CA2594033A1 - Two stage conical liquid ring pump having removable manifold, shims and first and second stage head o-ring receiving boss - Google Patents

Two stage conical liquid ring pump having removable manifold, shims and first and second stage head o-ring receiving boss Download PDF

Info

Publication number
CA2594033A1
CA2594033A1 CA002594033A CA2594033A CA2594033A1 CA 2594033 A1 CA2594033 A1 CA 2594033A1 CA 002594033 A CA002594033 A CA 002594033A CA 2594033 A CA2594033 A CA 2594033A CA 2594033 A1 CA2594033 A1 CA 2594033A1
Authority
CA
Canada
Prior art keywords
head
stage
liquid ring
ring pump
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002594033A
Other languages
French (fr)
Inventor
Louis Lengyel
Ramesh B. Shenoi
Carl G. Dudeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Nash LLC
Original Assignee
Gardner Denver Nash LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gardner Denver Nash LLC filed Critical Gardner Denver Nash LLC
Publication of CA2594033A1 publication Critical patent/CA2594033A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/005Details concerning the admission or discharge
    • F04C19/008Port members in the form of conical or cylindrical pieces situated in the centre of the impeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories

Abstract

A first head of a liquid ring pump has an inlet, an outlet, a shaft receiving aperture extending there through, and an internal end. The internal end includes a boss with a side wall.
The boss is received by a pump body. An interstage manifold is removeably coupled to the pump without being integral with or connected to the pump body. An o-ring can be located between a side wall of the boss and an internal side wall of the body.

Description

[0001] Two Stage Conical Liquid Ring Pump having Removable Manifold, Shims and First and Second Stage Head O-Ring Receiving Boss Field [0002] The present disclosure concerns a liquid ring pump and more particularly, a conical two stage liquid ring pump.
Background:
[0003] The present disclosure is related to pumps. In particular, the present disclosure relates to two stage liquid ring pumps that are used to create a vacuum. Liquid ring pumps can be used in wet industrial environments and, as they are inherently low in friction, have a long service life. Liquid ring pumps remove air or gases by means of an impeller rotating freely in an eccentric casing. Operating liquid, usually water, is fed into the pump and is thrown by centrifugal force to form a moving ring along the internal casing wall, creating a sealed pumping chamber. Sealing liquid is also fed into the pump to seal interstices between the rotor and other parts. Industrial users employ these highly reliable pumps for a variety of uses, such as forming wet paper pulp into egg cartons and nursery planting containers, soil remediation where contaminated ground water is drawn by vacuum from the earth for treatment, and a host of other applications. Examples of liquid ring pumps can be found in U.S. Patent 4,521,161, Olsen et al. and 5,899,688, Shenoi. Both of the patents are hereby incorporated in this application by reference.

Summary:
[0004] A two-stage liquid ring pump, in accordance with the present disclosure, includes a two chambered body connected to a first stage head at a first end, and a second stage head at a second end. In the illustrative embodiments, the first and second stage heads each include an internal face, side or end. Each end is adapted to engage an opposite side of the body. At least one end has a surface designed to accept a plurality of gaskets that act as shims to enable one to set the clearance between the rotor and cones within the body. To enable the setting of clearance, shims are used to form an axial spacing between the internal face of the head and BT-LRP/CDA

an end of the body. The clearances between the cones and the rotor are critical for maximum performance. The first and second stage heads also each include a circular rabbet or boss on their faces. The bosses are adapted to accept an o-ring to allow sealing in more demanding applications.
[0005] In the illustrative embodiments the first and second stage heads are interconnected by a removable interstage manifold that is separate from the body. The interstage manifold incorporates an air/water separation construction for improved efficiency. Use of a removable interstage manifold simplifies head and body castings for better core support, better castability and lower casting defect rates, resulting in lower costs. The interstage manifold has a varying cross-section design for separating air and water ejected from the first stage. The removable manifold allows for use of the o-rings on the heads. The removable manifold has flanges for o-ring or gasket sealing with corresponding flange faces on the heads. Through holes for the bolts in the flanges are sized to accommodate variations in end travel settings.
[0006] In the illustrative embodiments, a first stage cone includes an auxiliary discharge port consisting of two timed vent holes formed in the first stage cone. The vent holes provide low speed stability, which improves water handling capabilities and hydraulic noise reduction.
The vent holes are positioned so that high vacuum capacity is not affected.
The vent holes, also, under hogging conditions, at low vacuum, reduce excessive compression in the rotor buckets, thereby reducing peak power requirements at low vacuum.
[0007] Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments.
Brief Description of the Drawings:
[0008] The detailed description particularly refers to the accompanying figures in which:
[0009] Fig. I is a perspective view of a two-stage liquid ring pump having a two chambered body connected at a first end to a first stage head and, at a second end, to a second stage head, wherein the first and second stage heads are interconnected by a removable interstage manifold;
[00010] Fig. 2 is an irregular cross-sectional view taken along the pumps longitudinal axis and through the first stage inlet, showing the first and second chambers of the body and the first BT-LRP/CDA

