CA2666476C - Device and method for determining the temperature inside an item to be cooked - Google Patents

Device and method for determining the temperature inside an item to be cooked Download PDF

Info

Publication number
CA2666476C
CA2666476C CA2666476A CA2666476A CA2666476C CA 2666476 C CA2666476 C CA 2666476C CA 2666476 A CA2666476 A CA 2666476A CA 2666476 A CA2666476 A CA 2666476A CA 2666476 C CA2666476 C CA 2666476C
Authority
CA
Canada
Prior art keywords
cooked
item
temperature
sensor
temperature inside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2666476A
Other languages
French (fr)
Other versions
CA2666476A1 (en
Inventor
Christoph Luckhardt
Florian Ruther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrolux Home Products Corp NV
Original Assignee
Electrolux Home Products Corp NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrolux Home Products Corp NV filed Critical Electrolux Home Products Corp NV
Publication of CA2666476A1 publication Critical patent/CA2666476A1/en
Application granted granted Critical
Publication of CA2666476C publication Critical patent/CA2666476C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/087Arrangement or mounting of control or safety devices of electric circuits regulating heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • H05B6/6455Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors the sensors being infrared detectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Abstract

The invention concerns a device for determining the temperature inside an item to be cooked (12). The invention comprises at least one temperature sensor (20) for detecting at least one surface temperature of the item to be cooked (12) and/or an ambient temperature around the item to be cooked, particularly at a measuring location inside the cooking chamber surrounding the item to be cooked, preferably with an ambient temperature sensor which is arranged at said measuring location. Furthermore, the device comprises at least one distance sensor (22) for detecting one or multiple distances between the distance sensor (22) and one or multiple distance measuring points (36) on the surface of the item to be cooked (12). In addition, the device comprises at least one time measuring device for measuring elapsed time during preparation of the item to be cooked (12) and at least one calculation device for calculating the temperature inside the item to be cooked (12) using the surface temperature of the item to be cooked (12) and/or the ambient temperature, the distance or multiple distances, elapsed time, and the start temperature of the item to be cooked (12). The invention also concerns a method for determining the temperature inside an item to be cooked (12).

Description

Description Device and Method for Determining the Temperature inside an Item to be Cooked The invention concerns a device for determining the temperature inside an item to be cooked. Furthermore, the invention concerns a cooking device comprising the device for determining the temperature inside an item to be cooked. Additionally, a method according to the invention is provided for determining the temperature inside an item to be cooked.

The temperature inside an item to be cooked is an indicator of the state of preparation of the item to be cooked. Particularly, the temperature of the coldest spot in the item to be cooked, which is mostly in the center of said item, is relevant to the preparation state of the item to be cooked. Also, the pasteurizing value of the item to be cooked is asso-ciated with the temperature of the coldest spot in said item.

The temperature of the item to be cooked which is located inside a cooking device can be measured with a temperature probe. The temperature sensor is designed, for ex-ample, like a meat skewer and electrically coupled to the cooking device by means of a cable. For the user, however, it is difficult to find the coldest spot in the item to be cooked. In addition, the user finds the cable troublesome.

The problem to be addressed by the invention is to present an improved device and an improved method for determining the temperature inside an item to be cooked.

With reference to the device, this problem is solved by the subject matter according to claim 1.

According to the invention, a device for determining the temperature inside an item to be cooked is presented, having the following:
- at least one temperature sensor for detecting at least one surface temperature of the item to be cooked and/or an ambient temperature around the item to be cooked, particularly at a measuring point inside the cooking chamber which sur-rounds the item to be cooked, preferably with a temperature sensor for measuring the ambient temperature, which is arranged at the measuring point, - at least one distance sensor for detecting one or multiple distances between the distance sensor and one or multiple distance measuring points on the surface of the item to be cooked, - at least one time measuring device for measuring elapsed time during preparation of the item to be cooked, and - at least one calculating device for calculating the temperature inside the item to be cooked, using the surface temperature of the item to be cooked and/or the ambi-ent temperature, the one or multiple distances, elapsed time, and the start tem-perature of the item to be cooked.

The essence of the invention lies in the combination of the temperature sensor and dis-tance sensor, such that the surface temperature and/or the ambient temperature and at least a part of the geometry of the item to be cooked can be determined at the same time. Using the elapsed time, the start temperature, and additional parameters, it is possible to calculate the temperature inside the item to be cooked. The additional pa-rameters can be given explicitly, or implicitly contained in the calculating device. By means of a calibration process using different items to be cooked, a parameter field, for example, can be compiled and stored in the calculating device.

