CA2794569A1 - Helical winding of insulated conductor heaters for installation - Google Patents

Helical winding of insulated conductor heaters for installation Download PDF

Info

Publication number
CA2794569A1
CA2794569A1 CA2794569A CA2794569A CA2794569A1 CA 2794569 A1 CA2794569 A1 CA 2794569A1 CA 2794569 A CA2794569 A CA 2794569A CA 2794569 A CA2794569 A CA 2794569A CA 2794569 A1 CA2794569 A1 CA 2794569A1
Authority
CA
Canada
Prior art keywords
formation
heaters
heat
temperature
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2794569A
Other languages
French (fr)
Inventor
Ronald Marshall Bass
Edward Everett De St. Remey
Robert Guy Harley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CA2794569A1 publication Critical patent/CA2794569A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Resistance Heating (AREA)

Abstract

A method for installing two or more heaters in a subsurface formation includes providing a spool having a substantially helical configuration of two or more heaters that have been spooled on the spool. The helical configuration of heaters is unspooled from the spool and the helical configuration of heaters is installed into an opening in a subsurface formation.

Description

HELICAL WINDING OF INSULATED CONDUCTOR HEATERS FOR
INSTALLATION
BACKGROUND
1. Field of the Invention [0001] The present invention relates to systems and methods used for heating subsurface formations. More particularly, the invention relates to systems and methods for heating subsurface hydrocarbon containing formations.

2. Description of Related Art [0002] Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources and concerns over declining overall quality of produced hydrocarbons have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations that were previously inaccessible and/or too expensive to extract using available methods. Chemical and/or physical properties of hydrocarbon material in a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation and/or increase the value of the hydrocarbon material. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, density changes, phase changes, and/or viscosity changes of the hydrocarbon material in the formation.
[0003] Heaters may be placed in wellbores to heat a formation during an in situ process.
There are many different types of heaters which may be used to heat the formation. Examples of in situ processes utilizing downhole heaters are illustrated in U.S. Patent Nos. 2,634,961 to Ljungstrom; 2,732,195 to Ljungstrom; 2,780,450 to Ljungstrom; 2,789,805 to Ljungstrom;
2,923,535 to Ljungstrom; 4,886,118 to Van Meurs et al.; and 6,688,387 to Wellington et al.
[0004] Mineral insulated (MI) cables (insulated conductors) for use in subsurface applications, such as heating hydrocarbon containing formations in some applications, are longer, may have larger outside diameters, and may operate at higher voltages and temperatures than what is typical in the MI cable industry. There are many potential problems during manufacture and/or assembly of long length insulated conductors.
[0005] For example, there are potential electrical and/or mechanical problems due to degradation over time of the electrical insulator used in the insulated conductor. There are also potential problems with electrical insulators to overcome during assembly of the insulated conductor heater. Problems such as core bulge or other mechanical defects may occur during assembly of the insulated conductor heater. Such occurrences may lead to electrical problems during use of the heater and may potentially render the heater inoperable for its intended purpose.
[0006] In addition, there may be problems with increased stress on the insulated conductors during assembly and/or installation into the subsurface of the insulated conductors. For example, winding and unwinding of the insulated conductors on spools used for transport and installation of the insulated conductors may lead to mechanical stress on the electrical insulators and/or other components in the insulated conductors. Thus, more reliable systems and methods are needed to reduce or eliminate potential problems during manufacture, assembly, and/or installation of insulated conductors.

SUMMARY
[0007] Embodiments described herein generally relate to systems, methods, and heaters for treating a subsurface formation. Embodiments described herein also generally relate to heaters that have novel components therein. Such heaters can be obtained by using the systems and methods described herein.
[0008] In certain embodiments, the invention provides one or more systems, methods, and/or heaters. In some embodiments, the systems, methods, and/or heaters are used for treating a subsurface formation.
[0009] In certain embodiments, a method for installing two or more heaters in a subsurface formation includes: providing a spool comprising a substantially helical configuration of two or more heaters that have been spooled on the spool; unspooling the helical configuration of heaters from the spool; and installing the helical configuration of heaters into an opening in a subsurface formation.
[0010] In certain embodiments, a method for installing three heaters in a subsurface formation includes: providing a spool comprising a substantially helical configuration of three heaters that have been spooled on the spool; unspooling the helical configuration of heaters from the spool; and installing the helical configuration of heaters into an opening in a subsurface formation.
[0011] In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments.
[0012] In further embodiments, treating a subsurface formation is performed using any of the methods, systems, power supplies, or heaters described herein.
[0013] In further embodiments, additional features may be added to the specific embodiments described herein.