and second stage heads, and further showing a drive shaft extending through the body and heads, the shaft being coupled to a two stage rotor that is positioned between a pair of cones;
[00011] Fig. 3 is an exploded view of the liquid ring pump shown in Fig. 1;
[00012] Fig. 4 is a perspective view of the two-stage liquid ring pump with the body, shaft, and rotor removed from the pump to show the first stage cone with respect to the first stage head and further showing the flow of air and water through the interstage manifold;
[00013] Fig. 5 is a perspective view similar to Fig.4 but with the interstage manifold removed from the first and second stage heads, and further showing the two chambered inlet port on the second stage head that accepts air and water from the interstage manifold;
[00014] Fig. 6a is a perspective end view of the first stage cone conical member shown in Figure 4;
[00015] Fig. 6b is a side perspective view of the cone shown in Fig. 6a;
[00016] Fig. 6c is a side plan view of the cone shown in Fig. 6a [00017] Fig. 7a is a perspective view of the interior side of the first stage head showing the air inlet port and the outlet port to the interstage manifold, the first stage head also showing the face for shimming and setting the clearance between the cone and the rotor and the circular rabbet or boss on the head for o-ring sealing;
[00018] Fig. 7b is a plan rear view of the exterior side of the first stage head;
[00019] Fig. 7c is a cross sectional view of the first stage head taken along view lines 7-7;
[00020] Fig. 7d is a plan view looking at the discharge port of the first stage head;
[00021] Fig. 8a is a plan front view of the interior side of the second stage head;
[00022] Fig 8b is a side perspective view of the interior side of the second stage head;
[00023] Fig. 8c is a cross sectional view of the second stage head taken along view lines 8-8;
[00024] Fig 9a is an end plan view of the interstage manifold;
[00025] Fig 9b is a cross sectional view of the manifold shown in Fig. 9a taken along view lines 9-9;
Detailed Description:
[00026] A two-stage liquid ring vacuum pump 10 adapted to handle large quantities of material carry over without affecting continuous air-flow is shown. Pump 10 includes a rotor 12 that is positioned eccentric relative to body 14. The body 14 has first chamber housing 16 enclosing chamber 16a. The body further has second chamber housing 18 enclosing chamber 18a. As BT-LRP/CDA

viewed in Fig. 2, the first stage 38 is on the right side of the illustration and the second stage 36 is on the left side of the illustration. A manifold 34 joins the first and second stage.
[00027] The body 14 is adapted to house rotor 12 that includes an intermediate circular wall 48 which separates first stage 38 from second stage 36. The rotor 12 is coupled to drive shaft 49 and is rotated by shaft 49 when power is applied to input shaft 50. The rotor 12 includes first stage blades 52 and second stage blades 54. The rotor 12 and drive shaft 49 are positioned within body 14 so that space 56 is created within first chamber 16a, and space 58 is created within second chamber 18a.
[00028] Also positioned within body 14 are first and second stage cones 60, 62. First stage cone 60 is positioned in first chamber 16a and second stage cone 62 is positioned in second chamber 18a. First stage head 32 is coupled to body 14 at an end 201 of first stage housing 16. Second stage head 33 is coupled to body 14 at an end 206 of second stage housing 18, for example, see Fig. 2.
[00029] The first stage head or end shield 32 is adapted to be coupled to first chamber housing 16 of body 14. Face 79, of first stage head 32, includes a plurality of apertures 92 that permit first stage head 32 to be secured to first chamber housing 16 of body 14. The first stage face, end or side 79, has a surface 179, which is adapted to accept shims 200. The shims 200 create axial spacing or distance between and end wall 201 of first body 14 and internal face surface 179. The spacing is to set end travel clearance between cones 60, 62 and rotor 12. In conical liquid rings pumps, it is critical to properly set the clearance and travel between rotor 12 and first and second stage cones 60, 62. Failure to properly orient these components can cause premature wear and internal leaking which can reduce vacuum pump efficiency.
[00030] The first stage head 32 also includes a circular rabbet or boss 110 on face 79 that is adapted to accept an 0-ring 202 to permit sealing between the first stage head 32 and body 14. The 0-ring seals between the boss's circumferential side wall 203 and an inner side wall 204 towards an end of body 14. A groove 203a to receive the 0-ring 202 is in the sidewall 203. An 0-ring can be used since the interstage manifold is detachable from first stage head 32.
[000311 The first stage head 32 includes recess 80 that is adapted to accept flange 82 of first stage cone 60 as shown, for example, in Figs. 4 and 5. Recess 80 includes a plurality of apertures 84 that allow first stage cone 60 to be attached to first stage head 32. The first stage BT-LRP/CDA