The calculating device is preferably either designed or programmable for calculating the temperature inside the item to be cooked on the basis of a thermal conductivity equa-tion. Using the thermal conductivity equation and the measured values, it is possible to calculate the temperature inside the item to be cooked. The calculation can be carried out in a particularly simple manner using an approximation of the thermal conductivity equation. In this case, it is assumed, for example, that the item to be cooked has a par-ticularly simple shape, for example that of a cylinder or a cuboid.

As an example, the calculating device can be designed or programmable for calculating the geometric shape of the item to be cooked from one or multiple distances.
The more distance measuring points that are used, the more precisely the shape of the item to be cooked can be determined. In the case of only one distance measuring point, the in-sertion height of the item to be cooked must be known.

Furthermore, the calculating device can be designed or programmable for calculating the temperature inside the item to be cooked by utilizing the geometric shape of the item to be cooked. With a numeric solution of the thermal conductivity equation, items to be cooked having an uneven shape can also be calculated.

Preferably, the calculating device is designed or programmable for calculating the tem-perature in the center of the item to be cooked. The center of the item to be cooked is the coldest spot in most cooking processes. Consequently, it is possible to determine, from the chronological progression of the temperature in the center of the item to be cooked, whether and when the cooking process is complete.

In the preferred embodiment, the temperature sensor is designed as an optical sensor and/or as an infrared sensor. Additionally, the distance sensor is preferably designed as an optical sensor and/or as an infrared sensor, although said distance sensor can also be an ultrasonic sensor or radar sensor. The temperature sensor and the distance sensor can be arranged inside or on the cooking chamber, in such a way that the user does not find said sensors troublesome.

In addition, the device can comprise a prism or a mirror or another optical deflection device, which can be arranged or mounted in the optical path between the temperature sensor and/or distance sensor on one side, and on the other side, the item to be cooked or an area where the item to be cooked will be placed.

One advantageous embodiment provides for an at least sectionwise, preferably optical, scan of the surface of the item to be cooked.

In addition, a first variant is provided, in which the temperature sensor and/or the dis-tance sensor is pivotably, moveably, and/or rotatably arranged or mountable in or on a cooking chamber, such that, by means of at least one light beam or infrared beam, the surface of the item to be cooked can be scanned at least by section.

Additionally, the prism or the mirror of the optical deflection device can be pivotably, moveably, and/or rotatably arranged or mounted in or on the cooking chamber.
If the mirror, the prism, or the optical deflection device is pivotable, the temperature sensor and distance sensor can be fixed and immovably mounted. In such a way, the com-plexity of design is especially minimal, because only the prism or the mirror or the opti-cal deflection device is movable.

The temperature sensor can be designed for detecting the surface temperature at mul-tiple temperature measuring points on the surface of the item to be cooked. In this manner, it is possible to detect the temperature distribution especially well.

The distance measuring points and/or the temperature measuring points are appropri-ately selected or selectable from a predetermined schema.
In the preferred embodiment, the temperature sensor, the distance sensor, and/or the prism or the mirror are arranged or mountable outside the cooking chamber in a cool or cooled area. This allows the use of cost efficient sensors and contributes to high measurement precision. For this arrangement, the cooled area is, for example, de-signed as a cooling channel with at least one cooling unit, particularly a blower.

The device preferably has an input device for manually or automatically inputting one or multiple parameters. Using said input device, the user can also input parameters which, for example, concern the item to be cooked.

The input device is advantageously coupled with the calculation device, so that the pa-rameter or parameters for calculating the temperature inside the item to be cooked are available for use. Consequently, known parameters can be used and referred to for the calculation. -Furthermore, the invention concerns a cooking device, which comprises the device de-scribed above for determining the temperature inside an item to be cooked.

The cooking device preferably contains a cool or cooled area, in which the temperature sensor, the distance sensor, and/or the prism or the mirror or the deflection device are arranged or mountable. As an example, the cool or cooled area is designed as a blower channel.

In reference to the method, the problem is solved by the subject matter according to patent claim 20.

The method according to the invention for determining the temperature inside an item to be cooked comprises the following steps:
- detection of at least one temperature on the surface of the item to be cooked - detection of one or multiple distances between a predetermined position and one or multiple distance measuring points on the surface of the item to be cooked - measurement of elapsed time during the cooking process, and - calculation of the temperature inside the item to be cooked using the surface tem-perature of the item to be cooked and/or the ambient temperature, one or multiple distances, the time, and the start temperature of the item to be cooked.

The essence of the method according to the invention lies in the combination of the detection of the temperature and the detection of the distance, such that the surface WO 2008/052747 . PCT/EP2007/009417 temperature and geometry of the item to be cooked can be determined at the same time. Using the time, the start temperature, and additional parameters, it is possible to calculate the temperature inside the item to be cooked.