BRIEF DESCRIPTION OF THE DRAWINGS
[0014] Features and advantages of the methods and apparatus of the present invention will be more fully appreciated by reference to the following detailed description of presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings.
[0015] FIG. 1 shows a schematic view of an embodiment of a portion of an in situ heat treatment system for treating a hydrocarbon containing formation.
[0016] FIG. 2 depicts an embodiment of an insulated conductor heat source.
[0017] FIG. 3 depicts an embodiment of an insulated conductor heat source.
[0018] FIG. 4 depicts an embodiment of an insulated conductor heat source.
[0019] FIGS. 5A and 5B depict cross-sectional representations of an embodiment of a temperature limited heater component used in an insulated conductor heater.
[0020] FIG. 6 depicts an embodiment of heaters being helically wound on a spool.
[0021] FIG. 7 depicts an embodiment of three heaters helically wound together.
[0022] FIG. 8 depicts an embodiment of three heaters helically wound around a support.
[0023] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION
[0024] The following description generally relates to systems and methods for treating hydrocarbons in the formations. Such formations may be treated to yield hydrocarbon products, hydrogen, and other products.
[0025] "Alternating current (AC)" refers to a time-varying current that reverses direction substantially sinusoidally. AC produces skin effect electricity flow in a ferromagnetic conductor.
[0026] In the context of reduced heat output heating systems, apparatus, and methods, the term "automatically" means such systems, apparatus, and methods function in a certain way without the use of external control (for example, external controllers such as a controller with a temperature sensor and a feedback loop, PID controller, or predictive controller).
[0027] "Coupled" means either a direct connection or an indirect connection (for example, one or more intervening connections) between one or more objects or components. The phrase "directly connected" means a direct connection between objects or components such that the objects or components are connected directly to each other so that the objects or components operate in a "point of use" manner.
[0028] "Curie temperature" is the temperature above which a ferromagnetic material loses all of its ferromagnetic properties. In addition to losing all of its ferromagnetic properties above the Curie temperature, the ferromagnetic material begins to lose its ferromagnetic properties when an increasing electrical current is passed through the ferromagnetic material.
[0029] A "formation" includes one or more hydrocarbon containing layers, one or more non-hydrocarbon layers, an overburden, and/or an underburden. "Hydrocarbon layers"
refer to layers in the formation that contain hydrocarbons. The hydrocarbon layers may contain non-hydrocarbon material and hydrocarbon material. The "overburden" and/or the "underburden"
include one or more different types of impermeable materials. For example, the overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate.
In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden. For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.
[0030] "Formation fluids" refer to fluids present in a formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbons, and water (steam). Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term "mobilized fluid"
refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. "Produced fluids" refer to fluids removed from the formation.
[0031] "Heat flux" is a flow of energy per unit of area per unit of time (for example, Watts/meter).
[0032] A "heat source" is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electrically conducting materials and/or electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed in a conduit. A
heat source may also include systems that generate heat by burning a fuel external to or in a formation.
The systems may be surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors. In some embodiments, heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer medium that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy.
Thus, for example, for a given formation some heat sources may supply heat from electrically conducting materials, electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (for example, chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy).
A chemical reaction may include an exothermic reaction (for example, an oxidation reaction).
A heat source may also include a electrically conducting material and/or a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.
[0033] A "heater" is any system or heat source for generating heat in a well or a near wellbore region. Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation, and/or combinations thereof.
[0034] "Hydrocarbons" are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, kerogen, bitumen, pyrobitumen, oils, natural mineral waxes, and asphaltites.
Hydrocarbons may be located in or adjacent to mineral matrices in the earth.
Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. "Hydrocarbon fluids" are fluids that include hydrocarbons.
Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.
[0035] An "in situ conversion process" refers to a process of heating a hydrocarbon containing formation from heat sources to raise the temperature of at least a portion of the formation above a pyrolysis temperature so that pyrolyzation fluid is produced in the formation.
[0036] An "in situ heat treatment process" refers to a process of heating a hydrocarbon containing formation with heat sources to raise the temperature of at least a portion of the formation above a temperature that results in mobilized fluid, visbreaking, and/or pyrolysis of hydrocarbon containing material so that mobilized fluids, visbroken fluids, and/or pyrolyzation fluids are produced in the formation.
[0037] "Insulated conductor" refers to any elongated material that is able to conduct electricity and that is covered, in whole or in part, by an electrically insulating material.
[0038] "Modulated direct current (DC)" refers to any substantially non-sinusoidal time-varying current that produces skin effect electricity flow in a ferromagnetic conductor.
[0039] "Nitride" refers to a compound of nitrogen and one or more other elements of the Periodic Table. Nitrides include, but are not limited to, silicon nitride, boron nitride, or alumina nitride.
[0040] "Perforations" include openings, slits, apertures, or holes in a wall of a conduit, tubular, pipe or other flow pathway that allow flow into or out of the conduit, tubular, pipe or other flow pathway.
[0041] "Phase transformation temperature" of a ferromagnetic material refers to a temperature or a temperature range during which the material undergoes a phase change (for example, from ferrite to austenite) that decreases the magnetic permeability of the ferromagnetic material. The reduction in magnetic permeability is similar to reduction in magnetic permeability due to the magnetic transition of the ferromagnetic material at the Curie temperature.
[0042] "Pyrolysis" is the breaking of chemical bonds due to the application of heat. For example, pyrolysis may include transforming a compound into one or more other substances by heat alone. Heat may be transferred to a section of the formation to cause pyrolysis.
[0043] "Pyrolyzation fluids" or "pyrolysis products" refers to fluid produced substantially during pyrolysis of hydrocarbons. Fluid produced by pyrolysis reactions may mix with other fluids in a formation. The mixture would be considered pyrolyzation fluid or pyrolyzation product. As used herein, "pyrolysis zone" refers to a volume of a formation (for example, a relatively permeable formation such as a tar sands formation) that is reacted or reacting to form a pyrolyzation fluid.
[0044] "Superposition of heat" refers to providing heat from two or more heat sources to a selected section of a formation such that the temperature of the formation at least at one location between the heat sources is influenced by the heat sources.
[0045] "Temperature limited heater" generally refers to a heater that regulates heat output (for example, reduces heat output) above a specified temperature without the use of external controls such as temperature controllers, power regulators, rectifiers, or other devices.
Temperature limited heaters may be AC (alternating current) or modulated (for example, "chopped") DC (direct current) powered electrical resistance heaters.
[0046] "Thickness" of a layer refers to the thickness of a cross section of the layer, wherein the cross section is normal to a face of the layer.
[0047] "Time-varying current" refers to electrical current that produces skin effect electricity flow in a ferromagnetic conductor and has a magnitude that varies with time.
Time-varying current includes both alternating current (AC) and modulated direct current (DC).
[0048] "Turndown ratio" for the temperature limited heater in which current is applied directly to the heater is the ratio of the highest AC or modulated DC
resistance below the Curie temperature to the lowest resistance above the Curie temperature for a given current.

