CA2785532A1 - Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers - Google Patents

Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers Download PDF

Info

Publication number
CA2785532A1
CA2785532A1 CA2785532A CA2785532A CA2785532A1 CA 2785532 A1 CA2785532 A1 CA 2785532A1 CA 2785532 A CA2785532 A CA 2785532A CA 2785532 A CA2785532 A CA 2785532A CA 2785532 A1 CA2785532 A1 CA 2785532A1
Authority
CA
Canada
Prior art keywords
heavy oil
scavenger
aqueous
hydrogen sulfide
processing equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2785532A
Other languages
French (fr)
Inventor
Larry John Karas
Craig Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CA2785532A1 publication Critical patent/CA2785532A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • C10G29/24Aldehydes or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A hydrogen sulfide scavenging process for heavy oil that reduces hydrogen sulfide while minimizing corrosion to processing equipment. The method includes the steps of adding an aqueous-based scavenger containing one or more aldehydes, such as giyoxal, Io the heavy oil using a static mixer injection system and creating an aqueous-based scavenger/heavy oil emulsion using a high shear/high velocity pump. The aqueous- based scavenger may be added in a scavenger addition branch, with the emulsion being formed in the addition branch and then returned to the processing equipment.

Description

EMULSIFICATION OF HYDROCARBON GAS OILS TO INCREASE
EFFICACY OF WATER BASED HYDROGEN SULFIDE SCAVENGERS
BACKGROUND OF THE INVENTION

Field of the Invention 100011 This invention relates generally to processing heavy oil, and more particularly, to methods for removing hydrogen sulfide in heavy oil with an aqueous-based scavenger/oil emulsion.

Description of Related Art 100021 Fossil products, and notably heavy oil, often contain significant quantities of hydrogen sulphide, H2S, which is a toxic, highly corrosive, inflammable and explosive gas. The risk of exposure to hydrogen sulfide from handling heavy oil is a health and safety concern during storage, transportation (shipping, truck or pipeline) and processing.
(00031 Hydrogen sulfide scavengers can be used to remove hydrogen sulfide from heavy oil. It is known to be possible to reduce the hydrogen sulphide content present in aqueous mediums by using aqueous solutions of aldehydes such as formaldehyde, glyoxal, and glutaraldehyde (see for example the U.S. Pat. Nos.
4,680,127 and 5,284,635). However, simple addition of water-based hydrogen sulfide scavengers to heavy oil provides poor results. Additionally, when dispersed in a heavy oil, water-based scavengers such as glyoxal will eventually settle out of the heavy oil into an acidic aqueous phase and settle to the bottom of processing equipment.
This aqueous phase may run along the bottom of the processing or refinery equipment as small tributaries in pipelines or stagnate at the bottom of holding tanks.
This acidic aqueous phase is highly corrosive and can cause troughing in the processing or refinery equipment.
100041 What is needed is an improved method for removing hydrogen sulfide from hydrocarbon media without causing corrosion to processing equipment.

I

SUMMARY OF THE INVENTION
100051 In one aspect, the invention is directed to a method for reducing the amount of hydrogen sulfide present in heavy oil and reducing the amount of corrosion in processing equipment contacting the heavy oil. The method includes the steps of adding an aqueous-based scavenger containing one or more aldehydes to the heavy oil using a static mixer injection system and creating an aqueous-based scavenger/heavy oil emulsion using a high shear/high velocity pump. In one embodiment, the method further includes diverting a portion of the heavy oil into a scavenger addition branch, adding the aqueous-based scavenger to the portion of the heavy oil and forming the emulsion in the addition branch, and adding the aqueous-based scavenger/oil emulsion to the heavy oil in the processing equipment. In one desirable embodiment, the aqueous-based scavenger is glyoxal. The various embodiments provide an improved hydrogen sulfide scavenging process for heavy oil that reduces hydrogen sulfide while minimizing corrosion to processing equipment.
[00061 The present invention and its advantages over the prior art will become apparent upon reading the following detailed description and the appended claims with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
100071 The above mentioned and other features of this invention will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
100081 FIG. I is a schematic diagram of an aqueous-based scavenger addition system for use with hydrocarbon media processing equipment.

