasive joint implant with a three-dimensional profile that conforms to the joint surface |
JP2006505366A (en) | 2002-11-07 | 2006-02-16 | コンフォーミス・インコーポレイテッド | Method of determining meniscus size and shape and devised treatment |
US7901408B2 (en) | 2002-12-03 | 2011-03-08 | Arthrosurface, Inc. | System and method for retrograde procedure |
US6916341B2 (en) * | 2003-02-20 | 2005-07-12 | Lindsey R. Rolston | Device and method for bicompartmental arthroplasty |
US8388624B2 (en) | 2003-02-24 | 2013-03-05 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
JP2007524438A (en) | 2003-03-25 | 2007-08-30 | イメージング セラピューティクス,インコーポレーテッド | Compensation method in radiological image processing technology |
WO2006074321A2 (en) | 2003-11-20 | 2006-07-13 | Arthrosurface, Inc. | System and method for retrograde procedure |
AU2004293042A1 (en) | 2003-11-20 | 2005-06-09 | Arthrosurface, Inc. | Retrograde delivery of resurfacing devices |
AU2005260590A1 (en) | 2004-06-28 | 2006-01-12 | Arthrosurface, Inc. | System for articular surface replacement |
WO2006034018A2 (en) | 2004-09-16 | 2006-03-30 | Imaging Therapeutics, Inc. | System and method of predicting future fractures |
US20090088846A1 (en) | 2007-04-17 | 2009-04-02 | David Myung | Hydrogel arthroplasty device |
US20090319045A1 (en) * | 2004-10-12 | 2009-12-24 | Truncale Katherine G | Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles |
US7837740B2 (en) | 2007-01-24 | 2010-11-23 | Musculoskeletal Transplant Foundation | Two piece cancellous construct for cartilage repair |
US7828853B2 (en) | 2004-11-22 | 2010-11-09 | Arthrosurface, Inc. | Articular surface implant and delivery system |
US8828080B2 (en) | 2005-02-22 | 2014-09-09 | Barry M. Fell | Method and system for knee joint repair |
EP1861045B1 (en) * | 2005-03-25 | 2015-03-04 | St. Jude Medical, Cardiology Division, Inc. | Apparatus for controlling the internal circumference of an anatomic orifice or lumen |
FR2884408B1 (en) * | 2005-04-13 | 2007-05-25 | Tornier Sas | SURGICAL DEVICE FOR IMPLANTATION OF A PARTIAL OR TOTAL KNEE PROSTHESIS |
US9301845B2 (en) | 2005-06-15 | 2016-04-05 | P Tech, Llc | Implant for knee replacement |
US7983777B2 (en) * | 2005-08-19 | 2011-07-19 | Mark Melton | System for biomedical implant creation and procurement |
CA2623834A1 (en) * | 2005-09-30 | 2007-04-12 | Conformis, Inc. | Joint arthroplasty devices |
US9592127B2 (en) | 2005-12-15 | 2017-03-14 | Zimmer, Inc. | Distal femoral knee prostheses |
US7806121B2 (en) * | 2005-12-22 | 2010-10-05 | Restoration Robotics, Inc. | Follicular unit transplantation planner and methods of its use |
WO2013025814A1 (en) * | 2011-08-15 | 2013-02-21 | Conformis, Inc. | Revision systems, tools and methods for revising joint arthroplasty implants |
US8623026B2 (en) | 2006-02-06 | 2014-01-07 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief |
EP1981409B1 (en) | 2006-02-06 | 2017-01-11 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
CA2642615A1 (en) | 2006-02-15 | 2007-08-30 | Otismed Corp | Arthroplasty jigs and related methods |
US9808262B2 (en) | 2006-02-15 | 2017-11-07 | Howmedica Osteonics Corporation | Arthroplasty devices and related methods |
US8535387B2 (en) | 2006-02-27 | 2013-09-17 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US7967868B2 (en) | 2007-04-17 | 2011-06-28 | Biomet Manufacturing Corp. | Patient-modified implant and associated method |
US20080257363A1 (en) * | 2007-04-17 | 2008-10-23 | Biomet Manufacturing Corp. | Method And Apparatus For Manufacturing An Implant |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US8282646B2 (en) | 2006-02-27 | 2012-10-09 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8377066B2 (en) * | 2006-02-27 | 2013-02-19 | Biomet Manufacturing Corp. | Patient-specific elbow guides and associated methods |
US8092465B2 (en) | 2006-06-09 | 2012-01-10 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8591516B2 (en) | 2006-02-27 | 2013-11-26 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US8608748B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient specific guides |
US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US20150335438A1 (en) | 2006-02-27 | 2015-11-26 | Biomet Manufacturing, Llc. | Patient-specific augments |
US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US8608749B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US8407067B2 (en) | 2007-04-17 | 2013-03-26 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US8858561B2 (en) | 2006-06-09 | 2014-10-14 | Blomet Manufacturing, LLC | Patient-specific alignment guide |
US8864769B2 (en) | 2006-02-27 | 2014-10-21 | Biomet Manufacturing, Llc | Alignment guides with patient-specific anchoring elements |
US8133234B2 (en) | 2006-02-27 | 2012-03-13 | Biomet Manufacturing Corp. | Patient specific acetabular guide and method |
US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US8473305B2 (en) | 2007-04-17 | 2013-06-25 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US8241293B2 (en) | 2006-02-27 | 2012-08-14 | Biomet Manufacturing Corp. | Patient specific high tibia osteotomy |
US8298237B2 (en) | 2006-06-09 | 2012-10-30 | Biomet Manufacturing Corp. | Patient-specific alignment guide for multiple incisions |
US8568487B2 (en) | 2006-02-27 | 2013-10-29 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US8603180B2 (en) | 2006-02-27 | 2013-12-10 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US8070752B2 (en) | 2006-02-27 | 2011-12-06 | Biomet Manufacturing Corp. | Patient specific alignment guide and inter-operative adjustment |
GB0604061D0 (en) * | 2006-03-01 | 2006-04-12 | Invibio Ltd | Polymetric materials |
AU2007227678A1 (en) * | 2006-03-13 | 2007-09-27 | Mako Surgical Corp. | Prosthetic device and system and method for implanting prosthetic device |
US7718351B2 (en) * | 2006-03-14 | 2010-05-18 | Agency For Science, Technology & Research | Three-dimensional fabrication of biocompatible structures in anatomical shapes and dimensions for tissue engineering and organ replacement |
AU2007227129B2 (en) * | 2006-03-17 | 2012-06-14 | Mohamed Mahfouz | Methods of predetermining the contour of a resected bone surface and assessing the fit of a prosthesis on the bone |
US20070233268A1 (en) * | 2006-03-31 | 2007-10-04 | Depuy Products, Inc. | Interpositional knee arthroplasty |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
WO2008030842A2 (en) * | 2006-09-06 | 2008-03-13 | Smith & Nephew, Inc. | Implants with transition surfaces and related processes |
EP2063817A4 (en) * | 2006-09-15 | 2012-04-18 | Pioneer Surgical Technology Inc | Joint arthroplasty devices having articulating members |
WO2008034101A2 (en) * | 2006-09-15 | 2008-03-20 | Imaging Therapeutics, Inc. | Method and system for providing fracture/no fracture classification |
US8715350B2 (en) | 2006-09-15 | 2014-05-06 | Pioneer Surgical Technology, Inc. | Systems and methods for securing an implant in intervertebral space |
GB0621228D0 (en) * | 2006-10-25 | 2006-12-06 | Invibio Ltd | Polymeric material |
GB0621227D0 (en) * | 2006-10-25 | 2006-12-06 | Invibio Ltd | Polymeric material |
US20080119938A1 (en) * | 2006-11-17 | 2008-05-22 | Sang Soo Oh | Knee joint prosthesis for bi-compartmental knee replacement and surgical devices thereof |
US9358029B2 (en) | 2006-12-11 | 2016-06-07 | Arthrosurface Incorporated | Retrograde resection apparatus and method |
US8460302B2 (en) | 2006-12-18 | 2013-06-11 | Otismed Corporation | Arthroplasty devices and related methods |
US9107750B2 (en) * | 2007-01-03 | 2015-08-18 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US8328873B2 (en) | 2007-01-10 | 2012-12-11 | Biomet Manufacturing Corp. | Knee joint prosthesis system and method for implantation |
US8157869B2 (en) | 2007-01-10 | 2012-04-17 | Biomet Manufacturing Corp. | Knee joint prosthesis system and method for implantation |
US8562616B2 (en) | 2007-10-10 | 2013-10-22 | Biomet Manufacturing, Llc | Knee joint prosthesis system and method for implantation |
US8187280B2 (en) | 2007-10-10 | 2012-05-29 | Biomet Manufacturing Corp. | Knee joint prosthesis system and method for implantation |
US8163028B2 (en) | 2007-01-10 | 2012-04-24 | Biomet Manufacturing Corp. | Knee joint prosthesis system and method for implantation |
US8313530B2 (en) * | 2007-02-12 | 2012-11-20 | Jmea Corporation | Total knee arthroplasty system |
US20100145344A1 (en) * | 2007-02-14 | 2010-06-10 | Smith & Nephew, Inc. | Method and system for computer assisted surgery for bicompartmental knee replacement |
US8506637B2 (en) | 2007-02-26 | 2013-08-13 | Marvin Schwartz | Mobile prosthesis for interpositional location between bone joint articular surfaces and method of use |
US7670381B2 (en) * | 2007-02-26 | 2010-03-02 | Marvin Schwartz | Prosthesis for interpositional location between bone joint articular surfaces and method of use |
US9814581B2 (en) | 2007-02-26 | 2017-11-14 | Marvin Schwartz | Mobile prosthesis for interpositional location between bone joint articular surfaces and method of use |
US20100249941A1 (en) * | 2007-05-15 | 2010-09-30 | Fell Barry M | Surgically implantable knee prosthesis with captured keel |
US8382765B2 (en) * | 2007-08-07 | 2013-02-26 | Stryker Leibinger Gmbh & Co. Kg. | Method of and system for planning a surgery |
CA2945266C (en) | 2007-08-17 | 2021-11-02 | Zimmer, Inc. | Implant design analysis suite |
US8265949B2 (en) | 2007-09-27 | 2012-09-11 | Depuy Products, Inc. | Customized patient surgical plan |
US9786022B2 (en) | 2007-09-30 | 2017-10-10 | DePuy Synthes Products, Inc. | Customized patient-specific bone cutting blocks |
CN102652684B (en) | 2007-09-30 | 2015-09-16 | 德普伊产品公司 | The patient-specific orthopaedic surgical instrumentation of customization |
US9173662B2 (en) | 2007-09-30 | 2015-11-03 | DePuy Synthes Products, Inc. | Customized patient-specific tibial cutting blocks |
US8357111B2 (en) | 2007-09-30 | 2013-01-22 | Depuy Products, Inc. | Method and system for designing patient-specific orthopaedic surgical instruments |
USD642263S1 (en) | 2007-10-25 | 2011-07-26 | Otismed Corporation | Arthroplasty jig blank |
US8460303B2 (en) | 2007-10-25 | 2013-06-11 | Otismed Corporation | Arthroplasty systems and devices, and related methods |
US10582934B2 (en) | 2007-11-27 | 2020-03-10 | Howmedica Osteonics Corporation | Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs |
US8737700B2 (en) | 2007-12-18 | 2014-05-27 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8545509B2 (en) | 2007-12-18 | 2013-10-01 | Otismed Corporation | Arthroplasty system and related methods |
US8311306B2 (en) | 2008-04-30 | 2012-11-13 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8617171B2 (en) | 2007-12-18 | 2013-12-31 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8221430B2 (en) | 2007-12-18 | 2012-07-17 | Otismed Corporation | System and method for manufacturing arthroplasty jigs |
US8480679B2 (en) | 2008-04-29 | 2013-07-09 | Otismed Corporation | Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices |
US8777875B2 (en) | 2008-07-23 | 2014-07-15 | Otismed Corporation | System and method for manufacturing arthroplasty jigs having improved mating accuracy |
US8715291B2 (en) | 2007-12-18 | 2014-05-06 | Otismed Corporation | Arthroplasty system and related methods |
US8160345B2 (en) | 2008-04-30 | 2012-04-17 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
EP2254519B1 (en) * | 2008-02-18 | 2015-05-06 | Maxx Orthopedics, Inc. | Total knee replacement prosthesis |
US9408618B2 (en) | 2008-02-29 | 2016-08-09 | Howmedica Osteonics Corporation | Total hip replacement surgical guide tool |
EP2901969B1 (en) * | 2008-03-05 | 2018-07-04 | ConforMIS, Inc. | Method of making an edge-matched articular implant |
WO2009111626A2 (en) | 2008-03-05 | 2009-09-11 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
US8152846B2 (en) * | 2008-03-06 | 2012-04-10 | Musculoskeletal Transplant Foundation | Instrumentation and method for repair of meniscus tissue |
US8790411B2 (en) * | 2008-04-17 | 2014-07-29 | Steven L. Mandell | Femoral component of an artificial knee joint |
WO2009140294A1 (en) | 2008-05-12 | 2009-11-19 | Conformis, Inc. | Devices and methods for treatment of facet and other joints |
GB0809721D0 (en) * | 2008-05-28 | 2008-07-02 | Univ Bath | Improvements in or relating to joints and/or implants |
FR2932674B1 (en) | 2008-06-20 | 2011-11-18 | Tornier Sa | METHOD FOR MODELING A GLENOIDAL SURFACE OF AN OMOPLATE, DEVICE FOR IMPLANTING A GLENOIDAL COMPONENT OF A SHOULDER PROSTHESIS, AND METHOD FOR MANUFACTURING SUCH COMPOUND |
US20120209396A1 (en) | 2008-07-07 | 2012-08-16 | David Myung | Orthopedic implants having gradient polymer alloys |
US8617175B2 (en) * | 2008-12-16 | 2013-12-31 | Otismed Corporation | Unicompartmental customized arthroplasty cutting jigs and methods of making the same |
CA2731698A1 (en) | 2008-08-05 | 2010-02-11 | Biomimedica, Inc. | Polyurethane-grafted hydrogels |
US8078440B2 (en) | 2008-09-19 | 2011-12-13 | Smith & Nephew, Inc. | Operatively tuning implants for increased performance |
US8992538B2 (en) | 2008-09-30 | 2015-03-31 | DePuy Synthes Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
US8428688B2 (en) * | 2008-11-10 | 2013-04-23 | Siemens Aktiengesellschaft | Automatic femur segmentation and condyle line detection in 3D MR scans for alignment of high resolution MR |
WO2010085649A1 (en) * | 2009-01-22 | 2010-07-29 | St. Jude Medical | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US9615929B2 (en) | 2009-01-23 | 2017-04-11 | Zimmer, Inc. | Posterior-stabilized total knee prosthesis |
US8939917B2 (en) * | 2009-02-13 | 2015-01-27 | Imatx, Inc. | Methods and devices for quantitative analysis of bone and cartilage |
US8170641B2 (en) | 2009-02-20 | 2012-05-01 | Biomet Manufacturing Corp. | Method of imaging an extremity of a patient |
