CA2522815A1 - Analysis and use of par 1 polymorphisms for the risk estimation of cardiovascular diseases - Google Patents
Analysis and use of par 1 polymorphisms for the risk estimation of cardiovascular diseases Download PDFInfo
- Publication number
- CA2522815A1 CA2522815A1 CA002522815A CA2522815A CA2522815A1 CA 2522815 A1 CA2522815 A1 CA 2522815A1 CA 002522815 A CA002522815 A CA 002522815A CA 2522815 A CA2522815 A CA 2522815A CA 2522815 A1 CA2522815 A1 CA 2522815A1
- Authority
- CA
- Canada
- Prior art keywords
- seq
- sequence
- par1
- polynucleotide sequence
- sequence according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004458 analytical method Methods 0.000 title claims description 7
- 208000024172 Cardiovascular disease Diseases 0.000 title abstract description 4
- 101150093826 par1 gene Proteins 0.000 title abstract 2
- 102000054765 polymorphisms of proteins Human genes 0.000 title description 9
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 104
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 104
- 239000002157 polynucleotide Substances 0.000 claims abstract description 104
- 238000000034 method Methods 0.000 claims abstract description 42
- 230000007614 genetic variation Effects 0.000 claims abstract description 10
- 101100518958 Arabidopsis thaliana PAR1 gene Proteins 0.000 claims description 63
- 238000006467 substitution reaction Methods 0.000 claims description 52
- 238000006243 chemical reaction Methods 0.000 claims description 42
- 239000012634 fragment Substances 0.000 claims description 36
- 239000002773 nucleotide Substances 0.000 claims description 23
- 125000003729 nucleotide group Chemical group 0.000 claims description 23
- 238000009396 hybridization Methods 0.000 claims description 21
- 238000012163 sequencing technique Methods 0.000 claims description 20
- 241000282414 Homo sapiens Species 0.000 claims description 19
- 239000002299 complementary DNA Substances 0.000 claims description 14
- 239000000523 sample Substances 0.000 claims description 12
- 102100034343 Integrase Human genes 0.000 claims description 10
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 claims description 10
- 239000012620 biological material Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 9
- 102000004190 Enzymes Human genes 0.000 claims description 9
- 108090000790 Enzymes Proteins 0.000 claims description 9
- 210000005260 human cell Anatomy 0.000 claims description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims description 7
- 238000002105 Southern blotting Methods 0.000 claims description 6
- 239000013611 chromosomal DNA Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000000636 Northern blotting Methods 0.000 claims description 5
- 101001098529 Homo sapiens Proteinase-activated receptor 1 Proteins 0.000 claims 9
- 101000713169 Homo sapiens Solute carrier family 52, riboflavin transporter, member 2 Proteins 0.000 claims 9
- 102100036862 Solute carrier family 52, riboflavin transporter, member 2 Human genes 0.000 claims 9
- 238000001514 detection method Methods 0.000 abstract description 3
- 108020004414 DNA Proteins 0.000 description 70
- 102000032626 PAR-1 Receptor Human genes 0.000 description 60
- 108010070519 PAR-1 Receptor Proteins 0.000 description 59
- 239000000203 mixture Substances 0.000 description 30
- 239000000243 solution Substances 0.000 description 29
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 25
- 239000000872 buffer Substances 0.000 description 23
- 239000000499 gel Substances 0.000 description 22
- 101100135626 Homo sapiens F2R gene Proteins 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 11
- 206010003658 Atrial Fibrillation Diseases 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 9
- 239000000969 carrier Substances 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 8
- 108700028369 Alleles Proteins 0.000 description 8
- 208000031229 Cardiomyopathies Diseases 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 239000007983 Tris buffer Substances 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000007858 starting material Substances 0.000 description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 8
- 206010002388 Angina unstable Diseases 0.000 description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 208000007814 Unstable Angina Diseases 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 229920000936 Agarose Polymers 0.000 description 6
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 6
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 6
- 230000036425 denaturation Effects 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 239000001632 sodium acetate Substances 0.000 description 6
- 235000017281 sodium acetate Nutrition 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000007993 MOPS buffer Substances 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 4
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 4
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 239000013049 sediment Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 108010006785 Taq Polymerase Proteins 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 3
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 3
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 3
- 239000012154 double-distilled water Substances 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 239000012146 running buffer Substances 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 2
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000829171 Hypocrea virens (strain Gv29-8 / FGSC 10586) Effector TSP1 Proteins 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- AFNJAQVMTIQTCB-DLOVCJGASA-N Phe-Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=CC=C1 AFNJAQVMTIQTCB-DLOVCJGASA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000008051 TBE buffer Substances 0.000 description 2
- 241000589500 Thermus aquaticus Species 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 239000013024 dilution buffer Substances 0.000 description 2
- 108010054813 diprotin B Proteins 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 108010030617 leucyl-phenylalanyl-valine Proteins 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 108010054155 lysyllysine Proteins 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 2
- NLIVDORGVGAOOJ-MAHBNPEESA-M xylene cyanol Chemical compound [Na+].C1=C(C)C(NCC)=CC=C1C(\C=1C(=CC(OS([O-])=O)=CC=1)OS([O-])=O)=C\1C=C(C)\C(=[NH+]/CC)\C=C/1 NLIVDORGVGAOOJ-MAHBNPEESA-M 0.000 description 2
- GHKCSRZBNZQHKW-UHFFFAOYSA-N 1-sulfanylethanol Chemical compound CC(O)S GHKCSRZBNZQHKW-UHFFFAOYSA-N 0.000 description 1
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- HZZOUWBMMWVPTR-UHFFFAOYSA-N 2-[[6-[bis(carboxymethyl)amino]-1,4-dioxocan-6-yl]-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C1(N(CC(O)=O)CC(O)=O)CCOCCOC1 HZZOUWBMMWVPTR-UHFFFAOYSA-N 0.000 description 1
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 1
- UWQJHXKARZWDIJ-ZLUOBGJFSA-N Ala-Ala-Cys Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(O)=O UWQJHXKARZWDIJ-ZLUOBGJFSA-N 0.000 description 1
- PIPTUBPKYFRLCP-NHCYSSNCSA-N Ala-Ala-Phe Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PIPTUBPKYFRLCP-NHCYSSNCSA-N 0.000 description 1
- UGLPMYSCWHTZQU-AUTRQRHGSA-N Ala-Ala-Tyr Chemical compound C[C@H]([NH3+])C(=O)N[C@@H](C)C(=O)N[C@H](C([O-])=O)CC1=CC=C(O)C=C1 UGLPMYSCWHTZQU-AUTRQRHGSA-N 0.000 description 1
- SDMAQFGBPOJFOM-GUBZILKMSA-N Ala-Arg-Arg Chemical compound NC(=N)NCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SDMAQFGBPOJFOM-GUBZILKMSA-N 0.000 description 1
- XEXJJJRVTFGWIC-FXQIFTODSA-N Ala-Asn-Arg Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N XEXJJJRVTFGWIC-FXQIFTODSA-N 0.000 description 1
- IKKVASZHTMKJIR-ZKWXMUAHSA-N Ala-Asp-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O IKKVASZHTMKJIR-ZKWXMUAHSA-N 0.000 description 1
- SMCGQGDVTPFXKB-XPUUQOCRSA-N Ala-Gly-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N SMCGQGDVTPFXKB-XPUUQOCRSA-N 0.000 description 1
- LNNSWWRRYJLGNI-NAKRPEOUSA-N Ala-Ile-Val Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O LNNSWWRRYJLGNI-NAKRPEOUSA-N 0.000 description 1
- MUGAESARFRGOTQ-IGNZVWTISA-N Ala-Tyr-Tyr Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O)N MUGAESARFRGOTQ-IGNZVWTISA-N 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- AIFHRTPABBBHKU-RCWTZXSCSA-N Arg-Thr-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O AIFHRTPABBBHKU-RCWTZXSCSA-N 0.000 description 1
- RYQSYXFGFOTJDJ-RHYQMDGZSA-N Arg-Thr-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O RYQSYXFGFOTJDJ-RHYQMDGZSA-N 0.000 description 1
- XMZZGVGKGXRIGJ-JYJNAYRXSA-N Arg-Tyr-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(O)=O XMZZGVGKGXRIGJ-JYJNAYRXSA-N 0.000 description 1
- GFFRWIJAFFMQGM-NUMRIWBASA-N Asn-Glu-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GFFRWIJAFFMQGM-NUMRIWBASA-N 0.000 description 1
- LVHMEJJWEXBMKK-GMOBBJLQSA-N Asn-Ile-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC(=O)N)N LVHMEJJWEXBMKK-GMOBBJLQSA-N 0.000 description 1
- IBLAOXSULLECQZ-IUKAMOBKSA-N Asn-Ile-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC(N)=O IBLAOXSULLECQZ-IUKAMOBKSA-N 0.000 description 1
- COWITDLVHMZSIW-CIUDSAMLSA-N Asn-Lys-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O COWITDLVHMZSIW-CIUDSAMLSA-N 0.000 description 1
- CBHVAFXKOYAHOY-NHCYSSNCSA-N Asn-Val-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O CBHVAFXKOYAHOY-NHCYSSNCSA-N 0.000 description 1
- FAUPLTGRUBTXNU-FXQIFTODSA-N Asp-Pro-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O FAUPLTGRUBTXNU-FXQIFTODSA-N 0.000 description 1
- LLRJPYJQNBMOOO-QEJZJMRPSA-N Asp-Trp-Gln Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)O)N LLRJPYJQNBMOOO-QEJZJMRPSA-N 0.000 description 1
- GIKOVDMXBAFXDF-NHCYSSNCSA-N Asp-Val-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O GIKOVDMXBAFXDF-NHCYSSNCSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- KXUKWRVYDYIPSQ-CIUDSAMLSA-N Cys-Leu-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O KXUKWRVYDYIPSQ-CIUDSAMLSA-N 0.000 description 1
- YNJBLTDKTMKEET-ZLUOBGJFSA-N Cys-Ser-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O YNJBLTDKTMKEET-ZLUOBGJFSA-N 0.000 description 1
- ZOMMHASZJQRLFS-IHRRRGAJSA-N Cys-Tyr-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CS)N ZOMMHASZJQRLFS-IHRRRGAJSA-N 0.000 description 1
- 101710200526 DNA polymerase 2 Proteins 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 206010014522 Embolism venous Diseases 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- UWKPRVKWEKEMSY-DCAQKATOSA-N Gln-Lys-Gln Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(O)=O UWKPRVKWEKEMSY-DCAQKATOSA-N 0.000 description 1
- RDPOETHPAQEGDP-ACZMJKKPSA-N Glu-Asp-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O RDPOETHPAQEGDP-ACZMJKKPSA-N 0.000 description 1
- XXCDTYBVGMPIOA-FXQIFTODSA-N Glu-Asp-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O XXCDTYBVGMPIOA-FXQIFTODSA-N 0.000 description 1
- VFZIDQZAEBORGY-GLLZPBPUSA-N Glu-Gln-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O VFZIDQZAEBORGY-GLLZPBPUSA-N 0.000 description 1
- LZMQSTPFYJLVJB-GUBZILKMSA-N Glu-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)O)N LZMQSTPFYJLVJB-GUBZILKMSA-N 0.000 description 1
- SWRVAQHFBRZVNX-GUBZILKMSA-N Glu-Lys-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O SWRVAQHFBRZVNX-GUBZILKMSA-N 0.000 description 1
- RFTVTKBHDXCEEX-WDSKDSINSA-N Glu-Ser-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(O)=O RFTVTKBHDXCEEX-WDSKDSINSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- JXYMPBCYRKWJEE-BQBZGAKWSA-N Gly-Arg-Ala Chemical compound [H]NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(O)=O JXYMPBCYRKWJEE-BQBZGAKWSA-N 0.000 description 1
- HFPVRZWORNJRRC-UWVGGRQHSA-N Gly-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN HFPVRZWORNJRRC-UWVGGRQHSA-N 0.000 description 1
- GLACUWHUYFBSPJ-FJXKBIBVSA-N Gly-Pro-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN GLACUWHUYFBSPJ-FJXKBIBVSA-N 0.000 description 1
- NGBGZCUWFVVJKC-IRXDYDNUSA-N Gly-Tyr-Tyr Chemical compound C([C@H](NC(=O)CN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 NGBGZCUWFVVJKC-IRXDYDNUSA-N 0.000 description 1
- BNMRSWQOHIQTFL-JSGCOSHPSA-N Gly-Val-Phe Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 BNMRSWQOHIQTFL-JSGCOSHPSA-N 0.000 description 1
- UWSMZKRTOZEGDD-CUJWVEQBSA-N His-Thr-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O UWSMZKRTOZEGDD-CUJWVEQBSA-N 0.000 description 1
- JATYGDHMDRAISQ-KKUMJFAQSA-N His-Tyr-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O JATYGDHMDRAISQ-KKUMJFAQSA-N 0.000 description 1
- 101000613565 Homo sapiens PRKC apoptosis WT1 regulator protein Proteins 0.000 description 1
- 101001113471 Homo sapiens Proteinase-activated receptor 4 Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- UMYZBHKAVTXWIW-GMOBBJLQSA-N Ile-Asp-Arg Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N UMYZBHKAVTXWIW-GMOBBJLQSA-N 0.000 description 1
- NPROWIBAWYMPAZ-GUDRVLHUSA-N Ile-Asp-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N NPROWIBAWYMPAZ-GUDRVLHUSA-N 0.000 description 1