DETAILED DESCRIPTION OF THE INVENTION
100091 The invention will now be described in the following detailed description with reference to the drawings, wherein preferred embodiments are described in detail to enable practice of the invention. Although the invention is described with reference to these specific preferred embodiments, it will be understood that the invention is not limited to these preferred embodiments. But to the contrary, the invention includes numerous alternatives, modifications and equivalents as will become apparent from consideration of the following detailed description.
100101 The singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. The endpoints of all ranges reciting the same characteristic are independently combinable and inclusive of the recited endpoint. All references are incorporated herein by reference.
100111 The modifier "about" used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the tolerance ranges associated with measurement of the particular quantity).
100121 "Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, or that the subsequently identified material may or may not be present, and that the description includes instances where the event or circumstance occurs or where the material is present, and instances where the event or circumstance does not occur or the material is not present.
100131 Turning now to Figure 1, a hydrogen sulfide scavenger addition system is fluidically connected to processing equipment 12 for hydrocarbon media. The scavenger system 10 reduces the amount of hydrogen sulfide present in the hydrocarbon media, such as heavy oils, by adding an aqueous-based scavenger in a manner so as to desirably avoid causing significant corrosion to processing equipment 12.
Aqueous-based scavengers are useful for the elimination of hydrogen sulphide present in various fluids and notably are particularly effective at eliminating the hydrogen sulphide present in heavy oils which can exist in the form of water in oil or oil in water emulsions. The processing equipment 12 in contact with the heavy oil may be any type of equipment that can be used for processing the hydrocarbon media, such as pipelines and holding tanks. Processing equipment 12 subject to corrosion is generally processing equipment made of carbon steel, but any type of processing equipment may be protected.
The heavy oil may be any type of heavy oil containing hydrogen sulfide. In one embodiment, the heavy oil includes, but is not limited to, gas oil, naphtha, FCC slurry, diesel fuel, fuel oil, jet fuel, gasoline, kerosene or vacuum residua. In one embodiment, the heavy oil may be at an elevated temperature to aid in transport in the processing equipment 12. For example, the heavy oil may be at a temperature of from about ambient to about 150 C. Typically, the temperatures required to move the heavy oil in the processing equipment 12 is about 80 C.
100141 In the illustrated embodiment, a portion of the heavy oil flowing through the processing equipment 12 is diverted from the processing equipment 12 into the scavenger addition system 10 via a scavenger addition branch 14. A static mixer 16 is used to initially mix the scavenger with the portion of heavy oil flowing through the system 10. In one embodiment, the static mixer 16 comprises an injection quill dispersion system 18. The scavenger is added to the diverted heavy oil flow in a continuous manner with the injection quill 18 located generally at the center of the addition branch 14 in the direction of the heavy oil flow. The injection quill desirably has an open-ended tube (not shown) cut at about a 45 angle with a slot. It utilizes the turbulence created to achieve distribution of the injected scavenger into the heavy oil flow in the addition branch 14. The scavenger injection rate is controlled with an injection pump 20 or shut-off valve 22 in addition line 24. A suitable injection quill 18 is'-available from Metal Samples Corrosion Monitoring Systems of Munford, AL.