US9017334B2 (en) | 2009-02-24 | 2015-04-28 | Microport Orthopedics Holdings Inc. | Patient specific surgical guide locator and mount |
US20150250552A1 (en) * | 2014-02-08 | 2015-09-10 | Conformis, Inc. | Advanced methods of modeling knee joint kinematics and designing surgical repair systems |
US20220087827A1 (en) * | 2009-02-24 | 2022-03-24 | Conformis, Inc. | Patient-Adapted and Improved Articular Implants, Designs and Related Guide Tools |
US8808297B2 (en) | 2009-02-24 | 2014-08-19 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
US8808303B2 (en) | 2009-02-24 | 2014-08-19 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
CA2753485C (en) | 2009-02-25 | 2014-01-14 | Mohamed Rashwan Mahfouz | Customized orthopaedic implants and related methods |
US9078755B2 (en) | 2009-02-25 | 2015-07-14 | Zimmer, Inc. | Ethnic-specific orthopaedic implants and custom cutting jigs |
WO2010121147A1 (en) | 2009-04-16 | 2010-10-21 | Conformis, Inc. | Patient-specific joint arthroplasty devices for ligament repair |
US10945743B2 (en) | 2009-04-17 | 2021-03-16 | Arthrosurface Incorporated | Glenoid repair system and methods of use thereof |
WO2010121250A1 (en) | 2009-04-17 | 2010-10-21 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
US9283076B2 (en) | 2009-04-17 | 2016-03-15 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
DE102009028503B4 (en) | 2009-08-13 | 2013-11-14 | Biomet Manufacturing Corp. | Resection template for the resection of bones, method for producing such a resection template and operation set for performing knee joint surgery |
KR101792764B1 (en) * | 2009-08-26 | 2017-11-02 | 콘포미스 인코퍼레이티드 | Patient-specific orthopedic implants and models |
US9839434B2 (en) | 2009-10-29 | 2017-12-12 | Zimmer, Inc. | Patient-specific mill guide |
WO2011056995A2 (en) * | 2009-11-04 | 2011-05-12 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
AU2010327987B2 (en) | 2009-12-11 | 2015-04-02 | Conformis, Inc. | Patient-specific and patient-engineered orthopedic implants |
EP3470020A3 (en) | 2010-01-29 | 2019-09-18 | Smith & Nephew, Inc. | Cruciate-retaining knee prosthesis |
EP2538855A4 (en) | 2010-02-25 | 2016-08-03 | Depuy Products Inc | Customized patient-specific tibial cutting blocks |
EP2538853A4 (en) | 2010-02-25 | 2016-07-27 | Depuy Products Inc | Customized patient-specific bone cutting blocks |
WO2011106407A1 (en) | 2010-02-25 | 2011-09-01 | Depuy Products, Inc. | Method of fabricating customized patient-specific bone cutting blocks |
US8632547B2 (en) | 2010-02-26 | 2014-01-21 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US9066727B2 (en) | 2010-03-04 | 2015-06-30 | Materialise Nv | Patient-specific computed tomography guides |
EP2542165A4 (en) | 2010-03-05 | 2015-10-07 | Arthrosurface Inc | Tibial resurfacing system and method |
GB201004068D0 (en) | 2010-03-11 | 2010-04-28 | Goodfellow John | Tibial prosthetic component for a partial or unicondylar meniscal bearing knee replacement,method of selecting such a tibial prosthetic component |
US9132014B2 (en) | 2010-04-13 | 2015-09-15 | Zimmer, Inc. | Anterior cruciate ligament substituting knee implants |
EP2389899B1 (en) * | 2010-05-24 | 2015-04-29 | Episurf IP Management AB | Method of manufacturing a surgical kit for cartilage repair in a joint |
EP2389905B1 (en) * | 2010-05-24 | 2012-05-23 | Episurf Medical AB | Method of designing a surgical kit for cartilage repair in a joint |
EP2389904B1 (en) * | 2010-05-24 | 2013-07-24 | Episurf IP Management AB | Surgical kit for cartilage repair comprising implant and a set of tools |
US8908937B2 (en) | 2010-07-08 | 2014-12-09 | Biomet Manufacturing, Llc | Method and device for digital image templating |
AU2011286308B8 (en) | 2010-07-24 | 2014-08-14 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
WO2012018563A1 (en) | 2010-07-24 | 2012-02-09 | Zimmer, Inc. | Tibial prosthesis |
US8808302B2 (en) | 2010-08-12 | 2014-08-19 | DePuy Synthes Products, LLC | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
WO2012027678A1 (en) | 2010-08-27 | 2012-03-01 | Biomimedica, Inc. | Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same |
US9173744B2 (en) | 2010-09-10 | 2015-11-03 | Zimmer Gmbh | Femoral prosthesis with medialized patellar groove |
WO2012034033A1 (en) | 2010-09-10 | 2012-03-15 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
ES2751360T3 (en) | 2010-10-29 | 2020-03-31 | Cleveland Clinic Found | System and method for the association of a guide device with a patient tissue |
CA2815654C (en) | 2010-10-29 | 2019-02-19 | The Cleveland Clinic Foundation | System and method for assisting with attachment of a stock implant to a patient tissue |
US9254155B2 (en) | 2010-10-29 | 2016-02-09 | The Cleveland Clinic Foundation | System and method for assisting with arrangement of a stock instrument with respect to a patient tissue |
WO2012058355A1 (en) | 2010-10-29 | 2012-05-03 | The Cleveland Clinic Foundation | System of preoperative planning and provision of patient-specific surgical aids |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US8603101B2 (en) | 2010-12-17 | 2013-12-10 | Zimmer, Inc. | Provisional tibial prosthesis system |
US8917290B2 (en) | 2011-01-31 | 2014-12-23 | Biomet Manufacturing, Llc | Digital image templating |
AU2012217654B2 (en) | 2011-02-15 | 2016-09-22 | Conformis, Inc. | Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry |
EP2677966B1 (en) * | 2011-02-25 | 2019-12-04 | Corin Limited | A computer-implemented method for providing alignment information data for the alignment of an orthopaedic implant for a joint of a patient |
US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9066716B2 (en) | 2011-03-30 | 2015-06-30 | Arthrosurface Incorporated | Suture coil and suture sheath for tissue repair |
US8715289B2 (en) | 2011-04-15 | 2014-05-06 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US9675400B2 (en) | 2011-04-19 | 2017-06-13 | Biomet Manufacturing, Llc | Patient-specific fracture fixation instrumentation and method |
US8668700B2 (en) | 2011-04-29 | 2014-03-11 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
WO2012154914A1 (en) | 2011-05-11 | 2012-11-15 | The Cleveland Clinic Foundation | Generating patient specific instruments for use as surgical aids |
CA2836535C (en) | 2011-05-19 | 2019-09-24 | The Cleveland Clinic Foundation | Apparatus and method for providing a reference indication to a patient tissue |
US8532807B2 (en) | 2011-06-06 | 2013-09-10 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US8932365B2 (en) | 2011-06-16 | 2015-01-13 | Zimmer, Inc. | Femoral component for a knee prosthesis with improved articular characteristics |
US9060868B2 (en) | 2011-06-16 | 2015-06-23 | Zimmer, Inc. | Femoral component for a knee prosthesis with bone compacting ridge |
US8551179B2 (en) | 2011-06-16 | 2013-10-08 | Zimmer, Inc. | Femoral prosthesis system having provisional component with visual indicators |
US9308095B2 (en) | 2011-06-16 | 2016-04-12 | Zimmer, Inc. | Femoral component for a knee prosthesis with improved articular characteristics |
US8641721B2 (en) | 2011-06-30 | 2014-02-04 | DePuy Synthes Products, LLC | Customized patient-specific orthopaedic pin guides |
US8764760B2 (en) | 2011-07-01 | 2014-07-01 | Biomet Manufacturing, Llc | Patient-specific bone-cutting guidance instruments and methods |
US20130001121A1 (en) | 2011-07-01 | 2013-01-03 | Biomet Manufacturing Corp. | Backup kit for a patient-specific arthroplasty kit assembly |
WO2013007747A1 (en) | 2011-07-13 | 2013-01-17 | Zimmer Gmbh | Femoral knee prosthesis with diverging lateral condyle |
US8597365B2 (en) | 2011-08-04 | 2013-12-03 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
EP3357518B1 (en) | 2011-10-03 | 2020-12-02 | Hyalex Orthopaedics, Inc. | Polymeric adhesive for anchoring compliant materials to another surface |
US9730797B2 (en) | 2011-10-27 | 2017-08-15 | Toby Orthopaedics, Inc. | Bone joint replacement and repair assembly and method of repairing and replacing a bone joint |
ES2635542T3 (en) | 2011-10-27 | 2017-10-04 | Biomet Manufacturing, Llc | Glenoid guides specific to the patient |
KR20130046337A (en) | 2011-10-27 | 2013-05-07 | 삼성전자주식회사 | Multi-view device and contol method thereof, display apparatus and contol method thereof, and display system |
US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
JP5980341B2 (en) | 2011-11-18 | 2016-08-31 | ジンマー,インコーポレイティド | Tibial support component for artificial knee joints with superior occlusal properties |
JP5824163B2 (en) | 2011-11-21 | 2015-11-25 | ジンマー,インコーポレイティド | Tibial bed plate with asymmetric mounting of fixed structure |
KR20140113655A (en) | 2011-11-21 | 2014-09-24 | 바이오미메디카, 인코포레이티드 | Systems, devices, and methods for anchoring orthopaedic implants to bone |
EP2804565B1 (en) | 2011-12-22 | 2018-03-07 | Arthrosurface Incorporated | System for bone fixation |
US9198769B2 (en) | 2011-12-23 | 2015-12-01 | Pioneer Surgical Technology, Inc. | Bone anchor assembly, bone plate system, and method |
US9649195B2 (en) * | 2011-12-29 | 2017-05-16 | Mako Surgical Corp. | Femoral implant for preserving cruciate ligaments |
US9408686B1 (en) | 2012-01-20 | 2016-08-09 | Conformis, Inc. | Devices, systems and methods for manufacturing orthopedic implants |
CA2862341C (en) | 2012-01-24 | 2021-01-12 | Zimmer, Inc. | Method and system for creating patient-specific instrumentation for chondral graft transfer |
JP6138160B2 (en) | 2012-01-30 | 2017-05-31 | ジンマー,インコーポレイティド | Asymmetrical tibial component of knee prosthesis |
US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
CA3072704C (en) | 2012-03-28 | 2022-03-22 | Orthosoft Ulc | Glenoid implant surgery using patient specific instrumentation |
US9486226B2 (en) | 2012-04-18 | 2016-11-08 | Conformis, Inc. | Tibial guides, tools, and techniques for resecting the tibial plateau |
EP2854663B1 (en) | 2012-05-24 | 2022-05-25 | Zimmer Inc. | Patient-specific instrumentation for articular joint repair |
US9675471B2 (en) | 2012-06-11 | 2017-06-13 | Conformis, Inc. | Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components |
DE112013003358T5 (en) | 2012-07-03 | 2015-03-19 | Arthrosurface, Inc. | System and procedure for joint surface replacement and repair |
CA2873074C (en) | 2012-07-23 | 2020-09-22 | Orthosoft Inc. | Patient-specific instrumentation for implant revision surgery |
EP2877115A4 (en) | 2012-07-24 | 2016-05-11 | Orthosoft Inc | Patient specific instrumentation with mems in surgery |
US9402637B2 (en) | 2012-10-11 | 2016-08-02 | Howmedica Osteonics Corporation | Customized arthroplasty cutting guides and surgical methods using the same |
US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9387083B2 (en) | 2013-01-30 | 2016-07-12 | Conformis, Inc. | Acquiring and utilizing kinematic information for patient-adapted implants, tools and surgical procedures |
US9943370B2 (en) * | 2013-01-30 | 2018-04-17 | Conformis, Inc. | Advanced methods and techniques for designing knee implant components |
US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
US9167999B2 (en) | 2013-03-15 | 2015-10-27 | Restoration Robotics, Inc. | Systems and methods for planning hair transplantation |
US9320593B2 (en) | 2013-03-15 | 2016-04-26 | Restoration Robotics, Inc. | Systems and methods for planning hair transplantation |
CN104069542B (en) * | 2013-03-26 | 2017-12-29 | 深圳先进技术研究院 | Kneecap tissue engineering bracket and its manufacture material and preparation method |
US9492200B2 (en) | 2013-04-16 | 2016-11-15 | Arthrosurface Incorporated | Suture system and method |
CN104146796A (en) * | 2013-05-13 | 2014-11-19 | 苏州瑞华医院有限公司 | Method for manufacturing biological film trochlea and biological film trochlea |
US10124124B2 (en) | 2013-06-11 | 2018-11-13 | Zimmer, Inc. | Computer assisted subchondral injection |
WO2014197988A1 (en) | 2013-06-11 | 2014-12-18 | Orthosoft Inc. | Acetabular cup prosthesis positioning instrument and method |
EP3035891B1 (en) | 2013-08-21 | 2020-05-27 | Laboratoires Bodycad Inc. | Anatomically adapted orthopedic implant |
CA2919717C (en) | 2013-08-21 | 2021-06-22 | Laboratoires Bodycad Inc. | Bone resection guide and method |
US9925052B2 (en) | 2013-08-30 | 2018-03-27 | Zimmer, Inc. | Method for optimizing implant designs |
FR3010628B1 (en) | 2013-09-18 | 2015-10-16 | Medicrea International | METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT |
US9924950B2 (en) | 2013-09-25 | 2018-03-27 | Zimmer, Inc. | Patient specific instrumentation (PSI) for orthopedic surgery and systems and methods for using X-rays to produce same |
KR101891902B1 (en) * | 2013-09-27 | 2018-08-24 | 자퍼 테르마니니 | Reverse knee prosthesis |
FR3012030B1 (en) | 2013-10-18 | 2015-12-25 | Medicrea International | METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT |
US20150112349A1 (en) | 2013-10-21 | 2015-04-23 | Biomet Manufacturing, Llc | Ligament Guide Registration |
CN103584931B (en) * | 2013-10-23 | 2016-05-04 | 华南理工大学 | A kind of bionical gradient knee joint femoral prosthesis structure and manufacture method thereof |
CN103584930B (en) * | 2013-10-23 | 2016-01-06 | 华南理工大学 | A kind of personalized complete knee joint implanting prosthetic reversal design and manufacture method |
WO2015071757A1 (en) | 2013-11-13 | 2015-05-21 | Tornier Sas | Shoulder patient specific instrument |
WO2015081025A1 (en) | 2013-11-29 | 2015-06-04 | The Johns Hopkins University | Cranial reference mount |
US9655727B2 (en) | 2013-12-12 | 2017-05-23 | Stryker Corporation | Extended patellofemoral |
ITMI20132154A1 (en) * | 2013-12-20 | 2015-06-21 | Adler Ortho S R L | FEMORAL COMPONENT FOR KNEE PROSTHESIS. |
US10624748B2 (en) | 2014-03-07 | 2020-04-21 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
US11607319B2 (en) | 2014-03-07 | 2023-03-21 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
US20150250472A1 (en) | 2014-03-07 | 2015-09-10 | Arthrosurface Incorporated | Delivery System for Articular Surface Implant |
