CA2738681A1 - Crystallizer - Google Patents

Crystallizer Download PDF

Info

Publication number
CA2738681A1
CA2738681A1 CA2738681A CA2738681A CA2738681A1 CA 2738681 A1 CA2738681 A1 CA 2738681A1 CA 2738681 A CA2738681 A CA 2738681A CA 2738681 A CA2738681 A CA 2738681A CA 2738681 A1 CA2738681 A1 CA 2738681A1
Authority
CA
Canada
Prior art keywords
crystallizer
layer
lining
bearings
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2738681A
Other languages
French (fr)
Inventor
Nikolay Nikolaevich Skaldin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2738681A1 publication Critical patent/CA2738681A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/026Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being vertical

Abstract

A crystallizer comprising a cylindrical body with a bottom, a lid and a vertical shaft which is mounted on bearings and is provided with a rotary drive. The inner surfaces of the body and lid are covered with a two-layer coating. The first layer, in the form of a liner, is attached to the walls of the body by means of a high-temperature adhesive. The second layer is made of fine-grained graphite and is glued to the first layer. The bearings are arranged in a unit which is designed to allow the supply of a cooling liquid. The invention makes it possible to improve the quality of ingots since the thermal deformation of the crystallizer and the interaction of the ingot with the body walls are excluded owing to the increased velocity range of the bearings.

Description

CRYSTALLIZER

Field of the invention The invention is related to metallurgical production and is intended for making pre-rolled ingots with preset characteristics from aluminum alloys.

Background of the invention RU Patents 79563, 1082310, 1088653, 2039830, 2055682, 53193, 2299924, 2312156 methods and devices for crystallization of aluminum alloys are known. But, none of the listed technical decisions allows to rotate the retainer with speeds providing overloading of 20G and the more so 250G.

The created and widely applied in modern industry aluminum alloys are divided into two categories:
deformed (rolled) and cast. To deformed alloys in particular, aluminum and magnesium alloys are related. Increase of magnesium content in an alloy would result in abrupt improvement of its mechanical properties. For example, it increases tensile strength, inoxidizability et cetera. Available today in the world crystallization technologies do not allow to create deformed (rolled) alloys with magnesium content more than 6%. After rolling they become unstable and lose their functional properties.

A crystallizer containing a vertical cylindrical body with a bottom is known, housing a mixing device consisting of a vertical shaft with blades fixed along its length and a shaft drive; at that, the body is provided with a face-type shell installed with a gap round the shaft with blades. The tapered lower part of the shell is located above the bottom, and every blade of the mixing device consists of two bent plates making a part of paraboloid fixed vertically and oppositely to one another so that their lower edges are located on one line and the area of one plate exceeds the area of other one and each blade located above is turned in the horizontal plane in relation to the blade located beneath by 40-50 C. The shaft of the mixing device is set with a possibility of rotation, at that, the lower blades have areas located beyond the conical part of the shell and are made so that the shape of their lower edges is similar to the form of the body bottom (RU 22039830).

The drawbacks of the known technical decision is low quality of ingots associated with the inevitable polycrystalline structure that practically doesn't have a dominant crystallographic orientation and complexity of design due to the need to have a mixing device.

A technical decision foreseeing receiving of ingots from aluminum alloys with the preset crystalline structure and preset characteristics in the gravity field with the use of crystallizer based on centrifuge is known, i.e. providing a possibility of rotation of the cylindrical body with the bottom, lid and vertical shaft mounted on bearings and provided with the rotation drive (RU 2312156).

The drawbacks of the known technical decision is absence of constructive decision, ensuring in practice obtaining of an alloy with the preset crystalline structure in the gravity field, heterogeneity of surface layer of ingots related to possibility of interaction of the crystallized melt with the body walls under the conditions of the gravity field; as a result the quality of ingots deteriorates causing rapid wear of the body due to the effect of the melt in the gravity field as well as narrowness of functional possibilities conditioned by limitations of rotation speed. Thus, within the framework of existing today technologies in the world, it is impossible to create deformed (rolled) alloys with magnesium content more than 6%. After rolling they become unstable and lose their functional properties.