Particularly, the invention provides that the temperature inside the item to be cooked is calculated on the basis of a thermal conductivity equation. The thermal conductivity equation and the measured values allow the calculation of the temperature inside the item to be cooked. The calculation can be made especially simple by using an ap-proximation of the thermal conductivity equation. As such, it is assumed that the item to be cooked has an especially simple geometric shape, for example that of a cylinder or a cuboid.

As an example, the geometric shape of the item to be cooked can be calculated from the multiple distances. Subsequently, the temperature inside the item to be cooked can be calculated from the geometric shape of the item to be cooked.

In the preferred embodiment, the temperature in the center of the item to be cooked is determined. In many cooking processes, the center of the item to be cooked is the coldest spot.. Therefore, it is possible to determine, using the chronological progression of the temperature in the center of the item to be cooked, whether and when the cook-ing process is complete.

The distance or the multiple distances are metrologically detected by means of a scan of at least one section of the surface of the item to be cooked, using an, infrared beam.
Additionally, the temperature can be detected by means of a scan of at least one sec-tion of the surface of the item to be cooked, using an infrared beam.

In addition, the chronological progression of the surface temperature of the item to be cooked, the density of the item to be cooked, the heat transfer coefficient, the thermal conductivity of the item to be cooked, and/or the heat capacity of the item can be used as parameters.

If it is possible to make an assumption or determine empirically beforehand how the temperature profile of the surface temperature and/or the ambient temperature will be-have, then in another embodiment, it can be extrapolated with help of the thermal con-ductivity equation how much time it will take to reach a predetermined core tempera-ture.

In this way, it is possible to inform the user early in the process of the time when the cooking process will be completed.

Finally, the invention provides for the pasteurizing value for the item to be cooked to be calculated from the chronological progression of the temperature in the center of the item to be cooked. The required parameters can be assigned when the user inputs the type of item to be cooked by means of a menu selection.

Further features, advantages, and special embodiments of the invention are the subject matter of the claims below.

The device for determining thermal magnitudes according to the invention is more spe-cifically explained hereafter with the example of a preferred embodiment and with refer-ence to the attached drawing. The single figure shows a schematic section view of a cooking chamber with a preferred embodiment of the device according to the invention.
The figure shows a schematic section view of a cooking chamber 10 of a cooking de-vice. The cooking device comprises a device for determining the temperature inside an item to be cooked 12. On the inside of both side walls of the cooking chamber 10 are guide rails 24, which are each arranged in pairs at the same height. The guide rails 24 are arranged horizontally and extend perpendicular to the plane of the drawing. On two guide rails 24 at the same height is a rack 14, which can be constructed as, for exam-ple, a wire rack or a sheet rack. On the rack 14 is the item to be cooked 12.
The item to be cooked 12 is likewise illustrated in a section view. Isotherms 16 are illustrated inside the item to be cooked 12, to clarify the spatial temperature distribution. A center 18 shows the geometric center of the item to be cooked 12. Because the item to be cooked 12 is heated from the outside to the inside, the center 18 shows the coldest spot in the item to be cooked 12.

A temperature sensor 20 and a distance sensor 22 are arranged above the cooking chamber 10. In this concrete embodiment, the temperature sensor 20 and the distance sensor 22 are designed as infrared sensors. Furthermore, a mirror 30 is arranged above the cooking chamber. 10. The mirror 30 is installed pivotably about an axis 32.
The axis 32 extends perpendicular to the plane of the drawing. In alternate embodi-ments, the mirror can also be pivotable about two or more axes. Furthermore, the pos-sibility exists that the mirror 30 is horizontally movable above the cooking chamber 10.
In the last case, it is not necessarily required that the mirror 30 is pivotable.

Furthermore, the device contains an input device and a calculating device, which are not illustrated in the drawing. Using the input device, the user can input parameters which concern the item to be cooked and/or the type of preparation. The parameters can be inputted directly, for example. Likewise, the user can input the type of item to be cooked and if appropriate, the weight thereof. From this information, corresponding parameters can be assigned in the calculation device.

The temperature sensor 20, the distance sensor 22, and the mirror 30 are arranged in such a way that the infrared rays between, on one side, the temperature sensor and/or distance sensor 22, and on the other side, the mirror 30 travel horizontally above the cooking chamber. In addition, the mirror 30 is arranged in such a way that the infra-red rays 26 and 28, owing to the reflection, travel between the mirror 30 and the surface of the item to be cooked 12 and the rack 14. The mirror 30 is movable in such a way that the entire width of the cooking chamber 10 can be scanned with the infrared rays 26 and 28.

