CA2525166A1 - Method and apparatus for drying of fuel - Google Patents

Method and apparatus for drying of fuel Download PDF

Info

Publication number
CA2525166A1
CA2525166A1 CA002525166A CA2525166A CA2525166A1 CA 2525166 A1 CA2525166 A1 CA 2525166A1 CA 002525166 A CA002525166 A CA 002525166A CA 2525166 A CA2525166 A CA 2525166A CA 2525166 A1 CA2525166 A1 CA 2525166A1
Authority
CA
Canada
Prior art keywords
fuel
drying
section
conveyor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002525166A
Other languages
French (fr)
Inventor
Rami Lampinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metso Paper Oy
Original Assignee
Metso Paper Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metso Paper Oy filed Critical Metso Paper Oy
Publication of CA2525166A1 publication Critical patent/CA2525166A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • F26B17/14Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas
    • F26B17/1408Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas the gas being supplied and optionally extracted through ducts extending into the moving stack of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Method and apparatus for drying of fuel, in which a moving fuel bed is formed on a conveyor, to which fuel bed a hot, gaseous medium is fed perpendicularly to the travel direction of the fuel bed. The fuel is heated before forming the fuel bed, while the fuel is flowing substantially downward, by means of a hot gaseous medium flow perpendicular to the fuel flow.