Summary of the invention The technical task of the invention is creation of an effective crystallizer and expansion of arsenal of crystallizers for aluminum alloys. The technical result ensuring solution of the set task consists in that it allows to practically make ingots from aluminum alloys in the gravity field, improve quality of ingots due to exclusion of temperature deformation of the retainer in which crystallization takes place, exclusion of interaction between the ingot and body walls, preservation of the body is gained due to its protection from the high temperature melt. Functional possibilities of obtaining alloys of different structures are also extended due to expansion of the range of speeds of bearings and due to minimization of variation of temperature deformation of the retainer, in which crystallization takes place, optimization of interaction conditions of ingots with the body walls.
Maximum preservation of the body is attained due to its protection from the influence of high temperature melt; functional possibilities of obtaining alloys of different structures are also extended due to expansion of the range of bearings speed. The applied for crystallizer, when rotating with the speed providing overloading of the melt in the range from 20G to 250G, optimizes conditions of crystallization of additives due to boost of diffusive processes in melts at the stage of crystalline structure forming. As a result alloys with considerably improved (by 25-30%) functional properties are obtained. The term "functional properties" implies a number of concrete properties. Depending on the purpose of the alloy, it can be made with high tensile strength, another alloy can be made with the high index of ductility, and in some other alloy it is possible to get a single-crystal structure.

The nature of the invention consists in that the crystallizer contains a cylindrical rotating body with a bottom, a lid and a vertical shaft, which is mounted on bearings and is provided with a rotary drive. The inner surfaces of the body and the lid are covered with a two-layer coating. The first layer is made in the form of a lining that is attached to the walls of the body by means of a heat-resistant adhesive. The second layer is made of fine-grained graphite that is pasted to the lining with the help of a heat-resistant adhesive. The bearings are housed in a unit which is designed to allow the supply of a cooling liquid. Preferable in particular cases:

- bearings are made in the form of conical angular ball bearings and the shaft rotation drive is made in the form of a slave pulley of a flexible, for example V-belt drive;

- the lid is provided with a collar for placing in a ring slot, which is made additionally on the body flange;

- the bottom of the body is made with an opening in which a hub with a conical opening for installation of the shaft is fixed;

- the block of bearings is provided with combined stuffing-boxes being a graphite cord and rubberized metal cuffs; - the body is made of heat-resistant steel;

- the lining layer is in the form of graphite made of fine-grained graphite with the thickness making half of that of the lining;
- the lining layer is made, for example of chamotte 30mm thick, and the graphite layer - 15mm thick; - the crystallizer is provided with means of body temperature and crystallized melt temperature control;

- the lining is made of light-weight heat-resistant material with a specific density from 1.0 to 1.8 g/cm3 with the coefficient of heat conductivity from 0.14 to 0.72 watt/meter*kelvin, and the second layer is made with an internal diameter from 300 to 3000mm and with the height from the bottom lining to lid lining from 50mm to 1000mm; the lining layer is made, for example of ceramics on the basis of wollastonite.

Preferable variant of implementation of invention Fig.1 shows the crystallizer design scheme. The crystallizer consists of a container for crystallization of melt made in the form of a cylindrical body (1) with certain dimensions, for example: diameter 1000mm, height 400mm, wall thickness 25mm. In the lower part of the body (1) a 25mm thick bottom (2) from heat-resistant steel 12X18H10T is welded. The height of the body (1) is equal, for example to 400mm. The upper part of the body (1) is provided with a flange (19), which has eight screw-thread openings (3) with the thread M14 for fastening of lid (4) having thickness, say 15mm.
Flange (19) has a circular slot (groove) (5), and lid (4) has a circular collar (6), which when tightening bolts (7) goes into slot (5) thus, giving necessary rigidity to the upper part of the crystallizer body (1).