- SYVMEYAPXRRXAN-MXAVVETBSA-N Ile-Cys-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N SYVMEYAPXRRXAN-MXAVVETBSA-N 0.000 description 1
- DVRDRICMWUSCBN-UKJIMTQDSA-N Ile-Gln-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](C(C)C)C(=O)O)N DVRDRICMWUSCBN-UKJIMTQDSA-N 0.000 description 1
- WYUHAXJAMDTOAU-IAVJCBSLSA-N Ile-Phe-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)O)N WYUHAXJAMDTOAU-IAVJCBSLSA-N 0.000 description 1
- JTBFQNHKNRZJDS-SYWGBEHUSA-N Ile-Trp-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](C)C(=O)O)N JTBFQNHKNRZJDS-SYWGBEHUSA-N 0.000 description 1
- ZUWSVOYKBCHLRR-MGHWNKPDSA-N Ile-Tyr-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CCCCN)C(=O)O)N ZUWSVOYKBCHLRR-MGHWNKPDSA-N 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- QPRQGENIBFLVEB-BJDJZHNGSA-N Leu-Ala-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O QPRQGENIBFLVEB-BJDJZHNGSA-N 0.000 description 1
- XBBKIIGCUMBKCO-JXUBOQSCSA-N Leu-Ala-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XBBKIIGCUMBKCO-JXUBOQSCSA-N 0.000 description 1
- DBVWMYGBVFCRBE-CIUDSAMLSA-N Leu-Asn-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O DBVWMYGBVFCRBE-CIUDSAMLSA-N 0.000 description 1
- GZAUZBUKDXYPEH-CIUDSAMLSA-N Leu-Cys-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)O)N GZAUZBUKDXYPEH-CIUDSAMLSA-N 0.000 description 1
- DBSLVQBXKVKDKJ-BJDJZHNGSA-N Leu-Ile-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O DBSLVQBXKVKDKJ-BJDJZHNGSA-N 0.000 description 1
- SEMUSFOBZGKBGW-YTFOTSKYSA-N Leu-Ile-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O SEMUSFOBZGKBGW-YTFOTSKYSA-N 0.000 description 1
- NRFGTHFONZYFNY-MGHWNKPDSA-N Leu-Ile-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 NRFGTHFONZYFNY-MGHWNKPDSA-N 0.000 description 1
- IFMPDNRWZZEZSL-SRVKXCTJSA-N Leu-Leu-Cys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(O)=O IFMPDNRWZZEZSL-SRVKXCTJSA-N 0.000 description 1
- QNBVTHNJGCOVFA-AVGNSLFASA-N Leu-Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O QNBVTHNJGCOVFA-AVGNSLFASA-N 0.000 description 1
- VVQJGYPTIYOFBR-IHRRRGAJSA-N Leu-Lys-Met Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)O)N VVQJGYPTIYOFBR-IHRRRGAJSA-N 0.000 description 1
- CPONGMJGVIAWEH-DCAQKATOSA-N Leu-Met-Ala Chemical compound CSCC[C@H](NC(=O)[C@@H](N)CC(C)C)C(=O)N[C@@H](C)C(O)=O CPONGMJGVIAWEH-DCAQKATOSA-N 0.000 description 1
- JVTYXRRFZCEPPK-RHYQMDGZSA-N Leu-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)N)O JVTYXRRFZCEPPK-RHYQMDGZSA-N 0.000 description 1
- DRWMRVFCKKXHCH-BZSNNMDCSA-N Leu-Phe-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=CC=C1 DRWMRVFCKKXHCH-BZSNNMDCSA-N 0.000 description 1
- FYPWFNKQVVEELI-ULQDDVLXSA-N Leu-Phe-Val Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C(C)C)C(O)=O)CC1=CC=CC=C1 FYPWFNKQVVEELI-ULQDDVLXSA-N 0.000 description 1
- WMIOEVKKYIMVKI-DCAQKATOSA-N Leu-Pro-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O WMIOEVKKYIMVKI-DCAQKATOSA-N 0.000 description 1
- KWLWZYMNUZJKMZ-IHRRRGAJSA-N Leu-Pro-Leu Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O KWLWZYMNUZJKMZ-IHRRRGAJSA-N 0.000 description 1
- XGDCYUQSFDQISZ-BQBZGAKWSA-N Leu-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(O)=O XGDCYUQSFDQISZ-BQBZGAKWSA-N 0.000 description 1
- IRMLZWSRWSGTOP-CIUDSAMLSA-N Leu-Ser-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O IRMLZWSRWSGTOP-CIUDSAMLSA-N 0.000 description 1
- HWMQRQIFVGEAPH-XIRDDKMYSA-N Leu-Ser-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 HWMQRQIFVGEAPH-XIRDDKMYSA-N 0.000 description 1
- LFSQWRSVPNKJGP-WDCWCFNPSA-N Leu-Thr-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CCC(O)=O LFSQWRSVPNKJGP-WDCWCFNPSA-N 0.000 description 1
- ILDSIMPXNFWKLH-KATARQTJSA-N Leu-Thr-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O ILDSIMPXNFWKLH-KATARQTJSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- KNKHAVVBVXKOGX-JXUBOQSCSA-N Lys-Ala-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KNKHAVVBVXKOGX-JXUBOQSCSA-N 0.000 description 1
- VEGLGAOVLFODGC-GUBZILKMSA-N Lys-Glu-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O VEGLGAOVLFODGC-GUBZILKMSA-N 0.000 description 1
- PRSBSVAVOQOAMI-BJDJZHNGSA-N Lys-Ile-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCCCN PRSBSVAVOQOAMI-BJDJZHNGSA-N 0.000 description 1
- AIRZWUMAHCDDHR-KKUMJFAQSA-N Lys-Leu-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O AIRZWUMAHCDDHR-KKUMJFAQSA-N 0.000 description 1
- BOJYMMBYBNOOGG-DCAQKATOSA-N Lys-Pro-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O BOJYMMBYBNOOGG-DCAQKATOSA-N 0.000 description 1
- NYTDJEZBAAFLLG-IHRRRGAJSA-N Lys-Val-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(O)=O NYTDJEZBAAFLLG-IHRRRGAJSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- RZJOHSFAEZBWLK-CIUDSAMLSA-N Met-Gln-Ser Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N RZJOHSFAEZBWLK-CIUDSAMLSA-N 0.000 description 1
- MVBZBRKNZVJEKK-DTWKUNHWSA-N Met-Gly-Pro Chemical compound CSCC[C@@H](C(=O)NCC(=O)N1CCC[C@@H]1C(=O)O)N MVBZBRKNZVJEKK-DTWKUNHWSA-N 0.000 description 1
- JYPITOUIQVSCKM-IHRRRGAJSA-N Met-Leu-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCSC)N JYPITOUIQVSCKM-IHRRRGAJSA-N 0.000 description 1
- HOTNHEUETJELDL-BPNCWPANSA-N Met-Tyr-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CCSC)N HOTNHEUETJELDL-BPNCWPANSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 1
- AUEJLPRZGVVDNU-UHFFFAOYSA-N N-L-tyrosyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CC1=CC=C(O)C=C1 AUEJLPRZGVVDNU-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- NOFBJKKOPKJDCO-KKXDTOCCSA-N Phe-Ala-Tyr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O NOFBJKKOPKJDCO-KKXDTOCCSA-N 0.000 description 1
- BIYWZVCPZIFGPY-QWRGUYRKSA-N Phe-Gly-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CO)C(O)=O BIYWZVCPZIFGPY-QWRGUYRKSA-N 0.000 description 1
- CWFGECHCRMGPPT-MXAVVETBSA-N Phe-Ile-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O CWFGECHCRMGPPT-MXAVVETBSA-N 0.000 description 1
- KXUZHWXENMYOHC-QEJZJMRPSA-N Phe-Leu-Ala Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O KXUZHWXENMYOHC-QEJZJMRPSA-N 0.000 description 1
- YCCUXNNKXDGMAM-KKUMJFAQSA-N Phe-Leu-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YCCUXNNKXDGMAM-KKUMJFAQSA-N 0.000 description 1
- UNBFGVQVQGXXCK-KKUMJFAQSA-N Phe-Ser-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O UNBFGVQVQGXXCK-KKUMJFAQSA-N 0.000 description 1
- VIIRRNQMMIHYHQ-XHSDSOJGSA-N Phe-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N VIIRRNQMMIHYHQ-XHSDSOJGSA-N 0.000 description 1
- MWQXFDIQXIXPMS-UNQGMJICSA-N Phe-Val-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC1=CC=CC=C1)N)O MWQXFDIQXIXPMS-UNQGMJICSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- CYQQWUPHIZVCNY-GUBZILKMSA-N Pro-Arg-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O CYQQWUPHIZVCNY-GUBZILKMSA-N 0.000 description 1
- LXVLKXPFIDDHJG-CIUDSAMLSA-N Pro-Glu-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O LXVLKXPFIDDHJG-CIUDSAMLSA-N 0.000 description 1
- FKLSMYYLJHYPHH-UWVGGRQHSA-N Pro-Gly-Leu Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O FKLSMYYLJHYPHH-UWVGGRQHSA-N 0.000 description 1
- YYARMJSFDLIDFS-FKBYEOEOSA-N Pro-Phe-Trp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O YYARMJSFDLIDFS-FKBYEOEOSA-N 0.000 description 1
- 102100023710 Proteinase-activated receptor 4 Human genes 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- ZUGXSSFMTXKHJS-ZLUOBGJFSA-N Ser-Ala-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O ZUGXSSFMTXKHJS-ZLUOBGJFSA-N 0.000 description 1
- HBZBPFLJNDXRAY-FXQIFTODSA-N Ser-Ala-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O HBZBPFLJNDXRAY-FXQIFTODSA-N 0.000 description 1
- GXXTUIUYTWGPMV-FXQIFTODSA-N Ser-Arg-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(O)=O GXXTUIUYTWGPMV-FXQIFTODSA-N 0.000 description 1
- SNVIOQXAHVORQM-WDSKDSINSA-N Ser-Gly-Gln Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O SNVIOQXAHVORQM-WDSKDSINSA-N 0.000 description 1
- UIGMAMGZOJVTDN-WHFBIAKZSA-N Ser-Gly-Ser Chemical compound OC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O UIGMAMGZOJVTDN-WHFBIAKZSA-N 0.000 description 1
- OQPNSDWGAMFJNU-QWRGUYRKSA-N Ser-Gly-Tyr Chemical compound OC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 OQPNSDWGAMFJNU-QWRGUYRKSA-N 0.000 description 1
- HBTCFCHYALPXME-HTFCKZLJSA-N Ser-Ile-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O HBTCFCHYALPXME-HTFCKZLJSA-N 0.000 description 1
- RIAKPZVSNBBNRE-BJDJZHNGSA-N Ser-Ile-Leu Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O RIAKPZVSNBBNRE-BJDJZHNGSA-N 0.000 description 1
- CRJZZXMAADSBBQ-SRVKXCTJSA-N Ser-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CO CRJZZXMAADSBBQ-SRVKXCTJSA-N 0.000 description 1
- OCWWJBZQXGYQCA-DCAQKATOSA-N Ser-Lys-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(O)=O OCWWJBZQXGYQCA-DCAQKATOSA-N 0.000 description 1
- FBLNYDYPCLFTSP-IXOXFDKPSA-N Ser-Phe-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O FBLNYDYPCLFTSP-IXOXFDKPSA-N 0.000 description 1
- FKYWFUYPVKLJLP-DCAQKATOSA-N Ser-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO FKYWFUYPVKLJLP-DCAQKATOSA-N 0.000 description 1
- VFWQQZMRKFOGLE-ZLUOBGJFSA-N Ser-Ser-Cys Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N)O VFWQQZMRKFOGLE-ZLUOBGJFSA-N 0.000 description 1
- GYDFRTRSSXOZCR-ACZMJKKPSA-N Ser-Ser-Glu Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O GYDFRTRSSXOZCR-ACZMJKKPSA-N 0.000 description 1
- JCLAFVNDBJMLBC-JBDRJPRFSA-N Ser-Ser-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JCLAFVNDBJMLBC-JBDRJPRFSA-N 0.000 description 1
- BDMWLJLPPUCLNV-XGEHTFHBSA-N Ser-Thr-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O BDMWLJLPPUCLNV-XGEHTFHBSA-N 0.000 description 1
- FVFUOQIYDPAIJR-XIRDDKMYSA-N Ser-Trp-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CO)N FVFUOQIYDPAIJR-XIRDDKMYSA-N 0.000 description 1
- YEDSOSIKVUMIJE-DCAQKATOSA-N Ser-Val-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O YEDSOSIKVUMIJE-DCAQKATOSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- 241000589499 Thermus thermophilus Species 0.000 description 1
- UCCNDUPVIFOOQX-CUJWVEQBSA-N Thr-Cys-His Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 UCCNDUPVIFOOQX-CUJWVEQBSA-N 0.000 description 1
- RRRRCRYTLZVCEN-HJGDQZAQSA-N Thr-Leu-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O RRRRCRYTLZVCEN-HJGDQZAQSA-N 0.000 description 1
- PRNGXSILMXSWQQ-OEAJRASXSA-N Thr-Leu-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O PRNGXSILMXSWQQ-OEAJRASXSA-N 0.000 description 1
- VBMOVTMNHWPZJR-SUSMZKCASA-N Thr-Thr-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O VBMOVTMNHWPZJR-SUSMZKCASA-N 0.000 description 1
- 102000003790 Thrombin receptors Human genes 0.000 description 1
- 108090000166 Thrombin receptors Proteins 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- ADBDQGBDNUTRDB-ULQDDVLXSA-N Tyr-Arg-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O ADBDQGBDNUTRDB-ULQDDVLXSA-N 0.000 description 1
- SCCKSNREWHMKOJ-SRVKXCTJSA-N Tyr-Asn-Ser Chemical compound N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O SCCKSNREWHMKOJ-SRVKXCTJSA-N 0.000 description 1
- XBWKCYFGRXKWGO-SRVKXCTJSA-N Tyr-Cys-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O XBWKCYFGRXKWGO-SRVKXCTJSA-N 0.000 description 1
- QPOUERMDWKKZEG-HJPIBITLSA-N Tyr-Ser-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 QPOUERMDWKKZEG-HJPIBITLSA-N 0.000 description 1
- MWUYSCVVPVITMW-IGNZVWTISA-N Tyr-Tyr-Ala Chemical compound C([C@@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 MWUYSCVVPVITMW-IGNZVWTISA-N 0.000 description 1
- TYGHOWWWMTWVKM-HJOGWXRNSA-N Tyr-Tyr-Phe Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=C(O)C=C1 TYGHOWWWMTWVKM-HJOGWXRNSA-N 0.000 description 1
- XJFXZQKJQGYFMM-GUBZILKMSA-N Val-Cys-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)O)N XJFXZQKJQGYFMM-GUBZILKMSA-N 0.000 description 1
- OVBMCNDKCWAXMZ-NAKRPEOUSA-N Val-Ile-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](C(C)C)N OVBMCNDKCWAXMZ-NAKRPEOUSA-N 0.000 description 1
- AEMPCGRFEZTWIF-IHRRRGAJSA-N Val-Leu-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O AEMPCGRFEZTWIF-IHRRRGAJSA-N 0.000 description 1
- FMQGYTMERWBMSI-HJWJTTGWSA-N Val-Phe-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](C(C)C)N FMQGYTMERWBMSI-HJWJTTGWSA-N 0.000 description 1
- BCBFMJYTNKDALA-UFYCRDLUSA-N Val-Phe-Phe Chemical compound N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O BCBFMJYTNKDALA-UFYCRDLUSA-N 0.000 description 1
- NHXZRXLFOBFMDM-AVGNSLFASA-N Val-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)C(C)C NHXZRXLFOBFMDM-AVGNSLFASA-N 0.000 description 1
- SSYBNWFXCFNRFN-GUBZILKMSA-N Val-Pro-Ser Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O SSYBNWFXCFNRFN-GUBZILKMSA-N 0.000 description 1
- PGQUDQYHWICSAB-NAKRPEOUSA-N Val-Ser-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N PGQUDQYHWICSAB-NAKRPEOUSA-N 0.000 description 1
- BGTDGENDNWGMDQ-KJEVXHAQSA-N Val-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](C(C)C)N)O BGTDGENDNWGMDQ-KJEVXHAQSA-N 0.000 description 1