Alternately, the scavenger may be injected into the heavy oil by any conventional in-line injection system and may be injected at any point in-line suitable to allow the scavenger to mix with the heavy oil.
100151 After addition of the scavenger to the heavy oil, an aqueous-based scavenger/oil micro-emulsion is formed using a high shear/high velocity mixer or pump 30. In one embodiment, an inline high shear pump 30 such as one available from Silverson Machines, Inc. of East Longmeadow, MA. The diverted portion of the heavy oil flow in the scavenger addition system 10, now containing the micro-emulsion, is then returned to the heavy oil flow in the processing equipment 12.
Alternately, the scavenger may be added to the heavy oil flowing through the processing equipment without diverting a portion of the flow such that the entire heavy oil flow flows through the scavenger addition system 10.
100161 According to the invention, the scavenger is a dispersed aqueous phase containing about 20 to 70% of one or more aldehydes chosen from the group constituted by formaldehyde, glyoxal, glutaraldehyde, glycolaldehyde or glyoxylic acid. In one desirable embodiment, the water-based scavenger added to the heavy oil to reduce the hydrogen sulfide is Glyoxal. Glyoxal is a water-soluble aldehyde and may include oligomers of glyoxal. Glyoxal is commercially available as a 40 weight percent aqueous solution. The scavenger may also contain an enhancing additive to catalyze the reaction of actives with the hydrogen sulfide. In one embodiment, the enhancing catalyst is a quaternary ammonium salt. The quaternary ammonium salt desirably is added in an amount of about 2.5 wt %.
100171 The glyoxal is added to the heavy oil in an amount sufficient to reduce the levels of hydrogen sulfide in the heavy oil. In one embodiment, glyoxal may be added in an amount of from about I ppm to about 2000 ppm, and desirably between about I ppm and about 500 ppm by volume, based on the velocity of the heavy oil through the processing equipment and the concentration of hydrogen sulfide. In another embodiment, glyoxal may be added in an amount of from about 10 ppm to about ppm by volume. Any amount of hydrogen sulfide in the heavy oil may be reduced and the actual amount of residual hydrogen sulfide will vary depending on the starting amount. In one embodiment, the hydrogen sulfide levels are reduced to 150 ppm by volume or less, as measured in the vapor phase, based on the volume of the heavy oil.
In another embodiment, the hydrogen sulfide levels are reduced to 100 ppm by volume or less, as measured in the vapor phase, based on the volume of the heavy oil.
In another embodiment, the hydrogen sulfide levels are reduced to 50 ppm by volume or less, as measured in the vapor phase, based on the volume of the heavy oil. In another embodiment, the hydrogen sulfide levels are reduced to 20 ppm by volume or less, as measured in the vapor phase, based on the volume of the heavy oil. It is believed that emulsification of the water-based scavenger in the hydrocarbon media greatly increases the surface area of the aqueous phase. This increased surface area in combination with the temperature required to move the hydrocarbon media in the pipeline allows for efficient transfer of actives into the hydrocarbon phase. This effective application of the scavenger reduces the amount of chemical that is needed to be added to the hydrocarbon media. Additionally, aided by turbulent flow in the pipeline, the water-based scavenger/oil micro-emulsion takes several hours to separate. Typically, this allows sufficient time for the heavy oil to flow through the processing equipment 12 and into a suitable storage facility, thus, reducing any, corrosion effects on the processing equipment 12.
(00181 While the disclosure has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present disclosure. As such, further modifications and equivalents of the disclosure herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the scope of the disclosure as defined by the following claims.

