CA2709964A1 - A highly esterified oligosaccharide polyester lubricant for machinery - Google Patents

A highly esterified oligosaccharide polyester lubricant for machinery Download PDF

Info

Publication number
CA2709964A1
CA2709964A1 CA2709964A CA2709964A CA2709964A1 CA 2709964 A1 CA2709964 A1 CA 2709964A1 CA 2709964 A CA2709964 A CA 2709964A CA 2709964 A CA2709964 A CA 2709964A CA 2709964 A1 CA2709964 A1 CA 2709964A1
Authority
CA
Canada
Prior art keywords
lubricant
tert
butyl
partially
metal surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2709964A
Other languages
French (fr)
Inventor
Roger Stephen Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2709964A1 publication Critical patent/CA2709964A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/40Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/013Iodine value
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/069Linear chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/26Waterproofing or water resistance
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/30Anti-misting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/34Fragrance or deodorizing properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

A method is provided for reducing friction between at least two metal surfaces which are in a frictional relationship with each other or otherwise in need of lubrication. The method includes contacting the metal surfaces with an effective amount of a lubricant composition comprised of partially-esterified sucrose molecules having, in one embodiment, an average distribution of from 5 to 7 fatty acids bound to a sucrose backbone. The lubricant may also include from about 20 ppm to about 10,000 ppm of an antioxidant, about half of which may be an active tocopherol.

Description

A HIGHLY ESTERIFIED OLIGOSACCHARIDE POLYESTER
LUBRICANT FOR MACHINERY
FIELD OF THE INVENTION

This disclosure relates to lubricants for use with the moving parts of various types of machinery, and in particular, with air-driven tools and equipment.

BACKGROUND OF THE INVENTION

Various lubricants have been used for parts of machinery that rub or rotate to reduce friction and wear. Metal surfaces can become very hot during use. Lubricants also act as a coolant for the metal. An effective lubricant reduces the abrasion and friction caused by the rotating or rubbing motions of the working parts of machinery. Lubricants are also applied to working machine surfaces to fill in any depressions in uneven surfaces and thereby form a smoother surface thereby reducing the resistance or friction between adjacent surfaces.

Lubricants have also been introduced into the air flow of pneumatic tools for lubricating the motor or other parts of the tool. Pneumatic tools generally have a pneumatic motor connected by some kind of coupling to a drive member for driving the operative portion of the tool. The motor housing is typically connected to a source of fluid under pressure, such as compressed air, to drive the motor. By introducing the lubricant into the compressed air flow, the lubricant is continually fed to the moving parts of the motor when it is in use. Pneumatic or air-driven tools are used in many industries, such as mining, construction, hydro electric facilities, industrial manufacturing and production lines, such as in control valves and moving cylinders.

Typical lubricants have consisted of petroleum based oils and greases or vegetable based oils, sometimes in combination with various pulverized metallic, ceramic or organic compounds.
There are problems with these products. Rock drill greases, for example, do not lubricate as well as oils in overhead bolting & drilling. They have a moderate viscosity index, which means they thin out rapidly. Rock drill greases have an unpleasant odor and are not biodegradable.
Finally, they have poor thermal heat transfer capabilities.
Petroleum based products also present problems for workers due to the generation of oil particulate mists, known as fogging. When used in enclosed spaces, such as in mines and tunnels where the air flow is limited to begin with, the particulate material has little opportunity to dissipate. The permissible exposure limit for petroleum based rock drill oils and greases, for example, is 5 ppm.

With pneumatic tools, petroleum based oil lubricants can reduce the useful life of the tool. The rotating or sliding parts of machines using such lubricants tend to wear and heat up over long periods of use leading eventually to the deterioration or loss of effectiveness of the lubricant. Water in the compressed air thins out the oil and causes the tool surfaces to wear faster if not frequently replaced. Petroleum based lubricants also leave a slippery deposit on tool surfaces making handling the tools difficult. Like rock drill greases, they are not biodegradable and can pollute water sources. Petroleum based lubricants are also very dirty to use, leaving black deposits on workers' skin and clothing. Further, with rising oil prices, uncertain supplies and the global environmental risks they pose, the cost of petroleum based oils and greases is prohibitive and can only be expected to increase over time.

To combat some of these problems, vegetable oil based rock drill oils have been used as lubricants. Examples include castor oil and canola oil. They are not without their own problems. Vegetable oil based rock drill oils have low viscosities, also produce fogging, do not work well or at all in many standard lubricators, have an unusual odor, and have poor oxidative stability.