head 32 also includes a central opening 86 adapted to accept rotor shaft 49.
The recessed portion is between aperture 86 and boss side wall 203. The first stage head also includes a seal water supply passage 88 to allow seal water to enter first stage cone passage 88a. The first stage head also includes air inlet 26 in fluid communication with inlet port 70. The first stage also includes discharge port 30 in fluid communication with discharge port opening 66.
[00032] The first stage head also includes a pair of bracket members 90 that permit pump 10 to be secured.
[00033] First stage cone 60 includes passage 20 into which inlet port 70 opens. The fist stage cone also includes main discharge port 64 opening into discharge port opening 66. First stage cone 60 further includes auxiliary discharge ports 68. Auxiliary discharge ports 68 include two timed vent holes for low speed stability, which improves water handling capabilities and results in hydraulic noise reduction. Auxiliary discharge ports 68 are positioned so that high vacuum capacity is not effected. The vent holes, also, under hogging conditions, at low vacuum, reduce excessive compression in the rotor buckets or spaces 28 between the blades of rotor 52. Correspondingly, peak power requirements at low vacuum are also reduced. The pump can operate at lower than normal tip speeds with these vent holes in the first stage cone The cone 60 also has 4 linearly aligned skew holes 67 to reduce hydraulic noise.
[00034] Second stage head or end shield 33 includes intake port 71 a, 71 b that includes a first chamber 71 a adapted to accept compressed air from interstage manifold 34 and second chamber 71b which is adapted to accept water from interstage manifold 34.
Second stage head 36 also includes outlet port 81. The second stage head is adapted to be coupled to second chamber housing 18 of body 14.
[000351 The second stage head 33 includes a circular rabbet or boss 11 Oa on face 79a that is adapted to accept an 0-ring 202 to permit sealing between the second stage head 33 and body 14. An 0-ring 202 can be used since interstage manifold is detachable from second stage head 33. The o-ring 202 seals in the same manner as in the first stage head, i.e., between boss 1 l 0a's side wa11207 and an internal side wall 208 of body 14. The o-ring sits in groove 210..

[00036] First and second stage heads 32, 33 include outboard bearing carriers 94, 96 that are adapted to the support drive shaft, as shown, for example, in Fig. 2. Bearing carriers 94, 96 include bearings 98, 100 that are adapted to support drive shaft 9. To seal first and second BT-LRP/CDA