- LLJLBRRXKZTTRD-GUBZILKMSA-N Val-Val-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(=O)O)N LLJLBRRXKZTTRD-GUBZILKMSA-N 0.000 description 1
- YKZVPMUGEJXEOR-JYJNAYRXSA-N Val-Val-Tyr Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N YKZVPMUGEJXEOR-JYJNAYRXSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 108010081404 acein-2 Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 108010070944 alanylhistidine Proteins 0.000 description 1
- 108010011559 alanylphenylalanine Proteins 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 108010018691 arginyl-threonyl-arginine Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 108010093581 aspartyl-proline Proteins 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 108010064866 biozym Proteins 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003297 denaturating effect Effects 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- -1 furthermore dAPP Chemical compound 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 108010080575 glutamyl-aspartyl-alanine Proteins 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 108010049041 glutamylalanine Proteins 0.000 description 1
- JYPCXBJRLBHWME-UHFFFAOYSA-N glycyl-L-prolyl-L-arginine Natural products NCC(=O)N1CCCC1C(=O)NC(CCCN=C(N)N)C(O)=O JYPCXBJRLBHWME-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940094991 herring sperm dna Drugs 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 108010057821 leucylproline Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 108010065135 phenylalanyl-phenylalanyl-phenylalanine Proteins 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- OCQZXMCGTAWGEQ-UHFFFAOYSA-N prop-2-enamide;n-[(prop-2-enoylamino)methyl]prop-2-enamide Chemical compound NC(=O)C=C.C=CC(=O)NCNC(=O)C=C OCQZXMCGTAWGEQ-UHFFFAOYSA-N 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 108010048818 seryl-histidine Proteins 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- VVLFAAMTGMGYBS-UHFFFAOYSA-M sodium;4-[[4-(ethylamino)-3-methylphenyl]-(4-ethylimino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-3-sulfobenzenesulfonate Chemical compound [Na+].C1=C(C)C(NCC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S(O)(=O)=O)=C1C=C(C)C(=NCC)C=C1 VVLFAAMTGMGYBS-UHFFFAOYSA-M 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 108010061238 threonyl-glycine Proteins 0.000 description 1
- 108010016851 thrombin receptor peptide (42-55) Proteins 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 108010077037 tyrosyl-tyrosyl-phenylalanine Proteins 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 108010072695 valyl-valyl-tyrosyl-proline Proteins 0.000 description 1
- 208000004043 venous thromboembolism Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/72—Receptors; Cell surface antigens; Cell surface determinants for hormones
- C07K14/723—G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH receptor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Endocrinology (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The invention relates to polynucleotide sequences comprising genetic variations of PAR 1 gene on positions 3090 and/or 3329. Surprisingly, the presence of said variants in humans correlates with specific cardiovascular diseases. The invention also relates to methods for the detection of said genetic variations.
Description
Description Analysis and use of PAR1 polymorphisms for evaluating the risk of cardiovascular disorders.
The invention relates to polynucleotide sequences comprising genetic variations of the PAR1 gene at positions 3090 and/or 3329.
The protease-activated receptor 1 (PAR1) is a thrombin receptor which belongs to the class of G protein-coupled receptors (GCPR). The gene for PAR1 is located on chromosome 5q13, consists of two exons and covers a region of approx. 27 kb. PAR1 is expressed in, inter alia, endothelial cells, smooth muscles cells, fibroblasts, neurons and human platelets. In platelets, PAR1 is an important signal transduction receptor which is involved in the initiation of platelet aggregation.
PARs are activated via proteolytic removal of a part of the N terminus of said PARs, whereby a new N-terminal sequence is exposed which then activates the receptor.
PAR1 and PAR4 play a central part in the activation of platelets; the activation of these receptors in platelets leads to morphological changes, release of ADP and aggregation of said platelets.
A connection of coronary heart diseases with single nucleotide polymorphisms (SNP) in the promoter region of PAR1 in a group of Korean patients was not confirmed. In another study, a PAR1 promoter variant was shown to have a protective action for the development of venous thromboembolisms.
The sequence of the human PAR1 gene is known. The polynucleotide sequence of this gene can be accessed under the number NM-001992 at the NCB/ nucleotide database. Likewise, the protein sequence is available under the number NP-001983 at the NCB/ protein database. NCB/ is the National Center for Biotechnology Information (postal address: National Center for Biotechnology Information, National Library of Medicine, Building 38A, Bethesda, MD 20894, USA; Web address: www.ncbi.nhm.nih.gov).
The cloning of the PAR1 gene has been described, inter alia, in "Schmidt et al., J. Biol. Chem. 271, 9307-9312, 1996".
The invention relates to polynucleotide sequences comprising genetic variations of the PAR1 gene at positions 3090 and/or 3329.
The protease-activated receptor 1 (PAR1) is a thrombin receptor which belongs to the class of G protein-coupled receptors (GCPR). The gene for PAR1 is located on chromosome 5q13, consists of two exons and covers a region of approx. 27 kb. PAR1 is expressed in, inter alia, endothelial cells, smooth muscles cells, fibroblasts, neurons and human platelets. In platelets, PAR1 is an important signal transduction receptor which is involved in the initiation of platelet aggregation.
PARs are activated via proteolytic removal of a part of the N terminus of said PARs, whereby a new N-terminal sequence is exposed which then activates the receptor.
PAR1 and PAR4 play a central part in the activation of platelets; the activation of these receptors in platelets leads to morphological changes, release of ADP and aggregation of said platelets.
A connection of coronary heart diseases with single nucleotide polymorphisms (SNP) in the promoter region of PAR1 in a group of Korean patients was not confirmed. In another study, a PAR1 promoter variant was shown to have a protective action for the development of venous thromboembolisms.
The sequence of the human PAR1 gene is known. The polynucleotide sequence of this gene can be accessed under the number NM-001992 at the NCB/ nucleotide database. Likewise, the protein sequence is available under the number NP-001983 at the NCB/ protein database. NCB/ is the National Center for Biotechnology Information (postal address: National Center for Biotechnology Information, National Library of Medicine, Building 38A, Bethesda, MD 20894, USA; Web address: www.ncbi.nhm.nih.gov).
The cloning of the PAR1 gene has been described, inter alia, in "Schmidt et al., J. Biol. Chem. 271, 9307-9312, 1996".
There are various new polymorphisms of the PAR1 gene, by means of which it is possible to determine a relatively strong disposition of an individual for coronary heart diseases. The affected individuals are thus enabled to counteract this risk factor in time by adapting their life style accordingly, for example by compensating via increased control of other damaging influences such as smoking, alcohol consumption, cholesterol-rich food, high blood pressure etc.
Such health-related preventive mechanisms would not be possible without knowledge of the PAR1 polymorphisms which are explained in more detail below and the use thereof in corresponding methods.
Variants of a particular nucleotide sequence with substitutions at individual positions are known to the skilled worker under the term SNP (_ single nucleotide polymorphism).
The invention relates to an isolated polynucleotide sequence of the PAR1 gene, which comprises a C for T substitution at position 3090 of the PAR1 sequence according to NM-001992 which, as prior art, is publicly available.
In a preferred embodiment, the polynucleotide sequence of the PAR1 gene having a T to C substitution at position 3090 encompasses a sequence according to SEQ ID NO: 2 and, in a particularly preferred embodiment of said polynucleotide sequence, the latter comprises a sequence of SEQ ID
NO: 2.
The invention furthermore relates to an isolated polynucleotide sequence of the PAR1 gene, which comprises an C for A substitution at position 3329 of the PAR1 sequence according to NM-001992 which, as prior art, is publicly available. In a preferred embodiment, the polynucleotide sequence of the PAR1 gene having an A to C substitution at position 3329 encompasses a sequence according to SEQ ID NO: 3 and, in a particularly preferred embodiment of said polynucleotide sequence, the latter comprises a sequence of SEQ ID NO: 3.
The invention also relates to an isolated polynucleotide sequence of the PAR1 gene, which comprises a C for T substitution at position 3090 of the PAR1 sequence according to NM-001992 and, simultaneously, a V for A
substitution at position 3329 of said PAR1 sequence. In a preferred embodiment, the polynucleotide sequence of the PAR1 gene having a T to C substitution at position 3090 and a simultaneous A to C substitution at position 3329 encompasses a sequence according to SEQ ID NO: 4 and, in a particularly preferred embodiment of said polynucleotide sequence, the latter comprises a sequence of SEQ ID NO; 4.
The invention also relates to an isolated part of the polynucleotide sequence of the PAR1 gene, which comprises a sequence according to SEQ ID NO: 5.
The invention also relates to an isolated part of the polynucleotide sequence of the PAR1 gene, which sequence comprises a C for T
substitution at position 3090, based on the PAR1 sequence according to NM-001992, which part comprises a sequence according to SEQ ID NO: 6.
The invention also relates to an isolated part of the polynucleotide sequence of the PAR1 gene, which sequence comprises a C for A
substitution at position 3329, based on the PAR1 sequence according to NM-001992, which part comprises a sequence according to SEQ ID NO: 7.
The im. :o relates to an isolated part of the polynucleotide sequenL PAR1 gene, which sequence comprises a C for T
substitution; ~ition 3090, based on the PAR1 sequence according to NM-001992, and simultaneously a C for A substitution at position 3329 of said PAR1 sequence, which part comprises a sequence according to SEQ
ID NO: 8.
The invention furthermore comprises the preparation of a 3592 base pair polynucleotide sequence of the PAR1 cDNA gene, which sequence may or may not comprise the polymorphisms at positions 3090 and 3329, as defined above, individually or in combination, which preparation comprises the following method steps:
a] Providing human DNA comprising a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID N0: 4, b] Providing a primer pair having a sequence according to SEQ ID NO:
9 and SEQ ID NO: 10 .
c] Amplifying the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the 3.56 kb fragment obtained from c], e] Sequencing the fragment from d].
The invention also relates to the preparation of a polynucleotide sequence according to SEQ ID NO: 5, SEQ ID N0: 6, SEQ ID NO: 7 or SEQ ID NO:
8, which preparation comprises the following method steps:
a] Providing human genomic DNA comprising a PAR1 sequence according to SEQ ID NO: 1 and/or a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID NO: 4 b] Providing a primer pair according to SEQ ID NO: 11 and SEQ ID
NO: 12 c] Amplifying the fragment of the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the fragment obtained from c], e] Sequencing the fragment from d].
The invention furthermore relates to a method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 11 and SEQ ID NO: 12, using a PCR
reaction, d] Sequencing the polynucleotide fragment from c].
The invention furthermore relates to a method for detecting, whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Transcribing said RNA to cDNA by means of reverse transcriptase, d] Possibly amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 10 and SEQ ID NO: 11, using said PCR reaction, e] Sequencing the cDNA from c] and/or the polynucleotide fragment from d].
The invention also relates to a method for detecting whether or not there is 5 in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Southern blotting the chromosomal DNA from b], d] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Southern blot from c] with the probe form d] under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization from a].
The invention furthermore relates to a method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Northern blotting the RNA from b], d] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Northern blot form c] with the probe from d] under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization.