Claims (5)

1. A method for removal of hydrogen sulphide present in heavy oil in hydrocarbon media processing equipment, the method comprising the steps of:
adding an aqueous-based scavenger containing one or more aldehydes to the heavy oil using a static mixer injection system; and creating an aqueous-based scavenger/heavy oil emulsion using a high shear/high velocity pump.
2. The method of claim 1 further comprising diverting a portion of the heavy oil into a scavenger addition branch, adding said aqueous-based scavenger to the portion of the heavy oil and forming the emulsion in the addition branch, and adding the aqueous-based scavenger/oil emulsion to the heavy oil in the processing equipment.
3. The method of claim 1 wherein the static mixer uses a dispersion quill.
4. The method of claim 1 wherein the aqueous-based scavenger is glyoxal.
5. The method of claim 1 wherein the processing equipment comprises a pipeline.
CA2785532A 2009-12-23 2010-10-21 Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers Abandoned CA2785532A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/646,432 2009-12-23
US12/646,432 US20110147272A1 (en) 2009-12-23 2009-12-23 Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers
PCT/US2010/053457 WO2011087540A2 (en) 2009-12-23 2010-10-21 Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers

Publications (1)

Publication Number Publication Date
CA2785532A1 true CA2785532A1 (en) 2011-07-21

Family

ID=44149590

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2785532A Abandoned CA2785532A1 (en) 2009-12-23 2010-10-21 Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers

Country Status (15)

Country Link
US (1) US20110147272A1 (en)
EP (1) EP2516596A2 (en)
JP (1) JP2013515818A (en)
KR (1) KR20120123348A (en)
CN (1) CN102762696A (en)
AR (1) AR079659A1 (en)
AU (1) AU2010341783A1 (en)
BR (1) BR112012015563A2 (en)
CA (1) CA2785532A1 (en)
CL (1) CL2012001711A1 (en)
MX (1) MX2012007493A (en)
RU (1) RU2012127278A (en)
SG (1) SG181925A1 (en)
TW (1) TW201137108A (en)
WO (1) WO2011087540A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX351425B (en) 2011-09-23 2017-10-13 Lonza Ag Process and composition for the removal of hydrogen sulfide from industrial process fluids.
WO2013049027A1 (en) * 2011-09-27 2013-04-04 General Electric Company Hydrogen sulfide scavenger compositions, methods for making and processes for removing hydrogen sulfide from liquid hydrocarbon media
WO2014031537A2 (en) * 2012-08-21 2014-02-27 Lonza, Inc. Method of scavenging hydrogen sulfide and/or sulfhydryl compounds
WO2015141535A1 (en) * 2014-03-17 2015-09-24 株式会社クラレ Composition for removal of sulphur-containing compounds
KR20170110079A (en) * 2015-01-29 2017-10-10 주식회사 쿠라레 Composition for removing sulfur-containing compounds
MX2018004223A (en) 2015-10-14 2018-08-01 Topsoe Haldor As A process for removing sulphur compounds from process streams.
CA3038037A1 (en) 2016-09-27 2018-04-05 Kuraray Co., Ltd. Metal corrosion suppressing method
CA3044211A1 (en) 2016-11-22 2018-05-31 Kuraray Co., Ltd. Composition for removal of sulfur-containing compound
US10513662B2 (en) * 2017-02-02 2019-12-24 Baker Hughes, A Ge Company, Llc Functionalized aldehydes as H2S and mercaptan scavengers
CN108732940B (en) * 2017-04-24 2021-05-07 西门子(中国)有限公司 Method and system for optimizing top circulating oil flow of catalytic cracking fractionator for gasoline and diesel cutting process
KR20220035200A (en) 2019-07-17 2022-03-21 비엘 테크놀러지스 인크. Amine Removal and Conversion Method in Refinery Demineralizer
CN112710812B (en) * 2020-11-17 2023-02-24 中国石油天然气股份有限公司 Integrated process for detecting and treating toxic gas in crude oil produced by oil field
WO2024081958A2 (en) * 2022-10-14 2024-04-18 Solugen, Inc. Compositions to control level of undesirable materials

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344842A (en) * 1979-05-31 1982-08-17 Irwin Fox Reactive iron oxide agents for scavenging hydrogen sulfide from hydrocarbon liquids
US4680127A (en) * 1985-12-13 1987-07-14 Betz Laboratories, Inc. Method of scavenging hydrogen sulfide
US5284635A (en) * 1989-09-05 1994-02-08 Societe Francaise Hoechst Process for the elimination of hydrogen sulfide by using water-in-oil emulsions
US5397708A (en) * 1993-05-13 1995-03-14 Nalco Chemical Company Method for detection of sulfides
DE4342620C1 (en) * 1993-12-14 1995-07-06 Starck H C Gmbh Co Kg Process for the production of metal hydroxides
US5674377A (en) * 1995-06-19 1997-10-07 Nalco/Exxon Energy Chemicals, L.P. Method of treating sour gas and liquid hydrocarbon
US5744024A (en) * 1995-10-12 1998-04-28 Nalco/Exxon Energy Chemicals, L.P. Method of treating sour gas and liquid hydrocarbon
US6063346A (en) * 1998-06-05 2000-05-16 Intevep, S. A. Process for scavenging hydrogen sulfide and mercaptan contaminants from a fluid
GB9915214D0 (en) * 1999-06-29 1999-09-01 Bp Exploration Operating Microemulsions
GB0031710D0 (en) * 2000-12-27 2001-02-07 Dyno Oil Field Chemicals Process for the reduction or elimination of hydrogen sulphide
US7314545B2 (en) * 2004-01-09 2008-01-01 Lyondell Chemical Technology, L.P. Desulfurization process
EA012104B1 (en) * 2004-10-01 2009-08-28 Пропуре Ас Multi fluid injection mixer
US7267477B1 (en) * 2004-10-07 2007-09-11 Broad Reach Companies, Llc Fluid blending utilizing either or both passive and active mixing
US7576136B2 (en) * 2005-06-07 2009-08-18 Ge Betz, Inc. Emulsified feedstock for hydrocarbon process units that incorporate spray atomization
US8162048B2 (en) * 2008-09-09 2012-04-24 Tetra Technologies, Inc. Method of delivering frac fluid and additives