Description

Method and apparatus for drying of fuel Cross-Reference to Related Applications This application claims priority under 35 USC ~119 to Finnish Patent Application No. 20045423 filed on 5 November 2004.
Field of the invention The invention relates to a method and an apparatus for drying of fuel.
Backgiround of the invention In power plants, numerous different materials are used as fuels, such as bark, chips, coal, peat, compressed sludge or municipal waste. Be-fore the combustion process the fuel is typically crushed, chipped or cut into particles of suitable size for combustion. Thereafter they are stored by the power plant and possibly dried before they are fed to the furnace of the boiler. The properties, composition and particle size of the fuel affect its moisture content. The above-mentioned storing also has an effect therein. For example bark, which is a commonly used fuel in the power boiler of a pulp mill, has naturally a high moisture content.
It is especially high in such pulp mills in which wet-debarking is used.
The moisture content of chips is also relatively high. The moisture content of bark and chips is also affected by the way in which they are stored. In stacks arranged outdoors, they are exposed to variations caused by the change of seasons. Especially in the northern hemis-phere, sun and rain in the summer and snow and ice in the winter of fect the moisture content of fuels.
Sludges are produced in various processes as their final products or waste. For example in paper and pulp mills sludges are produced in a number of different process stages. At present, excess liquid is re moved from sludges for example by pressing, and the processed sludge is fed to waste treatment either to be dumped or burned.
The moisture in fuels is primarily water bound either in the fuel particles or on the surface and between the fuel particles. It is possible that other substances have dissolved in the water from the fuel, or other liquids have been mixed therein in connection with the treatment of fuel.
In view of the combustion process of the power plant it is very impor-tant that the moisture content of the fuel fed to the furnace of the boiler is optimal for the combustion process used. So-called fluidized bed combustion is especially suitable for the purpose of burning wet fuel or fuel with varying moisture content. In fluidized bed combustion, the fuel is introduced into hot fluidized bed material floating in the furnace by means of fluidizing air, in which bed material the fuel first dries and then burns. The moist fuel reduces the temperature of the bed material and thus helps in keeping the temperature within suitable limits. How-ever, the fuel must not be too wet so that the efficiency of the furnace would remain sufficiently high.
Moisture is removed from fuels in a number of different ways before they are fed for burning. Bark, sludge and municipal waste can be dried for example by mechanical pressing. The presses to be used are, however, heavy and large in size, their acquisition costs are high and they consume great deal of electric energy. Furthermore, when using them, the sufficiently low moisture content required for the burning is seldom reached.
It is also known to dry fuels by means of different kinds of driers before they are fed for burning. There are for example drum or screw type dri ers in use, in which a drying medium, such as hot air is fed into the fuel to be dried. Indirect driers based on convection are also known.
US publication 6,163,981 discloses a process of drying wood material chipped into small particles, such as chips and bark, before they are fed to a power boiler to be burned. In the solution according to the pub-lication, the chips to be dried are fed to a drier, in which a bed of chips is formed on a moving conveyor, said bed of chips moving forward along with the movement of the conveyor. Heated drying gas is fed from below the conveyor, perpendicularly against the movement of the conveyor. The chips to be dried do not, however, spread evenly on the conveyor, which results in that the drying result reached by the appa-ratus is uneven. Furthermore, if the capacity of the power boiler is high, and it burns a large amount of chips, it is necessary to build the drying apparatus large enough, which is not economical. Furthermore, it is almost impossible to insulate the apparatus from outdoor air, wherein the gas used in the drying can leak into the surrounding air, which is a work safety and environmental risk.
In US publication 4,888,885 warm gas is also fed through a bed of chips moving forward in a dryer. The bed of chips moves forward on an inclined transport towards its discharge end. The transport enables the penetration of gas. It is a problem in this solution that the transport is easily clogged, because moving of material based merely on gravity is not sufficient for feeding elongated, viscose material typically used in power plants. It is also difficult to attain high drying capacity by means of the apparatus.
As was mentioned above, the high moisture content of the fuel reduces the efficiency of the power plant. Furthermore, in a fluidized bed boiler the control system of the boiler tends to compensate the reduction in the temperature of the fluidized bed resulting from the supply of moist fuel by reducing the amount of flue-gas containing circulating gas and increasing the amount of air in the fluidizing air. The increase in the amount of combustion air produces a larger combustion flame in the fluidized bed, which would require building the furnace larger in size, which is an expensive investment. Correspondingly, if the fuel to be burned in the boiler is dryer, there is a risk that the temperature of the fluidized bed increases so high that it starts to sinter. The controlling of the process is easier if the moisture content of the fuel to be fed is as stable as possible. Thus, the moisture content of the fuel is significant in view of the combustion process and efficiency of the boiler.
Brief description of the invention Consequently, it is an aim of the present invention to provide a method for drying of fuel, which avoids the above-mentioned problems, and by means of which it is possible to efficiently dry the fuel to be fed to the power boiler, and the moisture content of the fuel to be dried can be stabilized. Furthermore, it is an aim of the invention to provide an appa-ratus implementing the aforementioned method.
