CA2781778A1 - Procede pour realiser une jonction etanche entre des pieces d'aeronef - Google Patents
Procede pour realiser une jonction etanche entre des pieces d'aeronef Download PDFInfo
- Publication number
- CA2781778A1 CA2781778A1 CA2781778A CA2781778A CA2781778A1 CA 2781778 A1 CA2781778 A1 CA 2781778A1 CA 2781778 A CA2781778 A CA 2781778A CA 2781778 A CA2781778 A CA 2781778A CA 2781778 A1 CA2781778 A1 CA 2781778A1
- Authority
- CA
- Canada
- Prior art keywords
- parts
- mold
- partition
- membrane
- aircraft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000003566 sealing material Substances 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims description 61
- 238000005192 partition Methods 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 19
- 238000007789 sealing Methods 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 102000000591 Tight Junction Proteins Human genes 0.000 claims description 3
- 108010002321 Tight Junction Proteins Proteins 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 210000001578 tight junction Anatomy 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 claims 1
- 230000001413 cellular effect Effects 0.000 claims 1
- 238000007373 indentation Methods 0.000 claims 1
- 229920001971 elastomer Polymers 0.000 description 10
- 239000000806 elastomer Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000003351 stiffener Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 238000009739 binding Methods 0.000 description 2
- 239000013536 elastomeric material Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004959 Rilsan Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/84—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
- B29C70/845—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined by moulding material on a relative small portion of the preformed parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14467—Joining articles or parts of a single article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/06—Frames; Stringers; Longerons ; Fuselage sections
- B64C1/068—Fuselage sections
- B64C1/069—Joining arrangements therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/06—Frames; Stringers; Longerons ; Fuselage sections
- B64C1/10—Bulkheads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C7/00—Structures or fairings not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14467—Joining articles or parts of a single article
- B29C2045/1454—Joining articles or parts of a single article injecting between inserts not being in contact with each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/30—Vehicles, e.g. ships or aircraft, or body parts thereof
- B29L2031/3076—Aircrafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/30—Vehicles, e.g. ships or aircraft, or body parts thereof
- B29L2031/3076—Aircrafts
- B29L2031/3082—Fuselages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C2001/0054—Fuselage structures substantially made from particular materials
- B64C2001/0081—Fuselage structures substantially made from particular materials from metallic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Dans le procédé pour réaliser une jonction étanche (118) entre des pièces (14, 116) d'aéronef allongées et s'étendant localement suivant des directions principales non parallèles entre elles; on assemble sur les pièces plusieurs parties d'un moule; et on injecte un matériau d'étanchéité dans le moule.
Description
Procédé pour réaliser une jonction étanche entre des pièces d'aéronef L'invention concerne les parties structurales d'aéronefs telles que les fuselages.
II est connu de réaliser à l'intérieur du fuselage d'un avion une cloison structurale séparant deux parties du volume interne et étanche aux gaz ou aux liquides. Par exemple, l'une des zones délimitées par la cloison sera pressurisée au contraire de l'autre zone, ou encore l'une des zones servira de réservoir de carburant. La jonction de la cloison avec la paroi du fuselage est réalisée suivant un angle localement perpendiculaire à cette paroi et aux pièces de la structure primaire de l'avion, structure comprenant les cadres, les raidisseurs, les lisses, les poutres, etc.
L'installation d'une telle cloison à demeure peut avoir lieu lors de la fabrication de l'avion. Mais il peut s'avérer souhaitable de l'installer en phase de deuxième industrialisation, à savoir alors que l'avion n'avait pas été conçu à
l'origine pour l'accueillir. C'est le cas notamment lorsque l'avion a déjà volé.
Or, la mise en place de cette cloison soulève différents problèmes. S'agissant d'une cloison structurale, elle doit supporter les efforts requis. Il est connu pour cela de fixer cette cloison à la structure primaire au moyen d'éclisses s'étendant de part et d'autre de la cloison et impliquant au moins deux pièces et plusieurs fixations structurales. En effet, on préfère la fixer au fuselage sans entamer les pièces de la structure primaire de l'avion afin de ne pas en menacer les propriétés mécaniques.
Mais, lorsqu'on recherche un gain de masse, cet agencement s'avère trop lourd ou critique en fatigue. Ainsi, dans certains cas, l'étanchéité est réalisée en mettant en place un mastic pris en sandwich entre les pièces. Mais cette solution exige d'ajouter une grande quantité de petites pièces de tôlerie fines et complexes à
mettre en place.
Un but de l'invention est de réaliser une jonction étanche entre des pièces, notamment des pièces structurales, par exemple lors d'une deuxième industrialisation de l'aéronef.
A cet effet, on prévoit selon l'invention un procédé pour réaliser une jonction étanche entre des pièces d'aéronef allongées et s'étendant localement suivant des directions principales non parallèles entre elles, dans lequel :
- on assemble sur les pièces plusieurs parties d'un moule ; et - on injecte un matériau d'étanchéité dans le moule.
Ainsi, on réalise l'étanchéité au moyen d'un bloc étanche moulé in situ sur les pièces. Cette étanchéité sera, si nécessaire, compatible avec une pression
II est connu de réaliser à l'intérieur du fuselage d'un avion une cloison structurale séparant deux parties du volume interne et étanche aux gaz ou aux liquides. Par exemple, l'une des zones délimitées par la cloison sera pressurisée au contraire de l'autre zone, ou encore l'une des zones servira de réservoir de carburant. La jonction de la cloison avec la paroi du fuselage est réalisée suivant un angle localement perpendiculaire à cette paroi et aux pièces de la structure primaire de l'avion, structure comprenant les cadres, les raidisseurs, les lisses, les poutres, etc.
L'installation d'une telle cloison à demeure peut avoir lieu lors de la fabrication de l'avion. Mais il peut s'avérer souhaitable de l'installer en phase de deuxième industrialisation, à savoir alors que l'avion n'avait pas été conçu à
l'origine pour l'accueillir. C'est le cas notamment lorsque l'avion a déjà volé.
Or, la mise en place de cette cloison soulève différents problèmes. S'agissant d'une cloison structurale, elle doit supporter les efforts requis. Il est connu pour cela de fixer cette cloison à la structure primaire au moyen d'éclisses s'étendant de part et d'autre de la cloison et impliquant au moins deux pièces et plusieurs fixations structurales. En effet, on préfère la fixer au fuselage sans entamer les pièces de la structure primaire de l'avion afin de ne pas en menacer les propriétés mécaniques.
Mais, lorsqu'on recherche un gain de masse, cet agencement s'avère trop lourd ou critique en fatigue. Ainsi, dans certains cas, l'étanchéité est réalisée en mettant en place un mastic pris en sandwich entre les pièces. Mais cette solution exige d'ajouter une grande quantité de petites pièces de tôlerie fines et complexes à
mettre en place.
Un but de l'invention est de réaliser une jonction étanche entre des pièces, notamment des pièces structurales, par exemple lors d'une deuxième industrialisation de l'aéronef.
A cet effet, on prévoit selon l'invention un procédé pour réaliser une jonction étanche entre des pièces d'aéronef allongées et s'étendant localement suivant des directions principales non parallèles entre elles, dans lequel :
- on assemble sur les pièces plusieurs parties d'un moule ; et - on injecte un matériau d'étanchéité dans le moule.
Ainsi, on réalise l'étanchéité au moyen d'un bloc étanche moulé in situ sur les pièces. Cette étanchéité sera, si nécessaire, compatible avec une pression
-2-différentielle régnant de part et d'autre du bloc. Le procédé peut être mis en oeuvre facilement sur un avion existant, par exemple un avion qui nécessite une reconversion avec des modifications structurales majeures. Il est économique et léger à effectuer. Il ne nécessite pas l'apport de pièces restant à demeure, ni la mise en place de fixations hors celles nécessaires au maintien temporaire du moule. Le bloc réalisé est calibré en volume. Le procédé peut être mis en oeuvre de façon répétitive tout en maîtrisant la masse du matériau ainsi installé. Si besoin, la jonction étanche peut être enlevée puis réalisée à nouveau si nécessaire, sans aucun dommage structural. Cet avantage est particulièrement important lorsqu'une réparation ou un contrôle par inspection visuelle de la zone est nécessaire dans l'aéronef. Ce procédé peut être mis en oeuvre en utilisant un matériau d'étanchéité
suffisamment souple qui tient compte des mouvements des pièces structurales lors de l'utilisation de l'aéronef. L'invention est applicable à une partie structurale d'un aéronef telle qu'un fuselage, une voilure ou un empennage.
De préférence, les pièces forment un cadre et une lisse d'un fuselage.
Ainsi, cet agencement est particulièrement utile pour rendre étanche une cloison séparant une zone avant et une zone arrière d'un volume interne du fuselage.
De préférence, préalablement à l'injection, on installe dans le moule au moins un bloc de matériau d'étanchéité, notamment en regard d'une face de l'une des pièces orientée en direction opposée à l'autre pièce.
Cette disposition facilite la mise en place de la jonction étanche, notamment lorsqu'elle est destinée à représenter un volume relativement grand, ou encore lorsque certaines zones pourraient être difficiles à combler avec le matériau d'étanchéité initialement à l'état liquide ou pâteux.
De préférence, au moins deux des parties du moule présentent une échancrure de réception de l'une des pièces.
De préférence, on serre au moins deux parties du moule en direction l'une de l'autre avec des moyens de serrage tels que des attaches auto-bloquantes, puis après injection on coupe les moyens de serrage au niveau d'une face du matériau d'étanchéité.
Ainsi, une portion des moyens de serrage reste à demeure dans le bloc étanche et se trouve sacrifiée.
Avantageusement, au moins l'un des moyens de serrage prend appui directement sur l'une des pièces, entre ces dernières.
De préférence, on insère au moins une des parties du moule dans un logement, en regard d'une face de l'une des pièces orientée en direction opposée à
suffisamment souple qui tient compte des mouvements des pièces structurales lors de l'utilisation de l'aéronef. L'invention est applicable à une partie structurale d'un aéronef telle qu'un fuselage, une voilure ou un empennage.
De préférence, les pièces forment un cadre et une lisse d'un fuselage.
Ainsi, cet agencement est particulièrement utile pour rendre étanche une cloison séparant une zone avant et une zone arrière d'un volume interne du fuselage.
De préférence, préalablement à l'injection, on installe dans le moule au moins un bloc de matériau d'étanchéité, notamment en regard d'une face de l'une des pièces orientée en direction opposée à l'autre pièce.
Cette disposition facilite la mise en place de la jonction étanche, notamment lorsqu'elle est destinée à représenter un volume relativement grand, ou encore lorsque certaines zones pourraient être difficiles à combler avec le matériau d'étanchéité initialement à l'état liquide ou pâteux.
De préférence, au moins deux des parties du moule présentent une échancrure de réception de l'une des pièces.
De préférence, on serre au moins deux parties du moule en direction l'une de l'autre avec des moyens de serrage tels que des attaches auto-bloquantes, puis après injection on coupe les moyens de serrage au niveau d'une face du matériau d'étanchéité.
Ainsi, une portion des moyens de serrage reste à demeure dans le bloc étanche et se trouve sacrifiée.
Avantageusement, au moins l'un des moyens de serrage prend appui directement sur l'une des pièces, entre ces dernières.