US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
EP3137019B1 (en) | 2014-04-30 | 2019-03-20 | Zimmer, Inc. | Acetabular cup impacting using patient-specific instrumentation |
US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
WO2015187822A1 (en) | 2014-06-03 | 2015-12-10 | Zimmer, Inc. | Patient-specific cutting block and method of manufacturing same |
US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US10387021B2 (en) | 2014-07-31 | 2019-08-20 | Restoration Robotics, Inc. | Robotic hair transplantation system with touchscreen interface for controlling movement of tool |
US10130375B2 (en) | 2014-07-31 | 2018-11-20 | Zimmer, Inc. | Instruments and methods in performing kinematically-aligned total knee arthroplasty |
US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
WO2016086049A1 (en) | 2014-11-24 | 2016-06-02 | The Johns Hopkins University | A cutting machine for resizing raw implants during surgery |
US10405928B2 (en) | 2015-02-02 | 2019-09-10 | Orthosoft Ulc | Acetabulum rim digitizer device and method |
CA2979424C (en) | 2015-03-25 | 2023-11-07 | Orthosoft Inc. | Method and system for assisting implant placement in thin bones such as scapula |
US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
CA2986780C (en) | 2015-05-28 | 2023-07-04 | Zimmer, Inc. | Patient-specific bone grafting system and method |
US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
AU2016290962B2 (en) | 2015-07-08 | 2021-04-08 | Zimmer, Inc. | Patient-specific instrumentation for implant revision surgery |
US10839509B2 (en) | 2015-07-10 | 2020-11-17 | 3Scan Inc. | Spatial multiplexing of histological stains |
US11077228B2 (en) | 2015-08-10 | 2021-08-03 | Hyalex Orthopaedics, Inc. | Interpenetrating polymer networks |
AU2016316683B2 (en) | 2015-09-04 | 2020-07-23 | The Johns Hopkins University | Low-profile intercranial device |
CN108135701B (en) | 2015-09-21 | 2019-12-24 | 捷迈有限公司 | Prosthesis system including tibial bearing component |
WO2017058535A1 (en) | 2015-09-29 | 2017-04-06 | Zimmer, Inc. | Tibial prosthesis for tibia with varus resection |
CN108348340B (en) | 2015-09-30 | 2021-08-10 | 捷迈有限公司 | Patient-specific instruments and methods for patellar resurfacing surgery |
US10034753B2 (en) | 2015-10-22 | 2018-07-31 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic instruments for component placement in a total hip arthroplasty |
EP3370657B1 (en) | 2015-11-04 | 2023-12-27 | Medicrea International | Apparatus for spinal reconstructive surgery and measuring spinal length |
US10624764B2 (en) | 2015-11-26 | 2020-04-21 | Orthosoft Ulc | System and method for the registration of an anatomical feature |
CA3007082A1 (en) | 2015-12-16 | 2017-06-22 | Tornier, Inc. | Patient specific instruments and methods for joint prosthesis |
DK3181050T3 (en) | 2015-12-18 | 2020-05-11 | Episurf Ip Man Ab | System and method for forming a decision support material indicating damage to an anatomical joint |
US10004564B1 (en) | 2016-01-06 | 2018-06-26 | Paul Beck | Accurate radiographic calibration using multiple images |
US10010372B1 (en) | 2016-01-06 | 2018-07-03 | Paul Beck | Marker Positioning Apparatus |
US10245148B2 (en) | 2016-04-25 | 2019-04-02 | Howmedica Osteonics Corp. | Flexible snap-fit prosthetic component |
US10639160B2 (en) | 2016-08-24 | 2020-05-05 | Howmedica Osteonics Corp. | Peek femoral component with segmented TI foam in-growth |
US10751189B2 (en) * | 2016-10-12 | 2020-08-25 | Corentec Co., Ltd | Resection guide, trial knee joint implant, and surgical instrument for knee arthroplasty |
USD808524S1 (en) | 2016-11-29 | 2018-01-23 | Laboratoires Bodycad Inc. | Femoral implant |
WO2018109556A1 (en) | 2016-12-12 | 2018-06-21 | Medicrea International | Systems and methods for patient-specific spinal implants |
ES2878003T3 (en) | 2017-03-10 | 2021-11-18 | Zimmer Inc | Tibial prosthesis with locking feature for a tibial bearing component |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
JP6931827B2 (en) | 2017-04-07 | 2021-09-08 | 日本製鋼所M&E株式会社 | Pressure vessel for crystal production |
EP4108201B1 (en) | 2017-04-21 | 2024-03-27 | Medicrea International | A system for developing one or more patient-specific spinal implants |
EP3400912B1 (en) | 2017-05-10 | 2019-11-20 | Howmedica Osteonics Corporation | Patient specific composite knee replacement |
CA3063415C (en) | 2017-05-12 | 2021-10-19 | Zimmer, Inc. | Femoral prostheses with upsizing and downsizing capabilities |
US11250561B2 (en) | 2017-06-16 | 2022-02-15 | Episurf Ip-Management Ab | Determination and visualization of damage to an anatomical joint |
EP3651662A1 (en) | 2017-07-11 | 2020-05-20 | Tornier, Inc. | Patient specific humeral cutting guides |
US11278299B2 (en) | 2017-07-11 | 2022-03-22 | Howmedica Osteonics Corp | Guides and instruments for improving accuracy of glenoid implant placement |
WO2019028344A1 (en) | 2017-08-04 | 2019-02-07 | Arthrosurface Incorporated | Multicomponent articular surface implant |
CA3074834A1 (en) | 2017-09-08 | 2019-03-14 | Pioneer Surgical Technology, Inc. | Intervertebral implants, instruments, and methods |
GB2566330B (en) * | 2017-09-12 | 2020-01-22 | Prometheus Surgical Ltd | Surgical guide production apparatus for use in a sterile environment |
USD907771S1 (en) | 2017-10-09 | 2021-01-12 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
US10893948B2 (en) | 2017-11-02 | 2021-01-19 | Howmedica Osteonics Corp. | Rotary arc patella articulating geometry |
US11173048B2 (en) | 2017-11-07 | 2021-11-16 | Howmedica Osteonics Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11241285B2 (en) | 2017-11-07 | 2022-02-08 | Mako Surgical Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11432945B2 (en) | 2017-11-07 | 2022-09-06 | Howmedica Osteonics Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11426282B2 (en) | 2017-11-16 | 2022-08-30 | Zimmer, Inc. | Implants for adding joint inclination to a knee arthroplasty |
US10918422B2 (en) | 2017-12-01 | 2021-02-16 | Medicrea International | Method and apparatus for inhibiting proximal junctional failure |
US11576725B2 (en) | 2017-12-12 | 2023-02-14 | Orthosoft Ulc | Patient-specific instrumentation for implant revision surgery |
AU2019214408B2 (en) | 2018-02-02 | 2023-02-02 | Evonik Operations Gmbh | Functionally graded polymer knee implant for enhanced fixation, wear resistance, and mechanical properties and the fabrication thereof |
FR3078418B1 (en) * | 2018-02-26 | 2021-05-14 | Univ De Technologie De Compiegne | PROCESS FOR MANUFACTURING A COMPLEX SUBSTITUTION OBJECT FROM A REAL OBJECT |
US11202674B2 (en) | 2018-04-03 | 2021-12-21 | Convergent Dental, Inc. | Laser system for surgical applications |
EP3781333A4 (en) | 2018-04-17 | 2021-12-29 | Stryker European Holdings I, LLC | On-demand implant customization in a surgical setting |
US10835380B2 (en) | 2018-04-30 | 2020-11-17 | Zimmer, Inc. | Posterior stabilized prosthesis system |
WO2019245869A1 (en) | 2018-06-19 | 2019-12-26 | Tornier, Inc. | Closed-loop tool control for orthopedic surgical procedures |
KR102041524B1 (en) * | 2018-06-20 | 2019-11-06 | 이규식 | Manufacturing process of 3D Custom-made Implant |
US11051829B2 (en) | 2018-06-26 | 2021-07-06 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic surgical instrument |
US10869950B2 (en) | 2018-07-17 | 2020-12-22 | Hyalex Orthopaedics, Inc. | Ionic polymer compositions |
US10918487B2 (en) * | 2018-07-25 | 2021-02-16 | Orthopedix, Inc. | Prosthetic implant caps |
US10925746B2 (en) * | 2018-07-25 | 2021-02-23 | Orthopedix, Inc. | Patient specific carpal implant |
CN111267350A (en) * | 2018-12-05 | 2020-06-12 | 通用电气公司 | Method and system for producing three-dimensional model of target object |
US11645749B2 (en) | 2018-12-14 | 2023-05-09 | Episurf Ip-Management Ab | Determination and visualization of damage to an anatomical joint |
GB2616360B (en) | 2019-03-12 | 2023-11-29 | Arthrosurface Inc | Humeral and glenoid articular surface implant systems and methods |
US11877801B2 (en) | 2019-04-02 | 2024-01-23 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
US11925417B2 (en) | 2019-04-02 | 2024-03-12 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
EP3975939A4 (en) | 2019-05-29 | 2023-01-11 | Wright Medical Technology, Inc. | Preparing a tibia for receiving tibial implant component of a replacement ankle |
USD930834S1 (en) | 2019-12-10 | 2021-09-14 | David Scott Nutter | Anatomic great toe joint |
US11769251B2 (en) | 2019-12-26 | 2023-09-26 | Medicrea International | Systems and methods for medical image analysis |
USD920515S1 (en) | 2020-01-08 | 2021-05-25 | Restor3D, Inc. | Spinal implant |
USD920517S1 (en) | 2020-01-08 | 2021-05-25 | Restor3D, Inc. | Osteotomy wedge |
US11324525B1 (en) | 2021-06-30 | 2022-05-10 | Kinos Medical Inc. | Surgical alignment guide assembly for total ankle replacement and method of using the same |
CN114052724B (en) * | 2022-01-13 | 2022-09-09 | 西安交通大学医学院第一附属医院 | Orthopedics traction abnormity detection system based on artificial intelligence |
US11806028B1 (en) | 2022-10-04 | 2023-11-07 | Restor3D, Inc. | Surgical guides and processes for producing and using the same |
CN116152238B (en) * | 2023-04-18 | 2023-07-18 | 天津医科大学口腔医院 | Temporal-mandibular joint gap area automatic measurement method based on deep learning |
US11960266B1 (en) | 2023-08-23 | 2024-04-16 | Restor3D, Inc. | Patient-specific medical devices and additive manufacturing processes for producing the same |
Family Cites Families (574)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3314420A (en) | 1961-10-23 | 1967-04-18 | Haeger Potteries Inc | Prosthetic parts and methods of making the same |
US3605123A (en) | 1969-04-29 | 1971-09-20 | Melpar Inc | Bone implant |
GB1324990A (en) | 1969-08-25 | 1973-07-25 | Nat Res Dev | Prosthetic shoulder joint devices |
CA962806A (en) | 1970-06-04 | 1975-02-18 | Ontario Research Foundation | Surgical prosthetic device |
US3938198A (en) * | 1970-08-04 | 1976-02-17 | Cutter Laboratories, Inc. | Hip joint prosthesis |
GB1395896A (en) | 1971-06-01 | 1975-05-29 | Nat Res Dev | Endoprosthetic knee joint devices |
US3798679A (en) * | 1971-07-09 | 1974-03-26 | Ewald Frederick | Joint prostheses |
US3808606A (en) | 1972-02-22 | 1974-05-07 | R Tronzo | Bone implant with porous exterior surface |
DE2306552B2 (en) | 1973-02-10 | 1975-07-03 | Friedrichsfeld Gmbh Steinzeug- Und Kunststoffwerke, 6800 Mannheim | Joint endoprosthesis |
US3869731A (en) | 1973-02-14 | 1975-03-11 | Univ California | Articulated two-part prosthesis replacing the knee joint |
US3852830A (en) | 1973-02-15 | 1974-12-10 | Richards Mfg Co | Knee prosthesis |
US3843975A (en) | 1973-04-09 | 1974-10-29 | R Tronzo | Prosthesis for femoral shaft |
DE2340546A1 (en) | 1973-08-10 | 1975-02-27 | Pfaudler Werke Ag | METALLIC IMPLANT AND PROCEDURE FOR ITS MANUFACTURING |
US4085466A (en) | 1974-11-18 | 1978-04-25 | National Research Development Corporation | Prosthetic joint device |
US3982281A (en) | 1975-07-25 | 1976-09-28 | Giliberty Richard P | Hip-joint prosthesis device |
US4219893A (en) | 1977-09-01 | 1980-09-02 | United States Surgical Corporation | Prosthetic knee joint |
US4000525A (en) | 1975-08-21 | 1977-01-04 | The United States Of America As Represented By The Secretary Of The Navy | Ceramic prosthetic implant suitable for a knee joint plateau |
US3991425A (en) | 1975-11-20 | 1976-11-16 | Minnesota Mining And Manufacturing Company | Prosthetic bone joint devices |
US4055862A (en) | 1976-01-23 | 1977-11-01 | Zimmer Usa, Inc. | Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene |
US4052753A (en) | 1976-08-02 | 1977-10-11 | Dedo Richard G | Knee spacer and method of reforming sliding body surfaces |
US4098626A (en) | 1976-11-15 | 1978-07-04 | Thiokol Corporation | Hydroxy terminated polybutadiene based polyurethane bound propellant grains |
DE2703059C3 (en) | 1977-01-26 | 1981-09-03 | Sanitätshaus Schütt & Grundei, Werkstätten für Orthopädie-Technik, 2400 Lübeck | Knee joint endoprosthesis |
US4203444A (en) | 1977-11-07 | 1980-05-20 | Dyonics, Inc. | Surgical instrument suitable for closed surgery such as of the knee |
US4164793A (en) | 1978-04-26 | 1979-08-21 | Swanson Alfred B | Lunate implant |
US4213816A (en) | 1978-06-12 | 1980-07-22 | Glasrock Products, Inc. | Method for bonding porous coating to rigid structural member |
US4207627A (en) | 1979-01-18 | 1980-06-17 | Cloutier Jean Marie | Knee prosthesis |
US4211228A (en) | 1979-01-24 | 1980-07-08 | Cloutier Jean Marie | Multipurpose tibial template |
US4280231A (en) | 1979-06-14 | 1981-07-28 | Swanson Alfred B | Elbow prosthesis |
US4340978A (en) | 1979-07-02 | 1982-07-27 | Biomedical Engineering Corp. | New Jersey meniscal bearing knee replacement |
US4309778A (en) * | 1979-07-02 | 1982-01-12 | Biomedical Engineering Corp. | New Jersey meniscal bearing knee replacement |
JPS6026892Y2 (en) | 1979-11-30 | 1985-08-14 | ナショナル住宅産業株式会社 | Screw tightener adjustment device |
US4344193A (en) | 1980-11-28 | 1982-08-17 | Kenny Charles H | Meniscus prosthesis |
US4575805A (en) * | 1980-12-24 | 1986-03-11 | Moermann Werner H | Method and apparatus for the fabrication of custom-shaped implants |
US4368040A (en) * | 1981-06-01 | 1983-01-11 | Ipco Corporation | Dental impression tray for forming a dental prosthesis in situ |
US4502161A (en) * | 1981-09-21 | 1985-03-05 | Wall W H | Prosthetic meniscus for the repair of joints |
US4646729A (en) | 1982-02-18 | 1987-03-03 | Howmedica, Inc. | Prosthetic knee implantation |
DE3213434C1 (en) | 1982-04-10 | 1983-10-27 | Günther Dr.med. 7400 Tübingen Aldinger | Process for the production of individually designed endoprostheses or implants |
US4436684A (en) * | 1982-06-03 | 1984-03-13 | Contour Med Partners, Ltd. | Method of forming implantable prostheses for reconstructive surgery |