The apparatus according to the invention, in turn, is primarily The invention is based on the idea that the fuel supplied to the furnace of a power boiler is dried in a continuous process in such a manner that the temperature of the fuel is first increased rapidly in a heating phase, whereafter it is introduced to the drying phase. The heating phase and the drying phase are arranged successively in such a manner that the fuel compressed in the heating phase is discharged to the drying phase, and it is passed therethrough as a bed having a substantially uniform thickness. In the heating phase the fuel flows through a vertical heating section, in which hot, gaseous medium is fed to the fuel flow to increase the temperature of the fuel sufficiently high for the drying phase.
In the heating phase, the hot, gaseous medium is fed crosswisely in relation to the fuel flow travelling downward, to the middle of the flow and to its edges. The fuel heats up rapidly in the heating phase, be-cause the amount of heating medium is large and its flow rate is high, and all material travels through the heating medium flow. In the heating phase the fuel is heated up to the drying temperature or at least close to it. The hot, gaseous medium fed to the fuel flow in the cross direction does not hinder the flow of fuel material.
After the heating phase the fuel flow is fed as a dense bed through the drying phase comprising a horizontal or an oblique drying section. In the drying phase a hot, gaseous medium is fed through the fuel bed to maintain the drying temperature. Most of the steam necessary for the drying is fed to the heating section. The amount of steam necessary in the drying section is small, because the steam is only used for main-taining the drying temperature attained in the heating section. Cor-respondingly, the delay time of fuel in the drying section is considerably longer than in the heating section. By means of a long delay time it is possible to ensure steady drying of fuel throughout the entire fuel bed.
5 The gaseous steam released in the drying section is removed from the gas space above the fuel bed. By means of removing steam the de-sired pressure is maintained in the drying section. The produced con-densate is removed from the bottom of the drying section. The final moisture of the fuel can be controlled by controlling the amount of fuel, i.e. the thickness of the fuel bed on the conveyor as well as the delay time and temperature of the fuel in the drying section.
According to an embodiment of the invention, the moisture content of the fuel can be controlled and thus fuel with a stable, i.e. the same or almost the same moisture content can be attained as a result of the drying process. If necessary, it is possible to spray water or other liquid into the fuel moving in the drying apparatus to control the moisture content.
It is an advantage of the invention that the particle-like fuel supplied to the power boiler can be dried rapidly and in a simple manner. The feeding of heating medium to the middle and edges of the fuel in the heating section results in that the fuel heats up rapidly to the drying temperature. Thus, the variations in temperature between the fuel par-ticles caused by the storage of fuel can be stabilized, for example frozen lumps of fuel can be defrosted. The transverse steam flow used in the heating section does not cause disturbances in the fuel flow in the heating section, wherein the entire amount of fuel heats up to the desired drying temperature. The drying temperature maintained in the drying section ensures efficient drying of the entire fuel flow. The drying of fuel can also be intensified by sucking steam containing moisture released from the fuel from the drying apparatus. The possibility of controlling the moisture of fuel as suggested by an embodiment of the invention ensures that fuel having precisely the right moisture level is attained in the power boiler in use. The invention can be utilized espe-cially in connection with power boilers in pulp and paper mills, because they usually use as a fuel bark waste and chips produced in pulp and paper making. Furthermore, the sludges produced in pulp and paper mills can be dried by means of the invention and fed to be burned in a power boiler.
Brief descri~~tion of the drawings In the following, the invention will be described in more detail with ref-erence to the appended drawings, in which Fig. 1 shows a drying apparatus according to the invention in a side-view and in a cross-section, Fig. 2 shows a side-view of a second drying apparatus according to the invention, and Fig. 3 shows section A-A marked in Fig. 1.
Detailed description of the invention In this context the term fuel refers to any burning substance, which has a sufficient thermal value after the drying, so that it can be utilized as a fuel for the power plant. Such fuels include for example chips, bark, coal, peat, sludges from process industry or municipal waste.
Fig. 1 shows a fuel drying apparatus 1 according to the invention. The apparatus comprises a vertical heating section 2 having the shape of a downward expanding cone. Feeding means (not shown in the figure), such as a bin or a screw are connected to the upper part of the heating section and they feed the fuel to be dried to the heating section 2 from its upper part in accordance with the arrow marked in the figure. The fuel fed to the heating section 2 moves by means of gravity vertically downward as shown by arrow A. The fuel is fed to the drying apparatus constantly in such a manner that the fuel fills substantially the volume of the heating section from the fuel surface 10 formed in the heating section 2. The heating section comprises a feeding pipe 4 for feeding hot, gaseous medium, such as steam into the middle of the heating section 2. At the lower end of the feeding pipe 4 there is a steam distri-bution member 5 extending around the feeding pipe, which can be a perforation extending around the feeding pipe, or some suitable means attached to the feeding pipe, such as, for example, a screen, which distributes the steam from the steam feeding pipe 4 evenly to the fuel horizontally in an angle of 360 degrees. In the embodiment of Fig. 1, a screen 5 is arranged in the feeding pipe. In the shell of the heating section, on the same height with the screen 5, there is a steam distri-bution member 6, such as a screen, extending around the entire shell for feeding steam horizontally to the fuel within the perimeter of the en-tire heating section. A distribution chamber 8 placed on the perimeter of the heating section, substantially on the same height with the screen 6, divides the steam evenly to the screen 6 surrounding the entire peri-meter of the heating section. To the distribution chamber, one or several ducts 7 are connected, said duct/ducts feeding steam to the distribution channel 8. The heating section also contains at least one duct 9 for removing the exhaust steam from the gas space 11 above the fuel surface 10.