Detection of the genetic variations or polymorphisms in the PAR1 gene at positions 3090 and/or 3329 may be used as (a) genetic marker for evaluating the risk of atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or unstable angina, as (b) marker for preventive treatment for atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or stable angina of the carriers of the corresponding genetic variants, as (c) marker for adjusting the dose of a pharmaceutically active substance to be administered for atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or unstable angina, as (d) marker for determining the high throughput-screening strategy for identifying a pharmaceutically active substance for atrial fibrillation, acute coronary syndrome, cardiomyopathy andlor unstable angina, as (e) marker for identifying the relevant individuals or patients for clinic studies in order to test the tolerability, safety and efficacy of a pharmaceutical substance for atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or unstable angina, and as (f) basis for developing assays systems for analyzing the genetic variation in the PAR1 gene at the DNA, RNA or protein level.
The invention also relates to an isolated polynucleotide sequence having from 21 to 50 nucleotides, which comprises a sequence according to SEQ
ID NO: 11. Said sequence preferably comprises SEQ ID NO: 11. The invention furthermore relates to an isolated polynucleotide sequence having from 20 to 50 nucleotides, which comprises a sequence according to SEQ ID NO: 12. Said sequence preferably comprises SEQ ID NO: 12.
The invention also relates to the use of an isolated polynucleotide sequence having from 21 to 50 nucleotides, which encompasses or comprises a sequence according to SEQ ID NO: 11, in combination with an isolated polynucleotide sequence having from 20 to 50 nucleotides, which encompasses or comprises a sequence according to SEQ ID NO: 12, for amplifying a corresponding fragment of the PAR1 gene by means of the polymerase chain extension reaction (PCR). This use preferably relates to the amplification of a fragment of a PAR1 gene having a T to C substitution at position 3090 of the sequence according to NM-001992 and/or having an A to C substitution at position 3329 of the sequence according to NM-001992.
Moreover, the invention comprises a kit of parts which comprises a] an isolated polynucleotide sequence of from 21 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 11, b] an isolated polynucleotide sequence of from 20 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 12, c] at least one enzyme for carrying out the polymerase chain extension reaction (PCR), d] possibly substances and/or solutions for carrying out the polymerase chain extension reaction, e] possibly polynucleotide sequences encompassing the PAR1 gene with or without substitution at position 3090 of the PAR1 sequence according to NM-001992 and/or position 3329 according to NM-001992 in full length and/or parts thereof f] and possibly reagents for carrying out the sequencing reaction.
Kit of parts here and below means the combination of said components which have been combined into a functional unit in spatial juxtaposition to each other.
The invention furthermore relates to the preparation of the above-described kit of parts, which comprises a] providing an isolated polynucleotide sequence of from 21 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 11, b] providing an isolated polynucleotide sequence of from 20 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 12, c] providing an enzyme for carrying out the polymerase chain extension reaction (PCR), d] providing, where appropriate, reagents for carrying out a sequencing e] possibly providing substances and/or solutions for carrying out said polymerase chain extension reaction (PCR) f] possibly providing polynucleotide sequences comprising the PAR1 gene with or without a T to C substitution at position 3090 of the PAR1 sequence according to NM-001992 and/or an A to C
substitution at position 3329 according to NM-001992, in each case in the full length, or parts thereof, g] introducing the components from a] to f] in each case separately into suitable containers, h] combining, where appropriate, the containers from g] in one or more pack units.
The above-described kit of parts may be used for amplifying a fragment of the PAR1 gene.
The technical aspects of the invention are discussed in more detail in the following embodiments.
Isolated polynucleotide sequences of the PAR1 gene may be prepared, for example, by amplification by means of the polymerise chain extension reaction (PCR). Suitable primers for this purpose are described in SEQ ID NO: 9 and SEQ ID NO: 10.
The PCR is an in-vitro technique which may be used to selectively duplicate polynucleotide sections which are flanked by two known sequences. Amplification requires short, single-stranded DNA molecules which are complementary to the ends of a defined sequence of a DNA or RNA template (primers). A DNA polymerise extends the primers, under the correct reaction conditions and in the presence of deoxynucleotide triphosphates (dNTPs), along the single-stranded and denatured polynucleotide template and thus synthesizes new DNA strands whose sequence is complementary to said template. During this process, the temperature is changed at regular intervals so that, time after time, the polynucleotide strands are denatured and the primers can be attached and extended. Heat-stable DNA polymerises, for example Taq polymerise, are used. A typical PCR reaction mixture contains, apart from a polynucleotide template, two suitable primer nucleotides, for example at concentrations between 0.2 to 2 ~M, furthermore dNTPs, for example at concentrations of 200 pM per dNPT, furthermore MgCl2 having a concentration of 1 - 2 mM, and 1 -10 units of a heat-stable DNA polymerise such as, for example, Taq polymerise (Thermus aquaticus polymerise). Heat-stable DNA
polymerise and the components for carrying out the same, and also protocols, are commercially supplied by numerous companies such as, for example, Roche Diagnostics, Clontech, Life Technologies, New England Biolabs, Promega, Stratagene, etc.
The polynucleotide template for amplifying the polynucleotide sequence to be isolated may be present in the form of RNA or DNA. If the polynucleotide template is RNA, then the latter is transcribed to DNA by means of reverse transcriptase, prior to the actual PCR reaction. The amount of polynucleotide template for carrying out the PCR reaction may be from 0.01 to 20 ng, for example.
The polynucleotide template is obtained using techniques known to the skilled worker for obtaining DNA and/or RNA from biological material.
Biological material should include here, inter alia, the cells of a tissue or organ (e.g. brain, blood, liver, spleen, kidney, heart, blood vessels) of a vertebrate, including humans, or cells from a eukaryotic cell culture (e.g.
Hela cells, CHO cells, 3T3 cells) or cells comprising bacteria or yeasts in which the DNA sequence to be isolated is present in cloned form.
Cells of a tissue assemblage or organ of a vertebrate, including humans, may be obtained by taking blood, tissue puncture or surgical techniques. A
polynucleotide template may be obtained therefrom, for example, by disrupting the cells, possibly concentrating individual organelles, in particular the nucleus, and recovering the DNA or RNA by precipitation and centrifugation.
Another method for preparing isolated polynucleotide sequences of the PAR1 gene comprises cloning the PAR1 gene, subsequently expressing it in bacteria or yeast and purifying the expressed polynucleotide. The previously mentioned PCR reaction, for example, is suitable for preparing a polynucleotide fragment which is clonable. It is advantageous to use, for a fragment to be cloned, primers which carry the recognition sequence of a reaction enzyme 5' of the complementary sequence. The two primers may use in each case the same or different recognition sequences for restriction enzymes.
Examples of common restriction enzymes are: BamHl (GGATCC), Clal (ATCGAT), EcoRl (GAATTC), EcoRV (GATATC), Hindlll (AAGCTT) Ncol (CCATGG) Sall (GTCGAC), Xbal (TCTAG1 ).
For cloning, a vector is treated with the restriction enzymes which correspond to the recognition sequences attached to the primers. The fragment is connected to the vector by means of ligase by isolation and treatment with the same restriction enzymes. Vector means a DNA
molecule such as, for example, a plasmid, bacteriophage or a cosmid, with the aid of which it is possible to clone genes or other DNA sequences and to introduce them into a bacterial or eukaryotic cell for replication.
Examples of vectors are DNA molecules such as pBR322, pUC18/19, pBluescript, pcDNA3.1. Vectors are commercially available from specialist companies for biotechnological material, such as Roche Diagnostics, New England Biolabs, Promega, Stratagene etc.
The instructions required for carrying out the PCR reaction, for providing polynucleotides or for carrying out cloning procedures can be found by the skilled worker in the form of recipes and protocols in standard manuals 5 such as, for example, in a] "Current Protocols in Molecular Biology by Frederick M. Ausubel (Editor), Roger Brent (Editor), Robert E. Kingston (Editor), David D. Moore (Editor), J. G. Seidman (Editor), Kevin Struhl (Editor), loose leaf edition, continuously updated, John Wiley & Sons, Inc., New York or in b] Short Protocols in Molecular Biology, 5th edition, by 10 Frederick M. Ausubel (Editor), Roger Brent (Editor), Robert E. Kingston (Editor), David D. Moore (Editor), J. G. Seidman (Editor); John A. Smith (Editor), Kevin Struhl (Editor), October 2002, John Wiley & Sons, Inc., New York" or in c] "Molecular Cloning by J. Sambrock, E. F. Fritsch, T. Maniatis;
Cold Spring Harbor Laboratory Press".
Suitable primer sequences are provided, for example, via chemical synthesis thereof which may be carried out commercially to order by companies such as MWG Biotech, etc.
Human cDNA from different organs is commercially available from companies such as, for example, Promega, Stratagene or others.
The sequencing of a polynucleotide is carried out by means of routine methods known to the skilled worker by using, for example, laboratory robots from companies such as, for example, Life Technologies, Applied Biosystems, BioRad or others.
Isolated polynucleotide sequences of the PAR1 variant and fragments therefrom may also be used for hybridization at different stringencies.
Stringency describes reaction conditions which influence the specificity of hybridization or attachment of two single-stranded nucleic acid molecules.
The stringency and thus also specificity of a reaction can be increased by increasing the temperature and lowering the ionic strength. Low stringency conditions are present, for example, if the hybridization is carried out at room temperature in 2 x SSC solution. High stringency conditions are present, for example, if hybridization is carried out at 68°C in 0.1 x SSC/0.1 % SDS solution.
Hybridization under stringent hybridization conditions in accordance with the present application means:
1] Hybridizing the labeled probe with the sample to be studied at 65°C
(or, in the case of oligonucleotides, 5°C below the melting temperature) overnight in 50 mM Tris pH 7.5, 1 NaCI, 1 % SDS, 10%
dextran sulfate, 0.5 mglml denatured salmon sperm DNA.
2] Washing at room temperature in 2 x SSC for 10 min.
3] Washing at 65°C (or, in the case of oligonucleotides, 5°C
below the melting temperature) in 1 x SSC/1 % SDS for 30 min.
4] Washing at 65°C (or, in the case of oligonucleotides, 5°C
below the melting temperature) in 0.2 x SSC/0.1 % SDS for 30 min.
5] Washing at 65°C (or, in the case of oligonucleotides, 5°C
below the melting temperature) in 0.1 % SSC/0.1 % SDS for 30 min.
DNA fragments of 20 nucleotides in overall length are to be regarded as being oligonucleotides for this purpose. The melting temperature results from the formula Tm = 2 (number of A+T) + 4 (number of G+C)C°.
A 2 x SSC or 0.1 x SSC solution is prepared by diluting a 20 x SSC solution accordingly. The 20 x SSC solution comprises a 3M NaCI/0.3 sodium citrate 2 H20 solution. SDS is sodium dodecyl sulfate.
The hybridization is carried out by transferring the polynucleotides to be studied to a nylon or nitrocellulose membrane (Southern blot - DNA;
Northern blot - RNA), after electrophoretic fractionation and subsequent denaturation. The hybridization is carried out using a probe which is radio-labeled or has been labeled in another way, for example with the aid of fluorescent dyes. The probe comprises a usually single-stranded and/or denatured DNA or RNA polynucleotide sequence which binds to the complementary nucleotide sequence of the once again single-stranded and/or denatured DNA or RNA polynucleotide sequence to be studied.
Single nucleotide polymorphisms of the PAR1 gene may be detected with the aid of the primers of the invention, also by SSCP analysis. SSCP
stands for Single Stranded Conformation Polymorphism which is an electrophoretic technique for identifying individual base pair substitutions.
The polynucleotides to be studied are amplified by PCR by means of labeled primers and, after denaturation into single strands, fractionated in a polyacrylamide gel electrophoresis (PAGE). If the DNA fragments to be studied exhibit individual base pair substitutions, they then possess different conformations and thus migrate in the PAGE at different rates.
Examples of substances for carrying out the PCR are buffers such as Hepes or Tris, furthermore dAPP, dGTP, dTTP, dCTP, and Mg2+ and possibly further divalent or monovalent irons. Solutions contain these substances in dissolved form.
Examples Amplification of genomic regions of the PAR1 gene The T to C nucleotide substitution at position 3090 and the A to C
substitution at position 3329 in the PAR1 sequence were detected using the following primers:
Primer 1: 5'-ACAGAGTGGAATAAGACAGAG-3' (SEQ ID NO: 11) Primer 2: . 5'-CCAGTGCTAGCTTCTACTTAC-3 (SEQ ID NO: 12) Primer 1 (SEQ ID NO: 11) corresponds to positions 2767 to 2789 of the NM-001992 reference sequence. Primer 2 is derived from Exon No. 1 of the PAR1 gene.
PCR protocol for the amplification:
The reagents used are from Applied Biosystems (Foster City, USA):
20 ng of genomic DNA; 1 unit of TaqGold DNA polymerase; 1 x Taq polymerase buffer; 500 ~M of dNTPs; 2.5 mM MgCl2: 200 nM of each amplification primer pair; H20 to 5 ~,I.
PCR amplification program for the genotyping 95°C for 10 min x 1 cycle 95°C for 30 sec 70°C for 30 sec x 2 cycles 95°C for 30 sec 65°C for 30 sec x 2 cycles;
95°C for 30 sec 60°C for 30 sec x 2 cycles;
95°C for 30 sec 56°C for 30 sec 72°C for 30 sec x 40 cycles;
72°C for 10 min 4°C for 30 sec x 1 cycle;
Identification of SNPs Protocol for the minisequencing and detection of the SNPs.
All reagents are from Applied Biosystems (Foster City, USA). 2 p1 of purified PCR product, 1.5 ~L of BigDye Terminator Kit, 200 nM sequencing primer; H20 to 10 p1.
Amplification program for the sequencing:
96°C for 2 min x 1 cycle 96°C for 10 sec 55°C for 10 sec 65°C for 4 min x 30 cycles 72°C for 7 min 4°C for 30 sec x 1 cycle;
Analysis of the sequencing products:
The sequences were first analyzed using the sequence analysis software (Applied Biosystems, Foster City, USA) to obtain the raw data, then processed using Phred, Phrap, Polyphred and Consed. Phred, Phrap, Polyphred and Consed are software written by Phil Green at Washington University (http://www.genome.washington.edu).