stage heads 32, 33 from leaking along drive shaft 49, seals 102, 104 are used in first and second stage heads 32, 33 between the rotor and the rest of the pump.
[00037] Both discharge port 30 and intake port 71a, 71b include mating faces 77, 78 that are adapted to accept an 0-ring or gasket to seal ports 30, and 71 a, 71 b to interstage manifold 34.
Mating faces 77, 78 can include a plurality of apertures 76 that are sized to accommodate variations in end travel settings of first and second stage heads 32, 33.
Since interstage manifold 34 is removable, it provides the option of being made in lightweight and corrosion resistant materials for cost effective manufacture.
[00038] The modular design of pump 10 permits gaskets to be used between the first stage internal face 79 and body end wall 201. The gaskets serve the dual purpose as shims 200 and gaskets 200 when the pump is used in general applications such as those applications used in the power industry. The modular design also permits the use of 0-rings using the same casting, but with some additional machining, for more demanding applications, such as those applications in the chemical industry. In demanding industry applications, the shims 200 are used to set end travel only, and 0-rings 202 are used to seal between the first stage head 32, second stage head 33 and body 14.
[00039] With a gasket only configuration, ie., no o-rings, the gaskets on the first or second stage head could also serve as shims for setting end travel clearance. Any gaskets/shims used on the second stage head would have to be configured to seal around conduit 205. Although the shims or gaskets used in this configuration would not interfere with the use of o-rings 202, in general, when one uses gaskets for sealing duty they do not want o-rings.
Thus o-rings 202 would likely be omitted. Conversely when one uses o-rings for sealing they do not want to use gaskets for sealing duty. Any gaskets used would strictly serve as shims.
[00040] With an O-ring configuration, the shown second stage internal face end, or side 79a, having surface 179a, is not adapted to accept shims to allow for setting end travel between cones 60,62 and rotor 12. The operating liquid conduit 205 in the second stage head prevents the effective use of shims. The conduit is bordered by a groove 205a to accept an o-ring 209 .
The o-ring 209 seals the conduit 205 to an end face 206 of body 14. A shim, if used, would interfere with the o-ring's ability to seal conduit 205 to end face 206 .
Therefore to allow for the use of shims on the second stage head 33, in an o-ring configuration, one would have to BT-LRP/CDA

reconfigure the second stage head 33, so that it would be compatible with the use of shims.
For instance, one could remove conduit 205 and use an alternative conduit configuration.
[000411 In operation the rotation of rotor 12 draws air or gas into inlet 26 of the first stage head and progresses in the direction shown by arrows 112. The air enters first cone passage 20 through inlet port 70. As rotation progresses, the liquid (not shown) from the liquid ring is forced into rotor buckets 28 compressing the air or gas, and a mixture of gas and liquid is then forced out of cone discharge port 64 through first stage head port 66 in the direction shown by arrows 114. The air and gas mixture is discharged from the first stage head through port 30 and enters interstage manifold 34 and progresses as shown by arrows 116.

[00042] As the air/gas mixture travels along manifold 34 the mixture enters an expanded region 42 which is characterized by a downwardly sloping ramp 44 leading to a bottom portion 46. The bottom portion is opposite the upper portion 47. In the expanded portion, the liquid portion of the mixture, falls towards the bottom 46 and the air remains above the liquid in upper portion 47. The separation occurs due to velocity reduction and gravity effects. The air enters second stage 33 through chamber 71 a. The liquid enters second stage 33 through chamber 71b. Arrows 118 show the air passing from the manifold to the second stage.
Arrows 120 show the water passing from the manifold into the second stage.
[00043] While embodiments have been illustrated and described in the drawings and foregoing description, such illustrations and descriptions are considered to be exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. The applicants have provided description and figures which are intended as illustrations of embodiments of the disclosure, and are not intended to be construed as containing or implying limitation of the disclosure to those embodiments.
There are a plurality of advantages of the present disclosure arising from various features set forth in the description. It will be noted that alternative embodiments of the disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the disclosure and associated methods, without undue experimentation, that incorporate one or more of the features of the disclosure and fall within the spirit and scope of the present disclosure and the appended claims.

BT-LRP/CDA

Claims (12)

1. A liquid ring pump comprising:
a first head, said first head having an inlet, an outlet, a shaft receiving aperture extending there through, and an internal end, wherein said internal end includes a boss, said boss having a side wall;
a second head having an inlet, an outlet and an internal end;
a body having a first end coupled to said internal end of said first head and a second end coupled to said internal end of said second head, and wherein said first end of said body receives said boss.
2. The liquid ring pump of Claim 1, wherein said first head outlet is removably coupled to a first end of an interstage manifold, and wherein said second head is removably coupled to a second end of said interstage manifold.
3. The liquid ring pump of Claim 2, wherein said body is without said manifold integral thereto.
4. The liquid ring pump of Claim 1, wherein said first head is a first stage head.
5. The liquid ring pump of Claim 1, wherein said internal end of said first head has a shim receiving surface, said shim receiving surface not forming a surface of said boss.
6. The liquid ring pump of Claim 5, wherein the shim receiving surface has a plurality of apertures there through.
7. The liquid ring pump of claim 6, wherein a plurality of shims are between an end wall of said body and said shim receiving surface.
8. A head for a liquid ring pump, said head comprising;