Also Published As

Publication number Publication date
WO2011087540A3 (en) 2011-11-17
SG181925A1 (en) 2012-07-30
TW201137108A (en) 2011-11-01
WO2011087540A2 (en) 2011-07-21
BR112012015563A2 (en) 2017-09-05
RU2012127278A (en) 2014-01-27
EP2516596A2 (en) 2012-10-31
KR20120123348A (en) 2012-11-08
CL2012001711A1 (en) 2013-04-12
MX2012007493A (en) 2012-08-03
CN102762696A (en) 2012-10-31
US20110147272A1 (en) 2011-06-23
AR079659A1 (en) 2012-02-08
JP2013515818A (en) 2013-05-09
AU2010341783A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US20110147272A1 (en) Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers
US10882762B2 (en) Method and system for removing hydrogen sulfide from sour oil and sour water
US9028679B2 (en) Method and system for removing hydrogen sulfide from sour oil and sour water
US9364773B2 (en) Method and system for removing hydrogen sulfide from sour oil and sour water
US11767236B2 (en) Method and system for removing hydrogen sulfide from sour oil and sour water
Gutzeit Effect of organic chloride contamination of crude oil on refinery corrosion
US20230348795A1 (en) Hydrocarbon liquid based chemical compositions and treatment methods using same for remediating h2s and other contaminants in fluids and mixtures of contaminated fluids
Kenreck Manage hydrogen sulfide hazards with chemical scavengers
Ropital et al. Corrosion and degradation of metallic materials: understanding of the phenomena and applications in petroleum and process industries
Namazi et al. Amine corrosion in gas sweetening plant: causes and minimization on real case study
Aslam et al. Corrosion inhibitors for crude oil refinery units
Valdez‐Salas et al. Vapor phase corrosion inhibitors for oil and gas field applications
Powell et al. Guidelines When Conducting Hydrostatic Pressure Tests And Management of Extended Dwell Times Through Dry/Wet Lay-Ups
TW201319240A (en) Hydrogen sulfide scavenger compositions, methods for making and processes for removing hydrogen sulfide from liquid hydrocarbon media
WO2016183125A1 (en) Hydrogen sulfide removal system
Nyborg Pipeline corrosion prevention by ph stabilization or corrosion inhibitors
US11692126B1 (en) Method of pretreating a pipeline or apparatus
Mohamed et al. Approach to corrosion management program and risk based inspection development for the world's first floating lng
le Grange et al. HOW TO LIMIT AMINE SYSTEM FAILURES: A review of incident trends reveals ways to reduce risks to production.
Chakraborty et al. Cost-Effective Sour Management in Mixed Production Systems
Nouri et al. A verified computer model for corrosion rate prediction in a di-ethanol amine system using field data
Takyi EFFECTS OF COVID-19 ON PETROLEUM STORAGE TANKS AND PIPELINES: A FOCUS ON SWEET TOP-OF-LINE CORROSION (TLC)
Palacios et al. A Risk Based Analysis Method for Corrosion Control Applied to an Amine Gas Sweetening Plant

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20141021