Assigning PAR1 SNPs to coronary disorders In a clinical study, two PAR1 polymorphisms from the 3'-noncoding region of the gene were studied for a connection with thrombotic and cardiovascular complications in a cohort of patients.
The following abbreviations are used below (all positions indicated refer to the nucleotide positions in the reference sequence NM-001992).
PAR1 T3090T describes the group of individuals whose alleles of the PAR1 gene both have a thymidine (T) at position 3090. These individuals are homozygous with respect to this PAR1 variant.
PAR1 T3090C describes the group of individuals whose one allele of the PAR1 gene has a cytidine (C) at position 3090 and whose other allele of the PAR1 gene has a thymidine (T) at position 3090. These individuals are heterozygous with respect to this PAR1 variant.
PAR1 C3090C describes the group of individuals whose alleles of the PAR1 gene both have a cytidine (C) at position 3090. These individuals are homozygous with respect to this PAR1 variant.
PAR1 A3329A describes the group of individuals whose alleles of the PAR1 gene both have an adenosine (A) at position 3329. These individuals are homozygous with respect to this PAR1 variant.
PAR1 A3329C describes the group of individuals whose one allele of the PAR1 gene has a cytidine (C) at position 3329 and whose other allele of the PAR1 gene has an adenosine (A) at position 3329. These individuals are heterozygous with respect to this PAR1 variant.
PAR1 C3329C describes the group of individuals whose alleles of the PAR1 gene both have a cytidine (C) at position 3329. These individuals are homozygous with respect to this PAR1 variant.
In the group of patients analyzed (Fig. 1), statistically significant associations of the homozygous carriers of the PAR1 variant C3090C with atrial fibrillation and cardiomyopathy were observed. After carrying out a logistic regression, a 1.97 fold increased risk of atrial fibrillation and a 1.84 fold increased risk of cardiomyopathy were found in homozygous carriers of the PAR1 variant C3090C compared to carriers of the PAR1 variants T3090/T3090T (Fig. 3).
It was shown that, for carriers of the PAR1 variant C3329C, said variant is associated with a 2.35 fold increased risk of atrial fibrillation compared to carriers of the PAR1 variants C3329A/A3329A. In carriers of the PAR1 variant C3329C, said variant seems, in addition, to be protective with respect to the appearance of acute coronary syndrome and unstable angina. Carriers of the PAR1 variant C3329C have a 2.78 fold reduced risk of the appearance of acute coronary syndrome and/or unstable angina compared to carriers of the PAR1 variants A3329C/A3329A (Fig. 4).
It is therefore possible, by means of a method of the invention and using an isolated PAR1 sequence of the particular SNP type or a fragment thereof, to determine for human individuals whether there is as assignment a risk group in accordance with the results presented.
Preparation of plasmid DNA
1 ml of a bacterial overnight culture is transferred to an Eppendorf tube and centrifuged (5 000 rpm for 5 min) in a Heraeus Biofuge. The bacterial cell pellet is to be resuspended in 100 ~I of cooled solution I and then to be placed on ice for 5 min.
Solution I: 25 mM tris-HCI, pH 8.0, 50 mM glucose (sterile-filtered) 10 mM EDTA 100 ~g/ml Rnase A.
After addition of 200 p1 of solution II, the entire mixture is mixed well, resulting in alkaline denaturation of the DNA.
Solution I I: 200 mM NaOH, 1 % SDS.
After subsequent incubation for 5 min on ice, 150 p.1 of solution III are added to the mixture. This is followed by mixing once more and incubating on ice for a further 15 min.
Solution III: 3 M sodium acetate (pH 4.8).
Centrifugation in the Heraeus Biofuge at 12 000 rpm for 15 minutes removes the cell debris, the genomic DNA and the denatured proteins. The supernatant produced, which contains the plasmid DNA, is decanted into a second Eppendorf tube and admixed with 1 ml of 96% strength EtOH (or 300 ~,I of isopropanol). The precipitation mixture is mixed thoroughly and again centrifuged (15 min at 12 000 rpm in Heraeus Biofuge). This results in precipitation of the plasmid DNA. The plasmid DNA sediment is washed with ice-cold 70% strength EtOH and then dried in air. Finally, the dry sediment is taken up in 50 ~,I of sterile distilled water.
Alcohol precipitation of DNA
Precipitation mixture: DNA solution, 1/10 volume of 3 M sodium acetate (pH 5.4), 2 to 3 volumes of 96% EtOH (1 volume of isopropanol).
The mixture is mixed well and can be stored at -20°C, although this does not increase the precipitation yield. The plasmid DNA is sedimented by centrifugation at 12 000 rpm for 20 minutes.
In order to remove residues of the sodium acetate used, the plasmid DNA
must be washed once more with 1 ml of 70% strength EtOH after precipitation.
Phenol extraction of DNA
A DNA solution is admixed with the same volume of phenol (Rotiphenol~, equilibrated with TE buffer, pH 7.6, Roth, Karlsruhe, Germany), shaken for 5 min and centrifuged at 5000 rpm. Most of the now denatured proteins accumulate in the interface. The upper, aqueous phase contains the DNA
and is carefully removed by suction, and then mixed with a chloroform/isoamyl alcohol mixture (24:1) in order to remove phenol residues. This is followed by another centrifugation, after which the aqueous supernatant is removed and the DNA is isolated from the solution by alcohol precipitation.
Purification of amplified DNA molecules DNA amplicons are purified using a PCR purification kit (Qiagen). This removes the starter molecules, nucleotides (dNTPs), polymerases and salts. For this purpose, the PCR reaction mixture is admixed with five times the volume of PB buffer, mixed well and applied to the Qiaquick column.
The amplified DNA is then selectively bound to the column material, and the dNPTs are removed by washing twice with 750 p.1 of PE buffer. The amplified DNA is then eluted with the desired volume of water, with the best volume being the same as that of the PCR reaction mixture starting material.
DNA cleavage with restriction enzymes Mix: 3 p1 of DNA, 2 p1 of 10 x cleavage buffer, 2.5-5 U of restriction enzyme (e.g. EcoRl, BamHl, Sall, Xbal, Xhol etc.), add distilled water to a volume of 20 p,1.
Depending on the restriction enzyme, the cleavage reaction runs at 25-55°C for 1-2 h. For analysis, the fragments are electrophoretically fractionated in an agarose or polyacrylamide gel in parallel with a length standard. If the reaction is a double cleavage, then first one enzyme is added to the mixture. After 1 hour, an aliquot is applied to an appropriate gel, and, if the cleavage has occurred, the second enzyme can be added. If the second enzyme does not cleave in the same cleavage buffer, then an alcohol precipitation is required first.
Agarose gel electrophoresis of DNA
The agarose (Roth) is dissolved in 1 x agarose buffer at the desired concentration and boiled in a microwave oven, until the agarose has completely dissolved. The solution is then poured into a sealed Plexiglass flat bed gel chamber.
The DNA samples are admixed with 1/10 volume of loading blue (50% v/v glycerol; 50 mM EDTA; 0.005% w/v BPB [Merck, Darmstadt, Germany] and 0.005% xylene cyanol) and pipetted into the gel pockets which are generated by means of a comb.
The electrophoresis is carried out horizontally in 1 x agarose buffer as running buffer at a constant voltage of 80-140 V, depending on the size of the gel and the distance between the electrodes.
1 x agarose buffer: 40 mM Tris-HCI (pH 7.8), 5 mM sodium acetate, 1 mM
EDTA.
Polyacrylamide gel electrophoresis of DNA
7.5% polyacrylamide gel solution; 0.94 ml of 40% strength acrylamide-bisacrylamide stock solution, 0.5 ml of 10 x TBE buffer (400 mM Tris-HCI, pH 8.3; 200 mM sodium acetate, 20 mM EDTA), 0.25 ml of 1 % AMPS, 10 u1 of TEMED, 3.33 ml of distilled water.
This mixture is poured between well-cleaned, vertical glass plates mounted in vertical apparatuses for polymerization (approx. 10-20 min). The gel is run in 1 x TBE buffer at a constant voltage of 140 V.
DNA sequencing 1-2 ~g of DNA are to be dissolved in 81 p1 of distilled H20 and 9 p1 of NaOH (2 N) is to be added for denaturation. After incubation at room temperature for 10 minutes, the mixture is precipitated, with thorough washing of the resulting DNA sediment with ice-cold 80% strength ethanol being important for the subsequent sequencing reactions. 2 p1 of 5 x Sequenase buffer (200 mM Tris-CI pH 7.5/100 mM MgCl2/250 mM NaCI), 1 ~,I of oligonucleotide (1 pM/~I) and, finally, distilled H20 are to be added to the sediment to a total volume of 10 p,1. During the subsequent incubation in a 37°C water bath for 30 minutes, the starter oligonucleotide hybridizes to the D NA.
Reagents added to the hybridization mixture for the sequencing reaction:
1.0 p,1 of DTT (0.1 M), 2.0 ~I of labeling mixture (diluted 1:5), 0.5 p,1 of [a-35S]dATP, 2 p1 of Sequenase~" (13 U/p,l, United States Biochemical), (diluted 1:8 with enzyme dilution buffer).
During the subsequent incubation at room temperature for 5 minutes, the counter strand is synthesized, with the synthetic DNA being tabled by incorporation of the radiolabeled dATP. This is followed by adding in each case 3.5 pt of the labeling mixture to 2.5 ~I of the four different termination mixtures. Another incubation at 37°C for 5 minutes results in the randomly distributed termination reactions of counter stand synthesis. The reactions are stopped by adding 4 ~I of stop buffer, after which the mixtures are denatured at 80-90°C and then applied to a 6% strength denatured sequencing gel. After loading the samples, the main run is carried out at 30-50 W and, respectively, 1300-1600 V for 2-5 h. The gel is then fixed in a 10% strength acetic acid bath (15 min), freed of urea residues under running water and then dried (for 45 min, using a heat gun, or for 2 h, in a 70°C incubator). The subsequent autoradiography is carried out at 4°C for 16-24 h (Fuji Medical X-ray-Film RX, 30 x 40; Kodak Scientific Imaging Film X-omat AR).
Labeling-mixture stock solution: in each case 7.5 pM dATP, dTTP, dGTP, dCTP
Termination mixtures: in each case 80 ~M dATP, dTTP, dGTP, dCTP and in each case 8 ~M of the respective ddNTP
Sequenase dilution buffer: 10 mM Tris/HCI; pH 7.5, 5 mM DTT, 0.5 mg/ml BSA
Stop buffer: 95% formamide, 20 mM EDTA, 0.005% (w/v) xylene cyanol FF
Automated DNA sequencing Mix: 1 ~g of plasmid DNA (in the case of PCR fragments, for example, 100ng/500 nucleotides), 3-5 pmol of starter molecule (PCR primer, Tm of 55°C, if possible), 4 ~I of Dye Terminator ready-mix (FddNTPs-Ampli-TaqFS mixture), add distilled water to a volume of 20 ~,I.
The PCR reaction [25 x (15 sec at 94°C, 15 sec. at 50°C, 4 min at 60°C] is precipitated with alcohol and taken up in 4 ~I of loading buffer. The samples are then denatured at 95°C for 3 min, removed by centrifugation and applied to a vertical polyacrylamide gel (34 cm in length, provided with 24 parallel lanes).
After excitation by an argon laser beam at 488 nm, the dyes emit light of different wavelengths of between 525 nm and 605 nm which is separated into its spectral colors via a grating, a "spectrograph". The spectral colors are subsequently detected simultaneously with the aid of the high-resolution pixel field of a CCD camera. The data are recorded with the aid of a computer (Macintosh Quadra/650 Macllcx Apple Share) and the corresponding data analysis software (PE Biosystems, Weiterstadt, Germany).
Sequencing gel: 30 g of urea (Sigma), 21.5 ml of distilled H20, 6 ml of 10 x TBE
The mixture is dissolved in a wide-necked flask on a heating block at 50°C, with the following being added: 9 ml of 40% bisacrylamide (filtered), 180 p1 of 10% APS, 24 ~.I of Temed.
Polymerase chain reaction (PCR reaction) The following DNA polymerases may be used:
Taq (Thermus aquaticus) DNA polymerase (recombinant, Gibco/BRL) and 5 10 x PCR buffer [200 mM Tris/HCI (pH 8.4), 500 mM KCIJ
Tfl (Thermus flavus) DNA polymerase (Master Amp', Biozym, Oldendorf, Germany) and 20 x PCR
Buffer [20 mM (NH2)S04, 1 M Tris/HCI (pH 9.0) PCR reaction mixture:
PCR com onents Amount DNA tem late 10-100 n Starter molecule 1 25 M
Starter molecule 2 25 M
Nucleotide mixture (dNTPs) 20 mM (from a mixturecontaining 10 mM of each dNTP
DNA polymerase buffer 1 x: 5.0 ~I in the case of Taq DNA
polymerase buffer 2.5 ~.I in the case of Tfl DNA
pol merase buffer M CIZ 75 mM
DNA polymerase 2 U in the case of Taq DNA
polymerase 1 U in the case of Tfl DNA
of merase Distilled H20 to 50 I total volume The following applies here: 1 U catalyses the conversion of 10 nM
deoxyribonucleoside triphosphates, at 74°C within 30 min, to an acid-insoluble DNA product .The PCR reaction usually commences with the "hot start": the mixture is incubated first without the polymerase at 94°C
in order to enable the DNA to be denatured for the first time. After the temperature has reached 80°C, the DNA polymerase is added to the mixture in order to avoid nonspecific amplification at a still low temperature. Thereafter, the actual PCR reaction is carried out over 25-35 cycles.