There is a need for a lubricant that avoids some if not all of these problems.
SUMMARY OF THE INVENTION

A new lubricating composition has been discovered in the form of partially-esterified oligosaccharide. A method for reducing friction between at least two metal surfaces which are in a frictional relationship with each other is described herein which includes contacting the metal surfaces with an effective amount of a lubricant composition comprised of partially-esterified oligosaccharide molecules.
In one embodiment of the method when used to lubricate pneumatic tools and equipment, the metal surfaces are contacted by introducing the lubricant into the flow of compressed air in the pneumatic tool, or equipment.

In another embodiment of the method the metal surfaces are contacted by applying the lubricant directly to the metal surfaces in need of lubrication.

An embodiment of the lubricant may comprise partially-esterified sucrose. Each partially-esterified sucrose molecule of this embodiment of the lubricating composition comprises a sucrose backbone having from 5 to 7 fatty acids bound thereto.
Each fatty acid bound to the sucrose backbone may have from 2 to 28, and preferably from 4 to 22, carbon atoms in unbranched or branched chains saturated and unsaturated and mixtures thereof. In one embodiment of the lubricating composition, the partially-esterified sucrose molecules have an average distribution of five to six or six to seven fatty acids bound thereto.
In another embodiment of the lubricant composition, the partially-esterified sucrose molecules have an average distribution of six fatty acids bound thereto.

The lubricating composition may further include an amount of an antioxidant effective for reducing the rate of oxidation of the lubricant. The amount useful in some embodiments of the lubricant may range from about 20 ppm to about 10,000 ppm. Other embodiment may use from about 100 ppm to about 5000 ppm, or from about 500 ppm to about 2500 ppm of the antioxidant. An amount found to be useful in at least one embodiment of the lubricant is about 1000 ppm of the antioxidant. In at least one embodiment of the lubricating composition, at least half of the antioxidant is an active tocopherol.

BRIEF DESCRIPTION OF THE DRAWINGS

The various embodiments set forth in the Description of the Invention will be better understood with reference to the following non-limiting drawings, wherein:

FIG. 1 is a schematic comparison of the applicant's understanding of the behavior of the lubricating film of the present invention and that of a prior art petroleum-based oil lubricant.
FIG. 2 is a schematic of an exemplary process for making an embodiment of the partially-esterified lubricant of the invention.
DETAILED DESCRIPTION OF THE INVENTION

A. Definitions As used herein, the term "comprising" means various components conjointly employed in the preparation of the compositions of the present disclosure. Accordingly, the terms "consisting essentially of' and "consisting of' are embodied in the term "comprising".
As used herein, the term "partially-esterified sucrose" represents a commercially distinct chemical class (chemical compound) known as sucrose esters of fatty acids (SEFA). SEFA
compounds are high molecular weight compounds formed by esterifying fatty acids to a sucrose molecule backbone, which contains eight potential esterification sites. A
fully esterified sucrose has eight esters bound to the sucrose backbone. A partially esterified-sucrose has fewer than eight esters bound thereto. The fatty acids used to form these esters include those containing about four to 28 or more carbon atoms, and preferably containing from 8 to about 22 carbon atoms, and mixtures of such esters. Suitable esters can be prepared by the reaction of diazoalkanes and fatty acids, or derived by alcoholysis from the fatty acids naturally occurring in fats and oils. Fatty acid esters suitable for use herein may be derived from either saturated or unsaturated fatty acids. Suitable preferred saturated fatty acids include, for example, capric, lauric, palmitic, stearic, behenic, isomyristic, isomargaric, myristic, caprylic, and anteisoarachadic. Suitable preferred unsaturated fatty acids include, for example, maleic, linoleic, licanic, oleic, linolenic, and erydiogenic acids. Mixtures of fatty acids derived from soybean oil, palm oil, coconut oil, and cottonseed are especially preferred for use herein.
Methyl esters are the preferred fatty acid esters for use herein, since their use in the lubricant described herein tends to result in high yields of sucrose fatty acid partially-esterified reaction products.

Sucrose is an oligosaccharide. Other oligosaccharides believed to be suitable for use herein include, for example, maltose, kojibiose, nigerose, cellobiose, lactose, melibiose, gentiobiose, turanose, rutinose, trehalose, and raffinose. Also believed to be useful are the polyols, which include for example, sorbitol and others.

As used herein, "average distribution" with respect to fatty acids, means the average frequency of fatty acids bound to the sucrose backbone of a quantity of partially-esterified sucrose molecules, which includes individual sucrose molecules having a lesser or greater number of esters bound thereto, but when taken together, have a number of fatty acids bound to the sucrose backbone, which on average equal the range or number stated herein.