Turndown ratio for an inductive heater is the ratio of the highest heat output below the Curie temperature to the lowest heat output above the Curie temperature for a given current applied to the heater.
[0049] A "u-shaped wellbore" refers to a wellbore that extends from a first opening in the formation, through at least a portion of the formation, and out through a second opening in the formation. In this context, the wellbore may be only roughly in the shape of a "v" or "u", with the understanding that the "legs" of the "u" do not need to be parallel to each other, or perpendicular to the "bottom" of the "u" for the wellbore to be considered "u-shaped".
[0050] The term "wellbore" refers to a hole in a formation made by drilling or insertion of a conduit into the formation. A wellbore may have a substantially circular cross section, or another cross-sectional shape. As used herein, the terms "well" and "opening,"
when referring to an opening in the formation may be used interchangeably with the term "wellbore."
[0051] A formation may be treated in various ways to produce many different products.
Different stages or processes may be used to treat the formation during an in situ heat treatment process. In some embodiments, one or more sections of the formation are solution mined to remove soluble minerals from the sections. Solution mining minerals may be performed before, during, and/or after the in situ heat treatment process. In some embodiments, the average temperature of one or more sections being solution mined may be maintained below about 120 C.
[0052] In some embodiments, one or more sections of the formation are heated to remove water from the sections and/or to remove methane and other volatile hydrocarbons from the sections. In some embodiments, the average temperature may be raised from ambient temperature to temperatures below about 220 C during removal of water and volatile hydrocarbons.
[0053] In some embodiments, one or more sections of the formation are heated to temperatures that allow for movement and/or visbreaking of hydrocarbons in the formation.
In some embodiments, the average temperature of one or more sections of the formation are raised to mobilization temperatures of hydrocarbons in the sections (for example, to temperatures ranging from 100 C to 250 C, from 120 C to 240 C, or from 150 C to 230 C) [0054] In some embodiments, one or more sections are heated to temperatures that allow for pyrolysis reactions in the formation. In some embodiments, the average temperature of one or more sections of the formation may be raised to pyrolysis temperatures of hydrocarbons in the sections (for example, temperatures ranging from 230 C to 900 C, from 240 C
to 400 C or from 250 C to 350 C).
[0055] Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that raise the temperature of hydrocarbons in the formation to desired temperatures at desired heating rates. The rate of temperature increase through the mobilization temperature range and/or the pyrolysis temperature range for desired products may affect the quality and quantity of the formation fluids produced from the hydrocarbon containing formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the production of high quality, high API gravity hydrocarbons from the formation.
Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.
[0056] In some in situ heat treatment embodiments, a portion of the formation is heated to a desired temperature instead of slowly raising the temperature through a temperature range. In some embodiments, the desired temperature is 300 C, 325 C, or 350 C. Other temperatures may be selected as the desired temperature.
[0057] Superposition of heat from heat sources allows the desired temperature to be relatively quickly and efficiently established in the formation. Energy input into the formation from the heat sources may be adjusted to maintain the temperature in the formation substantially at a desired temperature.
[0058] Mobilization and/or pyrolysis products may be produced from the formation through production wells. In some embodiments, the average temperature of one or more sections is raised to mobilization temperatures and hydrocarbons are produced from the production wells.
The average temperature of one or more of the sections may be raised to pyrolysis temperatures after production due to mobilization decreases below a selected value. In some embodiments, the average temperature of one or more sections may be raised to pyrolysis temperatures without significant production before reaching pyrolysis temperatures.
Formation fluids including pyrolysis products may be produced through the production wells.
[0059] In some embodiments, the average temperature of one or more sections may be raised to temperatures sufficient to allow synthesis gas production after mobilization and/or pyrolysis. In some embodiments, hydrocarbons may be raised to temperatures sufficient to allow synthesis gas production without significant production before reaching the temperatures sufficient to allow synthesis gas production. For example, synthesis gas may be produced in a temperature range from about 400 C to about 1200 C, about 500 C to about 1100 C, or about 550 C to about 1000 C. A synthesis gas generating fluid (for example, steam and/or water) may be introduced into the sections to generate synthesis gas. Synthesis gas may be produced from production wells.
[0060] Solution mining, removal of volatile hydrocarbons and water, mobilizing hydrocarbons, pyrolyzing hydrocarbons, generating synthesis gas, and/or other processes may be performed during the in situ heat treatment process. In some embodiments, some processes may be performed after the in situ heat treatment process. Such processes may include, but are not limited to, recovering heat from treated sections, storing fluids (for example, water and/or hydrocarbons) in previously treated sections, and/or sequestering carbon dioxide in previously treated sections.
[0061] FIG. 1 depicts a schematic view of an embodiment of a portion of the in situ heat treatment system for treating the hydrocarbon containing formation. The in situ heat treatment system may include barrier wells 200. Barrier wells are used to form a barrier around a treatment area. The barrier inhibits fluid flow into and/or out of the treatment area. Barrier wells include, but are not limited to, dewatering wells, vacuum wells, capture wells, injection wells, grout wells, freeze wells, or combinations thereof. In some embodiments, barrier wells 200 are dewatering wells. Dewatering wells may remove liquid water and/or inhibit liquid water from entering a portion of the formation to be heated, or to the formation being heated.
In the embodiment depicted in FIG. 1, the barrier wells 200 are shown extending only along one side of heat sources 202, but the barrier wells typically encircle all heat sources 202 used, or to be used, to heat a treatment area of the formation.
[0062] Heat sources 202 are placed in at least a portion of the formation.
Heat sources 202 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 202 may also include other types of heaters. Heat sources 202 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 202 through supply lines 204. Supply lines 204 may be structurally different depending on the type of heat source or heat sources used to heat the formation. Supply lines 204 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation. In some embodiments, electricity for an in situ heat treatment process may be provided by a nuclear power plant or nuclear power plants. The use of nuclear power may allow for reduction or elimination of carbon dioxide emissions from the in situ heat treatment process.
[0063] When the formation is heated, the heat input into the formation may cause expansion of the formation and geomechanical motion. The heat sources may be turned on before, at the same time, or during a dewatering process. Computer simulations may model formation response to heating. The computer simulations may be used to develop a pattern and time sequence for activating heat sources in the formation so that geomechanical motion of the formation does not adversely affect the functionality of heat sources, production wells, and other equipment in the formation.
[0064] Heating the formation may cause an increase in permeability and/or porosity of the formation. Increases in permeability and/or porosity may result from a reduction of mass in the formation due to vaporization and removal of water, removal of hydrocarbons, and/or creation of fractures. Fluid may flow more easily in the heated portion of the formation because of the increased permeability and/or porosity of the formation. Fluid in the heated portion of the formation may move a considerable distance through the formation because of the increased permeability and/or porosity. The considerable distance may be over 1000 m depending on various factors, such as permeability of the formation, properties of the fluid, temperature of the formation, and pressure gradient allowing movement of the fluid. The ability of fluid to travel considerable distance in the formation allows production wells 206 to be spaced relatively far apart in the formation.
[0065] Production wells 206 are used to remove formation fluid from the formation. In some embodiments, production well 206 includes a heat source. The heat source in the production well may heat one or more portions of the formation at or near the production well. In some in situ heat treatment process embodiments, the amount of heat supplied to the formation from the production well per meter of the production well is less than the amount of heat applied to the formation from a heat source that heats the formation per meter of the heat source. Heat applied to the formation from the production well may increase formation permeability adjacent to the production well by vaporizing and removing liquid phase fluid adjacent to the production well and/or by increasing the permeability of the formation adjacent to the production well by formation of macro and/or micro fractures.
[0066] More than one heat source may be positioned in the production well. A
heat source in a lower portion of the production well may be turned off when superposition of heat from adjacent heat sources heats the formation sufficiently to counteract benefits provided by heating the formation with the production well. In some embodiments, the heat source in an upper portion of the production well may remain on after the heat source in the lower portion of the production well is deactivated. The heat source in the upper portion of the well may inhibit condensation and reflux of formation fluid.
[0067] In some embodiments, the heat source in production well 206 allows for vapor phase removal of formation fluids from the formation. Providing heating at or through the production well may: (1) inhibit condensation and/or refluxing of production fluid when such production fluid is moving in the production well proximate the overburden, (2) increase heat input into the formation, (3) increase production rate from the production well as compared to a production well without a heat source, (4) inhibit condensation of high carbon number compounds (C6 hydrocarbons and above) in the production well, and/or (5) increase formation permeability at or proximate the production well.
[0068] Subsurface pressure in the formation may correspond to the fluid pressure generated in the formation. As temperatures in the heated portion of the formation increase, the pressure in the heated portion may increase as a result of thermal expansion of in situ fluids, increased fluid generation and vaporization of water. Controlling rate of fluid removal from the formation may allow for control of pressure in the formation. Pressure in the formation may be determined at a number of different locations, such as near or at production wells, near or at heat sources, or at monitor wells.