For each cycle, the following reaction conditions apply:
Reaction Tem erature Time Denaturation 94C 30-60 sec Hybridization Tm-5C 30-60 sec annealin Extension 72C 1 min/1 kb Finally and in addition, the chain extension is carried out at 72°C
for 10 min, finally followed by cooling.
Isolation of total RNA
All centrifugation steps are carried out at 13 000 rpm and 16°C.
Cells are lysed with 600 ~I of lysis buffer (100 RLT buffer:
1 mercaptoethanol). The cell lysate is applied to a QiaSchredder column and removed by centrifugation for 2 min.
The eluate is admixed with 600 ~I of 70% ethanol, mixed well, and the DNA
is applied to an RNAeasy mini spin column and centrifuged for 15 s (binding of RNA to the silica matrix). The column is washed three times (once with 700 ml of RW1 buffer and twice with 500 p,1 of RPE buffer). The column is then transferred to an autoclaved 1.5 ml Eppendorf tube and the RNA is eluated with 15 p1 of distilled H20_ The average concentration of total RNA obtained in this way is 1 pg/pl.
RNA fractionation via agarose gel electrophoresis Denaturing aragrose gel:
1 g of agraose, 37 ml of distilled water, 10 ml of 10 x MOPS (0.2 mM
MOPS, 10 mM EDTA, 100 mM NaAc), the mixture is boiled and cooled to 60°C
16 ml of 37% strength formaldehyde are added.
After it has solidified, the gel is inserted with RNA gel running buffer into the electrophoresis apparatus. The RNA is applied together with a special sample buffer.
RNA gel running buffer: 40 ml of 10 x MOPS, 65 ml of 37% strength formaldehyde, 295 ml of distilled water RNA sample buffer: 1-5 pg of RNA, 5 ~I of RNA-NEW buffer (7.5 p,1 37%
strength formaldehyde, 4.5 ~I of 10 x MOPS, 25.9 ~,I of formamide, 7.5 ~.I of distilled water), 2 p.1 of formamide dye marker [50% (v/v) glycerol, 1 mM
EDTA (pH 8.0), 0.25% (v/v) bromophenol blue, 0.25% (v/v) xylene cyanol].
The gel runs at 80 V for approx. 3 h. Since this work uses only eukaryotic RNA isolates, the dominant bands visible on the gel should be those of 28S
and 18S rRNA.
Reverse Transcriptase with MMLV-RT
(Moloney murine leukemia virus - Reverse Transcriptase) Reverse transcriptase mixture: 5 ~.g of RNA, 100 p,M of starter molecule The RNA preparation and the starter molecule are incubated at 75°C
for 10 min, in order to avoid possible formation of secondary structures in the RNA template as factors interfering with the transcriptase. However, even without this step, a transcription reaction usually takes place.
Reverse transcriptase reaction mixture: 28 U of Rnasin~ (Promega), 25 mM
dNTPS, 5 ~I of 10 x reverse transcriptase buffer [10 m Tris/HCI (pH 8.3), 75 mM KCI, 3 mM MgCl2], 50 U of reverse transcriptase (StrataScript~"~, Stratagene), to 50 p,1 with distilled water.
The reverse transcription is carried out by incubating the mixture at 42°C
for 15 min and at 37°C for 45 min. A longer incubation of 2 h at 42°C with a 30-sec interruption at 55°C is recommended for relatively long RNA
templates. Subsequent incubation of the mixture at 95°C for 5 minutes results in inactivation of said reverse transcriptase. Subsequently, 5-20 p1 of the reverse transcription mixture are used for a PCR reaction.
Preparation of genomic DNA from tissue 100 mg of tissue are crushed in liquid nitrogen to give a powder. The tissue powder is introduced into a Falcon tube containing 6 ml of reaction buffer (30 p1 of proteinase K [20 mg/ml] are added freshly to the buffer) and incubated with careful shaking at 56°C overnight (12-18 hours). After incubation, 100 p,1 of RNase A (10 p,g/pl) are added and the mixture is incubated with further shaking at 37°C for one hour.
This is followed by adding 4 ml of phenol and turning the tube manually upside down and up again for approximately 5 min. 4 ml of CI
(chloroform/isoamyl alcohol) are added immediately and the tube is turned upside down and up again for another 5 minutes and then centrifuged for 15 min (3 000 rpm). The supernatant is carefully removed and transferred to 10 ml Falcon tubes. If the supernatant is still not clear, the phenol extraction must be repeated, otherwise another 4 ml of CI are added and the tube is manually turned upside down and up for 5 min and then centrifuged for 15 min (3 000 rpm). The supernatant is carefully removed and the CI extraction repeated. The final supernatant obtained is admixed with 1/10 volumes of sodium acetate solution (3 M, pH 6) and 2.5 volumes of ethanol (99.8%). The tube is carefully rotated, until the DNA precipitates as a tangle. This DNA tangle is transferred to approximately 25 ml of ethanol (70%) with the aid of a glass hook and left resting for 3 min. The washing was repeated twice. The DNA was then dried in air and dissolved in 0.5 ml of double-distilled water at room temperature.
Southern Blot DNA fractionation via an agarose gel Leave the gel on short-wave UV for approx. 5 min for strand breaks to occur in the larger DNA molecules (> 6kBp).
Continuously tilt the gel in denaturating solution for 30 min for DNA
denaturation.
Continuously tilt the gel in neutralizing solution for 30 min for neutralization.
Blot construction (from bottom to top): gel, nylon membrane, dry filter paper, blotting paper, plate, weight (approx. 1 kg).
Blotting with 20 x SSC overnight.
Wash membrane in 2 x SSC for 10 min Dry membrane on filter paper Fixing of nucleic acid by baking at 80°C for 1 h or UV crosslinking (e.g. in "Stratalinker", automatic position). The membrane may then be stored until hybridization.
Prehybridization of membrane in hybridization solution for approx. 1 - 2 h Covering of nonspecific binding sites on the membrane.
Hybridization solution: 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 100 ~g/ml herring sperm DNA
Denaturing solution: 0.5 M NaOH (20 g), 1 M NaCI
Neutralizing solution: 1.5 M NaCI/0.5 M Tris pH 7.4 20 x SSC is 3 M NaCI, 0.3 M Na-citrate: 175.3 g of NaCI, 88.2 g of sodium citrate X 2 H20, to 1 I with double-distilled water, adjust pH to 7.0 with HCI.
50 x Denhard's solution: 5 g of Ficoll 400, 5 g of PVP (polyvinyl pyrrolidone), 5 g of BSA, to 500 ml with double-distilled water Northern Blot RNA fractionation using a formaldehyde agarose gel Blot construction (from bottom to top): gel, nylon membrane, dry filter paper, blotting paper, plate, weight (appox. 1 kg).
Blotting with 20 x SSC overnight.
Fix RNA on filter by baking at 80°C (1 h) Introduce filter into boiling 20 mM Tris pH 8 for RNA deglyoxylation and let cool to RT.
Description of the Figures Fig. 1 Characteristics of study group Fig.2 Distribution of PAR1 variants T3090C and A3329C in 1362 individuals analyzed Fig.3 Association of PAR1 variants C3090C with atrial fibrillation and cardiomyopathy Fig. 4 Association of PAR1 variants C3329C with atrial fibrillation, acute coronary syndrome and unstable angina.
Fig. 5 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation. The sequence corresponds to the sequence made publicly 10 available by the NCBI Nucleotide Database under number NM-001992.
The prepared sequence is identical to SEQ ID NO: 1.
Fig. 6 15 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-001992, which polymorphism comprises a T to C substitution. The depicted sequence is identical to SEQ ID NO: 2.
20 Fig.7 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A to C substitution. The 25 depicted sequence is identical to SEQ ID NO: 3.
Fig. 8 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-001992, which polymorphism comprises a T to C substitution, and with a simultaneous second polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A
to C substitution. The depicted sequence is identical to SEQ ID NO: 4.
Fig. 9 Polynucleotide sequence of a fragment of the human PAR1 gene in 5'/3' orientation. The depicted sequence is identical to SEQ ID NO: 5.
Fig. 10 Polynucleotide sequence of a fragment of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-01992, which polymorphism comprises a T to C substitution. The depicted sequence is identical to SEQ ID NO: 6.
Fig. 11 Polynucleotide sequence of a fragment of human PAR1 gene in 5'/3' orientation with a polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A to C substitution. The depicted sequence is identical to SEQ ID NO: 7.
Fig. 12 Polynucleotide sequence of a fragment of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-001992, which polymorphism comprises a T to C substitution, and with a simultaneous second polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A
to C substitution. The depicted sequence is identical to SEQ ID NO: 8.
Fig. 13 Polynucleotide sequence in 5'/3' orientation of the 5' end of the cDNA of the human PAR1 gene. The depicted sequence is identical to SEQ ID NO;
9.
Fig. 14 Polynucleotide sequence in 5'/3' orientation of the 3' end of the cDNA of the human PAR1 gene. The depicted sequence is identical to SEQ ID NO;
10.
Fig. 15 Polynucleotide sequence in 5'/3' orientation of the cDNA of the human PAR1 gene, relating to positions 2767 to 2789 according to NM-001992.
The depicted sequence is identical to SEQ ID N0; 11.
Fig. 16 Polynucleotide sequence in 5'/3' orientation of the Exon No. 1 of the human PAR1 gene. The depicted sequence is identical to SEQ ID NO; 12.
Fig. 17 Protein sequence of the human PAR1 receptor. The sequence corresponds to the sequence made publicly available by the NCBI Protein Database under number NP-001983. The depicted sequence is identical to SEQ ID NO: 13.
SEQUENCE LISPING
<110> Aventis Pharma Deutschland GmbH
<120> Analysis and use of PAR1 polymorphism for evaluating the risk of cardiovascular disorders <130> DEAV2003/0030 <140>
<141>
<lso> 13 <170> PatentIn Vez. 2.1 <210> 1 <211> 3592 <212> DNA
<213> Homo Sapiens <400> 1 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120_ ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgac ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagtcc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccatcgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tctgggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctacttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct atcattcgat gtcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtcctc ctgattgcgc attactcatt cctttetcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc aatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt catcaacagt gagagactcc 2100 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 216D
gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 2400 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc tacccatctt aaaaacaacg 264D
aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 270D
ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 2880 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacat tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt cacaaagtaa tttggaaatt aggttgaaac atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctcac gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca agactccatc tc 3592 <210> 2 <211> 3592 <212> DNA
<213> Homo Sapiens <400> 2 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120 ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgac ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagtcc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccattgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tc2gggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctatttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct'atcattcgat gtcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtccto ctgattgcgc attactcatt cetttctcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata'agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc gatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga ~gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt catcaacagt gagagactcc 21'00 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 2160 gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 2400 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag,aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc tacccatctt aaaaacaacg 2640 aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 2700 ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 2880 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacac tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt cacaaagtaa tttggaaatt aggttgaaac atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctcac gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca agactccatc tc 3592 <210> 3 <211> 3592 < 212 > DDTA
<213> Homo sapiras <400> 3 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120 ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgac ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa~gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagtcc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccatcgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat.cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg. gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tctgggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctacttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct atcattcgat gtcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtcctc ctgattgcgc attactcatt cctttctcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc gatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa.tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt ~catcaacagt gagagactcc 21D0 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 2160 gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 240-0 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc tacccatctt aaaaacaacg 2640 aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 2700 ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 2880 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacat tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt'cacaaagtaa tttggaaatt aggttgaaac~atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctccc gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca .agactccatc tc 3592 <210> 4 c211> 3592 <212> ANA
<213> Homo Sapiens <400> 4 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120 ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgae ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa. tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagt,,cc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccatcgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tctgggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctacttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct atcattcgat 9tcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtcctc ctgattgcgc attactcatt cctttctcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc gatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt catcaacagt gagagactcc 2100 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 2160 gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 2400 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc~tacccatctt aaaaacaacg 2640 aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 2700 ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 288'0 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt,tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacac tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt cacaaagtaa tttggaaatt aggttgaaac atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctccc gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 .
tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca agactccatc tc 3592 <210> s <211> 939 <212> DNA
<213> Homo Sapiens <400> 5 acagagtgga ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt acaggacata 180 tattttttaa aataagtctg atttaattgg gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt.ttcttttaag aatcaatcat gtcagtctgc ttagaaataa 300 .czgaagaaaa tagaattgac attgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat-420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc acgcctgtaa tcccagcact ttgggaggct gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta~660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa 840 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg 939 <210> 6 <211> 939 <212> DNA
<213> Homo Sapiens <400> 6 acagagtgga.ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt acaggacata 180 tattttttaa aataagtctg atttaattgg gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt ttcttttaag aatcaatcat gtcagtctgc ttagaaataa 300 cagaagaaaa tagaattgac actgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat 420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc acgcctgtaa tcccagcact ttgggaggct gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta 660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa B40 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg ~ 93g <zlo> 7 <211> 939 <212 > DNA
<213> Homo Sapiens <40b> 7 acagagtgga ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt~acaggacata 180 tattttttaa aataagtctg atttaattgg gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt ttcttttaag aatcaatcat gtcagtctgc ttagaaataa 300 cagaagaaaa tagaattgac attgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat 420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa-caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc ccgcctgtaa tcccagcact ttgggaggct.gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta 660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa~840 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg 939 <210> 8 <211> 939 <212> DNA
<213> Homo Sapiens <400> 8 acagagtgga ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt acaggacata 180 tattttttaa aataagtctg atttaattgg'gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt ttcttttaag aatcaatcat~gtcagtctgc ttagaaataa 300 cagaagaaaa tagaattgac actgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat 420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc ccgcctgtaa tcccagcact ttgggaggct gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta 660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa 840 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg 939 <210> s <211> 20 <212> DNA
c213> Homo Sapiens <400> 9 ggcggggggc gcacagagcc 20 <210> 10 <211> 22 c212> DNA
<213> Homo Sapiens <400> 10 gagatggagt cttgctctgt tg 22 <210> 11 <211> 21 <212> DNA
<213> Homo Sapiens <400> 11 acagagtgga ataagacaga g 21 <210> 12 <211> 21 <212> DNA
<213> Homo Sapiens <400> 12 ccagtgctag cttctactta c 21 <210> 13 <211> 425 <212> PRT
<213> Homo Sapiens <400> 13 Met Gly Pro Arg Arg Leu Leu Leu Val Ala Ala Cys Phe Ser Leu Cys 1 . 5 10 15 Gly Pro Leu Leu Ser Ala Arg Thr Arg Ala Arg Arg Pro Glu Ser Lys Ala Thr Asn A1a Thr Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr Glu Pro Phe Trp Glu Asp Glu Glu Lys Asn Glu Ser Gly Leu Thr Glu Tyr Arg Leu Val Ser Ile Asn Lys Ser Ser Pro Leu 65 70 75 . 80 Gln Lys Gln Leu Pro Ala Phe Ile Ser Glu Asp Ala Ser Gly Tyr Leu Thr Ser Ser Trp Leu Thr Leu Phe Val Pro Ser Val Tyr Thr Gly Val Phe Val Val Ser Leu Pro Leu Asn Ile Met Ala Ile Val Val Phe Ile Leu Lys Met Lys Val Lys Lys Pro Ala Val Val Tyr Met Leu His Leu Ala Thr Ala Asp Val Leu Phe Val Ser Val Leu Pro Phe.Lys Ile Ser Tyr Tyr Phe Ser Gly Ser Asp Trp Gln Phe Gly Ser Glu Leu Cys Arg 165 ~ 170 175 Phe Val Thr Ala Ala Phe Tyr Cys Asn Met Tyr Ala Ser Ile Leu Leu Met Thr Val Ile Ser Ile Asp Arg Phe Leu Ala Val Val Tyr Pro Met Gln Ser Leu Ser Trp Arg Thr Leu Gly Arg Ala Ser Phe Thr Cys Leu Ala Ile Trp Ala Leu Ala Ile Ala Gly Val Val Pro Leu Val Leu Lys Glu Gln Thr Ile Gln Val Pro Gly Leu Asn Ile Thr Thr Cys His Asp Val Leu Asn Glu Thr Leu Leu Glu Gly Tyr Tyr Ala Tyr Tyr Phe Ser Ala Phe Ser Ala Val Phe Phe Phe Val Pro Leu Ile Ile Ser Thr Val Cys Tyr Val Ser Ile Ile Arg Cps Leu Ser 5er Ser Ala Val Ala Asn Arg Ser Lys Lys Ser Arg Ala Leu Phe Leu Ser Ala Ala Val Phe Cps Ile Phe Ile Ile Cys Phe Gly Pro Thr Asn Val Leu Leu Ile Ala His Tyr Ser Phe Leu Ser His Thr Ser Thr Thr Glu Ala Ala Tyr Phe Ala Tyr Leu Leu Cys Val Cys Val Ser Ser Ile Ser Ser Cys Ile Asp Pro Leu Ile Tyr Tyr Tyr Ala Ser Ser Glu Cys Gla Arg Tyr Val Tyr Ser Ile Leu Cys Cys Lys Glu Ser 5er Asp Pro Ser 5er Tyr Asn Ser Ser Gly Gln Leu Met Ala Ser Lys Met Asp Thr.Cys Ser Ser Rsn Leu Asn Asn 5er Ile Tyr Lys Lys Leu Leu Thr
Such health-related preventive mechanisms would not be possible without knowledge of the PAR1 polymorphisms which are explained in more detail below and the use thereof in corresponding methods.
Variants of a particular nucleotide sequence with substitutions at individual positions are known to the skilled worker under the term SNP (_ single nucleotide polymorphism).
The invention relates to an isolated polynucleotide sequence of the PAR1 gene, which comprises a C for T substitution at position 3090 of the PAR1 sequence according to NM-001992 which, as prior art, is publicly available.
In a preferred embodiment, the polynucleotide sequence of the PAR1 gene having a T to C substitution at position 3090 encompasses a sequence according to SEQ ID NO: 2 and, in a particularly preferred embodiment of said polynucleotide sequence, the latter comprises a sequence of SEQ ID
NO: 2.
The invention furthermore relates to an isolated polynucleotide sequence of the PAR1 gene, which comprises an C for A substitution at position 3329 of the PAR1 sequence according to NM-001992 which, as prior art, is publicly available. In a preferred embodiment, the polynucleotide sequence of the PAR1 gene having an A to C substitution at position 3329 encompasses a sequence according to SEQ ID NO: 3 and, in a particularly preferred embodiment of said polynucleotide sequence, the latter comprises a sequence of SEQ ID NO: 3.
The invention also relates to an isolated polynucleotide sequence of the PAR1 gene, which comprises a C for T substitution at position 3090 of the PAR1 sequence according to NM-001992 and, simultaneously, a V for A
substitution at position 3329 of said PAR1 sequence. In a preferred embodiment, the polynucleotide sequence of the PAR1 gene having a T to C substitution at position 3090 and a simultaneous A to C substitution at position 3329 encompasses a sequence according to SEQ ID NO: 4 and, in a particularly preferred embodiment of said polynucleotide sequence, the latter comprises a sequence of SEQ ID NO; 4.
The invention also relates to an isolated part of the polynucleotide sequence of the PAR1 gene, which comprises a sequence according to SEQ ID NO: 5.
The invention also relates to an isolated part of the polynucleotide sequence of the PAR1 gene, which sequence comprises a C for T
substitution at position 3090, based on the PAR1 sequence according to NM-001992, which part comprises a sequence according to SEQ ID NO: 6.
The invention also relates to an isolated part of the polynucleotide sequence of the PAR1 gene, which sequence comprises a C for A
substitution at position 3329, based on the PAR1 sequence according to NM-001992, which part comprises a sequence according to SEQ ID NO: 7.
The im. :o relates to an isolated part of the polynucleotide sequenL PAR1 gene, which sequence comprises a C for T
substitution; ~ition 3090, based on the PAR1 sequence according to NM-001992, and simultaneously a C for A substitution at position 3329 of said PAR1 sequence, which part comprises a sequence according to SEQ
ID NO: 8.
The invention furthermore comprises the preparation of a 3592 base pair polynucleotide sequence of the PAR1 cDNA gene, which sequence may or may not comprise the polymorphisms at positions 3090 and 3329, as defined above, individually or in combination, which preparation comprises the following method steps:
a] Providing human DNA comprising a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID N0: 4, b] Providing a primer pair having a sequence according to SEQ ID NO:
9 and SEQ ID NO: 10 .
c] Amplifying the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the 3.56 kb fragment obtained from c], e] Sequencing the fragment from d].
The invention also relates to the preparation of a polynucleotide sequence according to SEQ ID NO: 5, SEQ ID N0: 6, SEQ ID NO: 7 or SEQ ID NO:
8, which preparation comprises the following method steps:
a] Providing human genomic DNA comprising a PAR1 sequence according to SEQ ID NO: 1 and/or a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID NO: 4 b] Providing a primer pair according to SEQ ID NO: 11 and SEQ ID
NO: 12 c] Amplifying the fragment of the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the fragment obtained from c], e] Sequencing the fragment from d].
The invention furthermore relates to a method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 11 and SEQ ID NO: 12, using a PCR
reaction, d] Sequencing the polynucleotide fragment from c].
The invention furthermore relates to a method for detecting, whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Transcribing said RNA to cDNA by means of reverse transcriptase, d] Possibly amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 10 and SEQ ID NO: 11, using said PCR reaction, e] Sequencing the cDNA from c] and/or the polynucleotide fragment from d].
The invention also relates to a method for detecting whether or not there is 5 in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Southern blotting the chromosomal DNA from b], d] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Southern blot from c] with the probe form d] under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization from a].
The invention furthermore relates to a method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Northern blotting the RNA from b], d] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Northern blot form c] with the probe from d] under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization.
Detection of the genetic variations or polymorphisms in the PAR1 gene at positions 3090 and/or 3329 may be used as (a) genetic marker for evaluating the risk of atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or unstable angina, as (b) marker for preventive treatment for atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or stable angina of the carriers of the corresponding genetic variants, as (c) marker for adjusting the dose of a pharmaceutically active substance to be administered for atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or unstable angina, as (d) marker for determining the high throughput-screening strategy for identifying a pharmaceutically active substance for atrial fibrillation, acute coronary syndrome, cardiomyopathy andlor unstable angina, as (e) marker for identifying the relevant individuals or patients for clinic studies in order to test the tolerability, safety and efficacy of a pharmaceutical substance for atrial fibrillation, acute coronary syndrome, cardiomyopathy and/or unstable angina, and as (f) basis for developing assays systems for analyzing the genetic variation in the PAR1 gene at the DNA, RNA or protein level.
The invention also relates to an isolated polynucleotide sequence having from 21 to 50 nucleotides, which comprises a sequence according to SEQ
ID NO: 11. Said sequence preferably comprises SEQ ID NO: 11. The invention furthermore relates to an isolated polynucleotide sequence having from 20 to 50 nucleotides, which comprises a sequence according to SEQ ID NO: 12. Said sequence preferably comprises SEQ ID NO: 12.
The invention also relates to the use of an isolated polynucleotide sequence having from 21 to 50 nucleotides, which encompasses or comprises a sequence according to SEQ ID NO: 11, in combination with an isolated polynucleotide sequence having from 20 to 50 nucleotides, which encompasses or comprises a sequence according to SEQ ID NO: 12, for amplifying a corresponding fragment of the PAR1 gene by means of the polymerase chain extension reaction (PCR). This use preferably relates to the amplification of a fragment of a PAR1 gene having a T to C substitution at position 3090 of the sequence according to NM-001992 and/or having an A to C substitution at position 3329 of the sequence according to NM-001992.
Moreover, the invention comprises a kit of parts which comprises a] an isolated polynucleotide sequence of from 21 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 11, b] an isolated polynucleotide sequence of from 20 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 12, c] at least one enzyme for carrying out the polymerase chain extension reaction (PCR), d] possibly substances and/or solutions for carrying out the polymerase chain extension reaction, e] possibly polynucleotide sequences encompassing the PAR1 gene with or without substitution at position 3090 of the PAR1 sequence according to NM-001992 and/or position 3329 according to NM-001992 in full length and/or parts thereof f] and possibly reagents for carrying out the sequencing reaction.
Kit of parts here and below means the combination of said components which have been combined into a functional unit in spatial juxtaposition to each other.
The invention furthermore relates to the preparation of the above-described kit of parts, which comprises a] providing an isolated polynucleotide sequence of from 21 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 11, b] providing an isolated polynucleotide sequence of from 20 to 50 nucleotides in length, which encompasses or comprises a sequence according to SEQ ID NO: 12, c] providing an enzyme for carrying out the polymerase chain extension reaction (PCR), d] providing, where appropriate, reagents for carrying out a sequencing e] possibly providing substances and/or solutions for carrying out said polymerase chain extension reaction (PCR) f] possibly providing polynucleotide sequences comprising the PAR1 gene with or without a T to C substitution at position 3090 of the PAR1 sequence according to NM-001992 and/or an A to C
substitution at position 3329 according to NM-001992, in each case in the full length, or parts thereof, g] introducing the components from a] to f] in each case separately into suitable containers, h] combining, where appropriate, the containers from g] in one or more pack units.
The above-described kit of parts may be used for amplifying a fragment of the PAR1 gene.
The technical aspects of the invention are discussed in more detail in the following embodiments.
Isolated polynucleotide sequences of the PAR1 gene may be prepared, for example, by amplification by means of the polymerise chain extension reaction (PCR). Suitable primers for this purpose are described in SEQ ID NO: 9 and SEQ ID NO: 10.
The PCR is an in-vitro technique which may be used to selectively duplicate polynucleotide sections which are flanked by two known sequences. Amplification requires short, single-stranded DNA molecules which are complementary to the ends of a defined sequence of a DNA or RNA template (primers). A DNA polymerise extends the primers, under the correct reaction conditions and in the presence of deoxynucleotide triphosphates (dNTPs), along the single-stranded and denatured polynucleotide template and thus synthesizes new DNA strands whose sequence is complementary to said template. During this process, the temperature is changed at regular intervals so that, time after time, the polynucleotide strands are denatured and the primers can be attached and extended. Heat-stable DNA polymerises, for example Taq polymerise, are used. A typical PCR reaction mixture contains, apart from a polynucleotide template, two suitable primer nucleotides, for example at concentrations between 0.2 to 2 ~M, furthermore dNTPs, for example at concentrations of 200 pM per dNPT, furthermore MgCl2 having a concentration of 1 - 2 mM, and 1 -10 units of a heat-stable DNA polymerise such as, for example, Taq polymerise (Thermus aquaticus polymerise). Heat-stable DNA
polymerise and the components for carrying out the same, and also protocols, are commercially supplied by numerous companies such as, for example, Roche Diagnostics, Clontech, Life Technologies, New England Biolabs, Promega, Stratagene, etc.
The polynucleotide template for amplifying the polynucleotide sequence to be isolated may be present in the form of RNA or DNA. If the polynucleotide template is RNA, then the latter is transcribed to DNA by means of reverse transcriptase, prior to the actual PCR reaction. The amount of polynucleotide template for carrying out the PCR reaction may be from 0.01 to 20 ng, for example.