an internal end wherein said internal end has a rabbet and a recessed portion, said rabbet has a side wall;
an inlet;
an outlet;
a shaft receiving aperture extending through said head, and wherein said recessed portion is between said shaft receiving aperture and said rabbet side wall.
9. The head of claim 8, wherein said head is a first stage head of a two-stage liquid ring pump and wherein said head includes a manifold mating flange at said outlet.
10. The head of claim 8, wherein said head is a second stage head of a two-stage liquid ring pump, and wherein said head includes a manifold mating flange at said inlet, and wherein said inlet is separated into an air receiving chamber and a liquid receiving chamber.
11. The head of claim 8, wherein said rabbet side wall has a groove therein.
12. The head of claim 8, wherein said internal end has a shim receiving surface, said boss between said shim receiving surface and said recessed surface.
CA002594033A 2006-08-11 2007-07-18 Two stage conical liquid ring pump having removable manifold, shims and first and second stage head o-ring receiving boss Abandoned CA2594033A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82214706P 2006-08-11 2006-08-11
US60/822,147 2006-08-11
US11/561,186 US20080038120A1 (en) 2006-08-11 2006-11-17 Two stage conical liquid ring pump having removable manifold, shims and first and second stage head o-ring receiving boss
US11/561,186 2006-11-17

Publications (1)

Publication Number Publication Date
CA2594033A1 true CA2594033A1 (en) 2008-02-11

Family

ID=38656993

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002594033A Abandoned CA2594033A1 (en) 2006-08-11 2007-07-18 Two stage conical liquid ring pump having removable manifold, shims and first and second stage head o-ring receiving boss

Country Status (8)

Country Link
US (1) US20080038120A1 (en)
EP (1) EP1892419A3 (en)
JP (1) JP2008045551A (en)
KR (1) KR20080014658A (en)
AU (1) AU2007203697A1 (en)
BR (1) BRPI0703356A (en)
CA (1) CA2594033A1 (en)
MX (1) MX2007009473A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689120B2 (en) * 2009-06-26 2015-03-25 ガードナー デンヴァー ナッシュ エルエルシーGardner Denver Nash Llc Method for switching liquid ring pump having seal liquid discharge port and liquid ring pump
CN105275816A (en) * 2015-11-12 2016-01-27 山东省章丘鼓风机股份有限公司 Bearing seat structure facilitating gap adjustment of water ring vacuum pump
KR101803843B1 (en) * 2017-08-24 2017-12-04 주식회사 백콤 Water ring vacuum pump for component change type
CN108087277A (en) * 2017-12-25 2018-05-29 广东肯富来泵业股份有限公司 Combined dispenser twin-stage liquid rotary pump
KR102416986B1 (en) * 2021-11-09 2022-07-05 주식회사 백콤 Water ring vacuum pump with built-in hogging flow path
CN116044822B (en) * 2022-12-21 2023-09-12 无锡康宇水处理设备有限公司 Energy-saving environment-friendly static high-speed tube pump and complete supercharging equipment