As used herein, all parts, percentages, and ratios are based on weight unless otherwise specified.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical value recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".

B. Description of Various Embodiments of the Invention The lubricant of the present invention is made of a partially-esterified oligosaccharide composition, preferably in combination with an antioxidant additive. Machine parts and particularly pneumatic, or air-driven, machine parts are coated with the lubricant to reduce friction and wear. The lubricant has been found to be particularly advantageous in pneumatic equipment where the lubricant is introduced into the compressed air flow for lubricating the motor or other parts of the tool. As the experiments described herein will show, it has been discovered that a lubricant comprised of partially-esterified sucrose, in addition to providing excellent lubrication for metal surfaces, also provides surprising and unexpected benefits to the environment and to the safety of workers whose jobs require them to use, or be in the vicinity of, lubricated machinery. Other advantages of the various embodiments of the lubricant of the present invention will be apparent to those skilled in the art.
A preferred partially-esterified sucrose has an average distribution of fatty acid esters on the sucrose backbone of 5 to 7, wherein the fatty acid moieties each contain 4 or more, and preferably from 4 to about 28 carbon atoms, more preferably from 8 to 22 carbon atoms and most preferably contain 18 carbon atoms. A particularly preferred partially-esterified sucrose is the hexa-ester of sucrose in which there are 6 fatty acid moieties in the molecule.

The partially-esterified sucrose may be combined with an anti-oxidant. The antioxidants useful for the lubricant additive include tocopherols, alkylated monophenols, alkylthiomethylphenols, alkylidenebisphenols, hydroxylated thiodiphenyl ethers, hydroquinones and alkylated hydroquinones, hydroxybenzylated malonates, benzyl compounds, aromatic hydroxybenzyl compounds, triazine compounds, benzyl phosphonates, acylaminophenols, ascorbic acid, certain esters, and aminic antioxidants.

In one embodiment, the antioxidant is a tocopherol. Examples of tocopherols include a-tocopherol, (3-tocopherol, y-tocopherol, 6-tocopherol and mixtures thereof (vitamin E).

Examples of alkylated monophenols include 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-di- methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(a-methylcyclohexyl)-4,6-dimethyl- phenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1 -methylundec-1 -yl)phenol, 2,4-dimethyl-6-(1 '-methylheptadec-1 '-yl)phenol, 2,4-dimethyl-6-(1 '-methyltridec-1'-yl)phenol and mixtures thereof.

Examples of alkylthiomethylphenols include 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4- dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.

Examples of hydroquinones and alkylated hydroquinones include 2,6-di-tert-butyl-4-methoxy- phenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octade- cyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert- butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis(3,5-di-tert-butyl-4-hydroxyphenyl) adipate.

Examples of hydroxylated thiodiphenyl ethers include 2,2'-thiobis(6-tert-butyl-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl- 2-methyl phenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4-bis(2,6-dimethyl-4- hydroxyphenyl)disulfide.

Examples of alkylidenebisphenols include 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'- methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-(a-methylcyclohexyl)- phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4- methyl phenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butyl- phenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-(a-methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-(a,a-dimethylbenzyl)-4-nonylphenol], 4,4'-methylenebis(2,6-di-tert-butylphenol), 4,4'-methylenebis(6-tert-butyl-2-methylphenol), 1,1-bis(5- tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)- 4-methylphenol, 1,1, 3 -tris(5 -tert-butyl-4-hydroxy-methylphenyl)butane, 1, 1 -bis(5-tert-butyl- 4-hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3'-tert- butyl-4'-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopenta- diene, bis[2-(3'-tert-butyl-2'-hydroxy-5'-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephtha- late, 1,1-bis-(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis(3,5-di-tert-butyl-4-hydroxyphenyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.

Examples of benzyl compounds include 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydi-benzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy- 3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4- tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxy-benzyl)sulfide, isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate.

Examples of hydroxybenzylated malonates include dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, di- dodecylmercaptoethyl-2,2-bis (3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1 ,3, 3-tetramethylbutyl)phenyl] -2,2-bis(3, 5 -di-tert-butyl-4-hydroxybenzyl)malonate.

Examples of aromatic hydroxybenzyl compounds include 1 ,3,5-tris(3,5-di-tert-butyl-4-hydroxy- benzyl)-2,4,6-trimethylbenzene, 1 ,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetrame- thylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.