The moisture and initial temperature of the fuel to be heated affect the energy demand of the heating. The physical and geometrical properties of the fuel to be heated as well as possible treatment preceding the drying, for example removing of moisture by means of pressing, affect the warming up rate of the fuel. The temperature of the steam to be used also affects the heating result. Rapid heating of fuel in the heating section requires that a sufficient amount of steam is fed as a steady flow to the fuel. In the drying phase the amount of steam required for maintaining the temperature of the fuel is small. The delay time of fuel in the heating section is short, considerably shorter than the delay time of fuel in the drying section.
The heated fuel is discharged from the lower part of the heating section to the drying section 3. The heating section 2 and the drying section 3 are arranged successively on top of each other in such a manner that the heating section is positioned in an angle of 90 degrees with respect to the drying section 3. The heating section is arranged in connection with the drying section, to one of its ends in such a manner that the heated fuel discharged from the heating section 2 travels substantially through the horizontal drying section 3, fed by a conveyor 12 on the bottom of said drying section. In the heating section 2 and below the same the fuel flow becomes dense and the fuel is fed through the drying section 3 as a dense fuel bed FB.
The drying section 3 is an elongated vessel, whose length is greater than its cross-section, and whose ends are closed. On the bottom of the drying section a conveyor 12 is arranged, said conveyor carrying the fuel from the heating section 2 end of the drying section to the other end of the drying section 3, which comprises members 13 for removing dried fuel from the drying apparatus 1 to a feed screw 14 that feeds the fuel either to an intermediate storage or to the furnace of the power boiler. At the initial end of the drying section 3, i.e. at the heating sec-tion end, there is an adjustment plate 16 attached gas-tightly to the roof 15 the drying section. The adjustment plate 16 is a plate-like element extending across the width of the drying section 3 that protrudes a dis-tance inside the drying section 3 and determines the height and shape of the upper edge of the fuel bed FB formed in the drying section 3. By adjusting the height and shape of the adjustment plate 16 it is possible to adjust the height and shape of the upper edge of the fuel bed FB.
The adjustment plate 16 seals the gas space 17 of the drying section 3 remaining between the upper edge of the fuel bed of and the upper surface of the drying section, i.e. the roof 15 in such a manner that the pressure therein may be higher than the pressure in the heating section 2. The upper part of the drying section comprises a duct 18 for removing exhaust steam.
Hot, gaseous medium, such as steam is fed through the fuel bed via openings 19 arranged on the conveyor, said fuel bed travelling by means of the conveyor 12 in the drying section 13. Steam is brought via one or several ducts 20 attached to the bottom of the drying section 3. The purpose of feeding steam is to maintain a temperature favourable for the drying of fuel, which together with the delay time ad-justed by the speed of the conveyor 12 brings about the drying of the fuel. The condensate formed in the drying section is removed via a duct 21 attached to the bottom of the drying section. The condensate is fed to the waste water system of the plant.
The conveyor 12 arranged on the bottom of the drying section 3 can be any type of a conveyor suitable for feeding fine-grained material, for example a scraper conveyor, a belt conveyor or a slat conveyor. The essential aspect is that the conveyor is formed in such a manner that it is possible to feed hot, gaseous medium through the fuel bed located on top of the conveyor and moving by means of the same. Thus, the conveyor is provided with a set of openings for the passage of the medium. One possible conveyor is shown in Fig. 3 which will be de-scribed later.
The hot, gaseous medium used in the heating and drying phase can be for example hot air, steam, dry steam or flue gases from the power boiler. It is also possible to use the primary or secondary steam from a steam-generating process, such as a turbine located in the vicinity of the drying device. The exhaust steam produced in the heating phase and in the drying phase can be recovered and compressed and used again in heating or it can be led, for example, elsewhere in the power boiler process. The exhaust steam can also be fed to the flue gas processing system of the power boiler or it can be condensed and re-moved. The exhaust steam produced in the drying device can also be circulated again to the drying of fuel. Thus, the exhaust steam removed both from the heating section 2 and the drying section 3 is fed back to the heating section 2 and to the drying section 3, which is illustrated by means of broken lines in Fig. 1. If desired, the exhaust steam produced in the heating section 2 and in the drying section 3 can be heated in a heat exchanger 24 illustrated by means of broken lines in Fig. 1, before it is fed back to the heating section and to the drying section.
According to an embodiment of the invention, the drying of fuel fed to the drying device can also be intensified by sucking exhaust steam containing moisture released from the fuel from the drying apparatus.