De préférence, on insère au moins une des parties du moule dans un logement, en regard d'une face de l'une des pièces orientée en direction opposée à
-3-l'autre pièce.
De préférence, la ou chaque partie de moule insérée est réalisée en matériau déformable alvéolaire.
De préférence, on réalise une jonction étanche au moyen des mêmes parties de moule sur d'autres pièces du même aéronef présentant des formes et/ou des dimensions différentes de celles des pièces.
Ainsi, les mêmes parties de moule sont utilisées à différents endroits de l'aéronef en dépit des différences de configuration des pièces destinées à
recevoir la jonction étanche.
On prévoit également selon l'invention un aéronef qui comprend des pièces allongées et s'étendant localement suivant des directions principales non parallèles entre elles, et un bloc moulé formant une jonction étanche entre les pièces.
De préférence, l'aéronef comporte une partie structurale, telle qu'un fuselage, une voilure ou un empennage, comprenant :
- une paroi séparant l'intérieur et l'extérieur de la partie structurale et comprenant des portions délimitant entre elles un volume interne de la partie structurale, et - une cloison structurale séparant l'une de l'autre des zones, par exemple avant et arrière, du volume, la cloison comprenant une membrane souple apte à
se déformer et des supports supportant la membrane de façon discontinue, le bloc assurant une jonction étanche entre la cloison et le reste de la partie structurale.
Ainsi, la membrane permet d'adapter les dimensions de la cloison aux dimensions effectives de la partie structurale déjà réalisée et aux déformations subies par cette dernière lors de l'utilisation de l'aéronef. Par ailleurs, les supports permettent à la cloison d'encaisser les efforts structuraux nécessaires et de les transmettre à la partie structurale. La cloison peut-être installée dans un aéronef existant en un court laps de temps, sans donc immobiliser longtemps l'aéronef au sol. Cette installation peut avoir lieu de façon particulièrement simple et peu onéreuse. Si la cloison selon l'invention est particulièrement utile en phase de deuxième industrialisation, c'est-à-dire pour la mise en place de cette cloison au sein d'un aéronef existant ou au moins dans une partie structurale achevé, l'invention demeure exploitable en première industrialisation, c'est-à-dire pour fixer une telle cloison lors de la construction de l'aéronef.
D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante d'un mode de réalisation donné à titre d'exemple non limitatif en référence aux dessins annexés sur lesquels :
De préférence, la ou chaque partie de moule insérée est réalisée en matériau déformable alvéolaire.
De préférence, on réalise une jonction étanche au moyen des mêmes parties de moule sur d'autres pièces du même aéronef présentant des formes et/ou des dimensions différentes de celles des pièces.
Ainsi, les mêmes parties de moule sont utilisées à différents endroits de l'aéronef en dépit des différences de configuration des pièces destinées à
recevoir la jonction étanche.
On prévoit également selon l'invention un aéronef qui comprend des pièces allongées et s'étendant localement suivant des directions principales non parallèles entre elles, et un bloc moulé formant une jonction étanche entre les pièces.
De préférence, l'aéronef comporte une partie structurale, telle qu'un fuselage, une voilure ou un empennage, comprenant :
- une paroi séparant l'intérieur et l'extérieur de la partie structurale et comprenant des portions délimitant entre elles un volume interne de la partie structurale, et - une cloison structurale séparant l'une de l'autre des zones, par exemple avant et arrière, du volume, la cloison comprenant une membrane souple apte à
se déformer et des supports supportant la membrane de façon discontinue, le bloc assurant une jonction étanche entre la cloison et le reste de la partie structurale.
Ainsi, la membrane permet d'adapter les dimensions de la cloison aux dimensions effectives de la partie structurale déjà réalisée et aux déformations subies par cette dernière lors de l'utilisation de l'aéronef. Par ailleurs, les supports permettent à la cloison d'encaisser les efforts structuraux nécessaires et de les transmettre à la partie structurale. La cloison peut-être installée dans un aéronef existant en un court laps de temps, sans donc immobiliser longtemps l'aéronef au sol. Cette installation peut avoir lieu de façon particulièrement simple et peu onéreuse. Si la cloison selon l'invention est particulièrement utile en phase de deuxième industrialisation, c'est-à-dire pour la mise en place de cette cloison au sein d'un aéronef existant ou au moins dans une partie structurale achevé, l'invention demeure exploitable en première industrialisation, c'est-à-dire pour fixer une telle cloison lors de la construction de l'aéronef.
D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante d'un mode de réalisation donné à titre d'exemple non limitatif en référence aux dessins annexés sur lesquels :
-4-- la figure 1 est une vue en coupe axiale verticale longitudinale d'un aéronef selon l'invention montrant le principe de la configuration de la cloison ;
- la figure 2 est une vue arrière du fuselage de la figure 1 montrant les éléments fixes supportant la cloison ;
- la figure 3 est une vue analogue à la figure 2 montrant la partie centrale de la cloison destinée à être fixée aux éléments fixes de la figure 2 ;
- la figure 4 est une vue analogue à la figure 2 montrant le principe de l'agencement des supports de la membrane ;
- la figure 5 est une vue de détail analogue à la figure 4 ;
- la figure 6 est une vue en coupe suivant le plan VI-VI de la cloison de la figure 3 ;
- la figure 7 est une vue à plus grande échelle du détail D de la figure 1 illustrant la fixation de la cloison en partie supérieure ;
- la figure 8 est une vue analogue à la figure 7 montrant la fixation de la membrane d'étanchéité en partie supérieure et ses déformations ;
- la figure 9 est une vue à plus grande échelle du détail E de la figure 1 montrant la fixation de la cloison en partie inférieure ;
- la figure 10 est une vue en coupe suivant le plan X-X de la cloison de la figure 5 montrant sa fixation en partie latérale ;
- les figures 11 et 12 sont des vues à plus grande échelle des détails F et G
des figures 6 et 11 respectivement ;
- la figure 13 est une vue en perspective d'un des tronçons de la membrane de la figure 11 ;
- la figure 14 montre la réalisation de l'étanchéité de la paroi en partie inférieure en coupe ;
- la figure 15 montre la réalisation de l'étanchéité de la cloison à d'autres endroits ;
- les figures 16, 17 et 18 sont des vues en coupe montrant l'utilisation d'un moule pour la réalisation d'un bloc d'étanchéité pour la cloison des figures précédentes, respectivement suivant les plans XVI-XVI, XVII-XVII et XVIII-XVIII des figures 17 et 16 ;
- les figures 19 et 20 sont des vues en coupe illustrant l'étanchéité des parties de moule, la coupe de la figure 19 étant prise suivant le plan XIX-XIX de la figure 17;
- la figure 21 est une vue en coupe suivant le plan XXI-XXI de l'agencement de la figure 17;
- la figure 22 est une vue analogue à la figure 11 montrant les forces exercées
- la figure 2 est une vue arrière du fuselage de la figure 1 montrant les éléments fixes supportant la cloison ;
- la figure 3 est une vue analogue à la figure 2 montrant la partie centrale de la cloison destinée à être fixée aux éléments fixes de la figure 2 ;
- la figure 4 est une vue analogue à la figure 2 montrant le principe de l'agencement des supports de la membrane ;
- la figure 5 est une vue de détail analogue à la figure 4 ;
- la figure 6 est une vue en coupe suivant le plan VI-VI de la cloison de la figure 3 ;
- la figure 7 est une vue à plus grande échelle du détail D de la figure 1 illustrant la fixation de la cloison en partie supérieure ;
- la figure 8 est une vue analogue à la figure 7 montrant la fixation de la membrane d'étanchéité en partie supérieure et ses déformations ;
- la figure 9 est une vue à plus grande échelle du détail E de la figure 1 montrant la fixation de la cloison en partie inférieure ;
- la figure 10 est une vue en coupe suivant le plan X-X de la cloison de la figure 5 montrant sa fixation en partie latérale ;
- les figures 11 et 12 sont des vues à plus grande échelle des détails F et G
des figures 6 et 11 respectivement ;
- la figure 13 est une vue en perspective d'un des tronçons de la membrane de la figure 11 ;
- la figure 14 montre la réalisation de l'étanchéité de la paroi en partie inférieure en coupe ;
- la figure 15 montre la réalisation de l'étanchéité de la cloison à d'autres endroits ;
- les figures 16, 17 et 18 sont des vues en coupe montrant l'utilisation d'un moule pour la réalisation d'un bloc d'étanchéité pour la cloison des figures précédentes, respectivement suivant les plans XVI-XVI, XVII-XVII et XVIII-XVIII des figures 17 et 16 ;
- les figures 19 et 20 sont des vues en coupe illustrant l'étanchéité des parties de moule, la coupe de la figure 19 étant prise suivant le plan XIX-XIX de la figure 17;
- la figure 21 est une vue en coupe suivant le plan XXI-XXI de l'agencement de la figure 17;
- la figure 22 est une vue analogue à la figure 11 montrant les forces exercées
-5-par la membrane 60 sur l'une des poutres de la cloison lorsque la cloison est telle que ces forces ne sont pas équilibrées ;
- la figure 23 est une vue analogue à la figure 22 dans laquelle la cloison est telle que les forces sont équilibrées ; et - la figure 24 est une autre vue à plus grande échelle du détail G de la figure 11.
L'aéronef illustré à la figure 1 est un aérodyne et en l'espèce un avion 2. Il comprend un fuselage 4 ayant une forme générale cylindrique allongée ayant pour axe principal l'axe horizontal 6. A l'avant du fuselage s'étend le poste de pilotage 8.
L'avion est muni d'ailes non représentées formant une voilure, de trains d'atterrissage dont une partie 10 est visible sur la figure 1 et de moteurs 12.
On utilise dans la suite le repère orthogonal X, Y, Z dans lequel les directions X
et Y sont horizontales et perpendiculaires entre elles, la direction X étant parallèle à
l'axe 6, et la direction Z est verticale.
On suppose ici que la fabrication de l'avion 2 est achevée, voire qu'il a déjà
volé. Il s'agit de mettre en place une cloison structurale étanche amovible au cours d'une phase de deuxième industrialisation. Cette cloison est destinée à être étanche à la pression cabine qui régnera seulement d'un côté de la cloison, en avant de cette dernière. On cherche aussi à faire en sorte que cette cloison puisse être installée rapidement et si besoin enlevée rapidement, à savoir en quelques heures.
Le fuselage comprend des cadres 14 de forme circulaire s'étendant chacun généralement dans un plan perpendiculaire à l'axe 6 et portant la peau 28 du fuselage. La peau est renforcée par des lisses profilées horizontales 116 également fixées aux cadres. Les cadres sont disposés dans des plans parallèles entre eux et se succédant le long de l'axe 6. On suppose ici que la cloison est installée pour s'étendre généralement dans un plan perpendiculaire à l'axe 6, au voisinage du cadre numéroté 30 dans la succession de cadres démarrant au nez de l'appareil.
On prévoit pour supporter la cloison 20 un sous-ensemble rigide 22, rigidement fixé au fuselage 4 et fixé à demeure à ce dernier en l'espèce. Il s'étend en partie périphérique de la cloison. Il comprend les tronçons latéraux gauche et droite du cadre 14, ainsi que des panneaux plans supérieur 24 et inférieur 26.