US4459985A (en) | 1983-03-04 | 1984-07-17 | Howmedica Inc. | Tibial prosthesis extractor and method for extracting a tibial implant |
US4474177A (en) | 1983-03-09 | 1984-10-02 | Wright Manufacturing Company | Method and apparatus for shaping a distal femoral surface |
US4502483A (en) | 1983-03-09 | 1985-03-05 | Dow Corning Corporation | Method and apparatus for shaping a distal femoral surface |
DE3315401A1 (en) | 1983-04-28 | 1984-10-31 | Feldmühle AG, 4000 Düsseldorf | Knee-joint prosthesis |
US4601290A (en) | 1983-10-11 | 1986-07-22 | Cabot Medical Corporation | Surgical instrument for cutting body tissue from a body area having a restricted space |
DE8406730U1 (en) | 1984-03-05 | 1984-04-26 | Waldemar Link (Gmbh & Co), 2000 Hamburg | Surgical chisel |
US4609551A (en) | 1984-03-20 | 1986-09-02 | Arnold Caplan | Process of and material for stimulating growth of cartilage and bony tissue at anatomical sites |
JPS61247448A (en) | 1985-04-25 | 1986-11-04 | 日石三菱株式会社 | Production of artificial joint |
US4594380A (en) | 1985-05-01 | 1986-06-10 | At&T Bell Laboratories | Elastomeric controlled release formulation and article comprising same |
DE3516743A1 (en) | 1985-05-09 | 1986-11-13 | orthoplant Endoprothetik GmbH, 2800 Bremen | Endoprosthesis for a femoral head |
US4627853A (en) | 1985-05-29 | 1986-12-09 | American Hospital Supply Corporation | Method of producing prostheses for replacement of articular cartilage and prostheses so produced |
US4655227A (en) | 1985-06-06 | 1987-04-07 | Diagnospine Research Inc. | Equipment for the detection of mechanical injuries in the lumbar spine of a patient, using a mathematical model |
US4699156A (en) | 1985-06-06 | 1987-10-13 | Diagnospine Research Inc. | Non invasive method and equipment for the detection of torsional injuries in the lumar spine of a patient |
DE3535112A1 (en) | 1985-10-02 | 1987-04-16 | Witzel Ulrich | TIBI PLATE PART OF A KNEE-KNEE ENDOPROTHESIS |
FR2589720A1 (en) | 1985-11-14 | 1987-05-15 | Aubaniac Jean | KNEE JOINT PROSTHETIC ASSEMBLY |
US4714474A (en) | 1986-05-12 | 1987-12-22 | Dow Corning Wright Corporation | Tibial knee joint prosthesis with removable articulating surface insert |
US4822365A (en) | 1986-05-30 | 1989-04-18 | Walker Peter S | Method of design of human joint prosthesis |
US4936862A (en) | 1986-05-30 | 1990-06-26 | Walker Peter S | Method of designing and manufacturing a human joint prosthesis |
US4769040A (en) | 1986-11-18 | 1988-09-06 | Queen's University At Kingston | Tibial prosthesis |
US5041138A (en) | 1986-11-20 | 1991-08-20 | Massachusetts Institute Of Technology | Neomorphogenesis of cartilage in vivo from cell culture |
CN86209787U (en) | 1986-11-29 | 1987-11-18 | 于也宽 | Sleeve-shaped artificial elbow joint |
US4714472A (en) | 1987-01-20 | 1987-12-22 | Osteonics Corp. | Knee prosthesis with accommodation for angular misalignment |
US4841975A (en) | 1987-04-15 | 1989-06-27 | Cemax, Inc. | Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging |
US4846835A (en) | 1987-06-15 | 1989-07-11 | Grande Daniel A | Technique for healing lesions in cartilage |
US5681353A (en) | 1987-07-20 | 1997-10-28 | Regen Biologics, Inc. | Meniscal augmentation device |
US5007934A (en) | 1987-07-20 | 1991-04-16 | Regen Corporation | Prosthetic meniscus |
US4880429A (en) | 1987-07-20 | 1989-11-14 | Stone Kevin R | Prosthetic meniscus |
US5306311A (en) | 1987-07-20 | 1994-04-26 | Regen Corporation | Prosthetic articular cartilage |
US4813436A (en) * | 1987-07-30 | 1989-03-21 | Human Performance Technologies, Inc. | Motion analysis system employing various operating modes |
US5303148A (en) | 1987-11-27 | 1994-04-12 | Picker International, Inc. | Voice actuated volume image controller and display controller |
US4888021A (en) | 1988-02-02 | 1989-12-19 | Joint Medical Products Corporation | Knee and patellar prosthesis |
GB8802671D0 (en) | 1988-02-05 | 1988-03-02 | Goodfellow J W | Orthopaedic joint components tools & methods |
US4823807A (en) | 1988-02-11 | 1989-04-25 | Board Of Regents, Univ. Of Texas System | Device for non-invasive diagnosis and monitoring of articular and periarticular pathology |
US5007936A (en) | 1988-02-18 | 1991-04-16 | Cemax, Inc. | Surgical method for hip joint replacement |
JP2784766B2 (en) | 1988-03-30 | 1998-08-06 | 京セラ株式会社 | Artificial knee joint |
FR2629339B1 (en) | 1988-04-01 | 1997-09-12 | Broc Christian | LAYING MATERIAL FOR PARTICULARLY A TIBIAL AND / OR FEMORAL ELEMENT OF A BI-COMPARTMENTAL KNEE JOINT PROSTHESIS |
US4979949A (en) | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4883488A (en) | 1988-06-13 | 1989-11-28 | Harrington Arthritis Research Center | Tibial component for a knee prosthesis |
GB8817908D0 (en) | 1988-07-27 | 1988-09-01 | Howmedica | Tibial component for replacement knee prosthesis |
US4944757A (en) | 1988-11-07 | 1990-07-31 | Martinez David M | Modulator knee prosthesis system |
US5162430A (en) | 1988-11-21 | 1992-11-10 | Collagen Corporation | Collagen-polymer conjugates |
US5510418A (en) | 1988-11-21 | 1996-04-23 | Collagen Corporation | Glycosaminoglycan-synthetic polymer conjugates |
US5099859A (en) * | 1988-12-06 | 1992-03-31 | Bell Gene D | Method and apparatus for comparative analysis of videofluoroscopic joint motion |
GR1000566B (en) | 1988-12-27 | 1992-08-26 | Johnson & Johnson Orthopaedics | Independent knee prosthesis which can be replaced |
US4872452A (en) | 1989-01-09 | 1989-10-10 | Minnesota Mining And Manufacturing Company | Bone rasp |
US4936853A (en) | 1989-01-11 | 1990-06-26 | Kirschner Medical Corporation | Modular knee prosthesis |
US5108452A (en) | 1989-02-08 | 1992-04-28 | Smith & Nephew Richards Inc. | Modular hip prosthesis |
US5107824A (en) | 1989-09-14 | 1992-04-28 | Anodyne, Inc. | Anatomically correct knee brace hinge |
US5234433A (en) | 1989-09-26 | 1993-08-10 | Kirschner Medical Corporation | Method and instrumentation for unicompartmental total knee arthroplasty |
US5059216A (en) | 1989-09-29 | 1991-10-22 | Winters Thomas F | Knee joint replacement apparatus |
EP0425714A1 (en) | 1989-10-28 | 1991-05-08 | Metalpraecis Berchem + Schaberg Gesellschaft Für Metallformgebung Mbh | Process for manufacturing an implantable joint prosthesis |
US5067964A (en) | 1989-12-13 | 1991-11-26 | Stryker Corporation | Articular surface repair |
EP0528080A1 (en) | 1989-12-13 | 1993-02-24 | Stryker Corporation | Articular cartilage repair piece |
US5246013A (en) | 1989-12-22 | 1993-09-21 | Massachusetts Institute Of Technology | Probe, system and method for detecting cartilage degeneration |
US5171244A (en) | 1990-01-08 | 1992-12-15 | Caspari Richard B | Methods and apparatus for arthroscopic prosthetic knee replacement |
US5129908A (en) | 1990-01-23 | 1992-07-14 | Petersen Thomas D | Method and instruments for resection of the patella |
US5019103A (en) | 1990-02-05 | 1991-05-28 | Boehringer Mannheim Corporation | Tibial wedge system |
US5098383A (en) | 1990-02-08 | 1992-03-24 | Artifax Ltd. | Device for orienting appliances, prostheses, and instrumentation in medical procedures and methods of making same |
US5171322A (en) | 1990-02-13 | 1992-12-15 | Kenny Charles H | Stabilized meniscus prosthesis |
US5246530A (en) | 1990-04-20 | 1993-09-21 | Dynamet Incorporated | Method of producing porous metal surface |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5523843A (en) | 1990-07-09 | 1996-06-04 | Canon Kabushiki Kaisha | Position detecting system |
GB9018782D0 (en) | 1990-08-28 | 1990-10-10 | Goodfellow John W | Phosthetic femoral components |
US5021061A (en) | 1990-09-26 | 1991-06-04 | Queen's University At Kingston | Prosthetic patello-femoral joint |
US5274565A (en) | 1990-10-03 | 1993-12-28 | Board Of Regents, The University Of Texas System | Process for making custom joint replacements |
US5154178A (en) | 1990-10-09 | 1992-10-13 | Sri International | Method and apparatus for obtaining in-vivo nmr data from a moving subject |
US5226914A (en) | 1990-11-16 | 1993-07-13 | Caplan Arnold I | Method for treating connective tissue disorders |
US5197985A (en) * | 1990-11-16 | 1993-03-30 | Caplan Arnold I | Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells |
US6197325B1 (en) * | 1990-11-27 | 2001-03-06 | The American National Red Cross | Supplemented and unsupplemented tissue sealants, methods of their production and use |
US5123927A (en) | 1990-12-05 | 1992-06-23 | University Of British Columbia | Method and apparatus for antibiotic knee prothesis |
US5206023A (en) | 1991-01-31 | 1993-04-27 | Robert F. Shaw | Method and compositions for the treatment and repair of defects or lesions in cartilage |
US5853746A (en) | 1991-01-31 | 1998-12-29 | Robert Francis Shaw | Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone using functional barrier |
GB9102348D0 (en) | 1991-02-04 | 1991-03-20 | Inst Of Orthopaedics The | Prosthesis for knee replacement |
US5236461A (en) | 1991-03-22 | 1993-08-17 | Forte Mark R | Totally posterior stabilized knee prosthesis |
JP3007903B2 (en) | 1991-03-29 | 2000-02-14 | 京セラ株式会社 | Artificial disc |
CA2041532C (en) * | 1991-04-30 | 2002-01-01 | Hamdy Khalil | Urethane sealant having improved sag properties |
US5133759A (en) | 1991-05-24 | 1992-07-28 | Turner Richard H | Asymmetrical femoral condye total knee arthroplasty prosthesis |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5282868A (en) * | 1991-06-17 | 1994-02-01 | Andre Bahler | Prosthetic arrangement for a complex joint, especially knee joint |
US5245282A (en) | 1991-06-28 | 1993-09-14 | University Of Virginia Alumni Patents Foundation | Three-dimensional magnetic resonance imaging |
GB9114603D0 (en) * | 1991-07-05 | 1991-08-21 | Johnson David P | Improvements relating to patella prostheses |
US5306307A (en) | 1991-07-22 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant |
US5270300A (en) | 1991-09-06 | 1993-12-14 | Robert Francis Shaw | Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone |
US5152797A (en) | 1991-10-25 | 1992-10-06 | Johnson & Johnson Orthopaedics, Inc. | Modular prosthesis |
GB2261672A (en) | 1991-11-18 | 1993-05-26 | Michael Braden | The use of biomaterials for tissue repair |
US5344459A (en) | 1991-12-03 | 1994-09-06 | Swartz Stephen J | Arthroscopically implantable prosthesis |
US5383939A (en) | 1991-12-05 | 1995-01-24 | James; Kelvin B. | System for controlling artificial knee joint action in an above knee prosthesis |
DE4202717C1 (en) * | 1991-12-11 | 1993-06-17 | Dietmar Prof. Dr. 3350 Kreiensen De Kubein-Meesenburg | |
GB9201231D0 (en) | 1992-01-21 | 1992-03-11 | Howmedica | Tibial element for a replacement knee prosthesis |
US5330534A (en) | 1992-02-10 | 1994-07-19 | Biomet, Inc. | Knee joint prosthesis with interchangeable components |
US5520695A (en) | 1992-02-14 | 1996-05-28 | Johnson & Johnson Professional, Inc. | Instruments for use in knee replacement surgery |
US5258032A (en) | 1992-04-03 | 1993-11-02 | Bertin Kim C | Knee prosthesis provisional apparatus and resection guide and method of use in knee replacement surgery |
US5326365A (en) | 1992-04-10 | 1994-07-05 | Alvine Franklin G | Ankle implant |
JPH07508665A (en) | 1992-04-21 | 1995-09-28 | ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム | Pushing device for arthroscopy and how to use it |
US5503162A (en) | 1992-04-21 | 1996-04-02 | Board Of Regents, University Of Texas System | Arthroscopic cartilage evaluator and method for using the same |
DE4213597A1 (en) | 1992-04-24 | 1993-10-28 | Klaus Draenert | Femoral prosthesis component to be anchored with bone cement and process for its production |
US5423828A (en) | 1992-05-14 | 1995-06-13 | Bentwood Place, Inc. | Method and apparatus for simplifying prosthetic joint replacements |
US5365996A (en) | 1992-06-10 | 1994-11-22 | Amei Technologies Inc. | Method and apparatus for making customized fixation devices |
DE4219939C2 (en) | 1992-06-18 | 1995-10-19 | Klaus Dipl Ing Radermacher | Device for aligning, positioning and guiding machining tools, machining or measuring devices for machining a bony structure and method for producing this device |
US5824102A (en) | 1992-06-19 | 1998-10-20 | Buscayret; Christian | Total knee prosthesis |
GB9213766D0 (en) | 1992-06-29 | 1992-08-12 | Minnesota Mining & Mfg | Artificial knee joints |
US5326363A (en) | 1992-09-14 | 1994-07-05 | Zimmer, Inc. | Provisional implant |
US5478739A (en) | 1992-10-23 | 1995-12-26 | Advanced Tissue Sciences, Inc. | Three-dimensional stromal cell and tissue culture system |
US5320102A (en) | 1992-11-18 | 1994-06-14 | Ciba-Geigy Corporation | Method for diagnosing proteoglycan deficiency in cartilage based on magnetic resonance image (MRI) |
DE59209723D1 (en) * | 1992-11-20 | 1999-08-12 | Sulzer Orthopaedie Ag | Body for distributing bone cement for anchoring implants |
US5445152A (en) | 1992-11-23 | 1995-08-29 | Resonex Holding Company | Kinematic device for producing precise incremental flexing of the knee |
FR2698537B1 (en) | 1992-12-01 | 1995-01-06 | Medinov Sa | Three-compartment knee prosthesis. |
CA2150829C (en) | 1992-12-14 | 2003-07-29 | Michael J. Pappas | Fixed bearing joint endoprosthesis |
FR2699271B1 (en) | 1992-12-15 | 1995-03-17 | Univ Joseph Fourier | Method for determining the femoral anchor point of a cruciate knee ligament. |
US5360446A (en) | 1992-12-18 | 1994-11-01 | Zimmer, Inc. | Interactive prosthesis design system for implantable prosthesis |
US5489309A (en) * | 1993-01-06 | 1996-02-06 | Smith & Nephew Richards Inc. | Modular humeral component system |
US5728162A (en) * | 1993-01-28 | 1998-03-17 | Board Of Regents Of University Of Colorado | Asymmetric condylar and trochlear femoral knee component |
US5724970A (en) | 1993-04-06 | 1998-03-10 | Fonar Corporation | Multipositional MRI for kinematic studies of movable joints |
US5405395A (en) | 1993-05-03 | 1995-04-11 | Wright Medical Technology, Inc. | Modular femoral implant |