Examples of triazine compounds include 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxy- anilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-tri- azine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,3,5-triazine, 2,4,6-tris- (3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6- tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4- hydroxy be nzyl) isocyanurate.

Examples of benzyl phosphonates include dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3, 5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4--hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.

Examples of acylaminophenols include 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N- (3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.

Examples of esters follow. Esters of (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9- nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethy- lene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylol- propane, 4-hydroxymethyl-l-phospha-2,6,7-trioxabicyclo [2.2.2] octane. Esters of 3-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6- hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-l-phospha- 2,6,7-trioxabicyclo [2.2.2] octane; 3,9-bis [2- { 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy}-1,1 -dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane. Esters of I -(3,5-dicyclohexyl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g.
with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)ox-amide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1 -phospha-2, 6,7 -trioxabicyclo [2.2.2] octane. Esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)ox- amide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl- 1 -phospha-2,6,7 -trioxabicyclo [2.2.2]
octane.

Examples of amides of I -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid include N,N'-bis(3,5-di-tert- butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxy- phenylpropionyl)trimethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazide, N,N'-bis [2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl] oxamide.

Examples of aminic antioxidants include N,N'-di-isopropyl-p-phenylenediamine, N,N'-di-sec- butyl-p-phenylenediamine, N,N'-bis(1 ,4-dimethylpentyl)-p-phenylenediamine, N,N'-bis(1- ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2- naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1 ,3- dimethylbutyl)-N'-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, 4-(p-toluenesulfamoyl)diphenylamine, N,N'-dimethyl-N,N'-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-l-naphthylamine, N-(4-tert-octylphenyl)-1 -naphthylamine, N-phenyl-2-naphthylamine, octylated diphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylaminophenol, 4-dodecanoylaminophenol, 4- octadecanoylaminophenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylamino- methylphenol, 2,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, N,N,N',N'-tetra- methyl -4,4'-diaminodiphenylmethane, 1,2-bis[(2-methylphenyl)amino]ethane, 1 ,2- bis(phenylamino)propane, (o-tolyl)biguanide, bis[4-(1',3-dimethylbutyl)phenyl]amine, tert- octylated N-phenyl-1 -naphthylamine, a mixture of mono-and dialkylated tert-butyl/tert- octyldiphenylamines, a mixture of mono- and dialkylated nonyldiphenylamines, a mixture of mono- and dialkylated dodecyldiphenylamines, a mixture of mono- and dialkylated isopropyl/isohexyldiphenylamines, a mixture of mono- and dialkylated tert- butyldiphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1 ,4-benzothiazine, phenothiazine, a mixture of mono- and dialkylated tert-butyl/tert-octylphenothiazines, a mixture of mono- and dialkylated tert-octyl-phenothiazines, N-allylphenothiazine, N,N,N,N'-tetraphenyl-1,4-diaminobut-2-ene.

The lubricant of the present invention may be made according to the procedure shown in Figure 2. The partially-esterified sucrose is produced with sucrose and refined vegetable oils, such as soybean oil or cotton seed oil. As stated above, a sucrose molecule contains eight potential esterification sites, each of which may support a fatty acid of up to about 28 carbon atoms. Although any single sucrose molecule may form from 1 - 8 ester linkages with a fatty acid, the average distribution found to be beneficial for the method of lubricating described herein has from 5-7 esters, and preferably from 6-7 esters. The average distribution is most preferably a 6 ester sucrose polyester, i.e, on average, six fatty acid molecules are bound through an ester linkage to a sucrose molecule backbone.

Typical distribution examples are provided in Table 1 below, wherein SE means sucrose ester, the number following SE means the number of fatty acid chains bound to the sucrose and I-BAR means the average degree of esterification.

Distribution Examples SEFA
Formulations SE 1 SE 2 SE 3 SE 4 SE 5 SE 6 SE 7 SE 8 I-BAR
1618U 0.0 0.0 0.0 0.0 1.0 5.4 20.0 73.6 7.61 1618U 0.0 0.0 0.0 0.0 0.3 0.4 20.5 78.6 7.76 1618U B6 0.0 0.4 1.3 7.3 15.9 25.2 28.9 21.1 6.10 1618U B6 0.1 0.4 2.3 8.8 17.9 26.1 29.3 15.2 5.88 Ester distribution can be obtained by SuperCritical Fluid Chromatography (SFC) or HPLC with SE representing the Sucrose Esters with 1-8 fatty chains attached and I-BAR being a calculated average number of fatty chains.