Les panneaux sont fixés directement à la peau 28. Le panneau supérieur 24 s'étend continument depuis la peau 28 du fuselage jusqu'à la hauteur d'un plafond d'une cabine de l'avion. Le panneau inférieur 26 s'étend continument depuis la peau jusqu'à la hauteur du plancher de la cabine. Ces panneaux sont fixés à la structure
- la figure 23 est une vue analogue à la figure 22 dans laquelle la cloison est telle que les forces sont équilibrées ; et - la figure 24 est une autre vue à plus grande échelle du détail G de la figure 11.
L'aéronef illustré à la figure 1 est un aérodyne et en l'espèce un avion 2. Il comprend un fuselage 4 ayant une forme générale cylindrique allongée ayant pour axe principal l'axe horizontal 6. A l'avant du fuselage s'étend le poste de pilotage 8.
L'avion est muni d'ailes non représentées formant une voilure, de trains d'atterrissage dont une partie 10 est visible sur la figure 1 et de moteurs 12.
On utilise dans la suite le repère orthogonal X, Y, Z dans lequel les directions X
et Y sont horizontales et perpendiculaires entre elles, la direction X étant parallèle à
l'axe 6, et la direction Z est verticale.
On suppose ici que la fabrication de l'avion 2 est achevée, voire qu'il a déjà
volé. Il s'agit de mettre en place une cloison structurale étanche amovible au cours d'une phase de deuxième industrialisation. Cette cloison est destinée à être étanche à la pression cabine qui régnera seulement d'un côté de la cloison, en avant de cette dernière. On cherche aussi à faire en sorte que cette cloison puisse être installée rapidement et si besoin enlevée rapidement, à savoir en quelques heures.
Le fuselage comprend des cadres 14 de forme circulaire s'étendant chacun généralement dans un plan perpendiculaire à l'axe 6 et portant la peau 28 du fuselage. La peau est renforcée par des lisses profilées horizontales 116 également fixées aux cadres. Les cadres sont disposés dans des plans parallèles entre eux et se succédant le long de l'axe 6. On suppose ici que la cloison est installée pour s'étendre généralement dans un plan perpendiculaire à l'axe 6, au voisinage du cadre numéroté 30 dans la succession de cadres démarrant au nez de l'appareil.
On prévoit pour supporter la cloison 20 un sous-ensemble rigide 22, rigidement fixé au fuselage 4 et fixé à demeure à ce dernier en l'espèce. Il s'étend en partie périphérique de la cloison. Il comprend les tronçons latéraux gauche et droite du cadre 14, ainsi que des panneaux plans supérieur 24 et inférieur 26.
Les panneaux sont fixés directement à la peau 28. Le panneau supérieur 24 s'étend continument depuis la peau 28 du fuselage jusqu'à la hauteur d'un plafond d'une cabine de l'avion. Le panneau inférieur 26 s'étend continument depuis la peau jusqu'à la hauteur du plancher de la cabine. Ces panneaux sont fixés à la structure
-6-principale de l'avion. Ils sont chacun auto-raidis et munis en l'espèce de raidisseurs allongés rectilignes verticaux 30, parallèles et distants les uns des autres.
Les panneaux supérieur et inférieur 24, 26 pourront présenter des ouvertures 110 servant pour le passage de différents systèmes tels que des conduits d'air et de liquide, par exemple d'eau, des câbles électriques et informatique, etc.
En référence à la figure 3, la cloison 20 comprend un sous-ensemble 32 fixé
au sous-ensemble 22 par des moyens rendant possible de le démonter facilement et rapidement. Ce sous-ensemble comprend une armature non-rigide comportant des parties rigides 34 et des zones souples déformables 36. Dans le présent exemple illustré en détail à la figure 5, on compte cinq parties rigides 34 et cinq zones souples déformables 36.
Les parties rigides et les zones souples, en l'espèce, se succèdent en alternance d'un côté à l'autre du fuselage, en commençant ici sur la gauche par une partie rigide 34, comme illustré avec les lettres R et S à la figure 4.
Chaque partie ou chaque zone s'étend sur toute la hauteur du sous-ensemble 32.
Celles se trouvant dans la zone médiane de ce sous-ensemble ont une forme générale rectangulaire. Elles sont ici au nombre de six sur les figures 3, 4 et 5, et s'étendent depuis le panneau supérieur 24 jusqu'au panneau inférieur 26 auxquels elles sont chacune fixées en propre.
Chacune des parties rigides 34, ou support, comprend en l'espèce deux poutres rectilignes verticales 40 s'étendant à distance l'une de l'autre et par exemple espacées de 500 mm. De préférence, les poutres sont situées au droit des rails longitudinaux du plancher de l'aéronef. Chaque partie rigide comprend des stabilisateurs sous la forme de traverses intercostales 42 reliant rigidement les deux poutres l'une à l'autre. Les stabilisateurs sont fixés aux poutres à
distance des extrémités de ces dernières en étant régulièrement espacés suivant la hauteur des poutres et formant avec cette dernière une configuration en échelle. Les stabilisateurs 42 ainsi fixés aux poutres rendent rigide chaque partie 34.
En référence aux figures 11 et 12, chaque poutre 40 est formée par un profilé
dont la section a une forme générale de H . La platine arrière 44 du profilé a une forme plane tandis que la platine avant illustrée en détail à la figure 12 a une forme générale en V renversé de sorte que les deux ailes 48 de la platine sont inclinées vers l'arrière. Chaque aile présente ainsi une face avant plane verticale 50 inclinée vers un côté du fuselage, par exemple en formant un angle d'environ 30 avec la direction transversale Y.
Chaque stabilisateur 42 a une forme générale plane et s'étend dans un plan horizontal. Il peut présenter des évidements 52 pour en réduire la masse. Son bord
Les panneaux supérieur et inférieur 24, 26 pourront présenter des ouvertures 110 servant pour le passage de différents systèmes tels que des conduits d'air et de liquide, par exemple d'eau, des câbles électriques et informatique, etc.
En référence à la figure 3, la cloison 20 comprend un sous-ensemble 32 fixé
au sous-ensemble 22 par des moyens rendant possible de le démonter facilement et rapidement. Ce sous-ensemble comprend une armature non-rigide comportant des parties rigides 34 et des zones souples déformables 36. Dans le présent exemple illustré en détail à la figure 5, on compte cinq parties rigides 34 et cinq zones souples déformables 36.
Les parties rigides et les zones souples, en l'espèce, se succèdent en alternance d'un côté à l'autre du fuselage, en commençant ici sur la gauche par une partie rigide 34, comme illustré avec les lettres R et S à la figure 4.
Chaque partie ou chaque zone s'étend sur toute la hauteur du sous-ensemble 32.
Celles se trouvant dans la zone médiane de ce sous-ensemble ont une forme générale rectangulaire. Elles sont ici au nombre de six sur les figures 3, 4 et 5, et s'étendent depuis le panneau supérieur 24 jusqu'au panneau inférieur 26 auxquels elles sont chacune fixées en propre.
Chacune des parties rigides 34, ou support, comprend en l'espèce deux poutres rectilignes verticales 40 s'étendant à distance l'une de l'autre et par exemple espacées de 500 mm. De préférence, les poutres sont situées au droit des rails longitudinaux du plancher de l'aéronef. Chaque partie rigide comprend des stabilisateurs sous la forme de traverses intercostales 42 reliant rigidement les deux poutres l'une à l'autre. Les stabilisateurs sont fixés aux poutres à
distance des extrémités de ces dernières en étant régulièrement espacés suivant la hauteur des poutres et formant avec cette dernière une configuration en échelle. Les stabilisateurs 42 ainsi fixés aux poutres rendent rigide chaque partie 34.
En référence aux figures 11 et 12, chaque poutre 40 est formée par un profilé
dont la section a une forme générale de H . La platine arrière 44 du profilé a une forme plane tandis que la platine avant illustrée en détail à la figure 12 a une forme générale en V renversé de sorte que les deux ailes 48 de la platine sont inclinées vers l'arrière. Chaque aile présente ainsi une face avant plane verticale 50 inclinée vers un côté du fuselage, par exemple en formant un angle d'environ 30 avec la direction transversale Y.
Chaque stabilisateur 42 a une forme générale plane et s'étend dans un plan horizontal. Il peut présenter des évidements 52 pour en réduire la masse. Son bord
-7-arrière est ici rectiligne tandis que son bord avant 54 présente une forme incurvée concave, par exemple en arc de cercle, telle que la partie médiane de ce bord est plus proche du bord arrière que ses parties d'extrémités. Le stabilisateur 42 est fixé
à des nervures 56 des poutres 40 associées. Le bord 54 s'étend également en retrait des ailes 48 et donc des faces avant 50 de ces dernières.
Au moins l'une des parties rigides 34 peut être aménagée pour accueillir une porte 74 comme illustré à la figure 4 ou un passage d'un autre type permettant à du matériel ou à des hommes de traverser la cloison. On pourra doter la porte d'un encadrement à profil en forme de Z avec un joint d'étanchéité. La porte pourra comprendre une peau auto-raidie, deux ferrures horizontales supportant des charnières et des butées de la porte, un mécanisme de manoeuvre et de verrouillage et un hublot de sécurité visuelle.
Chaque partie rigide 34 porte un tronçon de membrane souple déformable 60 fixé aux poutres 40 de façon à pouvoir se déplacer et se déformer. Il s'agit en l'espèce d'une couche d'un matériau non métallique tel qu'une résine aramide sous la forme de fibres, par exemple un poly-para-phénylène téréphtalamide commercialisé sous le nom de kevlar. Cette résine est noyée dans une couche de silicone au moyen d'un procédé par injection de sorte que la membrane 60 est armée et peut résister à un différentiel de pression cabine du type de celui que peut subir un avion volant à une altitude stratosphérique.
La membrane 60, illustrée notamment à la figure 13, présente des bords latéraux rectilignes verticaux 62 parallèles entre eux et par lesquels elle est fixée aux faces 50 des deux poutres correspondantes en étant pris en sandwich entre l'ailette 48 et une bride 64. La bride est fixée à l'ailette par exemple au moyen de vis 66, de rondelles et d'écrous prisonniers 68 s'étendant en partie arrière de l'ailette.
Comme illustré notamment à la figure 11, le tronçon de membrane 60 est fixé
aux poutres en ayant une forme non plane de l'une à l'autre de ces dernières, en l'espèce une forme bombée à section horizontale cylindrique. La membrane suit ainsi le bord avant 54 du stabilisateur 42, en demeurant à distance de ce dernier tout le long de ce dernier. Le rayon de courbure de la membrane sera par exemple inférieur ou égal à 800 mm. La membrane est montée de façon à pouvoir se retourner, c'est-à-dire à inverser sa courbure de sorte que son centre de courbure s'étende non plus en avant de la cloison mais en arrière de celle-ci, comme illustré
par le trait mixte 60'. Ce retournement peut survenir par exemple en cas de dépressurisation de la cabine.
Comme illustré à la figure 13, les parties d'extrémités supérieure et inférieure
à des nervures 56 des poutres 40 associées. Le bord 54 s'étend également en retrait des ailes 48 et donc des faces avant 50 de ces dernières.
Au moins l'une des parties rigides 34 peut être aménagée pour accueillir une porte 74 comme illustré à la figure 4 ou un passage d'un autre type permettant à du matériel ou à des hommes de traverser la cloison. On pourra doter la porte d'un encadrement à profil en forme de Z avec un joint d'étanchéité. La porte pourra comprendre une peau auto-raidie, deux ferrures horizontales supportant des charnières et des butées de la porte, un mécanisme de manoeuvre et de verrouillage et un hublot de sécurité visuelle.