FR2705785B1 (en) | 1993-05-28 | 1995-08-25 | Schlumberger Ind Sa | Method for determining the attenuation function of an object with respect to the transmission of a reference thickness of a reference material and device for implementing the method. |
US5413116A (en) | 1993-06-24 | 1995-05-09 | Bioresearch | Method and apparatus for diagnosing joints |
US5741215A (en) | 1993-09-10 | 1998-04-21 | The University Of Queensland | Stereolithographic anatomical modelling process |
ES2070789B1 (en) | 1993-11-25 | 1996-01-01 | Moure Carlos M Pichel | ARTICULAR PROTECTION OF THE KNEE AND DISTAL FEMUR. |
US5522900A (en) | 1993-12-17 | 1996-06-04 | Avanta Orthopaedics | Prosthetic joint and method of manufacture |
JPH07194569A (en) | 1994-01-11 | 1995-08-01 | Toshiba Medical Eng Co Ltd | Knee joint fixing tool for mri |
WO1995019796A1 (en) | 1994-01-21 | 1995-07-27 | Brown University Research Foundation | Biocompatible implants |
JP3333211B2 (en) | 1994-01-26 | 2002-10-15 | レイリー,マーク・エイ | Improved expandable device for use in a surgical method for bone treatment |
US5885298A (en) * | 1994-02-23 | 1999-03-23 | Biomet, Inc. | Patellar clamp and reamer with adjustable stop |
JP2980805B2 (en) | 1994-03-01 | 1999-11-22 | 株式会社三協精機製作所 | Artificial aggregate and its processing method |
EP0672397B1 (en) | 1994-03-15 | 2000-06-07 | Sulzer Orthopädie AG | Tibial plate for an artificial knee joint |
GB9407153D0 (en) | 1994-04-11 | 1994-06-01 | Corin Medical Ltd | Unicompartmental knee prosthesis |
BE1008372A3 (en) | 1994-04-19 | 1996-04-02 | Materialise Nv | METHOD FOR MANUFACTURING A perfected MEDICAL MODEL BASED ON DIGITAL IMAGE INFORMATION OF A BODY. |
FR2719466B1 (en) | 1994-05-04 | 1997-06-06 | Ysebaert Sa | Knee prosthesis with movable meniscus. |
US5723331A (en) | 1994-05-05 | 1998-03-03 | Genzyme Corporation | Methods and compositions for the repair of articular cartilage defects in mammals |
US5616146A (en) | 1994-05-16 | 1997-04-01 | Murray; William M. | Method and apparatus for machining bone to fit an orthopedic surgical implant |
GB9413607D0 (en) | 1994-07-06 | 1994-08-24 | Goodfellow John W | Endoprosthetic knee joint device |
FR2722392A1 (en) | 1994-07-12 | 1996-01-19 | Biomicron | APPARATUS FOR RESECTING KNEE CONDYLES FOR PLACING A PROSTHESIS AND METHOD FOR PLACING SUCH AN APPARATUS |
GB9415180D0 (en) | 1994-07-28 | 1994-09-21 | Walker Peter S | Stabilised mobile bearing knee |
US5632745A (en) | 1995-02-07 | 1997-05-27 | R&D Biologicals, Inc. | Surgical implantation of cartilage repair unit |
US5769899A (en) | 1994-08-12 | 1998-06-23 | Matrix Biotechnologies, Inc. | Cartilage repair unit |
US5755803A (en) * | 1994-09-02 | 1998-05-26 | Hudson Surgical Design | Prosthetic implant |
US6695848B2 (en) * | 1994-09-02 | 2004-02-24 | Hudson Surgical Design, Inc. | Methods for femoral and tibial resection |
DE4434539C2 (en) | 1994-09-27 | 1998-06-04 | Luis Dr Med Schuster | Process for the production of an endoprosthesis as a joint replacement for knee joints |
CA2160198C (en) | 1994-10-27 | 2003-12-30 | Michael J. Pappas | Prosthesis fixturing device |
JPH10507953A (en) | 1994-10-28 | 1998-08-04 | アイシーズ、テクノロジーズ、インコーポレーテッド | Corneal analyzer for compound camera |
JP3490520B2 (en) | 1994-12-12 | 2004-01-26 | 株式会社ニデック | Ophthalmic equipment |
JP3419931B2 (en) | 1994-12-26 | 2003-06-23 | 京セラ株式会社 | Artificial knee joint |
US6102955A (en) | 1995-01-19 | 2000-08-15 | Mendes; David | Surgical method, surgical tool and artificial implants for repairing knee joints |
US5560096B1 (en) | 1995-01-23 | 1998-03-10 | Smith & Nephew Richards Inc | Method of manufacturing femoral knee implant |
US5749874A (en) | 1995-02-07 | 1998-05-12 | Matrix Biotechnologies, Inc. | Cartilage repair unit and method of assembling same |
US5611802A (en) * | 1995-02-14 | 1997-03-18 | Samuelson; Kent M. | Method and apparatus for resecting bone |
US5593450A (en) | 1995-02-27 | 1997-01-14 | Johnson & Johnson Professional, Inc. | Oval domed shaped patella prosthesis |
US5609643A (en) | 1995-03-13 | 1997-03-11 | Johnson & Johnson Professional, Inc. | Knee joint prosthesis |
US5683468A (en) | 1995-03-13 | 1997-11-04 | Pappas; Michael J. | Mobile bearing total joint replacement |
US5906934A (en) | 1995-03-14 | 1999-05-25 | Morphogen Pharmaceuticals, Inc. | Mesenchymal stem cells for cartilage repair |
US5571191A (en) | 1995-03-16 | 1996-11-05 | Fitz; William R. | Artificial facet joint |
US5900245A (en) | 1996-03-22 | 1999-05-04 | Focal, Inc. | Compliant tissue sealants |
US5832422A (en) | 1995-04-11 | 1998-11-03 | Wiedenhoefer; Curt | Measuring device |
US6132463A (en) | 1995-05-19 | 2000-10-17 | Etex Corporation | Cell seeding of ceramic compositions |
US5865849A (en) | 1995-06-07 | 1999-02-02 | Crosscart, Inc. | Meniscal heterografts |
US6046379A (en) | 1995-06-07 | 2000-04-04 | Stone; Kevin R. | Meniscal xenografts |
DE69619526T2 (en) | 1995-06-12 | 2002-10-31 | Yeda Research And Development Co., Ltd. | FGF9 AS A SPECIFIC LIGAND FOR FGFR3 |
DE19521597A1 (en) | 1995-06-14 | 1996-12-19 | Kubein Meesenburg Dietmar | Artificial joint, especially an endoprosthesis to replace natural joints |
US5968051A (en) | 1995-07-27 | 1999-10-19 | Johnson & Johnson Professional, Inc. | Patella clamping device |
US5671741A (en) | 1995-08-04 | 1997-09-30 | The Regents Of The University Of California | Magnetic resonance imaging technique for tissue characterization |
GB2304051B (en) | 1995-08-09 | 1999-01-27 | Corin Medical Ltd | A knee prosthesis |
US20020143402A1 (en) | 1995-09-04 | 2002-10-03 | Limber Ltd. | Hip joint prostheses |
US5871546A (en) * | 1995-09-29 | 1999-02-16 | Johnson & Johnson Professional, Inc. | Femoral component condyle design for knee prosthesis |
FR2740326B1 (en) | 1995-10-31 | 1998-02-20 | Osteal Medical Lab | FEMORO-PATELLAR PROSTHESIS OF THE KNEE |
US5716361A (en) | 1995-11-02 | 1998-02-10 | Masini; Michael A. | Bone cutting guides for use in the implantation of prosthetic joint components |
US5682886A (en) * | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
US6200606B1 (en) * | 1996-01-16 | 2001-03-13 | Depuy Orthopaedics, Inc. | Isolation of precursor cells from hematopoietic and nonhematopoietic tissues and their use in vivo bone and cartilage regeneration |
CA2168283A1 (en) | 1996-01-29 | 1997-07-30 | John Michael Lee | Preparation of biological material for implants |
JP2965137B2 (en) | 1996-02-02 | 1999-10-18 | 瑞穂医科工業株式会社 | Artificial knee joint |
US5681354A (en) * | 1996-02-20 | 1997-10-28 | Board Of Regents, University Of Colorado | Asymmetrical femoral component for knee prosthesis |
US5702463A (en) | 1996-02-20 | 1997-12-30 | Smith & Nephew Inc. | Tibial prosthesis with polymeric liner and liner insertion/removal instrument |
US5842477A (en) | 1996-02-21 | 1998-12-01 | Advanced Tissue Sciences, Inc. | Method for repairing cartilage |
US5769092A (en) | 1996-02-22 | 1998-06-23 | Integrated Surgical Systems, Inc. | Computer-aided system for revision total hip replacement surgery |
US6352558B1 (en) * | 1996-02-22 | 2002-03-05 | Ed. Geistlich Soehne Ag Fuer Chemische Industrie | Method for promoting regeneration of surface cartilage in a damage joint |
HU219444B (en) * | 1996-02-26 | 2001-04-28 | Gábor Krakovits | Sliding surface for knee-joint prothesis |
US5683466A (en) | 1996-03-26 | 1997-11-04 | Vitale; Glenn C. | Joint surface replacement system |
CA2201057C (en) | 1996-03-29 | 2002-01-01 | Kenji Morimoto | A method of processing a sectional image of a sample bone including a cortical bone portion and a cancellous bone portion |
US6299905B1 (en) | 1996-04-16 | 2001-10-09 | Depuy Orthopaedics, Inc. | Bioerodable polymeric adhesives for tissue repair |
US5743918A (en) | 1996-05-13 | 1998-04-28 | Wright Medical Technology, Inc. | Instrumentation for and method for implanting a spherical prosthesis |
GB9611059D0 (en) | 1996-05-28 | 1996-07-31 | Howmedica | Tibial element for a replacement knee prosthesis |
WO1997045532A1 (en) | 1996-05-28 | 1997-12-04 | Brown University Research Foundation | Hyaluronan based biodegradable scaffolds for tissue repair |
ATE250666T1 (en) | 1996-06-04 | 2003-10-15 | Sulzer Orthopedics Ltd | METHOD FOR PRODUCING CARTILAGE TISSUE AND IMPLANTS |
US6126690A (en) | 1996-07-03 | 2000-10-03 | The Trustees Of Columbia University In The City Of New York | Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis |
US5964808A (en) * | 1996-07-11 | 1999-10-12 | Wright Medical Technology, Inc. | Knee prosthesis |
US5871540A (en) * | 1996-07-30 | 1999-02-16 | Osteonics Corp. | Patellar implant component and method |
US5989269A (en) | 1996-08-30 | 1999-11-23 | Vts Holdings L.L.C. | Method, instruments and kit for autologous transplantation |
US6569172B2 (en) | 1996-08-30 | 2003-05-27 | Verigen Transplantation Service International (Vtsi) | Method, instruments, and kit for autologous transplantation |
US6175655B1 (en) * | 1996-09-19 | 2001-01-16 | Integrated Medical Systems, Inc. | Medical imaging system for displaying, manipulating and analyzing three-dimensional images |
GB2318058B (en) | 1996-09-25 | 2001-03-21 | Ninian Spenceley Peckitt | Improvements relating to prosthetic implants |
SE9603540D0 (en) | 1996-09-27 | 1996-09-27 | Ingvar Eriksson | Orthopedic device |
US5762125A (en) | 1996-09-30 | 1998-06-09 | Johnson & Johnson Professional, Inc. | Custom bioimplantable article |
US5824085A (en) | 1996-09-30 | 1998-10-20 | Integrated Surgical Systems, Inc. | System and method for cavity generation for surgical planning and initial placement of a bone prosthesis |
DE19646891A1 (en) | 1996-11-13 | 1998-05-14 | Kubein Meesenburg Dietmar | Artificial joint, especially an endoprosthesis to replace natural joints |
DE19647155C2 (en) | 1996-11-14 | 1998-11-19 | Plus Endoprothetik Ag | Implant |
JP2002505592A (en) | 1996-11-15 | 2002-02-19 | アドバンスト バイオ サーフェイシズ,インコーポレイティド | Biomaterial systems used to repair tissue in situ |
US5928945A (en) | 1996-11-20 | 1999-07-27 | Advanced Tissue Sciences, Inc. | Application of shear flow stress to chondrocytes or chondrocyte stem cells to produce cartilage |
GB2336317B (en) * | 1996-12-09 | 2001-02-14 | Jacques Afriat | Complete knee joint prosthesis |
US6989115B2 (en) | 1996-12-20 | 2006-01-24 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US8735773B2 (en) | 2007-02-14 | 2014-05-27 | Conformis, Inc. | Implant device and method for manufacture |
US7618451B2 (en) | 2001-05-25 | 2009-11-17 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty |
US8234097B2 (en) | 2001-05-25 | 2012-07-31 | Conformis, Inc. | Automated systems for manufacturing patient-specific orthopedic implants and instrumentation |
US8480754B2 (en) | 2001-05-25 | 2013-07-09 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8545569B2 (en) | 2001-05-25 | 2013-10-01 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US20110071645A1 (en) | 2009-02-25 | 2011-03-24 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
US20110071802A1 (en) | 2009-02-25 | 2011-03-24 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
US8882847B2 (en) | 2001-05-25 | 2014-11-11 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
US9603711B2 (en) | 2001-05-25 | 2017-03-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US7468075B2 (en) | 2001-05-25 | 2008-12-23 | Conformis, Inc. | Methods and compositions for articular repair |
US20090222103A1 (en) | 2001-05-25 | 2009-09-03 | Conformis, Inc. | Articular Implants Providing Lower Adjacent Cartilage Wear |
US8083745B2 (en) | 2001-05-25 | 2011-12-27 | Conformis, Inc. | Surgical tools for arthroplasty |
US20070233269A1 (en) | 2001-05-25 | 2007-10-04 | Conformis, Inc. | Interpositional Joint Implant |
US7534263B2 (en) | 2001-05-25 | 2009-05-19 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US8617242B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Implant device and method for manufacture |
US8556983B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US8771365B2 (en) * | 2009-02-25 | 2014-07-08 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs, and related tools |
GB9700508D0 (en) | 1997-01-11 | 1997-02-26 | Smith & Nephew | Hydrogels |
US5866165A (en) | 1997-01-15 | 1999-02-02 | Orquest, Inc. | Collagen-polysaccharide matrix for bone and cartilage repair |
CA2226240A1 (en) | 1997-01-17 | 1998-07-17 | Ceramtec Ag | Fixation of a tibial part on a tibial plate of a knee-joint endoprosthesis |
JP2001509053A (en) | 1997-01-28 | 2001-07-10 | ニューヨーク ソサイエティ フォア ザ リリーフ オブ ザ ラプチャード アンド クリップルド メインティニング ザ ホスピタル フォア スペシャル サージャリー | Femoral bone resection method and device |
JP4388602B2 (en) | 1997-02-07 | 2009-12-24 | ストライカー コーポレイション | Bone-forming device not containing matrix, graft, and method of use thereof |
US5779651A (en) | 1997-02-07 | 1998-07-14 | Bio Syntech | Medical apparatus for the diagnosis of cartilage degeneration via spatial mapping of compression-induced electrical potentials |
US6146385A (en) * | 1997-02-11 | 2000-11-14 | Smith & Nephew, Inc. | Repairing cartilage |
US6289753B1 (en) | 1997-02-14 | 2001-09-18 | The United States Of America As Represented By The Department Of Health And Human Services | Method for measuring mechanical properties of the collagen network in cartilage |
US6205411B1 (en) * | 1997-02-21 | 2001-03-20 | Carnegie Mellon University | Computer-assisted surgery planner and intra-operative guidance system |
US5880976A (en) | 1997-02-21 | 1999-03-09 | Carnegie Mellon University | Apparatus and method for facilitating the implantation of artificial components in joints |
DE19721661A1 (en) | 1997-05-23 | 1998-11-26 | Zimmer Markus | Bone and cartilage replacement structures |
CN2305966Y (en) | 1997-06-09 | 1999-02-03 | 山东省文登整骨医院 | Bone and joint generating body |
JPH1119104A (en) | 1997-06-30 | 1999-01-26 | Kazumasa Itokazu | Artificial bone replenishing material for knee tibia round part sinking fracture |