[0069] In some hydrocarbon containing formations, production of hydrocarbons from the formation is inhibited until at least some hydrocarbons in the formation have been mobilized and/or pyrolyzed. Formation fluid may be produced from the formation when the formation fluid is of a selected quality. In some embodiments, the selected quality includes an API
gravity of at least about 20 , 30 , or 40 . Inhibiting production until at least some hydrocarbons are mobilized and/or pyrolyzed may increase conversion of heavy hydrocarbons to light hydrocarbons. Inhibiting initial production may minimize the production of heavy hydrocarbons from the formation. Production of substantial amounts of heavy hydrocarbons may require expensive equipment and/or reduce the life of production equipment.
[0070] In some hydrocarbon containing formations, hydrocarbons in the formation may be heated to mobilization and/or pyrolysis temperatures before substantial permeability has been generated in the heated portion of the formation. An initial lack of permeability may inhibit the transport of generated fluids to production wells 206. During initial heating, fluid pressure in the formation may increase proximate heat sources 202. The increased fluid pressure may be released, monitored, altered, and/or controlled through one or more heat sources 202. For example, selected heat sources 202 or separate pressure relief wells may include pressure relief valves that allow for removal of some fluid from the formation.
[0071] In some embodiments, pressure generated by expansion of mobilized fluids, pyrolysis fluids or other fluids generated in the formation may be allowed to increase although an open path to production wells 206 or any other pressure sink may not yet exist in the formation.
The fluid pressure may be allowed to increase towards a lithostatic pressure.
Fractures in the hydrocarbon containing formation may form when the fluid approaches the lithostatic pressure. For example, fractures may form from heat sources 202 to production wells 206 in the heated portion of the formation. The generation of fractures in the heated portion may relieve some of the pressure in the portion. Pressure in the formation may have to be maintained below a selected pressure to inhibit unwanted production, fracturing of the overburden or underburden, and/or coking of hydrocarbons in the formation.
[0072] After mobilization and/or pyrolysis temperatures are reached and production from the formation is allowed, pressure in the formation may be varied to alter and/or control a composition of formation fluid produced, to control a percentage of condensable fluid as compared to non-condensable fluid in the formation fluid, and/or to control an API gravity of formation fluid being produced. For example, decreasing pressure may result in production of a larger condensable fluid component. The condensable fluid component may contain a larger percentage of olefins.
[0073] In some in situ heat treatment process embodiments, pressure in the formation may be maintained high enough to promote production of formation fluid with an API
gravity of greater than 20 . Maintaining increased pressure in the formation may inhibit formation subsidence during in situ heat treatment. Maintaining increased pressure may reduce or eliminate the need to compress formation fluids at the surface to transport the fluids in collection conduits to treatment facilities.
[0074] Maintaining increased pressure in a heated portion of the formation may surprisingly allow for production of large quantities of hydrocarbons of increased quality and of relatively low molecular weight. Pressure may be maintained so that formation fluid produced has a minimal amount of compounds above a selected carbon number. The selected carbon number may be at most 25, at most 20, at most 12, or at most 8. Some high carbon number compounds may be entrained in vapor in the formation and may be removed from the formation with the vapor. Maintaining increased pressure in the formation may inhibit entrainment of high carbon number compounds and/or multi-ring hydrocarbon compounds in the vapor. High carbon number compounds and/or multi-ring hydrocarbon compounds may remain in a liquid phase in the formation for significant time periods. The significant time periods may provide sufficient time for the compounds to pyrolyze to form lower carbon number compounds.
[0075] Generation of relatively low molecular weight hydrocarbons is believed to be due, in part, to autogenous generation and reaction of hydrogen in a portion of the hydrocarbon containing formation. For example, maintaining an increased pressure may force hydrogen generated during pyrolysis into the liquid phase within the formation. Heating the portion to a temperature in a pyrolysis temperature range may pyrolyze hydrocarbons in the formation to generate liquid phase pyrolyzation fluids. The generated liquid phase pyrolyzation fluids components may include double bonds and/or radicals. Hydrogen (H2) in the liquid phase may reduce double bonds of the generated pyrolyzation fluids, thereby reducing a potential for polymerization or formation of long chain compounds from the generated pyrolyzation fluids.
In addition, H2 may also neutralize radicals in the generated pyrolyzation fluids. H2 in the liquid phase may inhibit the generated pyrolyzation fluids from reacting with each other and/or with other compounds in the formation.
[0076] Formation fluid produced from production wells 206 may be transported through collection piping 208 to treatment facilities 210. Formation fluids may also be produced from heat sources 202. For example, fluid may be produced from heat sources 202 to control pressure in the formation adjacent to the heat sources. Fluid produced from heat sources 202 may be transported through tubing or piping to collection piping 208 or the produced fluid may be transported through tubing or piping directly to treatment facilities 210. Treatment facilities 210 may include separation units, reaction units, upgrading units, fuel cells, turbines, storage vessels, and/or other systems and units for processing produced formation fluids. The treatment facilities may form transportation fuel from at least a portion of the hydrocarbons produced from the formation. In some embodiments, the transportation fuel may be jet fuel, such as JP-8.
[0077] An insulated conductor may be used as an electric heater element of a heater or a heat source. The insulated conductor may include an inner electrical conductor (core) surrounded by an electrical insulator and an outer electrical conductor (jacket). The electrical insulator may include mineral insulation (for example, magnesium oxide) or other electrical insulation.
[0078] In certain embodiments, the insulated conductor is placed in an opening in a hydrocarbon containing formation. In some embodiments, the insulated conductor is placed in an uncased opening in the hydrocarbon containing formation. Placing the insulated conductor in an uncased opening in the hydrocarbon containing formation may allow heat transfer from the insulated conductor to the formation by radiation as well as conduction.
Using an uncased opening may facilitate retrieval of the insulated conductor from the well, if necessary.
[0079] In some embodiments, an insulated conductor is placed within a casing in the formation; may be cemented within the formation; or may be packed in an opening with sand, gravel, or other fill material. The insulated conductor may be supported on a support member positioned within the opening. The support member may be a cable, rod, or a conduit (for example, a pipe). The support member may be made of a metal, ceramic, inorganic material, or combinations thereof. Because portions of a support member may be exposed to formation fluids and heat during use, the support member may be chemically resistant and/or thermally resistant.
[0080] Ties, spot welds, and/or other types of connectors may be used to couple the insulated conductor to the support member at various locations along a length of the insulated conductor. The support member may be attached to a wellhead at an upper surface of the formation. In some embodiments, the insulated conductor has sufficient structural strength such that a support member is not needed. The insulated conductor may, in many instances, have at least some flexibility to inhibit thermal expansion damage when undergoing temperature changes.
[0081] In certain embodiments, insulated conductors are placed in wellbores without support members and/or centralizers. An insulated conductor without support members and/or centralizers may have a suitable combination of temperature and corrosion resistance, creep strength, length, thickness (diameter), and metallurgy that will inhibit failure of the insulated conductor during use.
[0082] FIG. 2 depicts a perspective view of an end portion of an embodiment of insulated conductor 252. Insulated conductor 252 may have any desired cross-sectional shape such as, but not limited to, round (depicted in FIG. 2), triangular, ellipsoidal, rectangular, hexagonal, or irregular. In certain embodiments, insulated conductor 252 includes core 218, electrical insulator 214, and jacket 216. Core 218 may resistively heat when an electrical current passes through the core. Alternating or time-varying current and/or direct current may be used to provide power to core 218 such that the core resistively heats.
[0083] In some embodiments, electrical insulator 214 inhibits current leakage and arcing to jacket 216. Electrical insulator 214 may thermally conduct heat generated in core 218 to jacket 216. Jacket 216 may radiate or conduct heat to the formation. In certain embodiments, insulated conductor 252 is 1000 m or more in length. Longer or shorter insulated conductors may also be used to meet specific application needs. The dimensions of core 218, electrical insulator 214, and jacket 216 of insulated conductor 252 may be selected such that the insulated conductor has enough strength to be self supporting even at upper working temperature limits. Such insulated conductors may be suspended from wellheads or supports positioned near an interface between an overburden and a hydrocarbon containing formation without the need for support members extending into the hydrocarbon containing formation along with the insulated conductors.
[0084] Insulated conductor 252 may be designed to operate at power levels of up to about 1650 watts/meter or higher. In certain embodiments, insulated conductor 252 operates at a power level between about 300 watts/meter and about 1150 watts/meter when heating a formation. Insulated conductor 252 may be designed so that a maximum voltage level at a typical operating temperature does not cause substantial thermal and/or electrical breakdown of electrical insulator 214. Insulated conductor 252 may be designed such that jacket 216 does not exceed a temperature that will result in a significant reduction in corrosion resistance properties of the jacket material. In certain embodiments, insulated conductor 252 may be designed to reach temperatures within a range between about 650 C and about 900 C.
Insulated conductors having other operating ranges may be formed to meet specific operational requirements.
[0085] FIG. 2 depicts insulated conductor 252 having a single core 218. In some embodiments, insulated conductor 252 has two or more cores 218. For example, a single insulated conductor may have three cores. Core 218 may be made of metal or another electrically conductive material. The material used to form core 218 may include, but not be limited to, nichrome, copper, nickel, carbon steel, stainless steel, and combinations thereof. In certain embodiments, core 218 is chosen to have a diameter and a resistivity at operating temperatures such that its resistance, as derived from Ohm's law, makes it electrically and structurally stable for the chosen power dissipation per meter, the length of the heater, and/or the maximum voltage allowed for the core material.
[0086] In some embodiments, core 218 is made of different materials along a length of insulated conductor 252. For example, a first section of core 218 may be made of a material that has a significantly lower resistance than a second section of the core.