Chaque partie rigide 34 porte un tronçon de membrane souple déformable 60 fixé aux poutres 40 de façon à pouvoir se déplacer et se déformer. Il s'agit en l'espèce d'une couche d'un matériau non métallique tel qu'une résine aramide sous la forme de fibres, par exemple un poly-para-phénylène téréphtalamide commercialisé sous le nom de kevlar. Cette résine est noyée dans une couche de silicone au moyen d'un procédé par injection de sorte que la membrane 60 est armée et peut résister à un différentiel de pression cabine du type de celui que peut subir un avion volant à une altitude stratosphérique.
La membrane 60, illustrée notamment à la figure 13, présente des bords latéraux rectilignes verticaux 62 parallèles entre eux et par lesquels elle est fixée aux faces 50 des deux poutres correspondantes en étant pris en sandwich entre l'ailette 48 et une bride 64. La bride est fixée à l'ailette par exemple au moyen de vis 66, de rondelles et d'écrous prisonniers 68 s'étendant en partie arrière de l'ailette.
Comme illustré notamment à la figure 11, le tronçon de membrane 60 est fixé
aux poutres en ayant une forme non plane de l'une à l'autre de ces dernières, en l'espèce une forme bombée à section horizontale cylindrique. La membrane suit ainsi le bord avant 54 du stabilisateur 42, en demeurant à distance de ce dernier tout le long de ce dernier. Le rayon de courbure de la membrane sera par exemple inférieur ou égal à 800 mm. La membrane est montée de façon à pouvoir se retourner, c'est-à-dire à inverser sa courbure de sorte que son centre de courbure s'étende non plus en avant de la cloison mais en arrière de celle-ci, comme illustré
par le trait mixte 60'. Ce retournement peut survenir par exemple en cas de dépressurisation de la cabine.
Comme illustré à la figure 13, les parties d'extrémités supérieure et inférieure
-8-70 du tronçon de membrane ont une configuration bombée dans deux directions perpendiculaires entre elles, en l'espèce une configuration sphérique. Les bords supérieur et inférieur 72 de la membrane sont en l'espèce rectilignes et horizontaux.
Les zones souples 36 de la cloison 20 sont formées seulement par un tronçon de membrane armée 60. Il est fixé aux ailettes 48 des poutres les plus proches des parties rigides adjacentes 34 comme illustré notamment à la figure 11. La forme et la fixation du tronçon de membrane sont les mêmes que pour le tronçon de membrane de chaque partie rigide 34.
La cloison 20 est ainsi formée par l'armature et les tronçons de membrane 60 qu'elle porte.
On a illustré à la figure 9 la fixation d'une des parties rigides 34 à la structure primaire de l'avion. Le panneau inférieur 26 s'étend sous le plancher 76 de l'avion, en contact avec la face inférieure de ce dernier. Ce plancher est entamé pour ménager une ouverture 78 au droit de chaque poutre 40. Pour chaque poutre, une ferrure 80 est fixée rigidement au panneau 26 en arrière de ce dernier. Une extrémité inférieure de la poutre 40 présente un prolongement 82 lié à la ferrure 80 au moyen d'une liaison traditionnelle par axe et rotules. Sur l'une des poutres de la partie rigide 34, cette liaison est apte à reprendre des efforts suivant les trois directions X, Y et Z et à transmettre des déplacements suivant les mêmes directions. Sur l'autre des poutres, la liaison à la ferrure est apte à
transmettre des efforts uniquement suivant les directions X et Z.
Au niveau du plancher 76, l'étanchéité avec chaque poutre 40 est effectuée en l'espèce au moyen d'un joint à configuration en note de musique. Ce joint 84 comprend ainsi une partie base 86 à profil circulaire se prolongeant vers le haut à
partir de sa face arrière par un flanc 88. Ce joint est protégé en partie avant et en partie arrière par deux brides 90. La bride arrière est prise en sandwich entre le joint et la face avant de la poutre 40, tandis que la bride avant 90 a une forme en S épousant celle de la face avant du joint. Le joint 84 est ainsi protégé à
l'égard des objets contondants pouvant se trouver sur le sol. Pour le protéger lors des opérations de montage et de démontage, il est avantageux que ce joint soit pré-assemblé avec ses deux brides avant montage.
En référence à la figure 7, en partie supérieure, la liaison entre chaque poutre et la structure primaire de l'avion est effectuée en l'espèce au moyen d'une 35 bielle 90. Chacune des bielles 90 s'étend essentiellement suivant la direction Z. La bielle 90 est reliée au cadre 14 en partie avant et à la poutre en partie arrière, les deux liaisons étant des articulations suivant des axes de rotation 92 parallèles à la
Les zones souples 36 de la cloison 20 sont formées seulement par un tronçon de membrane armée 60. Il est fixé aux ailettes 48 des poutres les plus proches des parties rigides adjacentes 34 comme illustré notamment à la figure 11. La forme et la fixation du tronçon de membrane sont les mêmes que pour le tronçon de membrane de chaque partie rigide 34.
La cloison 20 est ainsi formée par l'armature et les tronçons de membrane 60 qu'elle porte.
On a illustré à la figure 9 la fixation d'une des parties rigides 34 à la structure primaire de l'avion. Le panneau inférieur 26 s'étend sous le plancher 76 de l'avion, en contact avec la face inférieure de ce dernier. Ce plancher est entamé pour ménager une ouverture 78 au droit de chaque poutre 40. Pour chaque poutre, une ferrure 80 est fixée rigidement au panneau 26 en arrière de ce dernier. Une extrémité inférieure de la poutre 40 présente un prolongement 82 lié à la ferrure 80 au moyen d'une liaison traditionnelle par axe et rotules. Sur l'une des poutres de la partie rigide 34, cette liaison est apte à reprendre des efforts suivant les trois directions X, Y et Z et à transmettre des déplacements suivant les mêmes directions. Sur l'autre des poutres, la liaison à la ferrure est apte à
transmettre des efforts uniquement suivant les directions X et Z.
Au niveau du plancher 76, l'étanchéité avec chaque poutre 40 est effectuée en l'espèce au moyen d'un joint à configuration en note de musique. Ce joint 84 comprend ainsi une partie base 86 à profil circulaire se prolongeant vers le haut à
partir de sa face arrière par un flanc 88. Ce joint est protégé en partie avant et en partie arrière par deux brides 90. La bride arrière est prise en sandwich entre le joint et la face avant de la poutre 40, tandis que la bride avant 90 a une forme en S épousant celle de la face avant du joint. Le joint 84 est ainsi protégé à
l'égard des objets contondants pouvant se trouver sur le sol. Pour le protéger lors des opérations de montage et de démontage, il est avantageux que ce joint soit pré-assemblé avec ses deux brides avant montage.
En référence à la figure 7, en partie supérieure, la liaison entre chaque poutre et la structure primaire de l'avion est effectuée en l'espèce au moyen d'une 35 bielle 90. Chacune des bielles 90 s'étend essentiellement suivant la direction Z. La bielle 90 est reliée au cadre 14 en partie avant et à la poutre en partie arrière, les deux liaisons étant des articulations suivant des axes de rotation 92 parallèles à la
-9-direction Y dans le présent exemple. Les bielles s'étendant suivant la direction Z, elles ne peuvent transmettre des efforts et des déplacements que suivant cette direction. Ainsi, on prévoit que la poutre 40 peut avoir des déplacements substantiels au moins en partie supérieure par rapport à la structure primaire de l'avion. Dans chaque partie rigide 34, pour l'une des poutres, la bielle 90 a une longueur fixe tandis que la bielle 90 associée à l'autre poutre est réglable en longueur. Bien qu'on constitue ici un montage hyperstatique de degré 1, les imprécisions géométriques de l'ensemble et la possibilité de réglage de l'une des bielle permettent de s'en accommoder.
L'étanchéité entre la cloison 20 et les pièces fixées au fuselage, en partie supérieure et sur les côtés, est assurée par une membrane 61 indépendante de la membrane 60 mais réalisée dans le même matériau que cette dernière de préférence. La membrane 61 elle-même pourra subir des déplacements importants, par exemple de plus ou moins 20 mm dans le plan général de la cloison suivant les directions Y et Z, et de plus ou moins 10 mm suivant la direction X. On a ainsi illustré à la figure 8 à la référence 61 a la configuration nominale de la membrane, à la référence 61b sa position reculée suivant la direction X, à la référence 61c sa position levée suivant la direction Z et enfin à la référence 61d une configuration à la fois levée et reculée. Comme on le voit à la figure 8, le bord d'extrémité supérieure de la membrane 61 est fixé rigidement à un panneau 100 localement horizontal, lui-même fixé du côté de sa face supérieure à des cadres 14. Cette fixation est ici effectuée en prenant la membrane 61 en sandwich entre ce panneau et une bride 102. Si la cloison 20 est démontée, la membrane 61 peut rester en place et être déployée vers l'arrière suivant une configuration cylindrique d'axe 6 pour avoir une fonction d'habillage. Elle aura alors la configuration 6l e illustrée à la figure 8.
On a illustré à la figure 14 la fixation inférieure étanche de la membrane 60 d'une partie rigide 34. Les extrémités inférieures des poutres 40 portent une traverse 102 présentant une face inférieure plane verticale 104 et une face plane médiane 106 qui est parallèle à la direction Y et inclinée par rapport à la direction X
en étant légèrement tournée vers le haut. La membrane 60 est prise en sandwich entre cette face et une bride 107 fixée rigidement à la traverse par des moyens appropriés non illustrés. Le bord d'extrémité inférieure de la membrane s'étend à
distance du bord supérieur du joint 84 en note de musique. La fixation étanche de la membrane en partie supérieure est effectuée de façon analogue.
Pour les liaisons au niveau d'une partie souple comme illustré à la figure 15, c'est la bride arrière 90 du joint en note de musique qui présente la face 106 et
L'étanchéité entre la cloison 20 et les pièces fixées au fuselage, en partie supérieure et sur les côtés, est assurée par une membrane 61 indépendante de la membrane 60 mais réalisée dans le même matériau que cette dernière de préférence. La membrane 61 elle-même pourra subir des déplacements importants, par exemple de plus ou moins 20 mm dans le plan général de la cloison suivant les directions Y et Z, et de plus ou moins 10 mm suivant la direction X. On a ainsi illustré à la figure 8 à la référence 61 a la configuration nominale de la membrane, à la référence 61b sa position reculée suivant la direction X, à la référence 61c sa position levée suivant la direction Z et enfin à la référence 61d une configuration à la fois levée et reculée. Comme on le voit à la figure 8, le bord d'extrémité supérieure de la membrane 61 est fixé rigidement à un panneau 100 localement horizontal, lui-même fixé du côté de sa face supérieure à des cadres 14. Cette fixation est ici effectuée en prenant la membrane 61 en sandwich entre ce panneau et une bride 102. Si la cloison 20 est démontée, la membrane 61 peut rester en place et être déployée vers l'arrière suivant une configuration cylindrique d'axe 6 pour avoir une fonction d'habillage. Elle aura alors la configuration 6l e illustrée à la figure 8.