By the movement of the mirror 30, the surface of the item to be cooked 12 is scanned by both the infrared beam 26 of the temperature sensor 20 and the infrared beam 28 of the temperature sensor 22. In this way, the part of the rack 14 that is not covered by the item to be cooked 10 is scanned. The temperature on the surface of the item to be cooked 12 is detected by means of temperature sensor 20, at multiple temperature measurement points 34 which are selected according to a predetermined schema.
Similarly, the distance between distance measuring point 36 and distance sensor 22 is detected at multiple distance measuring points 36 which are likewise selected accord-ing to a predetermined schema. Using the multiple distance measurements, it is possi-ble to determine the geometric shape of the item to be cooked 12.

Using the detected surface temperature and geometric shape of the item to be cooked 12 and further known parameters, it is possible to calculate the temperature in the cen-ter 18 of the item to be cooked 12. An approximation of the thermal conductivity equa-tion, preferably an approximation equation for cylindrical or flat bodies, is used for this purpose. The thermal conductivity equation is a differential equation, in which particu-larly the temperature as well as the spatial and temporal derivation of the temperature appear.

The calculation of the temperature in the center 18 of the item to be cooked 12 uses the start temperature of the item to be cooked 12, the thermal conductivity coefficient in the cooking chamber 10, the time since the start of the cooking process, and the chronological progression of the temperature. Furthermore, parameters specific to co-mestible goods are used for the calculation of the temperature in the center 18 of the item to be cooked 12. These parameters are the density, the thermal conductivity, the heat capacity, and the length or shape of the item to be cooked 12.

The thermal parameters of the item to be cooked can, for example, be inputted directly.
Alternatively, the user can select and input the type of comestible good using a selec-tion menu, so that the thermal parameters can be assigned and provided by the calcu-lation device. The heat transfer coefficient in cooking chamber 10 depends on the type of heat supply and can be, for example, provided by a control or regulation device of the cooking device. The time elapsing since the start of the cooking process is meas-ured by a time measuring device, which is not illustrated in the drawing. The chrono-logical progress of the temperature is provided by combination of the measured time and temperatures. The start temperature of the item to be cooked 12 is measured by the temperature sensor 20.

Using the chronological progression of the temperature in the center 18 of the item to be cooked 12, it is possible to determine whether the preparation of the item to be cooked 12 is complete.

Furthermore, it is possible to determine the pasteurizing value of the item to be cooked*
12 from the chronological progression of the temperature in the center 18 of the item to be cooked 12. The pasteurizing value P is given by integration over the period of the cooking process:

P = f {10^[(TZ - Tp)/Z]/D} dt .

Wherein Tz is the temperature in the center 18 of the item to be cooked 12. D
and Z
are values for the thermal resistance of a certain group of bacteria. TD is the tempera-ture at which the relevant bacteria are destroyed. When the user inputs the type of item to be cooked using the input device, the corresponding parameters D, Tp und Z
are assigned and provided in the calculation device.

The preferred embodiment of the invention has the advantage that the measurement of relevant parameters takes place without wires. The determination of the temperature in the center of the item to be cooked 12 proceeds in a manner that is especially conven-ient for the user, because no other devices are present in the cooking chamber 10.

Only the rack 14 and the item to be cooked 12 are present inside the cooking chamber 10.

In an alternative embodiment, the temperature sensor 20 and the distance sensor 22 are pivotably arranged so that the pivotable mirror 30 is not necessarily required. The alternative embodiment can have a fixed mirror, wherein the direction of the beam is changed by pivot movements of the temperature sensor 20 and the distance sensor 22.
Similarly, the alternative embodiment can have no mirror, wherein the temperature sen-sor 20 and the distance sensor 22 are pivotably arranged in the cooking chamber 10 or above the cooking chamber 10.

In the preferred embodiment, the distance sensor 22 is designed as an infrared sensor.
Alternatively for this purpose, the distance sensor 22 can be designed, for example, as an optical sensor or ultrasonic sensor.

The temperature sensor 20 and/or the distance sensor 22 can also be used for other measurements. For example, the temperature sensor can also be used to determine whether comestible goods are dried out. The distance sensor 22 can also be used, for example, to determine the height of the rack 14 in the cooking chamber.

A modification of the invention is a device for determining the contour or the geometric shape of the item to be cooked 12, which comprises the distance sensor 22 and possi-bly also the mirror 30. In this case, the distance sensor 22 and/or the mirror 30 are ar-ranged or can be mounted pivotably, movably, and/or rotatably, so that the upper side of the item to be cooked 12 can be scanned. In this way it is possible to calculate the shape of the item to be cooked 12.

Instead of a mirror 30, a prism or another optical deflection device can be provided in all embodiments.