The first section may be placed adjacent to a formation layer that does not need to be heated to as high a temperature as a second formation layer that is adjacent to the second section. The resistivity of various sections of core 218 may be adjusted by having a variable diameter and/or by having core sections made of different materials.
[0087] Electrical insulator 214 may be made of a variety of materials.
Commonly used powders may include, but are not limited to, MgO, A1203, Zirconia, BeO, different chemical variations of Spinels, and combinations thereof. MgO may provide good thermal conductivity and electrical insulation properties. The desired electrical insulation properties include low leakage current and high dielectric strength. A low leakage current decreases the possibility of thermal breakdown and the high dielectric strength decreases the possibility of arcing across the insulator. Thermal breakdown can occur if the leakage current causes a progressive rise in the temperature of the insulator leading also to arcing across the insulator.
[0088] Jacket 216 may be an outer metallic layer or electrically conductive layer. Jacket 216 may be in contact with hot formation fluids. Jacket 216 may be made of material having a high resistance to corrosion at elevated temperatures. Alloys that may be used in a desired operating temperature range of jacket 216 include, but are not limited to, 304 stainless steel, 310 stainless steel, Incoloy 800, and Inconel 600 (Inco Alloys International, Huntington, West Virginia, U.S.A.). The thickness of jacket 216 may have to be sufficient to last for three to ten years in a hot and corrosive environment. A thickness of jacket 216 may generally vary between about 1 mm and about 3.5 mm. For example, a 1.3 mm thick, 310 stainless steel outer layer may be used as jacket 216 to provide good chemical resistance to sulfidation corrosion in a heated zone of a formation for a period of over 3 years. Larger or smaller jacket thicknesses may be used to meet specific application requirements.
[0089] One or more insulated conductors may be placed within an opening in a formation to form a heat source or heat sources. Electrical current may be passed through each insulated conductor in the opening to heat the formation. Alternately, electrical current may be passed through selected insulated conductors in an opening. The unused conductors may be used as backup heaters. Insulated conductors may be electrically coupled to a power source in any convenient manner. Each end of an insulated conductor may be coupled to lead-in cables that pass through a wellhead. Such a configuration typically has a 180 bend (a "hairpin" bend) or turn located near a bottom of the heat source. An insulated conductor that includes a 180 bend or turn may not require a bottom termination, but the 180 bend or turn may be an electrical and/or structural weakness in the heater. Insulated conductors may be electrically coupled together in series, in parallel, or in series and parallel combinations. In some embodiments of heat sources, electrical current may pass into the conductor of an insulated conductor and may be returned through the jacket of the insulated conductor by connecting core 218 to jacket 216 (shown in FIG. 2) at the bottom of the heat source.
[0090] In some embodiments, three insulated conductors 252 are electrically coupled in a 3-phase wye configuration to a power supply. FIG. 3 depicts an embodiment of three insulated conductors in an opening in a subsurface formation coupled in a wye configuration. FIG. 4 depicts an embodiment of three insulated conductors 252 that are removable from opening 238 in the formation. No bottom connection may be required for three insulated conductors in a wye configuration. Alternately, all three insulated conductors of the wye configuration may be connected together near the bottom of the opening. The connection may be made directly at ends of heating sections of the insulated conductors or at ends of cold pins (less resistive sections) coupled to the heating sections at the bottom of the insulated conductors. The bottom connections may be made with insulator filled and sealed canisters or with epoxy filled canisters. The insulator may be the same composition as the insulator used as the electrical insulation.
[0091] Three insulated conductors 252 depicted in FIGS. 3 and 4 may be coupled to support member 220 using centralizers 222. Alternatively, insulated conductors 252 may be strapped directly to support member 220 using metal straps. Centralizers 222 may maintain a location and/or inhibit movement of insulated conductors 252 on support member 220.
Centralizers 222 may be made of metal, ceramic, or combinations thereof. The metal may be stainless steel or any other type of metal able to withstand a corrosive and high temperature environment. In some embodiments, centralizers 222 are bowed metal strips welded to the support member at distances less than about 6 m. A ceramic used in centralizer 222 may be, but is not limited to, A1203, MgO, or another electrical insulator.
Centralizers 222 may maintain a location of insulated conductors 252 on support member 220 such that movement of insulated conductors is inhibited at operating temperatures of the insulated conductors.
Insulated conductors 252 may also be somewhat flexible to withstand expansion of support member 220 during heating.
[0092] Support member 220, insulated conductor 252, and centralizers 222 may be placed in opening 238 in hydrocarbon layer 240. Insulated conductors 252 may be coupled to bottom conductor junction 224 using cold pin 226. Bottom conductor junction 224 may electrically couple each insulated conductor 252 to each other. Bottom conductor junction 224 may include materials that are electrically conducting and do not melt at temperatures found in opening 238. Cold pin 226 may be an insulated conductor having lower electrical resistance than insulated conductor 252.
[0093] Lead-in conductor 228 may be coupled to wellhead 242 to provide electrical power to insulated conductor 252. Lead-in conductor 228 may be made of a relatively low electrical resistance conductor such that relatively little heat is generated from electrical current passing through the lead-in conductor. In some embodiments, the lead-in conductor is a rubber or polymer insulated stranded copper wire. In some embodiments, the lead-in conductor is a mineral insulated conductor with a copper core. Lead-in conductor 228 may couple to wellhead 242 at surface 250 through a sealing flange located between overburden 246 and surface 250. The sealing flange may inhibit fluid from escaping from opening 238 to surface 250.
[0094] In certain embodiments, lead-in conductor 228 is coupled to insulated conductor 252 using transition conductor 230. Transition conductor 230 may be a less resistive portion of insulated conductor 252. Transition conductor 230 may be referred to as "cold pin" of insulated conductor 252. Transition conductor 230 may be designed to dissipate about one-tenth to about one-fifth of the power per unit length as is dissipated in a unit length of the primary heating section of insulated conductor 252. Transition conductor 230 may typically be between about 1.5 m and about 15 m, although shorter or longer lengths may be used to accommodate specific application needs. In an embodiment, the conductor of transition conductor 230 is copper. The electrical insulator of transition conductor 230 may be the same type of electrical insulator used in the primary heating section. A jacket of transition conductor 230 may be made of corrosion resistant material.
[0095] In certain embodiments, transition conductor 230 is coupled to lead-in conductor 228 by a splice or other coupling joint. Splices may also be used to couple transition conductor 230 to insulated conductor 252. Splices may have to withstand temperatures approaching that of a target zone operating temperature (for example, a temperature equal to half of a target zone operating temperature), depending on the number of ocnductors in the opening and whether the splices are staggered. Density of electrical insulation in the splice should in many instances be high enough to withstand the required temperature and the operating voltage.
[0096] In some embodiments, as shown in FIG. 3, packing material 248 is placed between overburden casing 244 and opening 238. In some embodiments, reinforcing material 232 may secure overburden casing 244 to overburden 246. Packing material 248 may inhibit fluid from flowing from opening 238 to surface 250. Reinforcing material 232 may include, for example, Class G or Class H Portland cement mixed with silica flour for improved high temperature performance, slag or silica flour, and/or a mixture thereof. In some embodiments, reinforcing material 232 extends radially a width of from about 5 cm to about 25 cm.
[0097] As shown in FIGS. 3 and 4, support member 220 and lead-in conductor 228 may be coupled to wellhead 242 at surface 250 of the formation. Surface conductor 234 may enclose reinforcing material 232 and couple to wellhead 242. Embodiments of surface conductors may extend to depths of approximately 3m to approximately 515 m into an opening in the formation. Alternatively, the surface conductor may extend to a depth of approximately 9 m into the formation. Electrical current may be supplied from a power source to insulated conductor 252 to generate heat due to the electrical resistance of the insulated conductor. Heat generated from three insulated conductors 252 may transfer within opening 238 to heat at least a portion of hydrocarbon layer 240.
[0098] Heat generated by insulated conductors 252 may heat at least a portion of a hydrocarbon containing formation. In some embodiments, heat is transferred to the formation substantially by radiation of the generated heat to the formation. Some heat may be transferred by conduction or convection of heat due to gases present in the opening. The opening may be an uncased opening, as shown in FIGS. 3 and 4. An uncased opening eliminates cost associated with thermally cementing the heater to the formation, costs associated with a casing, and/or costs of packing a heater within an opening.
In addition, heat transfer by radiation is typically more efficient than by conduction, so the heaters may be operated at lower temperatures in an open wellbore. Conductive heat transfer during initial operation of a heat source may be enhanced by the addition of a gas in the opening. The gas may be maintained at a pressure up to about 27 bars absolute. The gas may include, but is not limited to, carbon dioxide and/or helium. An insulated conductor heater in an open wellbore may advantageously be free to expand or contract to accommodate thermal expansion and contraction. An insulated conductor heater may advantageously be removable or redeployable from an open wellbore.
[0099] In certain embodiments, an insulated conductor heater assembly is installed or removed using a spooling assembly. More than one spooling assembly may be used to install both the insulated conductor and a support member simultaneously.
Alternatively, the support member may be installed using a coiled tubing unit. The heaters may be un-spooled and connected to the support as the support is inserted into the well. The electric heater and the support member may be un-spooled from the spooling assemblies. Spacers may be coupled to the support member and the heater along a length of the support member.
Additional spooling assemblies may be used for additional electric heater elements.
[0100] Temperature limited heaters may be in configurations and/or may include materials that provide automatic temperature limiting properties for the heater at certain temperatures.
In certain embodiments, ferromagnetic materials are used in temperature limited heaters.