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2312837A (en) * 1938-12-21 1943-03-02 Irving C Jennings Pump
US2672276A (en) * 1951-01-26 1954-03-16 Nash Engineering Co Hydroturbine pump
US3108738A (en) * 1958-12-30 1963-10-29 Siemen & Hinsch Gmbh Liquid-ring gas pumps
FR1586609A (en) * 1967-06-08 1970-02-27
US3712764A (en) * 1971-04-19 1973-01-23 Nash Engineering Co Adjustable construction for mating surfaces of the rotor and port member of a liquid ring pump
FR2264200B1 (en) * 1974-03-13 1978-07-13 Siemens Ag
US4132504A (en) * 1976-04-07 1979-01-02 General Signal Corporation Liquid ring pump
US4273515A (en) * 1976-04-07 1981-06-16 General Signal Corporation Liquid ring pump
US4172694A (en) * 1977-11-07 1979-10-30 The Nash Engineering Company Long liquid ring pumps and compressors
US4323334A (en) * 1980-01-25 1982-04-06 The Nash Engineering Company Two stage liquid ring pump
US4521161A (en) * 1983-12-23 1985-06-04 The Nash Engineering Company Noise control for conically ported liquid ring pumps
US4551070A (en) * 1983-12-23 1985-11-05 The Nash Engineering Company Noise control for conically ported liquid ring pumps
ATE41473T1 (en) * 1984-05-14 1989-04-15 Prescant Pty Ltd WATER RING VACUUM PUMP.
US4850808A (en) * 1985-03-19 1989-07-25 The Nash Engineering Company Liquid ring pump having port member with internal passageways for handling carry-over gas
US4613283A (en) * 1985-06-26 1986-09-23 The Nash Engineering Company Liquid ring compressors
US4747752A (en) * 1987-04-20 1988-05-31 Somarakis, Inc. Sealing and dynamic operation of a liquid ring pump
US5217352A (en) * 1992-04-29 1993-06-08 The Nash Engineering Company Two-stage liquid ring pump with rotating liner in first stage supported by liquid from second stage
US5246348A (en) * 1992-05-14 1993-09-21 Vooner Vacuum Pumps, Inc. Liquid ring vacuum pump-compressor with double function of liquid ring with separate sources
US5295794A (en) * 1993-01-14 1994-03-22 The Nash Engineering Company Liquid ring pumps with rotating liners
DE4305424A1 (en) * 1993-02-22 1994-08-25 Siemens Ag Method for operating a liquid ring machine and a liquid ring machine for performing the method
US5580222A (en) * 1993-12-03 1996-12-03 Tuthill Corporation Liquid ring vacuum pump and method of assembly
US5653582A (en) * 1995-09-26 1997-08-05 The Nash Engineering Company Fluid bearing pad arrangement for liquid ring pump systems
US5899668A (en) * 1997-01-30 1999-05-04 The Nash Engineering Company Two-stage liquid ring pumps having separate gas and liquid inlets to the second stage
US5961295A (en) * 1997-07-03 1999-10-05 The Nash Engineering Company Mixed flow liquid ring pumps
US6354808B1 (en) * 2000-03-01 2002-03-12 The Nash Engineering Company Modular liquid ring vacuum pumps and compressors
US20040202549A1 (en) * 2003-01-17 2004-10-14 Barton Russell H. Liquid ring pump
ES2382774B1 (en) 2010-02-12 2013-04-26 Universitat Pompeu Fabra METHOD FOR OBTAINING A THREE-DIMENSIONAL RECONSTRUCTION FROM ONE OR MORE PROJECTIVE VIEWS, AND USE OF THE SAME

Also Published As

Publication number Publication date
EP1892419A3 (en) 2009-08-12
MX2007009473A (en) 2009-02-04
EP1892419A2 (en) 2008-02-27
KR20080014658A (en) 2008-02-14
JP2008045551A (en) 2008-02-28
AU2007203697A1 (en) 2008-02-28
BRPI0703356A (en) 2008-04-01
US20080038120A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
CA2013132C (en) Pump for and method of separating gas from a fluid to be pumped
EP1892419A2 (en) Two stage conical liquid ring pump having removable manifold, shims and first and second stage head o'ring receiving boss
US4132504A (en) Liquid ring pump
JPH01159494A (en) Method of separating gas from fluid force-fed by pump and pump for executing said method
EP1736218B1 (en) A gas separation apparatus, a front wall and a separation rotor thereof
JP2010265904A (en) Pump housing assembly equipped with nesting
CA2150293C (en) Centrifugal pump
US4545730A (en) Liquid ring vacuum pump for gaseous media
EP0481598B2 (en) Centrifugal pump with sealing means
US5116198A (en) Centrifugal pumping apparatus
EP0012544A1 (en) Liquid ring pump
JPH08312577A (en) Rotary liquid pump and impeller-shaft assembly therefor and flexible impeller pump assembly
CN102686886B (en) Submersible pump
CN101201051A (en) Two stage conical liquid ring pump
KR101647422B1 (en) a strainers for water pumps with Stand Function
CN112400064B (en) Regenerative blower-compressor with shaft bypass fluid circulation port
EP1415094B1 (en) Pulp pump
US20130209251A1 (en) Seal arrangement along the shaft of a liquid ring pump
CN211573786U (en) High-speed deep-well pump
JP4043233B2 (en) Gas compressor
CN212003709U (en) Wear-resisting impeller subassembly of high life
CN111102200A (en) High-speed deep-well pump
GB1581368A (en) Liquid ring pump
US20050123395A1 (en) Self-compensating clearance seal for centrifugal pumps
KR20010078533A (en) both sides suck in pump

Legal Events

Date Code Title Description
FZDE Discontinued