In the heating section exhaust steam is sucked either through the feeding pipe 4 or through the distribution chamber 8 arranged in the shell. The sucking can be implemented by any suitable means, such as a blower or a pump 26, which is connected to the feeding pipe 4 and to 5 the distribution chamber 8. The essential aspect is that exhaust steam is only sucked from one of them at a time, either through the feeding pipe 4 or the distribution chamber 8 connected to the heating section, because at the same time the other, either the feeding pipe 4 or the distribution chamber 8 that is not connected to the pump 26 feeds hot, 10 gaseous medium to the heating section. In the drying section 3 the suction of exhaust steam takes place via an exhaust steam removal duct 18.
According to yet another embodiment of the invention it is possible to control the drying of fuel by changing the delay time of fuel and the amount and temperature of the drying gas used in the drying appa-ratus. if necessary, the final moisture of the fuel discharged from the drying apparatus 1 can also be adjusted by moistening it. Thus, cooling water is sprayed from a cooling water line 23 on the fuel bed travelling in the drying section 3 via nozzles 25 arranged in the top part of the drying section.
Fig. 2 shows a second drying apparatus 1 according to the invention in which the drying section 3 is divided into two parts in such a manner that the final end of the drying section 3b is arranged so that it inclines downward. The front end 3a of the drying section is horizontal and the conveyor 12 only extends on the length of the front end. The fuel bed travels through the final end 3b of the drying section, being pushed by the conveyor 12 located at the front end 3a. The inclination of the final end 3b of the drying section downward in the flow direction of fuel re-duces the force required for feeding the fuel.
Fig. 3 illustrates a cross-section A - A of the apparatus of Fig 1. Fig. 3 shows a way of feeding the material through the drying section by means of a conveyor according to Finnish patents 83181 (corresponding to US 5134929) and 109103 (corresponding to EP
1140445).
The feeding apparatus 12 is composed of narrow and long adjacent lamellae 26, which are positioned on supporting rolls 22. The lamellae 26 extend in the direction of the longitudinal shaft of the drying section within its entire length. The lamellae are equipped with a drive that moves the lamellae a predetermined distance back and forth in the longitudinal direction. The movement of the lamellae in the travel direc-tion of the fuel is considerably slower than their return movement. By means of this arrangement a larger number of lamellae move in the travel direction of the material than in the return direction. The net re-sult thus attained is the propagation of fuel in the drying section. When the lamellae are arranged on the bottom of the drying section in the form of a circular arc in accordance with Fig. 3, the fuel to be dried tends to pack towards the central area of the drying section. This re-duces friction on the side walls and helps the material to be treated to travel forward as an even bed.
The steam is fed from the duct 20 and it travels to the fuel to be dried from gaps between the lamellae as shown by arrows drawn in dotted lines. When the heating medium condenses in the heating section and in the drying section, condensate is produced. The condensate runs to the bottom part of the fuel space and is discharged via the duct 21 as shown by the solid arrows.
The invention is not intended to be limited to the embodiments pre-sented as examples above, but the invention is intended to be applied widely within the scope of the inventive idea as defined in the ap-pended claims. The apparatus according to the invention can thus also be positioned in the immediate vicinity of an outdoor storage of fuel, i.e.
bark or chips stored outdoors, for example in a stack, Thus, the dried bark or chips can be fed directly to the furnace of a power boiler, and the drying apparatus can be placed in such a location where it does not cause lack of space in the immediate vicinity of the power boiler. The drying apparatus is also suitable for drying of peat, and it can be placed for example in a peat site, wherein the dried peat can be fed directly to the power boiler to be burned, and a separate drying apparatus is not necessary in the power plant.