Ferromagnetic material may self-limit temperature at or near the Curie temperature of the material and/or the phase transformation temperature range to provide a reduced amount of heat when a time-varying current is applied to the material. In certain embodiments, the ferromagnetic material self-limits temperature of the temperature limited heater at a selected temperature that is approximately the Curie temperature and/or in the phase transformation temperature range. In certain embodiments, the selected temperature is within about 35 C, within about 25 C, within about 20 C, or within about 10 C of the Curie temperature and/or the phase transformation temperature range. In certain embodiments, ferromagnetic materials are coupled with other materials (for example, highly conductive materials, high strength materials, corrosion resistant materials, or combinations thereof) to provide various electrical and/or mechanical properties. Some parts of the temperature limited heater may have a lower resistance (caused by different geometries and/or by using different ferromagnetic and/or non-ferromagnetic materials) than other parts of the temperature limited heater.
Having parts of the temperature limited heater with various materials and/or dimensions allows for tailoring the desired heat output from each part of the heater.
[0101] Temperature limited heaters may be more reliable than other heaters.
Temperature limited heaters may be less apt to break down or fail due to hot spots in the formation. In some embodiments, temperature limited heaters allow for substantially uniform heating of the formation. In some embodiments, temperature limited heaters are able to heat the formation more efficiently by operating at a higher average heat output along the entire length of the heater. The temperature limited heater operates at the higher average heat output along the entire length of the heater because power to the heater does not have to be reduced to the entire heater, as is the case with typical constant wattage heaters, if a temperature along any point of the heater exceeds, or is about to exceed, a maximum operating temperature of the heater. Heat output from portions of a temperature limited heater approaching a Curie temperature and/or the phase transformation temperature range of the heater automatically reduces without controlled adjustment of the time-varying current applied to the heater. The heat output automatically reduces due to changes in electrical properties (for example, electrical resistance) of portions of the temperature limited heater. Thus, more power is supplied by the temperature limited heater during a greater portion of a heating process.
[0102] In certain embodiments, the system including temperature limited heaters initially provides a first heat output and then provides a reduced (second heat output) heat output, near, at, or above the Curie temperature and/or the phase transformation temperature range of an electrically resistive portion of the heater when the temperature limited heater is energized by a time-varying current. The first heat output is the heat output at temperatures below which the temperature limited heater begins to self-limit. In some embodiments, the first heat output is the heat output at a temperature about 50 C, about 75 C, about 100 C, or about 125 C
below the Curie temperature and/or the phase transformation temperature range of the ferromagnetic material in the temperature limited heater.
[0103] The temperature limited heater may be energized by time-varying current (alternating current or modulated direct current) supplied at the wellhead. The wellhead may include a power source and other components (for example, modulation components, transformers, and/or capacitors) used in supplying power to the temperature limited heater.
The temperature limited heater may be one of many heaters used to heat a portion of the formation.
[0104] In some embodiments, a relatively thin conductive layer is used to provide the majority of the electrically resistive heat output of the temperature limited heater at temperatures up to a temperature at or near the Curie temperature and/or the phase transformation temperature range of the ferromagnetic conductor. Such a temperature limited heater may be used as the heating member in an insulated conductor heater. The heating member of the insulated conductor heater may be located inside a sheath with an insulation layer between the sheath and the heating member.
[0105] FIGS. 5A and 5B depict cross-sectional representations of an embodiment of the insulated conductor heater with the temperature limited heater as the heating member.
Insulated conductor 252 includes core 218, ferromagnetic conductor 236, inner conductor 212, electrical insulator 214, and jacket 216. Core 218 is a copper core.
Ferromagnetic conductor 236 is, for example, iron or an iron alloy.
[0106] Inner conductor 212 is a relatively thin conductive layer of non-ferromagnetic material with a higher electrical conductivity than ferromagnetic conductor 236. In certain embodiments, inner conductor 212 is copper. Inner conductor 212 may be a copper alloy.
Copper alloys typically have a flatter resistance versus temperature profile than pure copper.
A flatter resistance versus temperature profile may provide less variation in the heat output as a function of temperature up to the Curie temperature and/or the phase transformation temperature range. In some embodiments, inner conductor 212 is copper with 6%
by weight nickel (for example, CuNi6 or LOHMTM). In some embodiments, inner conductor 212 is CuNi10Fe1Mn alloy. Below the Curie temperature and/or the phase transformation temperature range of ferromagnetic conductor 236, the magnetic properties of the ferromagnetic conductor confine the majority of the flow of electrical current to inner conductor 212. Thus, inner conductor 212 provides the majority of the resistive heat output of insulated conductor 252 below the Curie temperature and/or the phase transformation temperature range.
[0107] In certain embodiments, inner conductor 212 is dimensioned, along with core 218 and ferromagnetic conductor 236, so that the inner conductor provides a desired amount of heat output and a desired turndown ratio. For example, inner conductor 212 may have a cross-sectional area that is around 2 or 3 times less than the cross-sectional area of core 218.
Typically, inner conductor 212 has to have a relatively small cross-sectional area to provide a desired heat output if the inner conductor is copper or copper alloy. In an embodiment with copper inner conductor 212, core 218 has a diameter of 0.66 cm, ferromagnetic conductor 236 has an outside diameter of 0.91 cm, inner conductor 212 has an outside diameter of 1.03 cm, electrical insulator 214 has an outside diameter of 1.53 cm, and jacket 216 has an outside diameter of 1.79 cm. In an embodiment with a CuNi6 inner conductor 212, core 218 has a diameter of 0.66 cm, ferromagnetic conductor 236 has an outside diameter of 0.91 cm, inner conductor 212 has an outside diameter of 1.12 cm, electrical insulator 214 has an outside diameter of 1.63 cm, and jacket 216 has an outside diameter of 1.88 cm. Such insulated conductors are typically smaller and cheaper to manufacture than insulated conductors that do not use the thin inner conductor to provide the majority of heat output below the Curie temperature and/or the phase transformation temperature range.
[0108] Electrical insulator 214 may be magnesium oxide, aluminum oxide, silicon dioxide, beryllium oxide, boron nitride, silicon nitride, or combinations thereof. In certain embodiments, electrical insulator 214 is a compacted powder of magnesium oxide. In some embodiments, electrical insulator 214 includes beads of silicon nitride.
[0109] In certain embodiments, a small layer of material is placed between electrical insulator 214 and inner conductor 212 to inhibit copper from migrating into the electrical insulator at higher temperatures. For example, a small layer of nickel (for example, about 0.5 mm of nickel) may be placed between electrical insulator 214 and inner conductor 212.
[0110] Jacket 216 is made of a corrosion resistant material such as, but not limited to, 347 stainless steel, 347H stainless steel, 446 stainless steel, or 825 stainless steel. In some embodiments, jacket 216 provides some mechanical strength for insulated conductor 252 at or above the Curie temperature and/or the phase transformation temperature range of ferromagnetic conductor 236. In certain embodiments, jacket 216 is not used to conduct electrical current.
[0111] In certain embodiments, two or more heaters (for example, insulated conductor heaters) are helically wound onto a spool (for example, a coiled tubing rig) and then unwound from the spool as the heaters are installed into an opening in the subsurface formation.
Helically winding the heaters on the spool reduces stresses on the heaters, particularly the outside portions of the heater that may otherwise stretch or elongate.
[0112] FIG. 6 depicts an embodiment of heaters 254 being helically wound on spool 258. In some embodiments, spool 258 is part of a coiled tubing rig. Heaters 254 may be pulled through twist head 260 and onto spool 258. Twist head 260 rotates as heaters 254 are pulled through the twist head and fed onto spool 258. Because of the rotation motion of twist head 260, heaters 254 are helically wound as they are fed onto spool 258. To install heaters 254 in the formation, the heaters may be unwound from spool 258 and installed into the formation.
The helical winding process may be carried out using techniques and/or equipment used for making and using helical flowline bundles for subsea applications described in U.S. Pat. No.
4,843,713 to Langner et al., U.S. Pat. No. 4,979,296 to Langner et al., and U.S. Pat. No.
5,390,481 to Langner.
[0113] FIG. 7 depicts an embodiment of three heaters 254 helically wound together. In some embodiments, three heaters 254 are helically wound together around a support.
FIG. 8 depicts an embodiment of three heaters 254 helically wound around support 262. In some embodiments, one or more clamps 256 (depicted in FIG. 7) are used to secure heaters 254 in the helically wound configuration. Clamps 256 may be, for example, glass clamps, glass wraps, or other suitable devices for securing heaters 254 and/or securing the heaters to support 262.
[0114] Heaters 254 may be helically wound with a selected pitch in the helical winding. In certain embodiments, the selected pitch is between about 5% and 10% (for example, about 7%). In some embodiments, the pitch is varied or changed to vary the heat output provided by the bundle of helically wound heaters. Changing the pitch varies the thickness of the bundle of heaters and, thus, varies the heat output from the bundle. In some embodiments, the pitch is varied along the length of the heaters to vary the heat output along the length of the heaters.
[0115] Helically winding heaters 254 and installing the heaters in the helical winding may reduce stresses on parts of the heaters such as the electrical insulator or jacket of insulated conductor heaters. Helically winding heaters 254 may accommodate thermal expansion of the heaters in the wellbore by, for example, reducing stress on or in the heaters during thermal expansion of the heaters. In certain embodiments, heaters 254 are easier to helically wind if the heaters have a tapered thickness (for example, the heaters are insulated conductors with a tapered thickness).
[0116] It is to be understood the invention is not limited to particular systems described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification, the singular forms "a", "an" and "the" include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to "a core" includes a combination of two or more cores and reference to "a material" includes mixtures of materials.
[0117] Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description.
Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
[0118] It is to be understood that each of the features in the claims set forth below may be combined with, or separated from, features from other claims. For example, the features of two or more dependent claims can be combined together to form a claim that is multiply dependent.