The 6-ester sucrose polyester has been found to provide the best overall viscosity and the best bonding to the metal surfaces in use.

In various embodiments, an antioxidant as described above may be added to the partially-esterified sucrose. From about 20 ppm to about 10,000 ppm of one or more of the antioxidants described above may be added to the partially-esterified sucrose composition. For example, about half of the added antioxidant may be an active tocopherol in combination with one or more additional antioxidants.

The addition of an antioxidant increases the oxidative stability of the lubricant. Fats and oils are susceptible to oxidative degradation. Thus, the addition of an amount of an antioxidant effective for minimizing oxidation of the partially-esterified sucrose increases the useful life of the lubricant.

In use, the lubricant is applied to the surfaces of machinery in need of lubrication by any suitable known means, including without limitation application by hand using, for example, a cloth, sponge or brush applicator, application by spraying or squirting onto the desired surface.
The amount of lubricant applied will vary depending on the tool, the intended period of use and the environment in which the tool is used.

When used to lubricate pneumatic tools, the lubricant may be added to a reservoir in fluid communication through a venturi or another valve, with the compressed air flow. In some tools, the lubricant may be pre-loaded into a lubricator, essentially, a replaceable reservoir for the lubricant.

Referring to Figure 1, the boundary lubrication in a dynamic mechanical system is primarily governed by the formation of a stable tribochemical film. Without being bound by any particular theory the lubricant of the present invention appears to line up in a uniform fashion along exposed surfaces of the metal and the orientation of the lubricant is believed to be responsible, at least in part, for the significant improvement in wear resistance and lubrication under extreme pressure demonstrated by the lubricant composition of the present invention. The orientation of the lubricant may also be responsible for there not being a greasy feel to the lubricant when applied to metal surfaces due, it is believed, to better metal adhesion over conventional lubricants obtained by the lubricant of the present invention.

In contrast, traditional rock drill oils are easily wiped away as the tools' metal surfaces pass over each other, as a tool passes over the metal surface of a work piece, or when pressurized air in an air-driven tool passes over the lubricated metal, as schematically represented in part (b) of Figure 1. It is necessary to continually replace the rock drill oil to maintain a film of the coolant between the tool and work piece. To compensate, many operators over-inject traditional rock drill oils, as a safe way to avoid tool failure.

Tests to assess the viability of vegetable oil based lubricants were conducted. The results are shown in Table 2 below.

Vegetable Oil Based Lubricants Product 1Tool Life og 1Odor 1Cost Overall Result Castor Oil Excellent Very little ow Low Some operators with Special complained of irritation.
ubricator Others didn't mind it.

RBD Excellent Problematic French Low robust lubricator could Canola Oil Fries of be found that could odor minimize the canola flow nough, and viscosity modifying additives were xpensive.

Lubrizol Excellent one one Very xcellent result overal Synester High but price was GY-25 unacceptable.
ester Uniqema Excellent one one Very xcellent tool life an Priolube High operator acceptance but complex rice was very high.
esters The conclusion after running the aforementioned lubricants in mining operations over several months was that vegetable oils and esters outperformed petroleum oils by far in terms of tool life and consumption, but the Lubrizol and Uniqema esters in particular were too expensive and the castor oil and RBD canola oils resulted in unacceptable fogging, or required special applicators to prevent fogging, irritated workers or had an unpleasant odor.

When tests were done comparing the partially-esterified sucrose based lubricants to other vegetable based lubricants, all of the problems experienced with either petroleum based or vegetable oil based lubricants were avoided.

EXPERIMENTS
Partially-Esterified Sucrose Based Lubricant 1. Four Ball Wear Test. A standard Four Ball Wear Test was conducted. The Four Ball Wear Test puts one rotating ball against three fixed balls under specific conditions of pressure, temperature, revolutions per minute and duration. The test is used to evaluate the friction- and wear-control ability of greases and lubricating oils in sliding steel-on-steel applications. The point contact interface is obtained by rotating a 12.7mm diameter steel ball under load against three stationary steel balls immersed in the lubricant. The normal load, frictional force, and temperature are monitored using commercially available software. The rotating speed, normal load, and temperature can be adjusted in accordance with published ASTM
standards. For evaluating wear preventive characteristics of lubricants, the subsequent wear scar diameters on the balls are measured. For evaluating the load-carrying capacity of lubricants, the normal load at which welding occurs at the contact interface can be recorded.

The lubricating properties of partially-esterified sucrose based lubricant using the Four Ball Wear Test resulted in a 0.35 mm scar with a 40 Kg. load after one hour. A
comparison with one of the most commonly used lubricant's (Petro Canada's Ardee 150) resulted in a 0.4 mm scar with a 20 Kg. load after one hour.