Alternatively or additionally to the measurement described for the surface temperature of the item to be cooked, an ambient temperature around the item to be cooked can also be measured and incorporated into the calculation of the temperature inside the item to be cooked 12. The ambient temperature is particularly measured at a measur-ing location inside the cooking chamber 10 surrounding the item to be cooked, prefera-bly with an ambient temperature sensor 15 arranged at the measuring location, which can be a standard temperature sensor provided for cooking ovens, arranged at a loca-tion outside of the item to be cooked 12 that allows for a maximally trouble-free tem-perature measurement of the surroundings or the surrounding air around the item to be cooked.

'10 List of Reference Signs Cooking chamber 12 Item to be cooked 14 Rack Ambient temperature sensor 16 Isotherms 18 Center of the item to be cooked Temperature sensor 22 Distance sensor 24 Guide rail 26 Infrared beam of the temperature sensor 28 Infrared beam of the distance sensor Mirror 32 Axis 34 Temperature measuring point 36 Distance measuring point TZ Temperature in the center of the item to be cooked P Pasteurizing value

Claims (33)

1. Device for determining the temperature inside an item to be cooked, wherein the device comprises the following:

- at least one temperature sensor for detecting at least one surface temperature of the item to be cooked and/or an ambient temperature around the item to be cooked, particularly at a location inside the cooking chamber surrounding the item to be cooked, preferably with an ambient temperature sensor arranged at the measuring location, - at least one distance sensor for determining multiple distance between the distance sensor and one or multiple distance measuring points on the surface of the item to be cooked, - at least one time measurement device for measuring elapsed time during preparation of the item to be cooked, and - at least one calculation device for calculating the temperature inside the item to be cooked using the surface temperature of the item to be cooked and/or the ambient temperature, the distance or multiple distances, the time, and the start temperature of the item to be cooked.
2. Device according to claim 1, characterized in that the calculation device is designed or programmable for calculating the temperature inside the item to be cooked on the basis of a thermal conductivity equation.
3. Device according to claim 1, characterized in that the calculation device is designed or programmable for calculating the geometric shape of the item to be cooked from the multiple distances.
4. Device according to claim 3, characterized in that the calculation device is designed or programmable for calculating the temperature inside the item to be cooked by utilizing the geometric shape of the item to be cooked.
5. Device according to claim 1, characterized in that the calculation device is designed or programmable for calculating the temperature in the center of the item to be cooked.
6. Device according to claim 1, characterized in that the temperature sensor is designed as an optical sensor and/or as an infrared sensor.
7. Device according to claim 1, characterized in that the distance sensor is designed as an optical sensor and/or as an infrared sensor.
8. Device according to claim7, characterized in that the temperature sensor and/or the distance sensor are pivotably, movably, and/or rotatably arranged or mountable in or on the or a cooking chamber, such that the surface of the item to be cooked is scannable at least in sections by means of at least one light beam or infrared beam.
9. Device according to claim 1, characterized in that the device comprises a mirror, a prism, or another optical deflection device which can be arranged or mounted in the optical path between the temperature sensor and/or distance sensor on one side, and on the other side, the item to be cooked or an area where the item to be cooked will be placed.
10. Device according to claim 9, characterized in that the mirror or the prism or the deflection device can be pivotably, moveably, and/or rotatably mounted in or on the cooking chamber.
11. Device according to claim 1, characterized in that the temperature sensor is provided for detecting the surface temperature at multiple temperature measuring points on the surface of the item to be cooked.
12. Device according to claim 11, characterized in that the distance measuring points and/or the temperature measuring points are selected or selectable from a predetermined schema.
13. Device according to claim 9, characterized in that the temperature sensor, the distance sensor, and/or the mirror are arranged or mountable outside the cooking chamber in a cool or cooled area.
14. Device according to claim 13, characterized in that the cooled area is designed as a cooling channel with at least one blower.
15. Device according to claim 1, characterized in that the device comprises an input device for manually or automatically inputting one or multiple parameters.
16. Device according to claim 15, characterized in that the input device is coupled with the calculation device, so that a parameter or parameters for calculating the temperature inside the item to be cooked are available for use.
17. Cooking device, which comprises at least one device for determining the temperature inside an item to be cooked according to claim 1.
18. Cooking device according to claim 17, characterized in that the cooking device comprises a cool or cooled area, in which the temperature sensor, the distance sensor, and/or the mirror are arranged or mountable.
19. Cooking device according to claim 18, characterized in that the cool or cooled area is designed as a blower channel.
20. Method for determining the temperature inside an item to be cooked, wherein the method comprises the following steps:

detecting at least one temperature on the surface of the item to be cooked and/or at least one ambient temperature around the item to be cooked, particularly at a measuring location inside the cooking chamber surrounding the item to be cooked, preferably with an ambient temperature sensor arranged at the measuring location, - detecting one or multiple distances between a predetermined position and one or multiple distance measuring points on the surface of the item to be cooked, - measuring an elapsed time during the cooking process, and - calculating the temperature inside the item to be cooked using the surface temperature of the item to be cooked and/or the ambient temperature around the item to be cooked, one or multiple distances, the elapsed time, and the start temperature of the item to be cooked.
21. Method according to claim 20, characterized in that the temperature inside the item to be cooked is calculated on the basis of a thermal conductivity equation.
22. Method according to claim 20, characterized in that the geometric shape of the item to be cooked is calculated from the multiple distances.
23. Method according to claim 22, characterized in that the temperature inside the item to be cooked is calculated by utilizing the geometric shape of the item to be cooked.
24. Method according to claim 20, characterized in that the temperature is determined for the center of the item to be cooked.
25. Method according to claim 20, characterized in that the multiple distances are detected by means of a scan of at least one section of the surface of the item to be cooked using an infrared beam or a light beam.
26. Method according to claim 20, characterized in that the temperature is detected by means of a scan of at least one section of the surface of the item to be cooked using an infrared beam or a light beam, or also an ultrasonic beam or radar beam.
27. Method according to claim 20, characterized in that the temperature inside the item to be cooked is calculated using a chronological progression of the surface temperature of the item to be cooked.
28. Method according to claim 20, characterized in that the temperature inside the item to be cooked is calculated using the density of the item to be cooked.
29. Method according to claim 20, characterized in that the temperature inside the item to be cooked is calculated using a heat transfer coefficient.
30. Method according to claim 20, characterized in that the temperature inside the item to be cooked (12) is calculated using the thermal conductivity of the item to be cooked (12).
31. Method according to claim 20, characterized in that the temperature inside the item to be cooked (12) is calculated using the heat capacity of the item to be cooked (12).
32. Method according to claim 20, characterized in that a pasteurizing value is calculated from a chronological progression of the temperature in the center of the item to be cooked.
33. Method according to claim 20, in which the time it will take to reach a predetermined core temperature is extrapolated from the detected surface temperature and/or ambient temperature by means of a thermal conductivity equation.
CA2666476A 2006-11-02 2007-10-30 Device and method for determining the temperature inside an item to be cooked Expired - Fee Related CA2666476C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06022798A EP1921384B1 (en) 2006-11-02 2006-11-02 Device and method for determining the inner temperature of food
EP06022798.0 2006-11-02
PCT/EP2007/009417 WO2008052747A2 (en) 2006-11-02 2007-10-30 Device and method for determining the temperature inside an item to be cooked

Publications (2)

Publication Number Publication Date
CA2666476A1 CA2666476A1 (en) 2008-05-08
CA2666476C true CA2666476C (en) 2012-10-02

Family

ID=37994188

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2666476A Expired - Fee Related CA2666476C (en) 2006-11-02 2007-10-30 Device and method for determining the temperature inside an item to be cooked

Country Status (14)