Claims (19)

1. A method for installing two or more heaters in a subsurface formation, comprising:

providing a spool comprising a substantially helical configuration of two or more heaters that have been spooled on the spool;

unspooling the helical configuration of heaters from the spool; and installing the helical configuration of heaters into an opening in a subsurface formation.
2. The method of claim 1, wherein the subsurface formation comprises a hydrocarbon containing formation.
3. The method of claim 1, wherein the heaters are insulated conductor heaters.
4. The method of claim 1, wherein the helical configuration of heaters comprises a pitch between about 5% and about 10%.
5. The method of claim 1, further comprising varying the pitch of the helical configuration of heaters along a length of the heaters.
6. The method of claim 1, further comprising twisting the two or more heaters using a twist head.
7. The method of claim 1, further comprising twisting two or more heaters as the heaters are spooled onto the spool.
8. The method of claim 1, further comprising twisting two or more heaters as the heaters are spooled onto the spool into a substantially helical configuration.
9. The method of claim 1, further comprising spooling the helical configuration of heaters onto the spool.
10. A method for installing three heaters in a subsurface formation, comprising:
providing a spool comprising a substantially helical configuration of three heaters that have been spooled on the spool;
unspooling the helical configuration of heaters from the spool; and installing the helical configuration of heaters into an opening in a subsurface formation.
11. The method of claim 10, wherein the subsurface formation comprises a hydrocarbon containing formation.
12. The method of claim 10, wherein the heaters are insulated conductor heaters.
13. The method of claim 10, wherein the helical configuration of heaters comprises a pitch between about 5% and about 10%.
14. The method of claim 10, further comprising varying the pitch of the helical configuration of heaters along a length of the heaters.
15. The method of claim 10, further comprising twisting the three heaters using a twist head.
16. The method of claim 10, further comprising twisting three heaters as the heaters are spooled onto the spool.
17. The method of claim 10, further comprising twisting three heaters as the heaters are spooled onto the spool into a substantially helical configuration.
18. The method of claim 10, further comprising spooling the helical configuration of heaters onto the spool.
19. A method for installing two or more heaters in a subsurface formation, comprising:
providing a spool comprising a helical configuration of two or more heaters;
unspooling the helical configuration of heaters from the spool; and installing the helical configuration of heaters into a subsurface formation.
CA2794569A 2010-04-09 2011-04-07 Helical winding of insulated conductor heaters for installation Abandoned CA2794569A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32266410P 2010-04-09 2010-04-09
US61/322,664 2010-04-09
PCT/US2011/031565 WO2011127272A1 (en) 2010-04-09 2011-04-07 Helical winding of insulated conductor heaters for installation

Publications (1)

Publication Number Publication Date
CA2794569A1 true CA2794569A1 (en) 2011-10-13

Family

ID=44763279

Family Applications (3)

Application Number Title Priority Date Filing Date
CA2794569A Abandoned CA2794569A1 (en) 2010-04-09 2011-04-07 Helical winding of insulated conductor heaters for installation
CA2794689A Abandoned CA2794689A1 (en) 2010-04-09 2011-04-07 Insulated conductor heaters with semiconductor layers
CA2793627A Active CA2793627C (en) 2010-04-09 2011-04-07 Insulating blocks and methods for installation in insulated conductor heaters

Family Applications After (2)