2. Copper Tapping. Tests conducted on tapping elemental copper demonstrated that one embodiment of the partially-esterified sucrose based lubricant, SEFA 16185, outperformed Tapping Fluids based on chlorine extreme pressure additives. Copper Tapping tests are based on the Cincinnati Machine Thermal Stability Test wherein polished, pre-weighed steel and copper rods are immersed in a beaker containing 200 cc of oil and heated to 135 C for 168 hours. The rods are weighed and examined for discoloration and weight loss.
Elemental copper is extremely ductile, and poor lubricity results in torn threads (rejects).
SEFA excelled in all tests. The comparison is shown in Table 3 below.

Comparative Copper Weight Change of SEFA with those of Other Esters & Base Oils PAO
TEI Ester SPE3 UPE2 HVI (Poly (Trimellitate (Saturated (unsaturated (mineral alpha SEFA
DE3 (Diester) Ester) polyol ester) polyol ester) oils) olefin) 1618S
Copper Weight Change, %
Loss 0.01 0.06 0.06 0.05 <0.01 <0.01 0.03 The composition of SEFA1618S (IV=85) is the same as the composition of (IV=130) except for differences in the Iodine Value (IV). See the ester distribution for SEFA
1618U in Table 1 above.

3. On Site Testing. The partially-esterified sucrose based lubricant was tested as the sole lubricant for two drills in a mine to determine how it would perform in an enclosed environment on actual equipment. The drills were used to create a vent raise to the surface.
Drilling was overhead and blasting of the material was carried out above the drills. When the ceiling was blasted down, comparative drilling resumed on the blasted rock to drill. There is virtually no ventilation in this environment, arguably the worst condition possible to test in.
Two drills were lubricated with partially-esterified sucrose based lubricant.
Additional drills were lubricated with a conventional lubricant, Petro Canada's Ardee 150 Rock Drill Oil. The tests were conducted over a period of 3-5 months.

Observations:
The drills lubricated with the partially-esterified sucrose based lubricant used only 35 -40% of the amount of conventional rock drill fluid used on the comparative drills. The amount of lubricant was reduced to even lower levels compared to the conventional lubricant amounts needed during the same period. It is believed that a reduction to 25%
consumption for the partially-esterified sucrose based lubricant as compared to Petro Canada's Ardee 150 Rock Drill Oil will provide effective lubrication.
The drills that were lubricated with partially-esterified sucrose based lubricant did not have to be changed during the period of the trial while the drills lubricated with conventional lubricants had to be rebuilt 1 to 2 times at an average cost of $3400.00 per drill.

It is known that prior art oils sometimes freeze in the tool exhaust port due to water in compressed air freezing upon exit. It is then necessary to stop the tool and chip the ice away from the exhaust port. No freezing was experienced with the partially-esterified sucrose based lubricant during the trial period.

It is known that prior art oils make the operators' exposed skin and clothing black by shift's end. No staining or soiling of skin or clothing was experienced by those using the drills lubricated with partially-esterified sucrose based lubricant during the trial period.

It is known that prior art oils make the drill slippery, making it often necessary for miners to stop work to rub gloves with rock drill fines to get a grip. There were no slippery deposits found on the tools using partially-esterified sucrose based lubricant. Moreover, fogging of the lubricant was virtually eliminated.

The drills lubricated with the poly-esterified sucrose based lubricant always sounded well lubricated during the trials. At times during the trial, the large amount of water in the compressed air of the tools lubricated with the conventional lubricant (Ardee 150), which has an emulsifier in it, would cause the conventional lubricant to become too thin, thereby exposing the tools to the danger of burning up. Operators were forced to increase the oil injection, which is believed to have been at least one cause of the fogging and associated discomfort experienced with the conventional lubricants.

Comparisons of Rock Drill Oils / Greases with partially-esterified sucrose based lubricant (SEFA 1618 S) roduct SEFA rdee 150 Vultrex EP000 Veg. Oils Fully Rock Drill Oil Grease Various sterified V. Index * 169 92 94 140 - 200 TLV** (ppm) <2 5 + <2 2-5 Fogging 2 3 1 Worst Tool Life 1Best 4 3 Odor 1 4 3 Consumption 1 4 2 3 Washout 1 4 3 Operational Costs 1 4 2 3 Due to High Materials cost = * The Viscosity Index, commonly designated VI, is an arbitrary numbering scale that indicates the changes in oil viscosity with changes in temperature. Viscosity index can be classified as follows.
= Low VI - below 35 = Medium VI - 35 to 80 = High VI - 80 to 110 = Very High VI - 110 to125 = Super VI - 125 to 160 = Super High VI - above 160 to 200 ** TLV - Threshold Limit Value is a measure of the weighted average concentration to which it is believed that nearly all workers may be repeatedly exposed, day after day, without adverse effects.