Claims (27)

1. A method for drying of fuel, in which method a moving fuel bed is formed of fuel on a conveyor, to which fuel bed a hot, gaseous medium is fed perpendicularly to the travel direction of the fuel bed, wherein the fuel is heated before forming the fuel bed, while the fuel flows substantially downward, by means of a hot, gaseous medium flow perpendicular to the fuel flow.
2. The method according to claim 1, wherein the fuel is heated with a hot, gaseous medium flow that is fed to the fuel flow from the middle and/or edges of the same.
3. The method according to claim 1, wherein the fuel is heated to the drying temperature of fuel, or at least close to it.
4. The method according to claim 1, wherein the fuel bed is formed of a heated fuel flow that flows substantially downward and is discharged downward.
5. The method according to claim 1, wherein the fuel bed travels substantially horizontally.
6. The method according to claim 1, wherein the hot, gaseous medium is fed to the fuel bed from below the fuel bed, via an opening system arranged in the conveyor.
7. The method according to claim 1, wherein the fuel is heated in a heating section and dried in a drying section comprising the conveyor.
8. The method according to claim 7, wherein the exhaust steam produced in the heating and drying of fuel is removed from the heating section and from the drying section.
9. The method according to claim 8, wherein the exhaust steam is removed from the heating section by sucking it from the middle or edges of the fuel flow.
10. The method according to claim 7, wherein the exhaust steam is fed back to the heating section and to the drying section.
11. The method according to claim 10, wherein the exhaust steam is heated before it is fed to the heating section and to the drying section.
12. The method according to claim 1, wherein the moisture content of the fuel is adjusted by changing at least one of the following: delay time of the fuel on the conveyor, temperature of the hot gaseous medium or the amount of fuel on the conveyor.
13. The method according to claim 1, wherein the moisture content of the dried fuel is adjusted by feeding cooling water or another liquid to the fuel bed.
14. The method according to claim 1, wherein the hot, gaseous medium of one of the following: hot air, steam, dry steam, exhaust steam produced in the heating section and/or in the drying section or flue gases of a power boiler.
15. An apparatus for drying of fuel, said apparatus comprising a drying section equipped with a conveyor on top of which a fuel bed moving along with the movement of the conveyor is arranged to be formed of fuel, and means for feeding a hot gaseous medium to the fuel bed perpendicularly to the travel direction of the fuel bed, wherein the apparatus comprises a heating section arranged before the drying section, in which heating section fuel is arranged to flow substantially downward, and which comprises means for heating fuel, of which means at least one is arranged to feed the hot gaseous medium per-pendicularly to the fuel flow.
16. The apparatus according to claim 15, wherein the means for heating the fuel flow are arranged in the middle and/or edges of the fuel flow.
17. The apparatus according to claim 15, wherein the heating section and the drying section are connected to each other and that the heating section is arranged in an angle of 90 degrees with respect to the drying section.
18. The apparatus according to claim 15, wherein in the heating section the fuel forms a dense, downward discharging layer, which is arranged to discharge on the conveyor and which forms a fuel bed.
19. The apparatus according to claim 15, wherein the conveyor is provided with an opening system via which the hot, gaseous medium is arranged to be fed to the fuel bed.
20. The apparatus according to claim 15, wherein conveyor is arranged in a substantially horizontally.
21. The apparatus according to claim 15, wherein the heating section and the drying section comprise means for removing exhaust steam produced in the heating and drying processes.
22. The apparatus according to claim 21, wherein the apparatus comprises means for sucking exhaust steam from the heating section via means arranged in the middle or at the edges of the fuel flow.
23. The apparatus according to claim 21, wherein the exhaust steam is arranged to be fed back to the heating section and to the drying section.
24. The apparatus according to claim 23, wherein the apparatus comprises means for heating exhaust steam.
25. The apparatus according to claim 15, wherein the moisture content of the fuel is arranged to be adjusted by changing at least one of the following: delay time of the fuel on the conveyor, temperature of the hot gaseous medium or the amount of fuel on the conveyor.
26. The apparatus according to claim 15, wherein the apparatus comprises means for feeding cooling water or another liquid to the fuel bed and that the moisture content of the fuel is arranged to be adjusted by adjusting the feeding of cooling water or another liquid.
27. The apparatus according to claim 15, wherein the hot, gaseous medium of one of the following: hot air, steam, dry steam, exhaust steam produced in the heating section and/or in the drying section or flue gases of a power boiler.
CA002525166A 2004-11-05 2005-11-01 Method and apparatus for drying of fuel Abandoned CA2525166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20045423A FI20045423A (en) 2004-11-05 2004-11-05 Method and apparatus for drying fuel
FI20045423 2004-11-05

Publications (1)

Publication Number Publication Date
CA2525166A1 true CA2525166A1 (en) 2006-05-05

Family

ID=33515306

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002525166A Abandoned CA2525166A1 (en) 2004-11-05 2005-11-01 Method and apparatus for drying of fuel

Country Status (4)

Country Link
US (1) US20060272558A1 (en)
EP (1) EP1655565A1 (en)
CA (1) CA2525166A1 (en)
FI (1) FI20045423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287187B2 (en) * 2019-03-27 2022-03-29 Barlean's Organic Oils, Llc Methods and systems for drying softgels with hydrophilic fills