Internal surface of the body (1) and bottom (2) have a double layer lining of internal surface, i.e.
they ate lined by layer (8) made of a light-weight heat-resistant material, for example shamotte or ceramics based on wollastonite, with specific density from 1.0 to 1.8 g/cm3 and coefficient of heat conductivity from 0.14 to 0.72 watt/meter*kelvin. Layer (8) is pasted by a layer of heat-resistant glue (9). After drying of the glue the surfaces of layer (9) are preliminary turned to remove radial and butt-end beating with the purpose to eliminate the disbalance of the whole construction. On the turned surface the second layer (10) of lining made of a fine-grained graphite grade MGP-7, for example 15mm thick, is applied with the help of a heat-resistant glue. Layer (10) is made of internal lining with diameter from 300 to 3000mm and the height from the bottom lining to the lid lining from 50mm to 1000mm. After drying of the glue the surface of layer (10) is finally turned to obtain a 3 degrees slope on the lateral surface and 1 degree on the bottom (2).

Into the bottom (2) of the body (1) the hub (20) with a conical hole (not indicated) is welded; the shaft (11) being the axis of rotation of the crystallizer is inserted into this hole. The body (1) is fixed on the shaft (11) by a nut (not shown) providing a possibility of joint rotation with the shaft (11).
Shaft (11) is mounted on bearings and for this purpose it is vertically inserted into a block of bearings (12), which has two conical angular ball bearings (13) (their number can be 3, 5, 10 et cetera, but no less than two). In the upper and lower parts of the block of bearings (12) combined stuffing-boxes (14) are fixed, being a graphite cord (15) and rubberized (rubber and metal) cuffs (16), intended for pressurizing of the block of bearings (12) through which a cooling liquid circulates, for example high-temperature oil. The oil in turn goes to the tank (not shown), which is made of aluminum. When oil is pumped through, the tank takes away the heat of the heated oil and cools it. Circulation of oil is provided with the help of a pump (not shown) installed in this tank.

In the lower part of the shaft (11) there is a slave pulley (18) to which rotation is passed through a flexible V-belt drive (not shown), for example from a DC motor with the rating of 12 kw (not shown). Monitoring and control of the crystallizer is carried out from a control desk (not shown), allowing to change and control rotation speed of the crystallizer, temperature of the body (1) before the melt is poured in and the temperature of the melt from the moment it is poured to the moment of extraction of the finished ingot.

The crystallizer made in accordance with this technical decision can have the followings characteristics: crystallizer with a minimum effective diameter 300mm can be revolved with a speed in the range from 345 rpm to 1221 rpm or with the angular velocity of 36.16 radian/sec to 1221 radian/sec. The indicated values correspond to a minimum (20G) and maximum (250G) overload;

- a crystallizer with a maximum effective diameter 3000mm revolves with a speed in the range from 109.2 rpm to 386.2 rpm or 11.44 radian/sec to 40.44 radian/sec, which corresponds to the minimum (20G) and maximum (250G) overload accordingly. In addition to the said, it is necessary to set the optimum effective height h* of the crystallizer, i.e. the height from the bottom lining to the lid lining, which must be in the range from 50mm to 1000mm, i.e. the crystallizer with diameter 300mm can have effective height from 50mm to 1000mm. This is also true for the crystallizer with the diameter of 3000mm. The crystallizer functions as follows.

Into a preheated crystallizer, that revolves with a certain speed required for orientation of the melt along the outside diameter of the bottom (2), through the opening in the lid (4) aluminum melt with the temperature of 750-900 C is poured. The lining consisting of layers 8, 10 prevents the body (1) from drastic heating and temperature deformation. Right after completion of the pouring process, rotation speed of the shaft (11) with the body (1) of the crystallizer is increased to the value corresponding to the value of overload in the melt in the range from 20G to 250G under the effect of centrifugal force.