US6078680A (en) | 1997-07-25 | 2000-06-20 | Arch Development Corporation | Method, apparatus, and storage medium for detection of nodules in biological tissue using wavelet snakes to characterize features in radiographic images |
US6110209A (en) | 1997-08-07 | 2000-08-29 | Stone; Kevin R. | Method and paste for articular cartilage transplantation |
ATE220564T1 (en) * | 1997-08-14 | 2002-08-15 | Sulzer Innotec Ag | COMPOSITION AND DEVICE FOR REPAIRING CARTILAGE TISSUE IN VIVO CONSISTING OF NANOCAPSULES WITH OSTEOINDUCTIVE AND/OR CHONDROINDUCTIVE FACTORS |
AU766783B2 (en) | 1997-08-19 | 2003-10-23 | Philipp Lang | Ultrasonic transmission films and devices, particularly for hygienic transducer surfaces |
AU9478498A (en) | 1997-09-11 | 1999-03-29 | Genzyme Corporation | Articulating endoscopic implant rotator surgical apparatus and method for using same |
JPH11178837A (en) | 1997-10-06 | 1999-07-06 | General Electric Co <Ge> | Reference structure constitution system and reference structure assembly |
US5913821A (en) | 1997-10-14 | 1999-06-22 | Cornell Research Foundation, Inc. | Diagnostic method and apparatus for assessing canine hip dysplasia |
FR2769826B1 (en) | 1997-10-21 | 1999-12-03 | Aesculap Sa | KNEE PROSTHESIS COMPRISING A TIBIAL THICKNESS |
US6161080A (en) | 1997-11-17 | 2000-12-12 | The Trustees Of Columbia University In The City Of New York | Three dimensional multibody modeling of anatomical joints |
EP1032319B1 (en) | 1997-11-18 | 2006-12-06 | Biomedical Engineering Trust I | Anterior-posterior femoral resection guide with set of detachable collets |
JPH11155142A (en) | 1997-11-19 | 1999-06-08 | Mitsubishi Electric Corp | Medical treatment support system |
US6325828B1 (en) | 1997-12-02 | 2001-12-04 | Rose Biomedical Research | Apparatus for knee prosthesis |
US6082364A (en) | 1997-12-15 | 2000-07-04 | Musculoskeletal Development Enterprises, Llc | Pluripotential bone marrow cell line and methods of using the same |
AU5472498A (en) | 1997-12-18 | 1999-07-12 | Michel Poirier | Manufacturing a dental implant drill guide and a dental implant superstructure |
DE19803673A1 (en) | 1998-01-30 | 1999-08-05 | Norbert M Dr Meenen | Biohybrid joint replacement |
US5916220A (en) | 1998-02-02 | 1999-06-29 | Medidea, Llc | Bone cutting guide and method to accommodate different-sized implants |
ES2143324T3 (en) | 1998-02-11 | 2000-05-01 | Plus Endoprothetik Ag | PROTECTION OF FEMORAL HIP JOINT. |
DE19807603A1 (en) | 1998-02-17 | 1999-08-19 | Krehl | Inlet for knee joint endoprosthesis adjusts flexible to radius of femur |
JPH11239165A (en) | 1998-02-20 | 1999-08-31 | Fuji Photo Film Co Ltd | Medical network system |
US6057927A (en) | 1998-02-25 | 2000-05-02 | American Iron And Steel Institute | Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties |
US6171340B1 (en) * | 1998-02-27 | 2001-01-09 | Mcdowell Charles L. | Method and device for regenerating cartilage in articulating joints |
US6123729A (en) | 1998-03-10 | 2000-09-26 | Bristol-Myers Squibb Company | Four compartment knee |
WO1999047186A1 (en) | 1998-03-18 | 1999-09-23 | University Of Pittsburgh | Chitosan-based composite materials containing glycosaminoglycan for cartilage repair |
JP3694584B2 (en) | 1998-03-31 | 2005-09-14 | 京セラ株式会社 | Surface-modified bone prosthesis member and method for manufacturing the same |
US6219571B1 (en) | 1998-04-06 | 2001-04-17 | Board Of Trustees Of The Leland Stanford Junior University | Magnetic resonance imaging using driven equilibrium fourier transform |
US5882929A (en) | 1998-04-07 | 1999-03-16 | Tissue Engineering, Inc. | Methods and apparatus for the conditioning of cartilage replacement tissue |
US6316153B1 (en) | 1998-04-21 | 2001-11-13 | The University Of Connecticut | Free-form fabricaton using multi-photon excitation |
US6090144A (en) | 1998-05-12 | 2000-07-18 | Letot; Patrick | Synthetic knee system |
US6835377B2 (en) | 1998-05-13 | 2004-12-28 | Osiris Therapeutics, Inc. | Osteoarthritis cartilage regeneration |
ES2228043T3 (en) | 1998-05-28 | 2005-04-01 | Orthosoft, Inc. | INTERACTIVE SURGICAL SYSTEM ASSISTED BY COMPUTER. |
JP2954576B1 (en) | 1998-06-29 | 1999-09-27 | 三菱電機株式会社 | Insertion / extraction device and electronic equipment system |
US6081577A (en) | 1998-07-24 | 2000-06-27 | Wake Forest University | Method and system for creating task-dependent three-dimensional images |
MXPA01001460A (en) | 1998-08-14 | 2005-06-06 | Verigen Transplantation Serv | Methods, instruments and materials for chondrocyte cell transplantation. |
US6616696B1 (en) | 1998-09-04 | 2003-09-09 | Alan C. Merchant | Modular knee replacement system |
US6530956B1 (en) | 1998-09-10 | 2003-03-11 | Kevin A. Mansmann | Resorbable scaffolds to promote cartilage regeneration |
US6132468A (en) | 1998-09-10 | 2000-10-17 | Mansmann; Kevin A. | Arthroscopic replacement of cartilage using flexible inflatable envelopes |
US9289153B2 (en) * | 1998-09-14 | 2016-03-22 | The Board Of Trustees Of The Leland Stanford Junior University | Joint and cartilage diagnosis, assessment and modeling |
US7239908B1 (en) | 1998-09-14 | 2007-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US7184814B2 (en) | 1998-09-14 | 2007-02-27 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and assessing cartilage loss |
JP2002532126A (en) | 1998-09-14 | 2002-10-02 | スタンフォード ユニバーシティ | Joint condition evaluation and damage prevention device |
US6443991B1 (en) | 1998-09-21 | 2002-09-03 | Depuy Orthopaedics, Inc. | Posterior stabilized mobile bearing knee |
DE69939914D1 (en) | 1998-10-02 | 2008-12-24 | Synthes Gmbh | Spinal disc Zwischenraumdistraktor |
US6152960A (en) | 1998-10-13 | 2000-11-28 | Biomedical Engineering Trust I | Femoral component for knee endoprosthesis |
US6310619B1 (en) | 1998-11-10 | 2001-10-30 | Robert W. Rice | Virtual reality, tissue-specific body model having user-variable tissue-specific attributes and a system and method for implementing the same |
US6328765B1 (en) | 1998-12-03 | 2001-12-11 | Gore Enterprise Holdings, Inc. | Methods and articles for regenerating living tissue |
US6302582B1 (en) | 1998-12-22 | 2001-10-16 | Bio-Imaging Technologies, Inc. | Spine phantom simulating cortical and trabecular bone for calibration of dual energy x-ray bone densitometers |
US6623526B1 (en) | 1999-01-08 | 2003-09-23 | Corin Limited | Knee prosthesis |
US6214052B1 (en) | 1999-01-19 | 2001-04-10 | Sulzer Orthopedics Inc. | Tibial component with a reversible, adjustable stem |
US6146422A (en) | 1999-01-25 | 2000-11-14 | Lawson; Kevin Jon | Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method |
US6156069A (en) | 1999-02-04 | 2000-12-05 | Amstutz; Harlan C. | Precision hip joint replacement method |
US6285902B1 (en) | 1999-02-10 | 2001-09-04 | Surgical Insights, Inc. | Computer assisted targeting device for use in orthopaedic surgery |
EP1161201A4 (en) | 1999-02-16 | 2006-07-19 | Zimmer Orthobiologics Inc | Device and method for regeneration and repair of cartilage lesions |
GB2348373B (en) | 1999-03-09 | 2001-03-14 | Corin Medical Ltd | A knee prosthesis |
US6120541A (en) | 1999-03-23 | 2000-09-19 | Johnson; Lanny L. | Apparatus for use in grafting articular cartilage |
DK1163019T3 (en) | 1999-03-25 | 2008-03-03 | Metabolix Inc | Medical devices and applications of polyhydroxyalkanoate polymers |
DE69929428T2 (en) * | 1999-04-02 | 2006-08-24 | Fell, Barry M. | SURGICAL IMPLANTABLE KNEE PROSTHESIS |
US6206927B1 (en) * | 1999-04-02 | 2001-03-27 | Barry M. Fell | Surgically implantable knee prothesis |
US6558421B1 (en) * | 2000-09-19 | 2003-05-06 | Barry M. Fell | Surgically implantable knee prosthesis |
US6893463B2 (en) * | 1999-05-10 | 2005-05-17 | Barry M. Fell | Surgically implantable knee prosthesis having two-piece keyed components |
US6923831B2 (en) * | 1999-05-10 | 2005-08-02 | Barry M. Fell | Surgically implantable knee prosthesis having attachment apertures |
US20050033424A1 (en) | 1999-05-10 | 2005-02-10 | Fell Barry M. | Surgically implantable knee prosthesis |
US6966928B2 (en) * | 1999-05-10 | 2005-11-22 | Fell Barry M | Surgically implantable knee prosthesis having keels |
US6855165B2 (en) * | 1999-05-10 | 2005-02-15 | Barry M. Fell | Surgically implantable knee prosthesis having enlarged femoral surface |
US6310477B1 (en) | 1999-05-10 | 2001-10-30 | General Electric Company | MR imaging of lesions and detection of malignant tumors |
US7297161B2 (en) | 1999-05-10 | 2007-11-20 | Fell Barry M | Surgically implantable knee prosthesis |
US6866684B2 (en) * | 1999-05-10 | 2005-03-15 | Barry M. Fell | Surgically implantable knee prosthesis having different tibial and femoral surface profiles |
US6911044B2 (en) * | 1999-05-10 | 2005-06-28 | Barry M. Fell | Surgically implantable knee prosthesis having medially shifted tibial surface |
DE19922279A1 (en) | 1999-05-11 | 2000-11-16 | Friedrich Schiller Uni Jena Bu | Procedure for generating patient-specific implants |
US6178225B1 (en) * | 1999-06-04 | 2001-01-23 | Edge Medical Devices Ltd. | System and method for management of X-ray imaging facilities |
US6251143B1 (en) | 1999-06-04 | 2001-06-26 | Depuy Orthopaedics, Inc. | Cartilage repair unit |
DE19926083A1 (en) | 1999-06-08 | 2000-12-14 | Universitaetsklinikum Freiburg | Biological joint construct |
GB9914074D0 (en) | 1999-06-16 | 1999-08-18 | Btg Int Ltd | Tibial component |
FR2795945B1 (en) | 1999-07-09 | 2001-10-26 | Scient X | ANATOMICAL INTERSOMATIC IMPLANT AND GRIPPER FOR SUCH AN IMPLANT |
US6179840B1 (en) | 1999-07-23 | 2001-01-30 | Ethicon, Inc. | Graft fixation device and method |
US6299645B1 (en) | 1999-07-23 | 2001-10-09 | William S. Ogden | Dove tail total knee replacement unicompartmental |
FR2796836B1 (en) | 1999-07-26 | 2002-03-22 | Michel Bercovy | NEW KNEE PROSTHESIS |
DE19936682C1 (en) | 1999-08-04 | 2001-05-10 | Luis Schuster | Process for the production of an endoprosthesis as a joint replacement for knee joints |
GB9918884D0 (en) | 1999-08-10 | 1999-10-13 | Novarticulate Bv | Method and apparatus for delivering cement to bones |
US6322588B1 (en) | 1999-08-17 | 2001-11-27 | St. Jude Medical, Inc. | Medical devices with metal/polymer composites |
US6429013B1 (en) | 1999-08-19 | 2002-08-06 | Artecel Science, Inc. | Use of adipose tissue-derived stromal cells for chondrocyte differentiation and cartilage repair |
FR2798671A1 (en) | 1999-09-16 | 2001-03-23 | Univ Paris Curie | CHONDROCYTE COMPOSITIONS, PREPARATION AND USES |
US6322563B1 (en) | 1999-09-17 | 2001-11-27 | Genzyme Corporation | Small tissue and membrane fixation apparatus and methods for use thereof |
US6554866B1 (en) | 1999-10-29 | 2003-04-29 | Sulzer Orthopedics Ltd. | Mono-condylar knee joint prosthesis |
ES2250205T3 (en) | 1999-11-01 | 2006-04-16 | Arthrovision, Inc. | EVALUATION OF THE PROGRESSION OF A DISEASE USING NUCLEAR MAGNETIC RESONANCE. |
AU1618201A (en) | 1999-11-19 | 2001-05-30 | Children's Medical Center Corporation | Methods for inducing chondrogenesis and producing de novo cartilage in vitro |
US6592624B1 (en) | 1999-11-24 | 2003-07-15 | Depuy Acromed, Inc. | Prosthetic implant element |
US6379388B1 (en) | 1999-12-08 | 2002-04-30 | Ortho Development Corporation | Tibial prosthesis locking system and method of repairing knee joint |
BR0016474A (en) | 1999-12-17 | 2002-08-20 | Prosthetic device | |
US6623963B1 (en) | 1999-12-20 | 2003-09-23 | Verigen Ag | Cellular matrix |
US6334066B1 (en) | 1999-12-21 | 2001-12-25 | Siemens Aktiengesellschaft | Method for monitoring growth disorder therapy |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US6770078B2 (en) | 2000-01-14 | 2004-08-03 | Peter M. Bonutti | Movable knee implant and methods therefor |
US6702821B2 (en) * | 2000-01-14 | 2004-03-09 | The Bonutti 2003 Trust A | Instrumentation for minimally invasive joint replacement and methods for using same |
US6508821B1 (en) | 2000-01-28 | 2003-01-21 | Depuy Orthopaedics, Inc. | Soft tissue repair material fixation apparatus and method |
US6342075B1 (en) * | 2000-02-18 | 2002-01-29 | Macarthur A. Creig | Prosthesis and methods for total knee arthroplasty |
US6382028B1 (en) | 2000-02-23 | 2002-05-07 | Massachusetts Institute Of Technology | Ultrasonic defect detection system |
US6371958B1 (en) | 2000-03-02 | 2002-04-16 | Ethicon, Inc. | Scaffold fixation device for use in articular cartilage repair |
US6591581B2 (en) | 2000-03-08 | 2003-07-15 | Arthrex, Inc. | Method for preparing and inserting round, size specific osteochondral cores in the knee |
JP5026651B2 (en) | 2000-03-10 | 2012-09-12 | スミス アンド ネフュー インコーポレーテッド | Device used for knee arthroplasty |
AU2001243581A1 (en) | 2000-03-11 | 2001-09-24 | The Trustees Of Columbia University In The City Of New York | Bioreactor for generating functional cartilaginous tissue |
US6626945B2 (en) | 2000-03-14 | 2003-09-30 | Chondrosite, Llc | Cartilage repair plug |
US6712856B1 (en) | 2000-03-17 | 2004-03-30 | Kinamed, Inc. | Custom replacement device for resurfacing a femur and method of making the same |
US6629997B2 (en) | 2000-03-27 | 2003-10-07 | Kevin A. Mansmann | Meniscus-type implant with hydrogel surface reinforced by three-dimensional mesh |
US6998841B1 (en) * | 2000-03-31 | 2006-02-14 | Virtualscopics, Llc | Method and system which forms an isotropic, high-resolution, three-dimensional diagnostic image of a subject from two-dimensional image data scans |
US20020007294A1 (en) | 2000-04-05 | 2002-01-17 | Bradbury Thomas J. | System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system |
US6772026B2 (en) | 2000-04-05 | 2004-08-03 | Therics, Inc. | System and method for rapidly customizing design, manufacture and/or selection of biomedical devices |
US20020016543A1 (en) * | 2000-04-06 | 2002-02-07 | Tyler Jenny A. | Method for diagnosis of and prognosis for damaged tissue |
CA2405772A1 (en) * | 2000-04-07 | 2001-10-18 | Daniel Fritsch | Systems and methods for tubular object processing |