On a illustré à la figure 14 la fixation inférieure étanche de la membrane 60 d'une partie rigide 34. Les extrémités inférieures des poutres 40 portent une traverse 102 présentant une face inférieure plane verticale 104 et une face plane médiane 106 qui est parallèle à la direction Y et inclinée par rapport à la direction X
en étant légèrement tournée vers le haut. La membrane 60 est prise en sandwich entre cette face et une bride 107 fixée rigidement à la traverse par des moyens appropriés non illustrés. Le bord d'extrémité inférieure de la membrane s'étend à
distance du bord supérieur du joint 84 en note de musique. La fixation étanche de la membrane en partie supérieure est effectuée de façon analogue.
Pour les liaisons au niveau d'une partie souple comme illustré à la figure 15, c'est la bride arrière 90 du joint en note de musique qui présente la face 106 et
-10-porte la membrane 60. A ce niveau, le joint vient seulement en appui contre une face reliée au fuselage.
La cloison est installée au moyen du procédé suivant.
On ôte la totalité des habillages de cabine et des systèmes sur une distance d'environ 500 mm de chaque côté de la cloison à installer. Ceux-ci seront remis en place à la fin de la pose des structures.
On installe le sous-ensemble rigide 22, destiné à être fixé à demeure, lors d'un chantier de conversion où l'avion est délesté comme cela se pratique pour une grande réparation. Tout en conservant l'intégrité des raidisseurs longitudinaux, on réalise alors une étanchéité entre le fuselage et ce sous-ensemble comme on le verra plus loin. A cette fin, chacun des passages de lisses est rendu étanche, de même que les passages pour les divers systèmes.
On installe les parties rigides démontables 34.
Puis on installe les parties souples démontables 32.
On pourra prévoir de fixer les tronçons de membrane 60 des parties rigides 34 à ces dernières avant que ces parties soient rapportées au fuselage.
Enfin, on complète l'étanchéité par la pose de plusieurs joints du type de la membrane 61 ou de type note de musique au niveau des zones où les déplacements sont maîtrisés.
En référence à la figure 10, en partie latérale, la membrane 60 est reliée de façon étanche au cadre 14 en étant prise en sandwich entre une face arrière du cadre et une bride 112 maintenue rigidement en position sur le cadre au moyen d'un assemblage à vis et écrou prisonniers.
Le cadre est fixé à la peau 28 au moyen de son pied 122, sauf à l'endroit où
le cadre enjambe la lisse 116 de sorte que le pied 122 contourne cette dernière.
Le cadre et la lisse sont à cet endroit localement perpendiculaires l'un à
l'autre. Ils sont non-sécants et non-coplanaires localement. L'étanchéité de la jonction de ce côté
du cadre entre le cadre 14 et la lisse 116 est effectuée au moyen d'un bloc 118 en matériau étanche moulé in situ de façon à relier de façon étanche le cadre à
la lisse et à la peau par-dessus la lisse. La jonction est effectuée sur des parties du cadre et de la lisse distantes de leurs extrémités longitudinales. Le bloc 118 est réalisé en l'espèce en un élastomère tel que du silicone. En référence aux figures 16 à 21, le moulage est effectué au moyen d'un moule 124 en plusieurs parties 126 et 128.
Les deux parties 126 sont solides, rigides et forment des plaques. Elles sont globalement symétriques l'une de l'autre et disposées de part et d'autre du plan de l'âme du cadre 14. Elles présentent chacune une échancrure 130 leur permettant
La cloison est installée au moyen du procédé suivant.
On ôte la totalité des habillages de cabine et des systèmes sur une distance d'environ 500 mm de chaque côté de la cloison à installer. Ceux-ci seront remis en place à la fin de la pose des structures.
On installe le sous-ensemble rigide 22, destiné à être fixé à demeure, lors d'un chantier de conversion où l'avion est délesté comme cela se pratique pour une grande réparation. Tout en conservant l'intégrité des raidisseurs longitudinaux, on réalise alors une étanchéité entre le fuselage et ce sous-ensemble comme on le verra plus loin. A cette fin, chacun des passages de lisses est rendu étanche, de même que les passages pour les divers systèmes.
On installe les parties rigides démontables 34.
Puis on installe les parties souples démontables 32.
On pourra prévoir de fixer les tronçons de membrane 60 des parties rigides 34 à ces dernières avant que ces parties soient rapportées au fuselage.
Enfin, on complète l'étanchéité par la pose de plusieurs joints du type de la membrane 61 ou de type note de musique au niveau des zones où les déplacements sont maîtrisés.
En référence à la figure 10, en partie latérale, la membrane 60 est reliée de façon étanche au cadre 14 en étant prise en sandwich entre une face arrière du cadre et une bride 112 maintenue rigidement en position sur le cadre au moyen d'un assemblage à vis et écrou prisonniers.
Le cadre est fixé à la peau 28 au moyen de son pied 122, sauf à l'endroit où
le cadre enjambe la lisse 116 de sorte que le pied 122 contourne cette dernière.
Le cadre et la lisse sont à cet endroit localement perpendiculaires l'un à
l'autre. Ils sont non-sécants et non-coplanaires localement. L'étanchéité de la jonction de ce côté
du cadre entre le cadre 14 et la lisse 116 est effectuée au moyen d'un bloc 118 en matériau étanche moulé in situ de façon à relier de façon étanche le cadre à
la lisse et à la peau par-dessus la lisse. La jonction est effectuée sur des parties du cadre et de la lisse distantes de leurs extrémités longitudinales. Le bloc 118 est réalisé en l'espèce en un élastomère tel que du silicone. En référence aux figures 16 à 21, le moulage est effectué au moyen d'un moule 124 en plusieurs parties 126 et 128.
Les deux parties 126 sont solides, rigides et forment des plaques. Elles sont globalement symétriques l'une de l'autre et disposées de part et d'autre du plan de l'âme du cadre 14. Elles présentent chacune une échancrure 130 leur permettant
-11-d'enjamber la lisse 116 et d'être en contact par leur pied 132 avec le cadre 14 et la peau 28. Chacune de ces parties 124 réalise un contact étanche tout le long de sa surface de contact avec le cadre, la peau et la surface externe de la lisse.
Cette étanchéité est réalisée par exemple en référence à la figure 19 au moyen d'un joint souple torique 134 logé dans une gorge 136 du pied. Dans une variante de réalisation illustrée à la figure 20, le pied 132 est muni d'une série de chicanes 138 se succédant suivant la largeur du pied, aucune de ces chicanes ne recevant un joint.
Le matériau des parties 124 est choisi pour ne pas adhérer au produit élastomère injecté. Il s'agira par exemple de PTFE (polytétrafluoroéthylène) ou encore de polyamidel,1 dénommé rilsan, par exemple.
Chacune des parties 124 présente une cavité 140 dans laquelle sera injecté le matériau élastomère et destinée à accueillir notamment le pied 122 du cadre.
Au-dessus de cette cavité, les parties 124 présentent une face 142 par laquelle elles viennent en contact surfacique avec la face respective du cadre 14. Les deux parties 124 sont serrées l'une contre l'autre par des moyens de serrage tels que des attaches auto-bloquantes 144, 146 s'étendant parallèlement à la lisse 116.
L'un 146 de ces moyens de serrage peut être prévu pour avoir une configuration en V et passer entre le cadre 14 et la lisse 116, sous le cadre en étant en contact direct avec ce dernier. Ce moyen de serrage vient en appui contre des faces externes chanfreinées 147 des parties 124.
Si la lisse 116 a une forme relativement simple, on peut se contenter d'effectuer le moulage au moyen des deux parties 126. Toutefois, en l'espèce, la lisse a une forme en S ouverte d'un côté. Il est préférable dès lors d'utiliser deux autres parties 128 pour le moule. Ces parties sont en l'espèce des bouchons en forme d'os strangulé en son milieu. Ces bouchons sont insérés dans un logement formé par la lisse, à l'intérieur de celle-ci, en étant maintenus au moyen d'un serre-joint 143 les serrant perpendiculairement à l'âme de la lisse.
Chacun des bouchons peut dépasser au-dessus de la lisse comme illustré à la figure 21.Le matériau des bouchons est choisi pour ne pas adhérer avec le produit élastomère injecté. Il pourra s'agir d'une mousse polymère à cellules fermées, par exemple.
On utilise ici également des blocs ou noyaux rigides 149 d'élastomère, polymérisés avant l'injection du reste du matériau et qu'on installe directement dans le logement de la lisse 116 entre sa face 150 tournée vers la peau et cette dernière. On utilise en l'espèce deux blocs 149 disposés l'un au-dessus de l'autre, l'un en appui contre la peau, l'autre en appui contre cette face de la lisse.
Ils sont installés au droit de l'âme du cadre 14 avant la fermeture du moule. Ces blocs
Cette étanchéité est réalisée par exemple en référence à la figure 19 au moyen d'un joint souple torique 134 logé dans une gorge 136 du pied. Dans une variante de réalisation illustrée à la figure 20, le pied 132 est muni d'une série de chicanes 138 se succédant suivant la largeur du pied, aucune de ces chicanes ne recevant un joint.
Le matériau des parties 124 est choisi pour ne pas adhérer au produit élastomère injecté. Il s'agira par exemple de PTFE (polytétrafluoroéthylène) ou encore de polyamidel,1 dénommé rilsan, par exemple.
Chacune des parties 124 présente une cavité 140 dans laquelle sera injecté le matériau élastomère et destinée à accueillir notamment le pied 122 du cadre.
Au-dessus de cette cavité, les parties 124 présentent une face 142 par laquelle elles viennent en contact surfacique avec la face respective du cadre 14. Les deux parties 124 sont serrées l'une contre l'autre par des moyens de serrage tels que des attaches auto-bloquantes 144, 146 s'étendant parallèlement à la lisse 116.
L'un 146 de ces moyens de serrage peut être prévu pour avoir une configuration en V et passer entre le cadre 14 et la lisse 116, sous le cadre en étant en contact direct avec ce dernier. Ce moyen de serrage vient en appui contre des faces externes chanfreinées 147 des parties 124.
Si la lisse 116 a une forme relativement simple, on peut se contenter d'effectuer le moulage au moyen des deux parties 126. Toutefois, en l'espèce, la lisse a une forme en S ouverte d'un côté. Il est préférable dès lors d'utiliser deux autres parties 128 pour le moule. Ces parties sont en l'espèce des bouchons en forme d'os strangulé en son milieu. Ces bouchons sont insérés dans un logement formé par la lisse, à l'intérieur de celle-ci, en étant maintenus au moyen d'un serre-joint 143 les serrant perpendiculairement à l'âme de la lisse.
Chacun des bouchons peut dépasser au-dessus de la lisse comme illustré à la figure 21.Le matériau des bouchons est choisi pour ne pas adhérer avec le produit élastomère injecté. Il pourra s'agir d'une mousse polymère à cellules fermées, par exemple.
On utilise ici également des blocs ou noyaux rigides 149 d'élastomère, polymérisés avant l'injection du reste du matériau et qu'on installe directement dans le logement de la lisse 116 entre sa face 150 tournée vers la peau et cette dernière. On utilise en l'espèce deux blocs 149 disposés l'un au-dessus de l'autre, l'un en appui contre la peau, l'autre en appui contre cette face de la lisse.
Ils sont installés au droit de l'âme du cadre 14 avant la fermeture du moule. Ces blocs
-12-améliorent la rigidité globale du joint moulé, après solidification.