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100491828C (en) * 2007-07-18 2009-05-27 重庆科技学院 Refuse incineration feeding device with drying function
CN107626721A (en) * 2017-10-08 2018-01-26 吉首大学 Pulse gas explosion formula municipal wastewater refuse disposal installation with dragveyer
CN107617628A (en) * 2017-10-08 2018-01-23 吉首大学 Pulse gas explosion formula municipal wastewater refuse disposal installation with comminutor
CN108911470A (en) * 2018-08-21 2018-11-30 广州晟启能源设备有限公司 A kind of enclosed band drier
CN109059528A (en) * 2018-08-31 2018-12-21 江苏天通设备科技有限公司 A kind of baking oven residual neat recovering system
CN112358153A (en) * 2020-10-23 2021-02-12 西安交通大学 Staggered declination type sludge drying device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US109103A (en) 1870-11-08 Improvement in steam-traps
US1568738A (en) * 1924-03-18 1926-01-05 Fuller Fuel Company Process of drying materials
US2245664A (en) * 1937-12-08 1941-06-17 Gronert August Drying shaft for granular loose material
CH267638A (en) * 1944-12-09 1950-04-15 Koch Hermann Method and device for drying agricultural products with continuous movement thereof.
US2941310A (en) * 1955-05-16 1960-06-21 Ruhrchemie Ag Treatment of grain
US4045882A (en) * 1976-06-30 1977-09-06 Buffington James F Grain drying apparatus and process
IT1108191B (en) * 1978-12-12 1985-12-02 Fasano Pietro AIR-FLOW DRIER WITH VARIABLE TEMPERATURE AND ITS RECOVERY FOR CEREALS ESPECIALLY
SE8205276L (en) * 1982-09-15 1984-03-16 Erik Gustav Kroneld WAY TO DRY MATERIAL THROUGH INDIRECT HEATING
US4815397A (en) * 1986-07-28 1989-03-28 Warren Engineering Corporation Sludge treatment apparatus
US4756092A (en) * 1986-09-10 1988-07-12 Habersham Environmental Products Method and apparatus for drying sludge
JPS63210192A (en) * 1987-02-27 1988-08-31 Mitsubishi Heavy Ind Ltd Method of heat treating coal
US4888885A (en) * 1987-11-18 1989-12-26 New Hampshire Flakeboard, Inc. Dryer for combustible chip-like material
FI83181C (en) 1989-07-03 1991-06-10 Rauma Repola Oy FOERFARANDE OCH TRANSPORTOER FOER TRANSPORT AV FAST MATERIAL I STYCKEN ELLER PARTIKLAR.
FI83609C (en) 1989-09-18 1991-08-12 Rauma Repola Oy FOERFARANDE OCH PRESS FOER PRESSNING IHOP AV MASSA BESTAOENDE AV PARTIKLAR.
US6163981A (en) 1998-11-25 2000-12-26 Nilsson; Bengt Method and apparatus for drying wood particles
FI109103B (en) 1999-01-07 2002-05-31 Metso Woodhandling Oy Method and apparatus for transferring solids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287187B2 (en) * 2019-03-27 2022-03-29 Barlean's Organic Oils, Llc Methods and systems for drying softgels with hydrophilic fills

Also Published As

Publication number Publication date
FI20045423A (en) 2006-05-06
EP1655565A1 (en) 2006-05-10
FI20045423A0 (en) 2004-11-05
US20060272558A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US20060272558A1 (en) Method and apparatus for drying of fuel
JP5905463B2 (en) Drying conveyor device and thermal power generation system including the same
CA1271326A (en) Fluid bed hog fuel dryer
US6471898B1 (en) Method for reducing moisture content
RU2137036C1 (en) Device for burning moist fuel
WO2009010018A1 (en) Device for drying loose and pasty materials and sludges
MX2010006879A (en) Dryer for fuel material.
RU97499U1 (en) MINING MODULAR GRAIN DRYER OF BLINDS TYPE
CA2724838C (en) Method for drying objects of organic material and a dryer
AU2008364235B2 (en) Method for generating process steam
US8590463B1 (en) Method and apparatus for drying solid fuels
RU2251051C2 (en) Method for burning disintegrated vegetable-origin fuel with different moisture content
KR102180289B1 (en) Apparatus for treating organic waste with several layer drier of hybrid belt type
SK6067Y1 (en) Device for continuous drying of particulate materials
CN217265377U (en) Sludge forming belt type drying system
EP1687576B1 (en) Method and apparatus for drying bulk material, especially bark, sawdust, pretreated sludge or a mixture thereof
FI122692B (en) DRYING DEVICE
CN110997578A (en) Apparatus and method for treating organic waste
WO2011004075A1 (en) Method for thermal treatment of organic matter of low calorific value
RU2810311C1 (en) Grate
CA2289444C (en) Method for reducing moisture content
CA1049257A (en) Two stage drying with single auger
RU2394195C1 (en) Grain dryer
CN116379725A (en) High-moisture lignite predrying equipment integrated to thermal power plant
PL238403B1 (en) Dryer, preferably for drying deposits and muds and method for drying deposits and muds

Legal Events

Date Code Title Description
FZDE Dead