Country Link
US (1) US8360633B2 (en)
EP (1) EP1921384B1 (en)
JP (1) JP5130301B2 (en)
KR (1) KR101419960B1 (en)
CN (1) CN101548136B (en)
AT (1) ATE432446T1 (en)
AU (1) AU2007315247B2 (en)
BR (1) BRPI0718258A2 (en)
CA (1) CA2666476C (en)
DE (1) DE502006003837D1 (en)
HK (1) HK1134841A1 (en)
MX (1) MX2009004226A (en)
NZ (1) NZ574531A (en)
WO (1) WO2008052747A2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007057107A1 (en) * 2007-11-26 2009-06-10 Rational Ag Method for determining the core temperature of a food and cooking appliance for carrying out such a method
EP2149755B1 (en) * 2008-07-30 2012-12-05 Electrolux Home Products Corporation N.V. Oven and method of operating the same
US8263906B2 (en) * 2010-05-11 2012-09-11 Cambro Manufacturing Company Food warming system
US20120111204A1 (en) * 2010-11-05 2012-05-10 Samsung Electronics Co., Ltd. Heating cooker
US9173254B2 (en) 2010-11-05 2015-10-27 Samsung Electronics Co., Ltd. Infrared ray detection device, heating cooker, and method of measuring temperature of cooling chamber of heating cooker
EP2798272B1 (en) * 2011-12-26 2017-03-08 Arçelik Anonim Sirketi Oven with infrared sensor
KR101887054B1 (en) * 2012-03-23 2018-08-09 삼성전자주식회사 Infrared ray detecting device and heating cooker including the same
US9538880B2 (en) * 2012-05-09 2017-01-10 Convotherm Elektrogeraete Gmbh Optical quality control system
EP2663160B1 (en) * 2012-05-10 2016-07-13 Miele & Cie. KG Domestic appliance
KR101931361B1 (en) * 2012-08-29 2018-12-21 삼성전자주식회사 Temperature measuring device and microwave oven having the same
EP3004825A1 (en) * 2013-05-31 2016-04-13 Tetra Laval Holdings & Finance SA Determining the degree of heat treatment of a liquid product
US9989417B2 (en) * 2013-09-12 2018-06-05 Goji Limited Temperature measurement arrangement
JP6371969B2 (en) * 2014-04-18 2018-08-15 パナソニックIpマネジメント株式会社 Equipment, processing method
DE102014210672A1 (en) 2014-06-05 2015-12-17 BSH Hausgeräte GmbH Cooking device with light pattern projector and camera
JP2017517322A (en) * 2014-06-06 2017-06-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Cooking apparatus and food cooking method based on prediction of food core temperature
DE202015009620U1 (en) 2014-09-03 2018-08-30 Electrolux Appliances Aktiebolag Household appliance, in particular an oven, with a camera
WO2016110477A1 (en) * 2015-01-05 2016-07-14 Arcelik Anonim Sirketi A household appliance comprising a thermal sensor
CN105202598B (en) * 2015-09-25 2017-08-15 小米科技有限责任公司 A kind of method and apparatus heated to heating target
CN105193297B (en) * 2015-11-04 2018-01-26 珠海格力电器股份有限公司 The electric oven and its detection method of automatic detection food placement location
DE102016102249A1 (en) * 2016-02-10 2017-08-10 Miele & Cie. Kg Cooking device system and method of operation
EP3346190B1 (en) 2017-01-10 2020-05-06 Electrolux Appliances Aktiebolag Food preparation entity
US11493275B2 (en) 2017-10-10 2022-11-08 Tps Ip, Llc Oven with renewable energy capacities
US11299925B2 (en) 2017-10-11 2022-04-12 Tps Ip, Llc Oven with split doors
US10605463B2 (en) 2017-10-27 2020-03-31 Whirlpool Corporation Cooking appliance with a user interface
US11585701B2 (en) 2017-10-27 2023-02-21 Tps Ip, Llc Intelligent oven
EP3710751A1 (en) * 2017-11-13 2020-09-23 InterProducTec Consulting GmbH & Co. KG Monitoring system and heat treatment system comprising the same
US10794508B2 (en) 2017-11-14 2020-10-06 Tps Ip, Llc Atmosphere control manifold
US10798947B2 (en) * 2017-12-08 2020-10-13 Tps Ip, Llc Oven with augmented reality functionality
US11346560B2 (en) 2017-12-29 2022-05-31 Tps Ip, Llc Oven wall compositions and/or structures
CN108497936A (en) * 2018-01-24 2018-09-07 浙江苏泊尔家电制造有限公司 Cooking apparatus
CN110925804B (en) * 2018-09-19 2021-07-23 宁波方太厨具有限公司 Method for accurately measuring temperature of food in cooker on gas stove
JP7290415B2 (en) * 2018-12-06 2023-06-13 三星電子株式会社 Three-dimensional measuring device and heating cooker
WO2020116814A1 (en) * 2018-12-06 2020-06-11 Samsung Electronics Co., Ltd. Heating cooker including three dimensional measuring device
DE102018221329A1 (en) * 2018-12-10 2020-06-10 BSH Hausgeräte GmbH Method for operating a household cooking appliance and household cooking appliance
JP2020128824A (en) * 2019-02-07 2020-08-27 東京瓦斯株式会社 Cooking management method, system, program and equipment
JP7257224B2 (en) * 2019-04-02 2023-04-13 東京瓦斯株式会社 Methods, systems, programs and instruments for temperature estimation
DE102019206892A1 (en) * 2019-05-13 2020-11-19 BSH Hausgeräte GmbH Cooking appliance with sensor units arranged outside the cooking space
DE102019211292A1 (en) * 2019-07-30 2021-02-04 BSH Hausgeräte GmbH Device and method for determining the temperature of the contents of a container
DE102019213485A1 (en) * 2019-09-05 2021-03-11 BSH Hausgeräte GmbH Household microwave oven with microwave dome
JP6823750B1 (en) * 2020-06-26 2021-02-03 東京瓦斯株式会社 Cooking determination methods, systems, programs, recording media, and cooking equipment
AU2021204780A1 (en) 2020-07-10 2022-01-27 Axino Solutions AG Food safety system for food items in cooled environments
JP6829788B1 (en) * 2020-07-28 2021-02-10 東京瓦斯株式会社 Cooking evaluation methods, systems, programs, recording media, and cooking equipment
JPWO2022065074A1 (en) * 2020-09-25 2022-03-31
JP6861318B1 (en) * 2020-09-29 2021-04-21 東京瓦斯株式会社 Temperature estimation methods, systems, programs, recording media and equipment
JP6938748B1 (en) * 2020-10-30 2021-09-22 東京瓦斯株式会社 Cooking management methods, systems, programs, recording media, and cooking equipment
JP7354168B2 (en) * 2021-03-15 2023-10-02 古河電気工業株式会社 measuring device
EP4181745B1 (en) * 2021-03-31 2023-12-20 Koninklijke Philips N.V. Domestic kitchen apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670490B2 (en) * 1987-01-26 1994-09-07 松下電器産業株式会社 High frequency heating device
EP0264935B1 (en) 1986-10-22 1992-04-22 Matsushita Electric Industrial Co., Ltd. Automatic heating appliance with ultrasonic sensor
KR0129239B1 (en) * 1994-06-11 1998-04-09 구자홍 Cooking device of microwave-oven
JP2685001B2 (en) * 1994-11-08 1997-12-03 松下電器産業株式会社 How to estimate the temperature inside food
KR960041890A (en) * 1995-05-16 1996-12-19 구자홍 Automatic cooker
DE19533514A1 (en) * 1995-08-29 1997-09-18 Wilfried Dipl Ing Roehrig Controlled heating for food preparation
GB2337832B (en) * 1998-05-29 2002-07-31 Sanyo Electric Co Cooking appliance that can detect temperature of foodstuff using infrared sensor
WO2000028292A1 (en) * 1998-11-05 2000-05-18 Premark Feg L.L.C. Systems and methods for non-invasive assessment of cooked status of food during cooking
JP2002013743A (en) 2000-04-28 2002-01-18 Sanyo Electric Co Ltd Electronic oven