US6375658B1 (en) | 2000-04-28 | 2002-04-23 | Smith & Nephew, Inc. | Cartilage grafting |
EP2314257B9 (en) * | 2000-05-01 | 2013-02-27 | ArthroSurface, Inc. | System for joint resurface repair |
US8177841B2 (en) | 2000-05-01 | 2012-05-15 | Arthrosurface Inc. | System and method for joint resurface repair |
WO2001082677A2 (en) | 2000-05-01 | 2001-11-08 | Std Manufacturing, Inc. | System and method for joint resurface repair |
US6679917B2 (en) * | 2000-05-01 | 2004-01-20 | Arthrosurface, Incorporated | System and method for joint resurface repair |
US6373250B1 (en) | 2000-05-19 | 2002-04-16 | Ramot University Authority For Applied Research And Industrial Development Ltd. | Method of magnetic resonance imaging |
GB0015433D0 (en) | 2000-06-24 | 2000-08-16 | Victrex Mfg Ltd | Bio-compatible polymeric materials |
GB0015430D0 (en) | 2000-06-24 | 2000-08-16 | Victrex Mfg Ltd | Bio-compatible polymeric materials |
GB0015424D0 (en) | 2000-06-24 | 2000-08-16 | Victrex Mfg Ltd | Bio-compatible polymeric materials |
US6478799B1 (en) | 2000-06-29 | 2002-11-12 | Richard V. Williamson | Instruments and methods for use in performing knee surgery |
US6479996B1 (en) | 2000-07-10 | 2002-11-12 | Koninklijke Philips Electronics | Magnetic resonance imaging of several volumes |
DK177997B1 (en) * | 2000-07-19 | 2015-02-23 | Ed Geistlich Söhne Ag Für Chemische Ind | Bone material and collagen combination for healing of damaged joints |
DE10036207B4 (en) | 2000-07-25 | 2006-11-30 | Siemens Ag | Method for performing a perfusion measurement by means of magnetic resonance imaging |
US20020082741A1 (en) | 2000-07-27 | 2002-06-27 | Jyoti Mazumder | Fabrication of biomedical implants using direct metal deposition |
FR2812541B1 (en) | 2000-08-01 | 2003-07-04 | Jean Manuel Aubaniac | UNICOMPARTMENTAL KNEE PROSTHESIS |
US6249692B1 (en) | 2000-08-17 | 2001-06-19 | The Research Foundation Of City University Of New York | Method for diagnosis and management of osteoporosis |
JP2004521666A (en) | 2000-08-28 | 2004-07-22 | アドバンスト バイオ サーフェイシズ,インコーポレイティド | Methods and systems for enhancing mammalian joints |
US7467892B2 (en) | 2000-08-29 | 2008-12-23 | Imaging Therapeutics, Inc. | Calibration devices and methods of use thereof |
US7050534B2 (en) | 2000-08-29 | 2006-05-23 | Imaging Therapeutics, Inc. | Methods and devices for quantitative analysis of x-ray images |
US6904123B2 (en) * | 2000-08-29 | 2005-06-07 | Imaging Therapeutics, Inc. | Methods and devices for quantitative analysis of x-ray images |
EP1365684A2 (en) | 2000-08-29 | 2003-12-03 | Imaging Therapeutics | Methods and devices for quantitative analysis of x-ray images |
AU9088801A (en) * | 2000-09-14 | 2002-03-26 | Univ Leland Stanford Junior | Assessing the condition of a joint and devising treatment |
EP1319217B1 (en) | 2000-09-14 | 2008-11-12 | The Board Of Trustees Of The Leland Stanford Junior University | Technique for manipulating medical images |
EP1437102B1 (en) * | 2000-09-18 | 2005-12-07 | Fuji Photo Film Co., Ltd. | Artificial bone template storage system and recording medium |
JP2002085435A (en) | 2000-09-18 | 2002-03-26 | Fuji Photo Film Co Ltd | Artificial bone selecting device |
US20070047794A1 (en) * | 2000-10-11 | 2007-03-01 | Philipp Lang | Methods and devices for analysis of x-ray images |
AU1319302A (en) | 2000-10-11 | 2002-04-22 | Osteonet Com Inc | Methods and devices for analysis of x-ray images |
JP2004512099A (en) | 2000-10-25 | 2004-04-22 | エスディージーアイ・ホールディングス・インコーポレーテッド | Self-conforming orthopedic implant |
AU2002214869A1 (en) | 2000-10-31 | 2002-05-15 | Centre National De La Recherche Scientifique (C.N.R.S.) | High precision modeling of a body part using a 3d imaging system |
WO2002036147A1 (en) | 2000-10-31 | 2002-05-10 | Orquest, Inc. | Mineralized collagen-polysaccharide matrix for bone and cartilage repair |
US6510334B1 (en) * | 2000-11-14 | 2003-01-21 | Luis Schuster | Method of producing an endoprosthesis as a joint substitute for a knee joint |
US6786930B2 (en) | 2000-12-04 | 2004-09-07 | Spineco, Inc. | Molded surgical implant and method |
US6494914B2 (en) | 2000-12-05 | 2002-12-17 | Biomet, Inc. | Unicondylar femoral prosthesis and instruments |
US7192445B2 (en) | 2000-12-06 | 2007-03-20 | Astra Tech Ab | Medical prosthetic devices and implants having improved biocompatibility |
US20020072821A1 (en) | 2000-12-11 | 2002-06-13 | Baker Gregg S. | Parametric input to a design and production system |
US6503280B2 (en) | 2000-12-26 | 2003-01-07 | John A. Repicci | Prosthetic knee and method of inserting |
US6589281B2 (en) | 2001-01-16 | 2003-07-08 | Edward R. Hyde, Jr. | Transosseous core approach and instrumentation for joint replacement and repair |
EP1371020A2 (en) | 2001-01-29 | 2003-12-17 | The Acrobot Company Limited | Modelling for surgery |
US6743232B2 (en) | 2001-02-26 | 2004-06-01 | David W. Overaker | Tissue scaffold anchor for cartilage repair |
US6575986B2 (en) | 2001-02-26 | 2003-06-10 | Ethicon, Inc. | Scaffold fixation device for use in articular cartilage repair |
US7547307B2 (en) | 2001-02-27 | 2009-06-16 | Smith & Nephew, Inc. | Computer assisted knee arthroplasty instrumentation, systems, and processes |
ATE431110T1 (en) | 2001-02-27 | 2009-05-15 | Smith & Nephew Inc | SURGICAL NAVIGATION SYSTEM FOR PARTIAL KNEE JOINT RECONSTRUCTION |
US20030045935A1 (en) * | 2001-02-28 | 2003-03-06 | Angelucci Christopher M. | Laminoplasty implants and methods of use |
US8062377B2 (en) | 2001-03-05 | 2011-11-22 | Hudson Surgical Design, Inc. | Methods and apparatus for knee arthroplasty |
JP2002358625A (en) | 2001-03-28 | 2002-12-13 | Fuji Photo Film Co Ltd | Magnetic recording medium |
US6569202B2 (en) | 2001-04-02 | 2003-05-27 | Whiteside Biomechanics, Inc. | Tray and liner for joint replacement system |
US6632235B2 (en) | 2001-04-19 | 2003-10-14 | Synthes (U.S.A.) | Inflatable device and method for reducing fractures in bone and in treating the spine |
WO2002087444A1 (en) | 2001-04-26 | 2002-11-07 | Teijin Limited | Three-dimensional joint structure measuring method |
US6719794B2 (en) | 2001-05-03 | 2004-04-13 | Synthes (U.S.A.) | Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure |
US6444222B1 (en) | 2001-05-08 | 2002-09-03 | Verigen Transplantation Services International Ag | Reinforced matrices |
US20080140212A1 (en) | 2001-05-15 | 2008-06-12 | Robert Metzger | Elongated femoral component |
US6816607B2 (en) | 2001-05-16 | 2004-11-09 | Siemens Corporate Research, Inc. | System for modeling static and dynamic three dimensional anatomical structures by 3-D models |
US8439926B2 (en) | 2001-05-25 | 2013-05-14 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US20130211531A1 (en) | 2001-05-25 | 2013-08-15 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
ATE440536T1 (en) * | 2001-05-25 | 2009-09-15 | Imaging Therapeutics Inc | METHODS FOR DIAGNOSIS, TREATMENT AND PREVENTION OF BONE LOSS |
CN100502808C (en) | 2001-05-25 | 2009-06-24 | 肯弗默斯股份有限公司 | Compositions for articular resurfacing |
US8951260B2 (en) | 2001-05-25 | 2015-02-10 | Conformis, Inc. | Surgical cutting guide |
US6482209B1 (en) | 2001-06-14 | 2002-11-19 | Gerard A. Engh | Apparatus and method for sculpting the surface of a joint |
WO2003000857A2 (en) * | 2001-06-22 | 2003-01-03 | The Regents Of The University Of Michigan | Design methodology for tissue engineering scaffolds and biomaterial implants |
US20050027307A1 (en) | 2001-07-16 | 2005-02-03 | Schwartz Herbert Eugene | Unitary surgical device and method |
FR2827503B1 (en) | 2001-07-23 | 2003-10-24 | Macara Frederique | MODULAR RECONSTRUCTION COTYLE |
DE10135771B4 (en) | 2001-07-23 | 2006-02-16 | Aesculap Ag & Co. Kg | Facet joint implant |
US7204807B2 (en) | 2001-07-24 | 2007-04-17 | Sunlight Medical Ltd. | Joint analysis using ultrasound |
US20030035773A1 (en) * | 2001-07-27 | 2003-02-20 | Virtualscopics Llc | System and method for quantitative assessment of joint diseases and the change over time of joint diseases |
GB0119541D0 (en) * | 2001-08-10 | 2001-10-03 | Depuy Int Ltd | Guide for locating femur resection plane |
US7058209B2 (en) | 2001-09-20 | 2006-06-06 | Eastman Kodak Company | Method and computer program product for locating facial features |
EP1455660A4 (en) | 2001-11-02 | 2009-08-19 | Int Patent Owners Cayman Ltd | Apparatus and methods for bone surgery |
EP1460938A4 (en) | 2001-11-05 | 2006-07-26 | Computerized Med Syst Inc | Apparatus and method for registration, guidance, and targeting of external beam radiation therapy |
FR2831794B1 (en) | 2001-11-05 | 2004-02-13 | Depuy France | METHOD FOR SELECTING KNEE PROSTHESIS ELEMENTS AND DEVICE FOR IMPLEMENTING SAME |
US7020314B1 (en) * | 2001-11-13 | 2006-03-28 | Koninklijke Philips Electronics N.V. | Black blood angiography method and apparatus |
AU2002365379A1 (en) | 2001-11-28 | 2003-06-10 | Wright Medical Technology, Inc. | Knee joint prostheses |
ES2337886T3 (en) | 2001-12-04 | 2010-04-30 | Active Implants Corporation | IMPLANTS THAT CARRY A PAD FOR LOAD SUPPORT APPLICATIONS. |
US7238203B2 (en) | 2001-12-12 | 2007-07-03 | Vita Special Purpose Corporation | Bioactive spinal implants and method of manufacture thereof |
US6873741B2 (en) * | 2002-01-10 | 2005-03-29 | Sharp Laboratories Of America | Nonlinear edge-enhancement filter |
DE60304233T2 (en) | 2002-01-11 | 2007-01-18 | Zimmer Gmbh | Implantable knee prosthesis with keels |
GB0201149D0 (en) | 2002-01-18 | 2002-03-06 | Finsbury Dev Ltd | Prosthesis |
EP1474071B1 (en) | 2002-01-22 | 2010-05-19 | ABS Corporation | Interpositional arthroplasty system |
US20020106625A1 (en) | 2002-02-07 | 2002-08-08 | Hung Clark T. | Bioreactor for generating functional cartilaginous tissue |
NO315217B1 (en) | 2002-02-08 | 2003-07-28 | Scandinavian Customized Prosth | System and method for preparing and transferring specifications for patient-adapted dentures |
CA2646389A1 (en) | 2002-02-20 | 2003-08-28 | Donald M. Smucker | Knee arthroplasty prosthesis and method |
CA2474967C (en) | 2002-03-05 | 2009-09-29 | Nemcomed, Inc. | Minimally invasive total knee arthroplasty method and instrumentation |
US6946001B2 (en) | 2003-02-03 | 2005-09-20 | Zimmer Technology, Inc. | Mobile bearing unicompartmental knee |
US7048741B2 (en) | 2002-05-10 | 2006-05-23 | Swanson Todd V | Method and apparatus for minimally invasive knee arthroplasty |
US8801720B2 (en) | 2002-05-15 | 2014-08-12 | Otismed Corporation | Total joint arthroplasty system |
US7922772B2 (en) * | 2002-05-24 | 2011-04-12 | Zimmer, Inc. | Implants and related methods and apparatus for securing an implant on an articulating surface of an orthopedic joint |
US7615081B2 (en) | 2002-05-24 | 2009-11-10 | Zimmer, Inc. | Femoral components for knee arthroplasty |
GB2405347B (en) | 2002-05-24 | 2006-08-23 | Medicinelodge Inc | Femoral components for knee arthroplasty |
WO2003101175A2 (en) | 2002-05-30 | 2003-12-11 | Osteotech, Inc. | Method and apparatus for machining a surgical implant |
AU2003245758A1 (en) | 2002-06-21 | 2004-01-06 | Cedara Software Corp. | Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement |
US20040006393A1 (en) * | 2002-07-03 | 2004-01-08 | Brian Burkinshaw | Implantable prosthetic knee for lateral compartment |
CA2492030A1 (en) | 2002-07-11 | 2004-01-22 | Advanced Bio Surfaces, Inc. | Method and kit for interpositional arthroplasty |
DE10231538C1 (en) | 2002-07-11 | 2003-10-09 | Hjs Gelenk System Gmbh | Artificial joint, used as endoprosthesis for human knee joint, comprises a first joint compartment and a second joint compartment having contact surfaces arranged at an angle so that their surface normals have a common intersection |
US6978188B1 (en) | 2002-09-30 | 2005-12-20 | Medical Modeling, Llc | Method for contouring bone reconstruction plates |
US8086336B2 (en) | 2002-09-30 | 2011-12-27 | Medical Modeling Inc. | Method for design and production of a custom-fit prosthesis |
CN1728976A (en) | 2002-10-07 | 2006-02-01 | 康复米斯公司 | Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces |
JP2006501977A (en) * | 2002-10-07 | 2006-01-19 | コンフォーミス・インコーポレイテッド | Minimally invasive joint implant with a three-dimensional profile that conforms to the joint surface |
JP2006505366A (en) | 2002-11-07 | 2006-02-16 | コンフォーミス・インコーポレイテッド | Method of determining meniscus size and shape and devised treatment |
US6770099B2 (en) * | 2002-11-19 | 2004-08-03 | Zimmer Technology, Inc. | Femoral prosthesis |
US6749638B1 (en) | 2002-11-22 | 2004-06-15 | Zimmer Technology, Inc. | Modular knee prosthesis |
US20040102852A1 (en) | 2002-11-22 | 2004-05-27 | Johnson Erin M. | Modular knee prosthesis |
WO2004051301A2 (en) * | 2002-12-04 | 2004-06-17 | Conformis, Inc. | Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging |
US6866683B2 (en) | 2002-12-13 | 2005-03-15 | Medicine Lodge, Inc. | Modular implant for joint reconstruction and method of use |
DE60336013D1 (en) * | 2002-12-20 | 2011-03-24 | Smith & Nephew Inc | HIGH POWER KNEE PROSTHESIS |
US6869447B2 (en) | 2002-12-20 | 2005-03-22 | Depuy Products, Inc. | Prosthetic knee implant with modular augment |
EP1437101A3 (en) | 2002-12-31 | 2004-12-22 | DePuy Spine, Inc. | Prosthetic facet joint ligament |
US7033397B2 (en) | 2003-02-03 | 2006-04-25 | Zimmer Technology, Inc. | Mobile bearing unicondylar tibial knee prosthesis |
US6916324B2 (en) | 2003-02-04 | 2005-07-12 | Zimmer Technology, Inc. | Provisional orthopedic prosthesis for partially resected bone |
WO2004073550A2 (en) | 2003-02-20 | 2004-09-02 | Murray Ian P | Knee spacer |
US6916341B2 (en) | 2003-02-20 | 2005-07-12 | Lindsey R. Rolston | Device and method for bicompartmental arthroplasty |
JP2007524438A (en) * | 2003-03-25 | 2007-08-30 | イメージング セラピューティクス,インコーポレーテッド | Compensation method in radiological image processing technology |
US7364590B2 (en) | 2003-04-08 | 2008-04-29 | Thomas Siebel | Anatomical knee prosthesis |