L'injection est réalisée à partir d'une seule des parties 126, au moyen d'un trou d'injection 152 prévu à cet effet, avec un embout relié au réservoir d'élastomère liquide. Les deux parties 126 sont munies de trous d'évent permettant d'assurer le remplissage complet de la cavité.
La réalisation du bloc étanche est faite de la façon suivante.
On nettoie la zone destinée à recevoir le produit élastomère.
On met en place les deux parties 126 du moule à l'avant et à l'arrière du cadre avec leurs moyens de serrage.
On installe les deux blocs 149.
On met en place les deux bouchons 128 en les comprimant d'abord manuellement, ce qui est permis par la section de la lisse. On les serre ensuite au moyen du serre-joint.
Puis on effectue l'injection du matériau élastomère liquide. Dans l'exemple de la figure 20, lors de l'injection, une ou plusieurs des chicanes se remplissent partiellement ou en totalité de produit. Le liquide vient notamment au contact des blocs 149 qui se trouvent noyés dedans.
Après polymérisation de l'élastomère, on enlève les deux bouchons 128, puis les plaques 126 en coupant les attaches auto-bloquantes 144, 146. Une fois ôtées les parties 126, on coupe à nouveau les attaches auto-bloquantes au ras des faces (notamment la face 147) du bloc 118 d'élastomère solidifié 118 dont elles émergent. Un tronçon de ces attaches reste donc à demeure à l'intérieur du bloc.
La jonction étanche ainsi réalisée ne cache aucune fixation structurale de sorte que restent accessibles la liaison entre le cadre et la peau, la liaison entre la lisse et la peau, etc.
On effectue ces opérations sur le même cadre pour chacune des lisses. Les dimensions externes du bloc d'élastomère moulé 118 installé à chaque traversée de lisse sont identiques pour toutes les lisses, et ce bien que les lisses puissent avoir des sections de forme et/ou de dimensions différentes suivant le tronçon de lisse considéré. Il en est de même pour les trous de passage (souvent appelés trous de souris) qui désignent l'espace entre le cadre et la lisse considérée, espace qui peut avoir des découpes différentes en fonction des dimensions de la lisse et de la direction de pose du cadre. Les différents tronçons de cadre pourront eux aussi avoir des dimensions différentes. Le moule qui vient d'être décrit peut être utilisé à chaque fois malgré ces différences de dimensions et de configurations, les dimensions du moule ayant été choisies suffisamment grandes pour qu'il soit compatible avec toutes ces situations.
L'injection est réalisée à partir d'une seule des parties 126, au moyen d'un trou d'injection 152 prévu à cet effet, avec un embout relié au réservoir d'élastomère liquide. Les deux parties 126 sont munies de trous d'évent permettant d'assurer le remplissage complet de la cavité.
La réalisation du bloc étanche est faite de la façon suivante.
On nettoie la zone destinée à recevoir le produit élastomère.
On met en place les deux parties 126 du moule à l'avant et à l'arrière du cadre avec leurs moyens de serrage.
On installe les deux blocs 149.
On met en place les deux bouchons 128 en les comprimant d'abord manuellement, ce qui est permis par la section de la lisse. On les serre ensuite au moyen du serre-joint.
Puis on effectue l'injection du matériau élastomère liquide. Dans l'exemple de la figure 20, lors de l'injection, une ou plusieurs des chicanes se remplissent partiellement ou en totalité de produit. Le liquide vient notamment au contact des blocs 149 qui se trouvent noyés dedans.
Après polymérisation de l'élastomère, on enlève les deux bouchons 128, puis les plaques 126 en coupant les attaches auto-bloquantes 144, 146. Une fois ôtées les parties 126, on coupe à nouveau les attaches auto-bloquantes au ras des faces (notamment la face 147) du bloc 118 d'élastomère solidifié 118 dont elles émergent. Un tronçon de ces attaches reste donc à demeure à l'intérieur du bloc.
La jonction étanche ainsi réalisée ne cache aucune fixation structurale de sorte que restent accessibles la liaison entre le cadre et la peau, la liaison entre la lisse et la peau, etc.
On effectue ces opérations sur le même cadre pour chacune des lisses. Les dimensions externes du bloc d'élastomère moulé 118 installé à chaque traversée de lisse sont identiques pour toutes les lisses, et ce bien que les lisses puissent avoir des sections de forme et/ou de dimensions différentes suivant le tronçon de lisse considéré. Il en est de même pour les trous de passage (souvent appelés trous de souris) qui désignent l'espace entre le cadre et la lisse considérée, espace qui peut avoir des découpes différentes en fonction des dimensions de la lisse et de la direction de pose du cadre. Les différents tronçons de cadre pourront eux aussi avoir des dimensions différentes. Le moule qui vient d'être décrit peut être utilisé à chaque fois malgré ces différences de dimensions et de configurations, les dimensions du moule ayant été choisies suffisamment grandes pour qu'il soit compatible avec toutes ces situations.
-13-On a illustré à la figure 23 le diagramme des forces exercées sur une poutre intermédiaire 40 par les tronçons de membrane 60 qu'elle porte. Nous allons voir plus loin comment la cloison est réalisée afin que ces forces soient équilibrées lorsque les deux poutres 40 les plus proches ne sont pas à égale distance de cette poutre intermédiaire.
La figure 22 illustre a contrario le cas dans lequel ces forces ne seraient pas équilibrées.
On désigne par f , la distance, mesurée suivant la direction Y, séparant l'âme de la poutre intermédiaire 40 de l'âme de la poutre située à gauche et supportant conjointement avec elle le tronçon 60 de gauche. On désigne pareillement par f 2 la distance entre les âmes des poutres 40 supportant le tronçon de membrane situé
à
droite. On suppose ici que les distances f, et f2 sont différentes l'une de l'autre, la distance f 2 étant par exemple ici égale à environ 1,5 fois la distance f,.
La poutre 40 subit dans une section horizontale courante une force F, exercée par le tronçon de membrane situé à sa gauche et une force F2 exercée par le tronçon de membrane situé à sa droite. Nous supposons ici que ces forces s'étendent dans un plan horizontal.
L'angle 01 désigne l'angle de la force F,, qui s'exerce suivant la direction de la tangente à la membrane au bord de cette dernière, par rapport à la direction Y, et l'angle 02 l'angle analogue relatif à la force F2. Dans cette situation, les deux angles 01 et 02 sont égaux. Cela vient du fait que les faces avant 50 des ailes 48 forment elles aussi avec la direction Y des angles respectifs 01 et 02 égaux, les ailes étant symétriques l'une de l'autre par rapport au plan de l'âme de la poutre 40.
Compte tenu de la différence de distances, la force F2 a une intensité plus grande que la force F,. Ces deux forces s'exerçant suivant des directions symétriques par rapport au plan de l'âme, elles ont une résultante R dirigée vers l'arrière qui n'est pas inscrite dans le plan de l'âme mais se trouve dirigée vers la droite. La poutre 40 n'est donc pas chargée de façon équilibrée ou symétrique par les deux tronçons 60. Cette résultante a pour point d'application l'extrémité
avant de la section horizontale de la poutre. Elle engendre un moment de torsion autour d'un centre d'inertie 63 de la section, situé dans l'âme de la poutre à mi-distance de ses bords avant et arrière. Il existe une distance d non nulle entre ce centre d'inertie et la résultante R de sorte que cette dernière engendre un moment de torsion autour du centre d'inertie. Dans une telle situation, il faut donc doter la poutre d'une quantité de matière importante lui permettant de résister à un tel moment de torsion, sachant qu'elle doit par ailleurs résister classiquement à
un moment de flexion et à un effort normal.
La figure 22 illustre a contrario le cas dans lequel ces forces ne seraient pas équilibrées.
On désigne par f , la distance, mesurée suivant la direction Y, séparant l'âme de la poutre intermédiaire 40 de l'âme de la poutre située à gauche et supportant conjointement avec elle le tronçon 60 de gauche. On désigne pareillement par f 2 la distance entre les âmes des poutres 40 supportant le tronçon de membrane situé
à
droite. On suppose ici que les distances f, et f2 sont différentes l'une de l'autre, la distance f 2 étant par exemple ici égale à environ 1,5 fois la distance f,.
La poutre 40 subit dans une section horizontale courante une force F, exercée par le tronçon de membrane situé à sa gauche et une force F2 exercée par le tronçon de membrane situé à sa droite. Nous supposons ici que ces forces s'étendent dans un plan horizontal.
L'angle 01 désigne l'angle de la force F,, qui s'exerce suivant la direction de la tangente à la membrane au bord de cette dernière, par rapport à la direction Y, et l'angle 02 l'angle analogue relatif à la force F2. Dans cette situation, les deux angles 01 et 02 sont égaux. Cela vient du fait que les faces avant 50 des ailes 48 forment elles aussi avec la direction Y des angles respectifs 01 et 02 égaux, les ailes étant symétriques l'une de l'autre par rapport au plan de l'âme de la poutre 40.
Compte tenu de la différence de distances, la force F2 a une intensité plus grande que la force F,. Ces deux forces s'exerçant suivant des directions symétriques par rapport au plan de l'âme, elles ont une résultante R dirigée vers l'arrière qui n'est pas inscrite dans le plan de l'âme mais se trouve dirigée vers la droite. La poutre 40 n'est donc pas chargée de façon équilibrée ou symétrique par les deux tronçons 60. Cette résultante a pour point d'application l'extrémité
avant de la section horizontale de la poutre. Elle engendre un moment de torsion autour d'un centre d'inertie 63 de la section, situé dans l'âme de la poutre à mi-distance de ses bords avant et arrière. Il existe une distance d non nulle entre ce centre d'inertie et la résultante R de sorte que cette dernière engendre un moment de torsion autour du centre d'inertie. Dans une telle situation, il faut donc doter la poutre d'une quantité de matière importante lui permettant de résister à un tel moment de torsion, sachant qu'elle doit par ailleurs résister classiquement à
un moment de flexion et à un effort normal.
-14-Dans la situation de la figure 23, les distances f , et f 2 sont les mêmes que dans la figure 22 mais les angles 01 et 02 sont cette fois différents. Ils sont choisis de sorte que la résultante S des forces F, et F2 soit comprise dans le plan de l'âme de la poutre 40 et donc parallèle à la direction X. Ce résultat est obtenu en choisissant l'inclinaison des faces avant 50 des ailes 48, qui ne sont plus symétriques, de sorte qu'elles forment avec la direction Y des angles respectifs 01 et 02 tels que :
02 = arctan (tan 01 X f, / f2) Les faces 50 contre lesquelles les tronçons de membrane sont en contact surfacique ont la même inclinaison 01 et 02 respectivement par rapport à la direction Y. On adapte la forme et/ou les dimensions de chaque tronçon pour obtenir ce résultat. On sera par exemple amené à augmenter le rayon de courbure du tronçon de droite par comparaison avec la situation de la figure 22. Il s'ensuit une augmentation éventuelle de masse et de volume mais qui n'est pas significative et est au contraire négligeable par rapport à l'économie de masse totale sur la cloison engendrée par cette disposition. Il n'y a donc plus de résultante parasite de torsion.
Ainsi, la forme de chaque tronçon de membrane prend en compte la géométrie réelle de l'ancrage de ce tronçon sur les poutres qui lui-même tient compte de l'écartement entre les poutres. On minimise donc les efforts que les tronçons de membrane 60 impriment aux structures primaires.