Fogging and odor were evaluated subjectively using a scale of 1-4, with 4 being the worst and 1 the best observed results.
Tool life was determined by field test comparison and is based on a scale of 1-4, wherein 1 means longest wear life and 4 means shortest wear life.
Washout means cleaning of the tool using water and was determined by the amount of residue left on the tool.
Consumption means the amount of lubricant used in the tool and was determined by the amount of times the lubricator needed to be refilled.

In tests run with the embodiment of the lubricant having an average distribution of 6 fatty acid esters bound to the sucrose backbone, the values improved even more over the fully esterified embodiment having 8 fatty acids bound to the sucrose backbone. For example, there was no visible fogging, so the 6-ester embodiment had a fogging score of 1.

The partially-esterified sucrose based lubricant of the present invention has been found to reduce product consumption by as much as 75% compared to the conventional lubricants tested. The partially-esterified sucrose based lubricant has a high threshold limit value (TLV) of ppm, making it much safer for workers than the conventional lubricants. The partially-esterified sucrose based lubricant has better lubricity and tool protection than any petroleum based lubricant. It reduces tool rebuild costs for end user.

The partially-esterified sucrose based lubricant is non fogging, a factor that is very important to worker safety and comfort as well as to avoidance of work stoppage to compensate for slippery tool surfaces. The partially-esterified sucrose based lubricant biodegradable and has considerably lower production costs than petroleum based oils and some vegetable based oils.
Further, the partially-esterified sucrose based lubricant is useful as a chain saw oil, conveyor chain lubricant, wire rope lubricant for elevating devices, metalworking, such as tapping, threading and drilling, saw guide oil, such as those used for band saws in lumber production, form release oil for the construction industry, water pump gear case oil, gear oil, and a railroad rail oil used on curves to minimize wear.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm.

Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (8)

1. A lubricating composition for lubricating at least two metal surfaces which are in a frictional relationship, characterized in that the lubricating composition comprises a mixture of:
(1) a partially-esterified oligosaccharide; and (2) an effective amount of an antioxidant for reducing oxidation of the partially-esterified oligosaccharide.
2. The lubricating composition recited in claim 1 wherein the partially-esterified oligosaccharide comprises a sucrose backbone having an average distribution of bound fatty acids from 5 to 7, preferably from 6 to 7 fatty acids, more preferably about 6 fatty acids.
3. The lubricating composition recited in either of the preceding claims wherein each fatty acid bound to the sucrose backbone has from 2 to 28 carbon atoms, preferably from 4 to 28 carbon atoms, in the unbranched or branched chains.
4. The lubricating composition recited in any of the preceding claims comprising from 20 to 10,000 ppm of the antioxidant, preferably wherein the antioxidant is selected from the group consisting of tocopherols, alkylated monophenols, alkylthiomethylphenols, alkylidenebisphenols, hydroxylated thiodiphenyl ethers, hydroquinones and alkylated hydroquinones, hydroxybenzylated malonates, benzyl compounds, aromatic hydroxybenzyl compounds, triazine compounds, benzyl phosphonates, acylaminophenols, ascorbic acid, certain esters, and aminic antioxidants and mixtures thereof.
5. The lubricating composition recited in claim 4 wherein at least half of the antioxidant is an active tocopherol.
6. A method of reducing friction between at least two metal surfaces which are in a frictional relationship with each other characterized in that the method comprises the step of contacting the metal surfaces with an effective amount of the lubricanting composition recited in any of the preceding claims.
7. The method recited in claim 6 wherein contacting the metal surfaces comprises introducing the lubricant into the flow of compressed air in a pneumatic tool.
8. The method recited in claim 6 wherein contacting the metal surfaces comprises applying the lubricant directly to the metal surfaces in need of lubrication.
CA2709964A 2008-01-29 2009-01-22 A highly esterified oligosaccharide polyester lubricant for machinery Abandoned CA2709964A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2436308P 2008-01-29 2008-01-29
US61/024,363 2008-01-29
PCT/IB2009/050254 WO2009095824A1 (en) 2008-01-29 2009-01-22 A highly esterified oligosaccharide polyester lubricant for machinery