When pumping oil through the block (12) heat is taken away thus, cooling the body (1) with the melt. Supply of a cooling liquid in the block (12) allows the bearings (13) to operate in such a wide range of angular velocities. Thus, crystallization of the melt is accompanied by a powerful gravity field. The effect of the gravity field on the crystallizable melt is similar to creation of respective fields of super cooling in it. The effect of the gravity field intensifies diffusive processes in the aluminum alloy melt that results in obtaining solids of infusion-substitution type with a minimum emission of eutecticum. At a rotation speed providing overloading of the melt in the range from 20G
to 250G, the conditions of crystallization of additives change due to boosting of diffusive processes in melts on the stage of crystalline structure formation. The technical result arrived at here consists in obtaining of alloys with considerably (up to 25-30%) improved functional properties.

As a result the ingot even at a somewhat polycrystalline structure has a dominant crystallographic orientation in the preset direction, constituting no less than 80-85% out of all possible orientations.
The lifetime of the melt is 12-15 sec/kg. Layers 8-10 are made of inactive amorphous materials and prevent the body (1) from sticking to aluminum under the influence of gravity field; they protect the melt and then the ingot from ingress of admixtures from the crystal lattice of the body (1) material.
After crystallization of the melt (transition to solid state) rotation speed of the crystallizer shaft (11) are kept on for some time until the required ingot temperature is attained and then the temperature is decreased until a complete stop of the crystallizer body (1).
In the body (1) the ingot of a circular shape is received, which is removed after opening of the lid (4) with the help of a functional device when the crystallizer body (1) temperature reaches a certain temperature. The "K"

ratio of the outside diameter of the ingot to its height is in the range from 2.5 to 10, and wall thickness of the ingot is determined, preferably as a product of K x 20.

As a result the best combination of durability and ductility of the received alloy is attained: tensile strength 320-330 MPa at the percent elongation 30-40%. The received material can be used as an engineering material for automobile industry.

Thus, an effective crystallizer allowing in practice to receive an alloy with the preset crystalline structure in the gravity field has been created, and the arsenal of crystallizers for-aluminum alloys has been extended.

Thus, the quality of ingots has been improved due to exclusion of temperature deformation of the retainer in which crystallization takes place and due to exclusion of interaction of ingots with the body walls. Functional possibilities are enlarged due to extension of the range of bearings speed.
Application of this crystallizer for receiving aluminum alloys allows to actually obtain deformed (rolled) alloys with magnesium content of 10-15-20%, which in turn leads to considerable improvement of their mechanical properties. As a result, it is possible to get an aluminum sheet, which will be durable as steel and as light as aluminum, from which it will be possible to make different parts using the plastic deformation method (parts of car body, airplanes etc.). I.e. due to its unique durability car bodies, airplanes etc. can become even lighter.

Thus, an effective crystallizer allowing in practice to receive an alloy with the preset crystalline structure in the gravity field has been created, and the arsenal of crystallizers for aluminum alloys has been extended.

Thus, quality of ingots has been improved due to exclusion of temperature deformation of the retainer in which crystallization takes place and due to exclusion of interaction of ingots with the body walls. Functional possibilities are enlarged due to extension of the range of bearings speed in combination with the rotary drive as well as due to the possibility of body rotation around its axis in vertical position with limitation of rotation speed depending on the interval of required overload in the range of 20G to 250G.

Industrial applicability This invention can be implemented with the help of multipurpose easily available modern equipment, which is widely spread in the industry.

Claims (11)