Sur les poutres pour lesquelles les distances f, et f 2 sont égales, les angles 01 et 02 sont égaux.
Dans la plus grande partie de sa longueur, chaque tronçon de membrane est formé par une unique couche de poly-para-phénylène téréphtalamide imprégnée de silicone. On peut donner à la membrane une masse de 0,5 kg/m2. Ce choix de matériau permet de minimiser la masse de chaque tronçon de membrane et la rend équivalente en termes de résistance à une membrane en alliage d'aluminium de 0,2 mm d'épaisseur. Or un tel produit n'est pas disponible, son installation est peu envisageable en raison de sa fragilité, et on devrait lui donner au minimum une épaisseur de 1 mm pour des raisons de fabrication et de robustesse face au facteur humain. On réalise donc un gain de masse d'environ 500 % par rapport à
une membrane équivalente en alliage aluminium. La robustesse de la membrane est assurée malgré sa faible masse. Son retournement en cas d'inversion de pression différentielle ne pose pas de problème. Les tronçons de membrane 60 résistent non seulement à des sollicitations simples de pression et de dépression mais peuvent aussi cohabiter avec les usages et dégradations possibles d'origine
02 = arctan (tan 01 X f, / f2) Les faces 50 contre lesquelles les tronçons de membrane sont en contact surfacique ont la même inclinaison 01 et 02 respectivement par rapport à la direction Y. On adapte la forme et/ou les dimensions de chaque tronçon pour obtenir ce résultat. On sera par exemple amené à augmenter le rayon de courbure du tronçon de droite par comparaison avec la situation de la figure 22. Il s'ensuit une augmentation éventuelle de masse et de volume mais qui n'est pas significative et est au contraire négligeable par rapport à l'économie de masse totale sur la cloison engendrée par cette disposition. Il n'y a donc plus de résultante parasite de torsion.
Ainsi, la forme de chaque tronçon de membrane prend en compte la géométrie réelle de l'ancrage de ce tronçon sur les poutres qui lui-même tient compte de l'écartement entre les poutres. On minimise donc les efforts que les tronçons de membrane 60 impriment aux structures primaires.
Sur les poutres pour lesquelles les distances f, et f 2 sont égales, les angles 01 et 02 sont égaux.
Dans la plus grande partie de sa longueur, chaque tronçon de membrane est formé par une unique couche de poly-para-phénylène téréphtalamide imprégnée de silicone. On peut donner à la membrane une masse de 0,5 kg/m2. Ce choix de matériau permet de minimiser la masse de chaque tronçon de membrane et la rend équivalente en termes de résistance à une membrane en alliage d'aluminium de 0,2 mm d'épaisseur. Or un tel produit n'est pas disponible, son installation est peu envisageable en raison de sa fragilité, et on devrait lui donner au minimum une épaisseur de 1 mm pour des raisons de fabrication et de robustesse face au facteur humain. On réalise donc un gain de masse d'environ 500 % par rapport à
une membrane équivalente en alliage aluminium. La robustesse de la membrane est assurée malgré sa faible masse. Son retournement en cas d'inversion de pression différentielle ne pose pas de problème. Les tronçons de membrane 60 résistent non seulement à des sollicitations simples de pression et de dépression mais peuvent aussi cohabiter avec les usages et dégradations possibles d'origine
-15-humaine.
Comme illustré à la figure 24, il est avantageux que le matériau de la membrane s'étende en double épaisseur à l'endroit où la membrane est prise en sandwich entre la bride 64 et l'aile 48, sachant qu'il s'agit d'une zone où la membrane est particulièrement sollicitée. Ce doublement de l'épaisseur pourra être réalisé en pliant simplement le matériau formant la membrane et en disposant dans le creux du pli un élément de renfort tel qu'un jonc 67 évitant l'écrasement de ce dernier. Ce jonc 67 aura par exemple un diamètre compris entre 2 et 3 mm. Il est réalisé en l'espèce dans un matériau polyamide. Ce jonc s'étend à distance de la zone de contact surfacique entre la bride 64 et l'aile 48 et n'est pas pris en sandwich entre elles.
Le jonc 67 pourra être disposé dans le moule servant à l'imprégnation de la résine avec le matériau élastomère. Pour cela, le matériau imprégné, formant une seule couche, reçoit le jonc et est plié sur ce dernier avant la polymérisation de l'élastomère.
La bride 64 présente, en regard du tronçon de membrane 60, de même côté
que le centre de courbure de cette dernière, une face 69 de forme cylindrique s'étendant en regard de la membrane et dont le propre centre de courbure est situé
du côté de la face 69 opposé à la membrane. En cas de retournement de la membrane, cette face accueille la membrane qui peut y prendre appui sans risquer de se déchirer.
La cloison 20 décrite ci-dessus présente de nombreux avantages. Il est possible de la monter et de la démonter. L'étanchéité est assurée par des moyens qui prennent en compte les déformations structurales imposées par l'usage de l'avion et l'imprécision géométrique éventuelle des différentes parties à
étancher, notamment si l'avion est déjà fabriqué. La combinaison des parties fixes et rigides permet elle aussi une telle prise en compte. Le nombre de fixations à poser et/ou à
démonter lors du montage ou du démontage dans le fuselage est réduit.
Le temps de démontage de la cloison sera par exemple inférieur à 24 heures.
La masse de l'ensemble de la cloison sera par exemple d'environ 800 kg.
La cloison s'étend de préférence sur la plus grande partie de la superficie transversale du volume interne du fuselage.
Comme on le voit sur la figure 1, la cloison 20 une fois en place sépare une zone 109 située à l'avant de la cloison et une zone 111 située à l'arrière. La zone 109 pourra être soumise à la pression cabine au contraire de la zone 111. Ou la zone 111 pourra contenir un liquide tel que du carburant au contraire de la zone 109.
Comme illustré à la figure 24, il est avantageux que le matériau de la membrane s'étende en double épaisseur à l'endroit où la membrane est prise en sandwich entre la bride 64 et l'aile 48, sachant qu'il s'agit d'une zone où la membrane est particulièrement sollicitée. Ce doublement de l'épaisseur pourra être réalisé en pliant simplement le matériau formant la membrane et en disposant dans le creux du pli un élément de renfort tel qu'un jonc 67 évitant l'écrasement de ce dernier. Ce jonc 67 aura par exemple un diamètre compris entre 2 et 3 mm. Il est réalisé en l'espèce dans un matériau polyamide. Ce jonc s'étend à distance de la zone de contact surfacique entre la bride 64 et l'aile 48 et n'est pas pris en sandwich entre elles.
Le jonc 67 pourra être disposé dans le moule servant à l'imprégnation de la résine avec le matériau élastomère. Pour cela, le matériau imprégné, formant une seule couche, reçoit le jonc et est plié sur ce dernier avant la polymérisation de l'élastomère.
La bride 64 présente, en regard du tronçon de membrane 60, de même côté
que le centre de courbure de cette dernière, une face 69 de forme cylindrique s'étendant en regard de la membrane et dont le propre centre de courbure est situé
du côté de la face 69 opposé à la membrane. En cas de retournement de la membrane, cette face accueille la membrane qui peut y prendre appui sans risquer de se déchirer.
La cloison 20 décrite ci-dessus présente de nombreux avantages. Il est possible de la monter et de la démonter. L'étanchéité est assurée par des moyens qui prennent en compte les déformations structurales imposées par l'usage de l'avion et l'imprécision géométrique éventuelle des différentes parties à
étancher, notamment si l'avion est déjà fabriqué. La combinaison des parties fixes et rigides permet elle aussi une telle prise en compte. Le nombre de fixations à poser et/ou à
démonter lors du montage ou du démontage dans le fuselage est réduit.
Le temps de démontage de la cloison sera par exemple inférieur à 24 heures.
La masse de l'ensemble de la cloison sera par exemple d'environ 800 kg.
La cloison s'étend de préférence sur la plus grande partie de la superficie transversale du volume interne du fuselage.
Comme on le voit sur la figure 1, la cloison 20 une fois en place sépare une zone 109 située à l'avant de la cloison et une zone 111 située à l'arrière. La zone 109 pourra être soumise à la pression cabine au contraire de la zone 111. Ou la zone 111 pourra contenir un liquide tel que du carburant au contraire de la zone 109.
-16-On pourra prévoir que le panneau supérieur 24 est stabilisé au moyen de plusieurs ferrures de liaison à la peau 28, ces ferrures s'étendant par exemple le long de quatre cadres consécutifs. On pourra prévoir que le panneau inférieur est stabilisé de même. Le sous-ensemble rigide 22 peut comprendre en outre deux profilés spéciaux porte-joints installés à gauche et à droite sur le cadre.
Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci.
Le procédé pour réaliser le bloc 118 pourra être mis en oeuvre sur d'autres pièces que des cadres et des lisses et hors d'un fuselage, par exemple sur une nervure d'aile d'aéronef.
Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci.
Le procédé pour réaliser le bloc 118 pourra être mis en oeuvre sur d'autres pièces que des cadres et des lisses et hors d'un fuselage, par exemple sur une nervure d'aile d'aéronef.
Claims (10)
1. Procédé pour réaliser une jonction étanche (118) entre des pièces (14, 116) d'aéronef allongées et s'étendant localement suivant des directions principales non parallèles entre elles, caractérisé en ce que :
- on assemble sur les pièces plusieurs parties (126, 128) d'un moule (124) ;
et - on injecte un matériau d'étanchéité dans le moule.
- on assemble sur les pièces plusieurs parties (126, 128) d'un moule (124) ;
et - on injecte un matériau d'étanchéité dans le moule.
2. Procédé selon la revendication précédente dans lequel les pièces forment un cadre (14) et une lisse (116) d'un fuselage (4).
3. Procédé selon au moins l'une quelconque des revendications précédentes dans lequel, préalablement à l'injection, on installe dans le moule au moins un bloc (149) de matériau d'étanchéité, notamment en regard d'une face (150) de l'une (116) des pièces orientée en direction opposée à l'autre pièce (14).
4. Procédé selon au moins l'une quelconque des revendications précédentes dans lequel au moins deux des parties (126) du moule présentent une échancrure (130) de réception de l'une (116) des pièces.
5. Procédé selon au moins l'une quelconque des revendications précédentes dans lequel on serre au moins deux parties (126, 128) du moule en direction l'une de l'autre avec des moyens de serrage (144, 146) tels que des attaches auto-bloquantes, puis après injection on coupe les moyens de serrage au niveau d'une face (147) du matériau d'étanchéité (118).
6. Procédé selon au moins l'une quelconque des revendications précédentes dans lequel on insère au moins une des parties (128) du moule dans un logement, en regard d'une face (150) de l'une (116) des pièces orientée en direction opposée à l'autre pièce (14).
7. Procédé selon la revendication précédente dans lequel la ou chaque partie de moule insérée (128) est réalisée en matériau déformable alvéolaire.
8. Procédé selon au moins l'une quelconque des revendications précédentes dans lequel on réalise une jonction étanche au moyen des mêmes parties (126, 128) de moule sur d'autres pièces du même aéronef (2) présentant des formes et/ou des dimensions différentes de celles des pièces.