Publications (1)

Publication Number Publication Date
CA2709964A1 true CA2709964A1 (en) 2009-08-06

Family

ID=40600230

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2709964A Abandoned CA2709964A1 (en) 2008-01-29 2009-01-22 A highly esterified oligosaccharide polyester lubricant for machinery

Country Status (7)

Country Link
US (1) US20090192060A1 (en)
EP (1) EP2240558A1 (en)
AR (1) AR074614A1 (en)
CA (1) CA2709964A1 (en)
PE (1) PE20100017A1 (en)
TW (1) TW200940702A (en)
WO (1) WO2009095824A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2733722A1 (en) * 2008-08-18 2010-02-25 Delano Ray Eslinger Resin and paint coating compositions comprising highly esterified polyol polyesters with one pair of conjugated double bonds
CN114317066A (en) * 2021-12-29 2022-04-12 三合润一材料科技(广州)有限公司 Preparation method of low-odor solubilizing lubricant and product thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2700022A (en) * 1952-07-15 1955-01-18 California Research Corp Sugar ester-containing lubricant compositions
FR2763597B1 (en) * 1997-05-20 1999-12-17 Igol Ind LUBRICATING OIL COMPOSITION FORMED BY A BIODEGRADABLE AND NON-TOXIC SUGAR POLYESTER
US6291409B1 (en) * 1998-07-02 2001-09-18 Cargill, Inc. Process for modifying unsaturated triacylglycerol oils; Resulting products and uses thereof
CN1246426C (en) * 1999-10-25 2006-03-22 日石三菱株式会社 Fluid composition for cutting or grinding system employing trace amount of fluid
JP3905292B2 (en) * 1999-10-25 2007-04-18 新日本石油株式会社 Oil composition for cutting / grinding with ultra-trace oil supply
AU2002303357A1 (en) * 2001-05-17 2002-11-25 Exxonmobil Chemical Patents, Inc. Biodegradable synthetic lubricants
FI114869B (en) * 2002-08-01 2005-01-14 Vegaoils Ltd Oy Lubricating oil and its use
EP1742955A2 (en) * 2004-05-07 2007-01-17 The Procter and Gamble Company Purified, moderately esterified polyol polyester fatty acid compositions and synthesis thereof

Also Published As

Publication number Publication date
PE20100017A1 (en) 2010-02-02
EP2240558A1 (en) 2010-10-20
WO2009095824A1 (en) 2009-08-06
TW200940702A (en) 2009-10-01
AR074614A1 (en) 2011-02-02
US20090192060A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
EP1861485B1 (en) Antiwear lubricant compositions for use in combustion engines
JP6553080B2 (en) Aqueous lubricant composition, process for its preparation and its use
CA2676886C (en) Lubricating composition with good oxidative stability and reduced deposit formation
US6750184B2 (en) Lubricants with 5-tert.-butyl-4-hydroxy-3-methylphenyl substituted fatty acid esters
AU2007253453A1 (en) Corrosion inhibiting composition for non-ferrous metals
JP5769707B2 (en) Hydraulic fluid composition
CN105229129A (en) The purposes of polytetrahydrofuran in lubricating oil composition
KR102124103B1 (en) Lubricant composition having improved antiwear properties
AU721504B2 (en) Hydraulic oil and method for its manufacture
AU2007206029A1 (en) Lubricant oil and lubricating oil additive concentrate compositions
US20090192060A1 (en) Highly esterified oligosaccharide polyester lubricant for machinery
US6110877A (en) Non-halogenated extreme pressure, antiwear lubricant additive
Anand et al. Anti‐friction, anti‐wear and load‐carrying characteristics of environment friendly additive formulation
CN104449967A (en) Mechanical lubricating oil and preparation method thereof
CA3139329C (en) Valve leak repair packing material and method of using the same
DE102015204009B4 (en) Use of a lubricant composition for lubricating a dual-clutch transmission
JP6917271B2 (en) Lubricating oil composition for slip guide surface
CN101319162A (en) Compositions comprising at least one friction modifying compound, and methods of use thereof
RU2404233C2 (en) Process lubricant for cold massive forming metal
KR20200089945A (en) Composition of vegetable engine oil
WO2010049439A1 (en) Synthetic lubricant composition and use thereof
Pedisic et al. Possibility of biodegradable base oils application in neat metalworking oils
Mazzo-Skalski High-Performance Synthetic Basestocks Solve Lubrication Challenges
JP2004043638A (en) Oil air lubricating device

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20130122