1. A crystallizer containing an installed cylindrical body, capable to rotate, with the bottom, lid and vertical shaft mounted on bearings and provided with a drive, characterized in that the body and the lid have a two-layer lining of internal surfaces, wherein one layer of lining is made as a fettling fixed by a heat-resistant glue to the body walls, and the second layer of lining is made of a fine-grained graphite fixed by a heat-resistant glue to the fettling; the bearings are mounted in a block designed with a possibility to circulate a cooling liquid.
2. The crystallizer of claim 1 characterized in that the bearings are made as conical angular ball bearings, and the shaft drive is made as a slave pulley of a flexible, for example V-belt drive.
3. The crystallizer of claim 1 or 2 characterized in that the lid is provided with a collar for placing in a ring slot additionally made on the body flange.
4. The crystallizer of claim 1 or 2 characterized in that the bottom of the body is made with an opening in which the hub is fixed with a conical opening for installation of the shaft.
5. The crystallizer of claim 1 or 2 characterized in that the block of bearings is provided with the combined stuffing-boxes being a graphite cord and rubberized metal cuffs.
6. The crystallizer of claim 1 or 2 characterized in that the body is made of heat-resistant steel.
7. The crystallizer of claim 1 or 2 characterized in that the layer of the lining being a graphite, is made of a fine-grained graphite with the thickness making half of thickness of the lining made in the form of fettling.
8. The crystallizer of claim 7 characterized in that the layer of fettling is made of shamotte 30mm thick, and the layer of graphite is 15mm thick.
9. The crystallizer of claim 1 or 2 characterized in that it is provided with means of body and the crystallized melt temperature control.
10. The crystallizer of claim 1 or 2 characterized in that the fettling is made of a light-weight heat-resistant material with a specific density from 1.0 to 1.8 g/cm3 and coefficient of heat conductivity from 0.14 to 0.72 watt/meter*kelvin, and the second layer is made with the internal diameter from 300 to 3 000mm and with the height from the bottom lining to the lid lining from 50mm to 1000mm.
11. The crystallizer of claim 10 characterized in that the layer of lining is made of ceramics on the basis of wollastonite.
CA2738681A 2008-09-30 2009-04-14 Crystallizer Abandoned CA2738681A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2008138655 2008-09-30
RU2008138655 2008-09-30
PCT/RU2009/000179 WO2010039058A1 (en) 2008-09-30 2009-04-14 Crystallizer

Publications (1)

Publication Number Publication Date
CA2738681A1 true CA2738681A1 (en) 2010-04-08

Family

ID=42073692

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2738681A Abandoned CA2738681A1 (en) 2008-09-30 2009-04-14 Crystallizer

Country Status (5)

Country Link
US (1) US20110176974A1 (en)
JP (1) JP3171560U (en)
CA (1) CA2738681A1 (en)
DE (1) DE212009000126U1 (en)
WO (1) WO2010039058A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887110B (en) * 2016-06-03 2018-05-01 芜湖众源复合新材料有限公司 A kind of batch bolt MULTILAYER COMPOSITE corrosion protection treatment process
CN109482835B (en) * 2018-12-27 2020-11-24 桂林理工大学 Manufacturing method of annular casting blank with different thicknesses of outer alloy steel and inner aluminum alloy
CN113293313B (en) * 2021-05-24 2023-01-03 巢湖云海镁业有限公司 Pulling device of magnesium crystallizer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2315344A1 (en) * 1975-06-27 1977-01-21 Siderurgie Fse Inst Rech ELECTROROTATIVE CONTINUOUS CASTING LINGOTIER
US4032951A (en) * 1976-04-13 1977-06-28 Bell Telephone Laboratories, Incorporated Growth of iii-v layers containing arsenic, antimony and phosphorus, and device uses
SU650716A1 (en) * 1977-11-18 1979-03-05 Институт Проблем Литья Ан Украинской Сср Method of mould lining for centrifugal casting
AT381871B (en) * 1981-11-26 1986-12-10 Voest Alpine Ag DEVICE FOR CLOSING A LOADING OPENING FOR AUTOCLAVES
SU1079348A1 (en) * 1982-12-24 1984-03-15 Институт проблем литья АН УССР Ingot mould for centrifugal casting
RU2039830C1 (en) 1993-05-26 1995-07-20 Ассоциация компьютерных технологий "АСКТ" Crystallizer
US5372499A (en) * 1993-08-24 1994-12-13 Daido Tokushuko Kabushiki Kaisha High-temperature gas blower impeller with vanes made of dispersion-strengthened alloy, gas blower using such impeller, and gas circulating furnace equipped with such gas blower
RU2055682C1 (en) 1994-03-11 1996-03-10 Александр Павлович Семенов Crystallizer
JP3668564B2 (en) * 1996-08-28 2005-07-06 本田技研工業株式会社 Cable-type steering device
WO2000013785A1 (en) * 1998-09-02 2000-03-16 Jacobus Swanepoel Treatment of solid carbonaceous material
JP3953678B2 (en) * 1999-03-30 2007-08-08 株式会社クボタ Vertical centrifugal casting method and mold apparatus therefor
US6652649B1 (en) * 1999-06-29 2003-11-25 Act Optics & Engineering, Inc. Supplemental heating unit for crystal growth furnace
JP2002283030A (en) * 2001-03-26 2002-10-02 Hitachi Metals Ltd Member for light alloy injection molding machine
US20050254543A1 (en) * 2004-05-13 2005-11-17 Sgl Carbon Ag Lining for carbothermic reduction furnace
NO326797B1 (en) * 2005-06-10 2009-02-16 Elkem As Process and apparatus for refining molten material
RU2312156C2 (en) * 2005-08-04 2007-12-10 Олег Владимирович Анисимов Method of production of superpurity metals and monocrystals from them
RU2299924C1 (en) 2005-09-15 2007-05-27 Олег Владимирович Анисимов Method of preparing magnesium-containing aluminum-based structural material
RU53193U1 (en) 2005-11-21 2006-05-10 Лев Христофорович Балдаев CONTINUOUS CASTING MACHINE CRYSTALIZER
RU79563U1 (en) 2008-09-30 2009-01-10 Закрытое акционерное общество "Русские сплавы" CRYSTALIZER