9. Aéronef (2) caractérisé en ce qu'il comprend des pièces (14, 116) allongées et s'étendant localement suivant des directions principales non parallèles entre elles, et un bloc moulé (118) formant une jonction étanche entre les pièces.
10. Aéronef selon la revendication précédente qui comporte une partie structurale, telle qu'un fuselage (4), une voilure ou un empennage, comprenant :
- une paroi (28) séparant l'intérieur et l'extérieur de la partie structurale et comprenant des portions délimitant entre elles un volume interne de la partie structurale, et - une cloison structurale (20) séparant l'une de l'autre des zones, par exemple avant (109) et arrière (111), du volume, la cloison comprenant une membrane souple (60) apte à se déformer et des supports (34) supportant la membrane de façon discontinue, le bloc (118) assurant une jonction étanche entre la cloison et le reste de la partie structurale.
- une paroi (28) séparant l'intérieur et l'extérieur de la partie structurale et comprenant des portions délimitant entre elles un volume interne de la partie structurale, et - une cloison structurale (20) séparant l'une de l'autre des zones, par exemple avant (109) et arrière (111), du volume, la cloison comprenant une membrane souple (60) apte à se déformer et des supports (34) supportant la membrane de façon discontinue, le bloc (118) assurant une jonction étanche entre la cloison et le reste de la partie structurale.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0958507 | 2009-11-30 | ||
FR0958507A FR2953158B1 (fr) | 2009-11-30 | 2009-11-30 | Procede pour realiser une jonction etanche entre des pieces d'aeronef |
PCT/FR2010/052578 WO2011064520A1 (fr) | 2009-11-30 | 2010-11-30 | Procede pour realiser une jonction etanche entre des pieces d'aeronef |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2781778A1 true CA2781778A1 (fr) | 2011-06-03 |
CA2781778C CA2781778C (fr) | 2018-07-24 |
Family
ID=42332487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2781778A Expired - Fee Related CA2781778C (fr) | 2009-11-30 | 2010-11-30 | Procede pour realiser une jonction etanche entre des pieces d'aeronef |
Country Status (5)
Country | Link |
---|---|
US (1) | US9102106B2 (fr) |
CN (1) | CN102770263B (fr) |
CA (1) | CA2781778C (fr) |
FR (1) | FR2953158B1 (fr) |
WO (1) | WO2011064520A1 (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9889323B2 (en) * | 2013-03-13 | 2018-02-13 | The Boeing Company | Fire seal end cap and associated multi-member assembly and method |
JP6381191B2 (ja) | 2013-09-11 | 2018-08-29 | 三菱重工業株式会社 | 燃料タンク用ダム |
DE102013114391A1 (de) * | 2013-12-18 | 2015-06-18 | Airbus Operations Gmbh | Druckrumpf eines Flugzeuges, umfassend ein bewegbar relativ zur Rumpfstruktur befestigtes Druckschott |
GB201511402D0 (en) | 2015-06-30 | 2015-08-12 | Short Brothers Plc | Repair including a chamfered bracket and a chamfered bracket component for reinforcing a damaged structural element made from composite materials |
NL2015120B1 (en) * | 2015-07-09 | 2017-02-01 | Fokker Aerostructures Bv | Variable gap cover for an aircraft, mould assembly for forming such a cover and a method for manufacturing a variable gap cover. |
US10173765B2 (en) * | 2016-04-07 | 2019-01-08 | The Boeing Company | Pressure bulkhead apparatus |
US10926857B2 (en) * | 2016-06-17 | 2021-02-23 | The Boeing Company | Pressurized bulkhead |
DE102017125299A1 (de) | 2017-10-27 | 2019-05-02 | Airbus Operations Gmbh | Spaltabdeckung zwischen Kabinenmonumenten, insbesondere für eine Passagierkabine eines Flugzeuges |
FR3074143A1 (fr) * | 2017-11-29 | 2019-05-31 | Airbus Operations | Nervure de jonction voilure-caisson de voilure pour aeronef et procede de fabrication d'un aeronef au moyen d'une telle nervure |
US20190276157A1 (en) * | 2018-03-08 | 2019-09-12 | Bell Helicopter Textron Inc. | Flexible radial inlet plenum |
EP4035993A1 (fr) * | 2021-01-27 | 2022-08-03 | The Boeing Company | Connecteur pour connecter un caisson de voilure central à une cloison d'un aéronef |
CN114802698A (zh) | 2021-01-27 | 2022-07-29 | 波音公司 | 在飞机中用于连接中央翼盒和隔舱的接头 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2840856A (en) * | 1952-10-18 | 1958-07-01 | Honeywell Regulator Co | Molding apparatus and procedure |
US4011819A (en) * | 1976-03-03 | 1977-03-15 | The United States Of America As Represented By The Secretary Of The Navy | Stress relieved molded cover assembly and method of making the same |
US4962904A (en) * | 1984-06-07 | 1990-10-16 | The Boeing Company | Transition fitting for high strength composite |
JPH0813622B2 (ja) * | 1990-04-12 | 1996-02-14 | 豊田合成株式会社 | ウエザストリップの型成形接続方法 |
US5242523A (en) * | 1992-05-14 | 1993-09-07 | The Boeing Company | Caul and method for bonding and curing intricate composite structures |
US5813728A (en) * | 1996-03-07 | 1998-09-29 | Nowiteck Establishment | Process for making rotating brushes for automatic car washes |
GB2330793B (en) * | 1997-11-04 | 2002-08-28 | Draftex Ind Ltd | Assembly of extruded or moulded parts |
EP0971814B2 (fr) * | 1998-01-07 | 2007-09-12 | Henniges Automotive GmbH & Co. KG | Procede pour realiser un assemblage entre un element d'etancheite et un element de construction |
US6365086B1 (en) * | 1999-05-03 | 2002-04-02 | Christopher A. Schoonover | Method for connecting pieces of solid material |
US6374570B1 (en) * | 2000-08-25 | 2002-04-23 | Lockheed Martin Corporation | Apparatus and method for joining dissimilar materials to form a structural support member |
US6419189B1 (en) * | 2000-11-01 | 2002-07-16 | The Boeing Company | Hot ruddervator apparatus and method for an aerospacecraft |
US6964723B2 (en) * | 2002-10-04 | 2005-11-15 | The Boeing Company | Method for applying pressure to composite laminate areas masked by secondary features |
US20050082716A1 (en) * | 2002-12-06 | 2005-04-21 | Barefield Kevin J. | Resin infusion potting |
US6877695B2 (en) * | 2002-12-13 | 2005-04-12 | The Boeing Company | Hinge cover integration into door seal edges |
US7530531B2 (en) * | 2004-10-04 | 2009-05-12 | The Boeing Company | Apparatus and methods for installing an aircraft window panel |
EP1647480B1 (fr) * | 2004-10-13 | 2010-12-08 | Airbus Operations GmbH | Couvre-joint pour aéronefs |
JP4758205B2 (ja) * | 2005-11-18 | 2011-08-24 | トヨタ自動車株式会社 | 成形体の製造方法 |
DE102007044386A1 (de) | 2007-09-18 | 2009-04-02 | Airbus Deutschland Gmbh | Strukturbauteil und Verfahren zum Versteifen einer Außenhaut |
US8016237B2 (en) * | 2007-12-12 | 2011-09-13 | The Boeing Company | Methods and apparatus for an integrated aerodynamic panel |
US8181909B2 (en) * | 2008-03-31 | 2012-05-22 | Honda Motor Co., Ltd. | Pressure bulkhead for aircraft |
-
2009
- 2009-11-30 FR FR0958507A patent/FR2953158B1/fr not_active Expired - Fee Related
-
2010
- 2010-11-30 CN CN201080062446.7A patent/CN102770263B/zh not_active Expired - Fee Related
- 2010-11-30 US US13/511,533 patent/US9102106B2/en not_active Expired - Fee Related
- 2010-11-30 WO PCT/FR2010/052578 patent/WO2011064520A1/fr active Application Filing
- 2010-11-30 CA CA2781778A patent/CA2781778C/fr not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
FR2953158A1 (fr) | 2011-06-03 |
US9102106B2 (en) | 2015-08-11 |
FR2953158B1 (fr) | 2012-01-20 |
US20120280083A1 (en) | 2012-11-08 |
WO2011064520A1 (fr) | 2011-06-03 |
CA2781778C (fr) | 2018-07-24 |
CN102770263A (zh) | 2012-11-07 |
CN102770263B (zh) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2781778C (fr) | Procede pour realiser une jonction etanche entre des pieces d'aeronef | |
CA2781777C (fr) | Aeronef comportant une cloison interne | |
CA2702908C (fr) | Structure d'avion comportant des jonctions d'arrets de raidisseurs | |
CA2742290C (fr) | Ensemble structurel d'aeronef et procede d'assemblage associe | |
CA2627933C (fr) | Case de train a structure dissociee | |
EP2454473B1 (fr) | Dispositif d'assemblage de tronçons de pales d'eoliennes et procede de liaison de tronçons de pales d'eoliennes | |
EP2740662B1 (fr) | Verrière perfectionnée pour aéronef | |
EP2373531B1 (fr) | Plancher modulaire pour aéronef | |
EP3476740B1 (fr) | Structure primaire de mât de support d'un groupe propulseur d'aéronef en caisson formée par assemblage de deux demi-coquilles | |
EP2310186A2 (fr) | Procédé d'assemblage orbital de tronçons d'aéronef en matériau composite | |
WO2016135092A1 (fr) | Panneau composite muni d'une terminaison d'assemblage perfectionnée et structure comportant un tel panneau | |
FR2890096A1 (fr) | Porte isolante | |
FR3068002A1 (fr) | Fond etanche arriere presentant une membrane integrale a geometrie composee | |
EP3934978B1 (fr) | Porte de cabine pressurisée d'aéronef à armature intérieure de reprise d'efforts | |
EP3793902B1 (fr) | Dispositif de resistance au feu ameliore destine a etre interpose entre une extremite de mat d'accrochage de turbomachine d'aeronef, et un capotage de la turbomachine delimitant un compartiment inter-veine | |
FR2953194A1 (fr) | Cloison d'aeronef comprenant des troncons de membrane | |
EP3344524B1 (fr) | Procédé d'assemblage de panneaux d'une structure sandwich en matériaux composites, de durée réduite | |
EP1789322B1 (fr) | Dispositif pour le raccordement en vol d 'un aeronef a un dispositif de ravitaillement en carburant d 'un avion ravitailleur | |
FR2960048A1 (fr) | Paroi formee d'une pluralite de panneaux solaires juxtaposes, comportant des moyens d'isolation thermique, et procede de fabrication d'une telle paroi | |
FR3049928A1 (fr) | Troncon d'aeronef comprenant une cloison de pressurisation plane a poutres verticales | |
FR2960047A1 (fr) | Dispositif d'etancheite d'une paroi formee d'une pluralite de panneaux solaires juxtaposes | |
FR2981680A1 (fr) | Huisserie metallique a caractere universel | |
FR3031352A1 (fr) | Lisse pour la realisation d'un cadre de dalle pour fausse paroi comportant des zones pleines definissant des zones de renfort | |
FR2860263A1 (fr) | Brise soleil a moyens de securite | |
FR2976636A1 (fr) | Dispositif de fixation pour tube(s), ossature tubulaire et edifice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20151126 |
|
MKLA | Lapsed |
Effective date: 20201130 |