Application Number Title Priority Date Filing Date
CA2794689A Abandoned CA2794689A1 (en) 2010-04-09 2011-04-07 Insulated conductor heaters with semiconductor layers
CA2793627A Active CA2793627C (en) 2010-04-09 2011-04-07 Insulating blocks and methods for installation in insulated conductor heaters

Country Status (7)

Country Link
EP (3) EP2556208A4 (en)
JP (3) JP5868942B2 (en)
CN (3) CN102835185B (en)
AU (3) AU2011237617A1 (en)
CA (3) CA2794569A1 (en)
RU (1) RU2570508C2 (en)
WO (3) WO2011127257A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257269B (en) * 2015-10-26 2017-10-17 中国石油天然气股份有限公司 Steam flooding and fire flooding combined oil production method
HUE060177T2 (en) * 2016-02-08 2023-02-28 Proton Tech Inc In-situ process to produce hydrogen from underground hydrocarbon reservoirs
AU2019427102B2 (en) 2019-01-29 2023-03-02 Aarbakke Innovation As Heat transfer prevention method for wellbore heating system
GB2613608B (en) * 2021-12-08 2024-01-17 Parson Timothy A method of syngas production and a system for use in syngas production

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732195A (en) * 1956-01-24 Ljungstrom
US1905232A (en) * 1928-12-17 1933-04-25 Wesix Nat Company Electrical heating element and method of manufacture
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2780450A (en) * 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2789805A (en) * 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
US2923535A (en) * 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US3433891A (en) * 1966-12-29 1969-03-18 Gen Electric Graded insulated cable
JPS4858384A (en) * 1971-11-25 1973-08-16
JPS6046791B2 (en) * 1977-08-22 1985-10-17 株式会社東芝 Sheathed heater for nuclear fuel simulation heating element
US4269638A (en) * 1979-10-10 1981-05-26 The Okonite Company Method of manufacturing a sealed cable employing a wrapped foam barrier
JPS5569989A (en) * 1979-10-29 1980-05-27 Okazaki Mfg Co Ltd Method of manufacturing electrically heated cable
US4532375A (en) * 1981-10-22 1985-07-30 Ricwil, Incorporated Heating device for utilizing the skin effect of alternating current
JPS58121510A (en) * 1982-01-13 1983-07-19 株式会社東芝 Method of producing sheathed structure
JPS5916095U (en) * 1982-07-20 1984-01-31 株式会社八光電機製作所 sheath heater
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
JPS6079692A (en) * 1983-10-07 1985-05-07 植松 義輝 Sheathed fine tube heater and method of producing same
US4843713A (en) * 1986-07-25 1989-07-04 Shell Oil Company Apparatus for making helical flowline bundles
US4979296A (en) * 1986-07-25 1990-12-25 Shell Oil Company Method for fabricating helical flowline bundles
ES2040554T3 (en) * 1989-01-28 1993-10-16 City Electrical Factors Ltd. METHOD FOR MANUFACTURING INSULATED CABLE WITH MINERAL AND ISOLATED CABLE WITH MINERAL MADE WITH THIS METHOD.
JPH0316693U (en) * 1989-07-03 1991-02-19
TW215446B (en) * 1990-02-23 1993-11-01 Furukawa Electric Co Ltd
JPH04212207A (en) * 1990-02-23 1992-08-03 Furukawa Electric Co Ltd:The Olefinic resin compound for power cable, power cable using the same, and connecting part of power cable
US5782301A (en) * 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US6923273B2 (en) * 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
RU2164728C2 (en) * 1999-03-09 2001-03-27 Московский государственный институт стали и сплавов (технологический университет) Non-metal high-temperature heater
WO2001081240A2 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In-situ heating of coal formation to produce fluid
RU20697U1 (en) * 2001-05-28 2001-11-20 Открытое акционерное общество "Камкабель" ELECTRIC HEATING CABLE
JP2002367761A (en) * 2001-06-07 2002-12-20 Ebara Densen Kk Electromagnetic wave-restraining heater
NZ567052A (en) * 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
DE10325517A1 (en) * 2003-06-05 2004-12-23 Hew-Kabel/Cdt Gmbh & Co. Kg Electric heating cable or heating tape
CA2579496A1 (en) * 2004-04-23 2005-11-03 Shell Internationale Research Maatschappij B.V. Subsurface electrical heaters using nitride insulation
ATE435964T1 (en) * 2005-04-22 2009-07-15 Shell Int Research IN-SITU CONVERSION PROCESS USING A CIRCUIT HEATING SYSTEM
CN101553640B (en) * 2006-04-21 2013-05-29 国际壳牌研究有限公司 Heater, method for heating hydrocarbon-containing stratum using the heater, produced hydrocarbon composition and transportation fuel
EP2010754A4 (en) * 2006-04-21 2016-02-24 Shell Int Research Adjusting alloy compositions for selected properties in temperature limited heaters
US7622677B2 (en) * 2006-09-26 2009-11-24 Accutru International Corporation Mineral insulated metal sheathed cable connector and method of forming the connector
US7540324B2 (en) * 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
JP5396268B2 (en) * 2007-03-28 2014-01-22 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2008131182A1 (en) * 2007-04-20 2008-10-30 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
EP2198118A1 (en) * 2007-10-19 2010-06-23 Shell Internationale Research Maatschappij B.V. Irregular spacing of heat sources for treating hydrocarbon containing formations
US8525033B2 (en) * 2008-08-15 2013-09-03 3M Innovative Properties Company Stranded composite cable and method of making and using
CN102612640B (en) * 2009-10-09 2014-01-08 国际壳牌研究有限公司 Methods for assessing a temperature in a subsurface formation

Also Published As

Publication number Publication date
JP2013524056A (en) 2013-06-17
CN102884279B (en) 2016-01-20
JP2013524465A (en) 2013-06-17
CA2793627C (en) 2019-06-11
WO2011127275A1 (en) 2011-10-13
CN102835185A (en) 2012-12-19
JP2013524055A (en) 2013-06-17
CN102844520B (en) 2016-02-03
EP2556721A4 (en) 2014-07-02
EP2556210A1 (en) 2013-02-13
CN102844520A (en) 2012-12-26
WO2011127257A1 (en) 2011-10-13
EP2556208A1 (en) 2013-02-13
AU2011237479B2 (en) 2015-01-29
RU2012147630A (en) 2014-05-20
RU2570508C2 (en) 2015-12-10
EP2556208A4 (en) 2014-07-02
EP2556210A4 (en) 2014-07-09
CA2794689A1 (en) 2011-10-13
AU2011237476B2 (en) 2015-01-22
EP2556721A1 (en) 2013-02-13
JP5868942B2 (en) 2016-02-24
AU2011237479A1 (en) 2012-09-27
CN102884279A (en) 2013-01-16
CN102835185B (en) 2015-11-25
AU2011237617A1 (en) 2012-09-20
WO2011127272A1 (en) 2011-10-13
CA2793627A1 (en) 2011-10-13
AU2011237476A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US8967259B2 (en) Helical winding of insulated conductor heaters for installation
US8939207B2 (en) Insulated conductor heaters with semiconductor layers
US9080409B2 (en) Integral splice for insulated conductors
US9226341B2 (en) Forming insulated conductors using a final reduction step after heat treating
US20130086803A1 (en) Forming a tubular around insulated conductors and/or tubulars
US20130087551A1 (en) Insulated conductors with dielectric screens
CA2777119A1 (en) Press-fit coupling joint for joining insulated conductors
AU2011237476B2 (en) Helical winding of insulated conductor heaters for installation
AU2014101546A4 (en) Insulating blocks and methods for installation in insulated conductor heaters

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160331

FZDE Discontinued

Effective date: 20180409