Also Published As

Publication number Publication date
JP5130301B2 (en) 2013-01-30
MX2009004226A (en) 2009-05-28
WO2008052747A3 (en) 2008-07-31
HK1134841A1 (en) 2010-05-14
JP2010508493A (en) 2010-03-18
EP1921384B1 (en) 2009-05-27
US8360633B2 (en) 2013-01-29
AU2007315247A1 (en) 2008-05-08
BRPI0718258A2 (en) 2014-01-07
CN101548136B (en) 2010-11-03
CN101548136A (en) 2009-09-30
EP1921384A1 (en) 2008-05-14
NZ574531A (en) 2011-06-30
US20100128755A1 (en) 2010-05-27
ATE432446T1 (en) 2009-06-15
AU2007315247B2 (en) 2011-08-18
CA2666476A1 (en) 2008-05-08
KR101419960B1 (en) 2014-07-16
KR20090084806A (en) 2009-08-05
WO2008052747A2 (en) 2008-05-08
DE502006003837D1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
CA2666476C (en) Device and method for determining the temperature inside an item to be cooked
WO2017214129A1 (en) Food service oven with multipoint temperature monitoring
US20090324785A1 (en) Food cooking control method and device
EP0271899B1 (en) Automatic heating appliance with identifying function of an object to be heated
CA1269691A (en) Rack loaded, radiant heated, cantilevered deck oven and method
CN106979821B (en) The overheating detection method and apparatus of cooking apparatus
CN101637062B (en) Method for generating processing and analysing a signal correlated to temperature and corresponding device
US9329114B2 (en) Instrument for gravimetric moisture determination with temperature sensor
AU754766B2 (en) Method and equipment for measuring vapour flux from surfaces
JP6272352B2 (en) Apparatus and method for determining core temperature of food
TWI695972B (en) Infrared thermometer
US9347865B2 (en) Instrument for gravimetric moisture determination with electrical contact
US9360405B2 (en) Instrument for gravimetric moisture determination with position-changing device
WO2007009880A1 (en) Device and method for controlling the cooking of foods
JP4023988B2 (en) Coke oven wall diagnosis method and apparatus
US20040252747A1 (en) In-process verification system
CN210572056U (en) Molten metal splash tester
JPWO2017203739A1 (en) Cooker
CN214122071U (en) Lubricating oil opening flash point detection device
CN110572892B (en) Heating furnace, and control method and system of heating furnace
WO2005016026A1 (en) Method for determining a moment in a preparation process of food at which the food has reached a ready state
TR2022010797A1 (en) INDUCTION COOKER DEVICE AND CONTROL METHOD
US20060257536A1 (en) Method for determining a moment in a preparation process of food at which the food has reached a ready state
KR0170616B1 (en) Products surface temperature measuring device for production automation
JPH0742944A (en) Method and apparatus for determining weight of food introduced into microwave oven

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20161031