Also Published As

Publication number Publication date
JP3171560U (en) 2011-11-10
US20110176974A1 (en) 2011-07-21
WO2010039058A1 (en) 2010-04-08
DE212009000126U1 (en) 2011-12-20

Similar Documents

Publication Publication Date Title
US20120207611A1 (en) Casting long products
CN105312520B (en) Manufacture the continuous cast-rolling method and equipment of SiC particle-reinforced Al matrix composite material
US20110176974A1 (en) Crystallizer
EP0265498A1 (en) Process and apparatus for preparation of cast reinforced composite material.
CN1514753A (en) Centrifugal Casting nickel base super alloys in isotropic graphite molds under vacuum
CN103502491A (en) Aluminum alloy compositions and methods for die-casting thereof
JP2018527185A (en) Method and apparatus for manufacturing a monotectic alloy
JP2017164756A (en) Agitation rotor and manufacturing method for aluminum alloy billet using the same
RU79563U1 (en) CRYSTALIZER
US11408056B2 (en) Aluminum based alloy containing cerium and graphite
KR20110065965A (en) Impeller for kanvara reactor
KR100697855B1 (en) Apparatus for agitating of meltng magnesium
KR20210091272A (en) Equipment for the production of semi-solid slurry
JP4390762B2 (en) Differential gear case and manufacturing method thereof
Wei et al. Centrifugal casting
CN103934427B (en) A kind of centre spinning method of asymmetric ring-type high-lead bronze foundry goods
CN101708545B (en) High aluminum-zinc-base alloy bearing bush chemical composition control and inner core water-cooled casting technique
CN109014086A (en) A kind of casting method of high-magnesium aluminum alloy
CN108543921A (en) Strong shear is with electromagnetic field coordinate system for the device and method of big specification homogeneous ingot casting
CN111893374B (en) Graphite-containing bainite semisteel precision roll ring
JP4010114B2 (en) Centrifugal casting method
CN102234728A (en) Production method capable of improving grain size of AlSi7Mg
JP2017094391A (en) Manufacturing method for aluminium alloy billet
KR20190069953A (en) Manufacturing facility for light metal alloy billet of extrusion
CN106238741A (en) The preparation method of car aluminum magnesium alloy materials

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20140415