WO2005016175A2 (en) | 2003-06-27 | 2005-02-24 | Advanced Bio Surfaces, Inc. | Meniscus preserving implant method and apparatus |
GB2403416A (en) | 2003-07-02 | 2005-01-05 | Biomet Merck Ltd | Prosthesis with artificial ligament |
CN1267068C (en) | 2003-07-08 | 2006-08-02 | 西安交通大学 | Individualized artificial half joint substitute and its preparing method |
US7803162B2 (en) * | 2003-07-21 | 2010-09-28 | Spine Solutions, Inc. | Instruments and method for inserting an intervertebral implant |
AU2003904379A0 (en) * | 2003-08-18 | 2003-08-28 | David John Wood | Two thirds prosthetic arthroplasty |
US9254137B2 (en) | 2003-08-29 | 2016-02-09 | Lanterna Medical Technologies Ltd | Facet implant |
US8290564B2 (en) * | 2003-09-19 | 2012-10-16 | Imatx, Inc. | Method for bone structure prognosis and simulated bone remodeling |
US7799085B2 (en) | 2003-11-18 | 2010-09-21 | Depuy Products, Inc. | Modular implant system with fully porous coated sleeve |
US8175683B2 (en) | 2003-12-30 | 2012-05-08 | Depuy Products, Inc. | System and method of designing and manufacturing customized instrumentation for accurate implantation of prosthesis by utilizing computed tomography data |
US7867236B2 (en) | 2003-12-30 | 2011-01-11 | Zimmer, Inc. | Instruments and methods for preparing a joint articulation surface for an implant |
AU2005204920B2 (en) | 2004-01-12 | 2011-03-31 | Depuy Products, Inc. | Systems and methods for compartmental replacement in a knee |
US7846183B2 (en) | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US20070190108A1 (en) | 2004-05-17 | 2007-08-16 | Arindam Datta | High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair |
US20060069318A1 (en) * | 2004-09-30 | 2006-03-30 | The Regents Of The University Of California | Method for assessment of the structure-function characteristics of structures in a human or animal body |
US20060085078A1 (en) | 2004-10-20 | 2006-04-20 | Steffensmeier Scott J | Mobile bearing unicondylar knee prosthesis |
US20060111722A1 (en) | 2004-11-19 | 2006-05-25 | Hacene Bouadi | Surgical cutting tool |
US20060111780A1 (en) | 2004-11-22 | 2006-05-25 | Orthopedic Development Corporation | Minimally invasive facet joint hemi-arthroplasty |
EP1824427A4 (en) | 2004-12-13 | 2010-05-05 | Kyphon Sarl | Inter-facet implant |
US7776090B2 (en) | 2004-12-13 | 2010-08-17 | Warsaw Orthopedic, Inc. | Inter-cervical facet implant and method |
CN101123928A (en) * | 2005-01-12 | 2008-02-13 | R·I·W·理查森 | Prosthetic knee |
US20080208348A1 (en) | 2005-02-11 | 2008-08-28 | Wolfgang Fitz | Apparatus and Method for Shoulder Arthroplasty |
US7718109B2 (en) | 2005-02-14 | 2010-05-18 | Mayo Foundation For Medical Education And Research | Tissue support structure |
US20060190086A1 (en) | 2005-02-22 | 2006-08-24 | Mako Surgical Corporation | Knee implant |
GB0504172D0 (en) | 2005-03-01 | 2005-04-06 | King S College London | Surgical planning |
GB0510194D0 (en) | 2005-05-19 | 2005-06-22 | Mcminn Derek J W | Knee prosthesis |
US7983777B2 (en) | 2005-08-19 | 2011-07-19 | Mark Melton | System for biomedical implant creation and procurement |
CA2623834A1 (en) | 2005-09-30 | 2007-04-12 | Conformis, Inc. | Joint arthroplasty devices |
WO2007045000A2 (en) | 2005-10-14 | 2007-04-19 | Vantus Technology Corporation | Personal fit medical implants and orthopedic surgical instruments and methods for making |
US20070118055A1 (en) | 2005-11-04 | 2007-05-24 | Smith & Nephew, Inc. | Systems and methods for facilitating surgical procedures involving custom medical implants |
NL1030364C2 (en) * | 2005-11-07 | 2007-05-08 | Ft Innovations Fti B V | Implant and method for manufacturing such an implant. |
WO2007062080A2 (en) | 2005-11-21 | 2007-05-31 | Philipp Lang | Intervetebral devices and methods |
EP2520255B1 (en) | 2005-11-21 | 2016-06-15 | Vertegen, Inc. | Methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints |
WO2007062103A1 (en) | 2005-11-23 | 2007-05-31 | Conformis, Inc. | Implant grasper |
US8211181B2 (en) | 2005-12-14 | 2012-07-03 | New York University | Surface guided knee replacement |
US8070821B2 (en) | 2005-12-27 | 2011-12-06 | Howmedica Osteonics Corp. | Hybrid femoral implant |
WO2013025814A1 (en) | 2011-08-15 | 2013-02-21 | Conformis, Inc. | Revision systems, tools and methods for revising joint arthroplasty implants |
EP1981409B1 (en) | 2006-02-06 | 2017-01-11 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8623026B2 (en) | 2006-02-06 | 2014-01-07 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief |
US20070233156A1 (en) | 2006-02-16 | 2007-10-04 | Robert Metzger | Surgical instrument |
US7967868B2 (en) | 2007-04-17 | 2011-06-28 | Biomet Manufacturing Corp. | Patient-modified implant and associated method |
AU2007227678A1 (en) * | 2006-03-13 | 2007-09-27 | Mako Surgical Corp. | Prosthetic device and system and method for implanting prosthetic device |
AU2006339993A1 (en) | 2006-03-14 | 2007-09-20 | Mako Surgical Corp. | Prosthetic device and system and method for implanting prosthetic device |
AU2007227129B2 (en) | 2006-03-17 | 2012-06-14 | Mohamed Mahfouz | Methods of predetermining the contour of a resected bone surface and assessing the fit of a prosthesis on the bone |
AU2007226924A1 (en) | 2006-03-21 | 2007-09-27 | Conformis, Inc. | Interpositional joint implant |
US20070239165A1 (en) | 2006-03-29 | 2007-10-11 | Farid Amirouche | Device and method of spacer and trial design during joint arthroplasty |
US8246680B2 (en) | 2006-05-25 | 2012-08-21 | Spinemedica, Llc | Patient-specific spinal implants and related systems and methods |
US7695520B2 (en) | 2006-05-31 | 2010-04-13 | Biomet Manufacturing Corp. | Prosthesis and implementation system |
DE502006005408D1 (en) | 2006-08-08 | 2009-12-31 | Brainlab Ag | Planning procedure and system for free-form implant adaptation |
EP2083758B1 (en) | 2006-08-18 | 2017-11-01 | Smith & Nephew, Inc. | Systems and methods for designing, analyzing and using orthopaedic devices |
WO2008034101A2 (en) * | 2006-09-15 | 2008-03-20 | Imaging Therapeutics, Inc. | Method and system for providing fracture/no fracture classification |
US20080177311A1 (en) | 2006-10-30 | 2008-07-24 | St. Francis Medical Technologies, Inc. | Facet joint implant sizing tool |
US20080119938A1 (en) | 2006-11-17 | 2008-05-22 | Sang Soo Oh | Knee joint prosthesis for bi-compartmental knee replacement and surgical devices thereof |
US8214016B2 (en) | 2006-12-12 | 2012-07-03 | Perception Raisonnement Action En Medecine | System and method for determining an optimal type and position of an implant |
US8460302B2 (en) | 2006-12-18 | 2013-06-11 | Otismed Corporation | Arthroplasty devices and related methods |
US8313530B2 (en) | 2007-02-12 | 2012-11-20 | Jmea Corporation | Total knee arthroplasty system |
US7603192B2 (en) | 2007-02-13 | 2009-10-13 | Orthohelix Surgical Designs, Inc. | Method of making orthopedic implants and the orthopedic implants |
GB2447702A (en) | 2007-03-23 | 2008-09-24 | Univ Leeds | Surgical bone cutting template |
GB0712290D0 (en) | 2007-06-25 | 2007-08-01 | Depuy Orthopaedie Gmbh | Surgical instrument |
GB0723452D0 (en) | 2007-11-29 | 2008-01-09 | Ortho Pro Teknica Ltd | Method for manufacturing orthodontic appliances |
US8475535B2 (en) | 2008-03-04 | 2013-07-02 | Mako Surgical Corp. | Multi-compartmental prosthetic device with patellar component transition |
WO2009111626A2 (en) | 2008-03-05 | 2009-09-11 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
EP2901969B1 (en) | 2008-03-05 | 2018-07-04 | ConforMIS, Inc. | Method of making an edge-matched articular implant |
US7611653B1 (en) | 2008-04-09 | 2009-11-03 | Active Implants Corporation | Manufacturing and material processing for prosthetic devices |
WO2009140294A1 (en) | 2008-05-12 | 2009-11-19 | Conformis, Inc. | Devices and methods for treatment of facet and other joints |
WO2009158318A1 (en) | 2008-06-27 | 2009-12-30 | Zimmer, Inc. | Acl accommodating tibial design |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
GB0812631D0 (en) | 2008-07-10 | 2008-08-20 | Imp Innovations Ltd | Modular knee implants |
CN102227739A (en) | 2008-12-02 | 2011-10-26 | 捷迈公司 | Mass production of individualized medical devices |
AU2010217903B2 (en) | 2009-02-25 | 2015-12-10 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US9078755B2 (en) | 2009-02-25 | 2015-07-14 | Zimmer, Inc. | Ethnic-specific orthopaedic implants and custom cutting jigs |
US20100217270A1 (en) | 2009-02-25 | 2010-08-26 | Conformis, Inc. | Integrated Production of Patient-Specific Implants and Instrumentation |
WO2010121147A1 (en) | 2009-04-16 | 2010-10-21 | Conformis, Inc. | Patient-specific joint arthroplasty devices for ligament repair |
WO2010138854A2 (en) | 2009-05-29 | 2010-12-02 | Smith & Nephew, Inc. | Methods and apparatus for performing knee arthroplasty |
WO2010140036A1 (en) | 2009-06-05 | 2010-12-09 | Stellenbosch University | A method of designing a knee prosthesis |
KR101792764B1 (en) | 2009-08-26 | 2017-11-02 | 콘포미스 인코퍼레이티드 | Patient-specific orthopedic implants and models |
WO2011056995A2 (en) | 2009-11-04 | 2011-05-12 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
AU2010327987B2 (en) | 2009-12-11 | 2015-04-02 | Conformis, Inc. | Patient-specific and patient-engineered orthopedic implants |
EP2512381B1 (en) | 2009-12-18 | 2017-10-25 | ConforMIS, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
AU2012217654B2 (en) | 2011-02-15 | 2016-09-22 | Conformis, Inc. | Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry |
WO2013020026A1 (en) | 2011-08-03 | 2013-02-07 | Conformis, Inc. | Automated design, selection, manufacturing and implantation of patient-adapted and improved articular implants, designs and related guide tools |
EP2765955B1 (en) | 2011-10-14 | 2019-11-20 | ConforMIS, Inc. | Methods and systems for identification, assessment, modeling, and repair of anatomical disparities in joint replacement |
WO2013131066A1 (en) | 2012-03-02 | 2013-09-06 | Conformis, Inc. | Patient-adapted posterior stabilized knee implants, designs and related methods and tools |
US20150081029A1 (en) | 2012-04-06 | 2015-03-19 | Conformis, Inc. | Advanced Methods, Techniques, Devices, and Systems for Cruciate Retaining Knee Implants |
US20130297031A1 (en) | 2012-05-02 | 2013-11-07 | Conformis, Inc. | Patient specific instruments and related methods for joint replacement |
US20150223941A1 (en) | 2012-08-27 | 2015-08-13 | Conformis, Inc. | Methods, Devices and Techniques for Improved Placement and Fixation of Shoulder Implant Components |
CN104780872B (en) | 2012-09-21 | 2017-04-05 | 康复米斯公司 | The method and system of the design and manufacture of optimization implant component is manufactured using free entity |
US20160045317A1 (en) | 2013-03-15 | 2016-02-18 | Conformis, Inc. | Kinematic and Parameterized Modeling for Patient-Adapted Implants, Tools, and Surgical Procedures |
-
2004
- 2004-01-05 US US10/752,438 patent/US8545569B2/en not_active Expired - Lifetime
- 2004-11-24 EP EP10012404.9A patent/EP2335654B1/en not_active Not-in-force
- 2004-11-24 CA CA2804883A patent/CA2804883C/en active Active
- 2004-11-24 CN CN201510757327.8A patent/CN105287049B/en active Active
- 2004-11-24 EP EP04812273.3A patent/EP1686931B1/en not_active Not-in-force
- 2004-11-24 AU AU2004293104A patent/AU2004293104A1/en not_active Abandoned
- 2004-11-24 WO PCT/US2004/039714 patent/WO2005051240A1/en active Application Filing
- 2004-11-24 CA CA2546965A patent/CA2546965C/en active Active
- 2004-11-24 JP JP2006541457A patent/JP5074036B2/en active Active
- 2004-11-24 CN CN201210270152.4A patent/CN102805677B/en active Active
-
2006
- 2006-08-21 HK HK06109216.3A patent/HK1087323A1/en unknown
-
2010
- 2010-05-11 US US12/777,878 patent/US8690945B2/en not_active Expired - Fee Related
-
2012
- 2012-06-21 JP JP2012140234A patent/JP2012176318A/en active Pending
-
2013
- 2013-09-30 US US14/040,890 patent/US9333085B2/en not_active Expired - Lifetime
-
2014
- 2014-04-07 US US14/246,335 patent/US9186254B2/en not_active Expired - Lifetime
- 2014-09-09 JP JP2014183722A patent/JP5937164B2/en active Active
-
2016
- 2016-05-09 US US15/149,933 patent/US9913723B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP5074036B2 (en) | 2012-11-14 |
EP1686931A4 (en) | 2008-01-09 |
CN102805677B (en) | 2015-11-25 |
US9333085B2 (en) | 2016-05-10 |
EP2335654A1 (en) | 2011-06-22 |
US20170007414A1 (en) | 2017-01-12 |
CA2804883A1 (en) | 2005-06-09 |
US20140336774A1 (en) | 2014-11-13 |
US9913723B2 (en) | 2018-03-13 |
JP2014240020A (en) | 2014-12-25 |
US8545569B2 (en) | 2013-10-01 |
EP1686931A1 (en) | 2006-08-09 |
US20040204760A1 (en) | 2004-10-14 |
JP2007514470A (en) | 2007-06-07 |
US20140029814A1 (en) | 2014-01-30 |
CA2546965A1 (en) | 2005-06-09 |
JP5937164B2 (en) | 2016-06-22 |
US20100305907A1 (en) | 2010-12-02 |
CN105287049A (en) | 2016-02-03 |
CN102805677A (en) | 2012-12-05 |
CA2546965C (en) | 2013-03-12 |
EP1686931B1 (en) | 2015-02-18 |
WO2005051240A1 (en) | 2005-06-09 |
JP2012176318A (en) | 2012-09-13 |
US9186254B2 (en) | 2015-11-17 |
HK1087323A1 (en) | 2006-10-13 |
US8690945B2 (en) | 2014-04-08 |
EP2335654B1 (en) | 2018-07-04 |
CN105287049B (en) | 2019-01-04 |
AU2004293104A1 (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9913723B2 (en) | Patient selectable knee arthroplasty devices | |
EP1814491B1 (en) | Patient selectable knee joint arthroplasty devices | |
US20170360567A1 (en) | Articular Implants Providing Lower Adjacent Cartilage Wear | |
AU2011203237B2 (en) | Patient selectable knee joint arthroplasty devices | |
EP3187153A2 (en) | Bearing implant | |
WO2009111626A2 (en) | Implants for altering wear patterns of articular surfaces | |
CA2782137A1 (en) | Patient-specific and patient-engineered orthopedic implants | |
AU2018241176B2 (en) | Patient Selectable Knee Joint Arthroplasty Devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20130130 |