The polynucleotide template is obtained using techniques known to the skilled worker for obtaining DNA and/or RNA from biological material.
Biological material should include here, inter alia, the cells of a tissue or organ (e.g. brain, blood, liver, spleen, kidney, heart, blood vessels) of a vertebrate, including humans, or cells from a eukaryotic cell culture (e.g.
Hela cells, CHO cells, 3T3 cells) or cells comprising bacteria or yeasts in which the DNA sequence to be isolated is present in cloned form.
Cells of a tissue assemblage or organ of a vertebrate, including humans, may be obtained by taking blood, tissue puncture or surgical techniques. A
polynucleotide template may be obtained therefrom, for example, by disrupting the cells, possibly concentrating individual organelles, in particular the nucleus, and recovering the DNA or RNA by precipitation and centrifugation.
Another method for preparing isolated polynucleotide sequences of the PAR1 gene comprises cloning the PAR1 gene, subsequently expressing it in bacteria or yeast and purifying the expressed polynucleotide. The previously mentioned PCR reaction, for example, is suitable for preparing a polynucleotide fragment which is clonable. It is advantageous to use, for a fragment to be cloned, primers which carry the recognition sequence of a reaction enzyme 5' of the complementary sequence. The two primers may use in each case the same or different recognition sequences for restriction enzymes.
Examples of common restriction enzymes are: BamHl (GGATCC), Clal (ATCGAT), EcoRl (GAATTC), EcoRV (GATATC), Hindlll (AAGCTT) Ncol (CCATGG) Sall (GTCGAC), Xbal (TCTAG1 ).
For cloning, a vector is treated with the restriction enzymes which correspond to the recognition sequences attached to the primers. The fragment is connected to the vector by means of ligase by isolation and treatment with the same restriction enzymes. Vector means a DNA
molecule such as, for example, a plasmid, bacteriophage or a cosmid, with the aid of which it is possible to clone genes or other DNA sequences and to introduce them into a bacterial or eukaryotic cell for replication.
Examples of vectors are DNA molecules such as pBR322, pUC18/19, pBluescript, pcDNA3.1. Vectors are commercially available from specialist companies for biotechnological material, such as Roche Diagnostics, New England Biolabs, Promega, Stratagene etc.
The instructions required for carrying out the PCR reaction, for providing polynucleotides or for carrying out cloning procedures can be found by the skilled worker in the form of recipes and protocols in standard manuals 5 such as, for example, in a] "Current Protocols in Molecular Biology by Frederick M. Ausubel (Editor), Roger Brent (Editor), Robert E. Kingston (Editor), David D. Moore (Editor), J. G. Seidman (Editor), Kevin Struhl (Editor), loose leaf edition, continuously updated, John Wiley & Sons, Inc., New York or in b] Short Protocols in Molecular Biology, 5th edition, by 10 Frederick M. Ausubel (Editor), Roger Brent (Editor), Robert E. Kingston (Editor), David D. Moore (Editor), J. G. Seidman (Editor); John A. Smith (Editor), Kevin Struhl (Editor), October 2002, John Wiley & Sons, Inc., New York" or in c] "Molecular Cloning by J. Sambrock, E. F. Fritsch, T. Maniatis;
Cold Spring Harbor Laboratory Press".
Suitable primer sequences are provided, for example, via chemical synthesis thereof which may be carried out commercially to order by companies such as MWG Biotech, etc.
Human cDNA from different organs is commercially available from companies such as, for example, Promega, Stratagene or others.
The sequencing of a polynucleotide is carried out by means of routine methods known to the skilled worker by using, for example, laboratory robots from companies such as, for example, Life Technologies, Applied Biosystems, BioRad or others.
Isolated polynucleotide sequences of the PAR1 variant and fragments therefrom may also be used for hybridization at different stringencies.
Stringency describes reaction conditions which influence the specificity of hybridization or attachment of two single-stranded nucleic acid molecules.
The stringency and thus also specificity of a reaction can be increased by increasing the temperature and lowering the ionic strength. Low stringency conditions are present, for example, if the hybridization is carried out at room temperature in 2 x SSC solution. High stringency conditions are present, for example, if hybridization is carried out at 68°C in 0.1 x SSC/0.1 % SDS solution.
Hybridization under stringent hybridization conditions in accordance with the present application means:
1] Hybridizing the labeled probe with the sample to be studied at 65°C
(or, in the case of oligonucleotides, 5°C below the melting temperature) overnight in 50 mM Tris pH 7.5, 1 NaCI, 1 % SDS, 10%
dextran sulfate, 0.5 mglml denatured salmon sperm DNA.
2] Washing at room temperature in 2 x SSC for 10 min.
3] Washing at 65°C (or, in the case of oligonucleotides, 5°C
below the melting temperature) in 1 x SSC/1 % SDS for 30 min.
4] Washing at 65°C (or, in the case of oligonucleotides, 5°C
below the melting temperature) in 0.2 x SSC/0.1 % SDS for 30 min.
5] Washing at 65°C (or, in the case of oligonucleotides, 5°C
below the melting temperature) in 0.1 % SSC/0.1 % SDS for 30 min.
DNA fragments of 20 nucleotides in overall length are to be regarded as being oligonucleotides for this purpose. The melting temperature results from the formula Tm = 2 (number of A+T) + 4 (number of G+C)C°.
A 2 x SSC or 0.1 x SSC solution is prepared by diluting a 20 x SSC solution accordingly. The 20 x SSC solution comprises a 3M NaCI/0.3 sodium citrate 2 H20 solution. SDS is sodium dodecyl sulfate.
The hybridization is carried out by transferring the polynucleotides to be studied to a nylon or nitrocellulose membrane (Southern blot - DNA;
Northern blot - RNA), after electrophoretic fractionation and subsequent denaturation. The hybridization is carried out using a probe which is radio-labeled or has been labeled in another way, for example with the aid of fluorescent dyes. The probe comprises a usually single-stranded and/or denatured DNA or RNA polynucleotide sequence which binds to the complementary nucleotide sequence of the once again single-stranded and/or denatured DNA or RNA polynucleotide sequence to be studied.
Single nucleotide polymorphisms of the PAR1 gene may be detected with the aid of the primers of the invention, also by SSCP analysis. SSCP
stands for Single Stranded Conformation Polymorphism which is an electrophoretic technique for identifying individual base pair substitutions.
The polynucleotides to be studied are amplified by PCR by means of labeled primers and, after denaturation into single strands, fractionated in a polyacrylamide gel electrophoresis (PAGE). If the DNA fragments to be studied exhibit individual base pair substitutions, they then possess different conformations and thus migrate in the PAGE at different rates.
Examples of substances for carrying out the PCR are buffers such as Hepes or Tris, furthermore dAPP, dGTP, dTTP, dCTP, and Mg2+ and possibly further divalent or monovalent irons. Solutions contain these substances in dissolved form.
Examples Amplification of genomic regions of the PAR1 gene The T to C nucleotide substitution at position 3090 and the A to C
substitution at position 3329 in the PAR1 sequence were detected using the following primers:
Primer 1: 5'-ACAGAGTGGAATAAGACAGAG-3' (SEQ ID NO: 11) Primer 2: . 5'-CCAGTGCTAGCTTCTACTTAC-3 (SEQ ID NO: 12) Primer 1 (SEQ ID NO: 11) corresponds to positions 2767 to 2789 of the NM-001992 reference sequence. Primer 2 is derived from Exon No. 1 of the PAR1 gene.
PCR protocol for the amplification:
The reagents used are from Applied Biosystems (Foster City, USA):
20 ng of genomic DNA; 1 unit of TaqGold DNA polymerase; 1 x Taq polymerase buffer; 500 ~M of dNTPs; 2.5 mM MgCl2: 200 nM of each amplification primer pair; H20 to 5 ~,I.
PCR amplification program for the genotyping 95°C for 10 min x 1 cycle 95°C for 30 sec 70°C for 30 sec x 2 cycles 95°C for 30 sec 65°C for 30 sec x 2 cycles;
95°C for 30 sec 60°C for 30 sec x 2 cycles;
95°C for 30 sec 56°C for 30 sec 72°C for 30 sec x 40 cycles;
72°C for 10 min 4°C for 30 sec x 1 cycle;
Identification of SNPs Protocol for the minisequencing and detection of the SNPs.
All reagents are from Applied Biosystems (Foster City, USA). 2 p1 of purified PCR product, 1.5 ~L of BigDye Terminator Kit, 200 nM sequencing primer; H20 to 10 p1.
Amplification program for the sequencing:
96°C for 2 min x 1 cycle 96°C for 10 sec 55°C for 10 sec 65°C for 4 min x 30 cycles 72°C for 7 min 4°C for 30 sec x 1 cycle;
Analysis of the sequencing products:
The sequences were first analyzed using the sequence analysis software (Applied Biosystems, Foster City, USA) to obtain the raw data, then processed using Phred, Phrap, Polyphred and Consed. Phred, Phrap, Polyphred and Consed are software written by Phil Green at Washington University (http://www.genome.washington.edu).
Assigning PAR1 SNPs to coronary disorders In a clinical study, two PAR1 polymorphisms from the 3'-noncoding region of the gene were studied for a connection with thrombotic and cardiovascular complications in a cohort of patients.
The following abbreviations are used below (all positions indicated refer to the nucleotide positions in the reference sequence NM-001992).
PAR1 T3090T describes the group of individuals whose alleles of the PAR1 gene both have a thymidine (T) at position 3090. These individuals are homozygous with respect to this PAR1 variant.
PAR1 T3090C describes the group of individuals whose one allele of the PAR1 gene has a cytidine (C) at position 3090 and whose other allele of the PAR1 gene has a thymidine (T) at position 3090. These individuals are heterozygous with respect to this PAR1 variant.
PAR1 C3090C describes the group of individuals whose alleles of the PAR1 gene both have a cytidine (C) at position 3090. These individuals are homozygous with respect to this PAR1 variant.
PAR1 A3329A describes the group of individuals whose alleles of the PAR1 gene both have an adenosine (A) at position 3329. These individuals are homozygous with respect to this PAR1 variant.
PAR1 A3329C describes the group of individuals whose one allele of the PAR1 gene has a cytidine (C) at position 3329 and whose other allele of the PAR1 gene has an adenosine (A) at position 3329. These individuals are heterozygous with respect to this PAR1 variant.
PAR1 C3329C describes the group of individuals whose alleles of the PAR1 gene both have a cytidine (C) at position 3329. These individuals are homozygous with respect to this PAR1 variant.
In the group of patients analyzed (Fig. 1), statistically significant associations of the homozygous carriers of the PAR1 variant C3090C with atrial fibrillation and cardiomyopathy were observed. After carrying out a logistic regression, a 1.97 fold increased risk of atrial fibrillation and a 1.84 fold increased risk of cardiomyopathy were found in homozygous carriers of the PAR1 variant C3090C compared to carriers of the PAR1 variants T3090/T3090T (Fig. 3).
It was shown that, for carriers of the PAR1 variant C3329C, said variant is associated with a 2.35 fold increased risk of atrial fibrillation compared to carriers of the PAR1 variants C3329A/A3329A. In carriers of the PAR1 variant C3329C, said variant seems, in addition, to be protective with respect to the appearance of acute coronary syndrome and unstable angina. Carriers of the PAR1 variant C3329C have a 2.78 fold reduced risk of the appearance of acute coronary syndrome and/or unstable angina compared to carriers of the PAR1 variants A3329C/A3329A (Fig. 4).
It is therefore possible, by means of a method of the invention and using an isolated PAR1 sequence of the particular SNP type or a fragment thereof, to determine for human individuals whether there is as assignment a risk group in accordance with the results presented.
Preparation of plasmid DNA
1 ml of a bacterial overnight culture is transferred to an Eppendorf tube and centrifuged (5 000 rpm for 5 min) in a Heraeus Biofuge. The bacterial cell pellet is to be resuspended in 100 ~I of cooled solution I and then to be placed on ice for 5 min.
Solution I: 25 mM tris-HCI, pH 8.0, 50 mM glucose (sterile-filtered) 10 mM EDTA 100 ~g/ml Rnase A.
After addition of 200 p1 of solution II, the entire mixture is mixed well, resulting in alkaline denaturation of the DNA.
Solution I I: 200 mM NaOH, 1 % SDS.
After subsequent incubation for 5 min on ice, 150 p.1 of solution III are added to the mixture. This is followed by mixing once more and incubating on ice for a further 15 min.
Solution III: 3 M sodium acetate (pH 4.8).
Centrifugation in the Heraeus Biofuge at 12 000 rpm for 15 minutes removes the cell debris, the genomic DNA and the denatured proteins. The supernatant produced, which contains the plasmid DNA, is decanted into a second Eppendorf tube and admixed with 1 ml of 96% strength EtOH (or 300 ~,I of isopropanol). The precipitation mixture is mixed thoroughly and again centrifuged (15 min at 12 000 rpm in Heraeus Biofuge). This results in precipitation of the plasmid DNA. The plasmid DNA sediment is washed with ice-cold 70% strength EtOH and then dried in air. Finally, the dry sediment is taken up in 50 ~,I of sterile distilled water.
Alcohol precipitation of DNA
Precipitation mixture: DNA solution, 1/10 volume of 3 M sodium acetate (pH 5.4), 2 to 3 volumes of 96% EtOH (1 volume of isopropanol).
The mixture is mixed well and can be stored at -20°C, although this does not increase the precipitation yield. The plasmid DNA is sedimented by centrifugation at 12 000 rpm for 20 minutes.
In order to remove residues of the sodium acetate used, the plasmid DNA
must be washed once more with 1 ml of 70% strength EtOH after precipitation.
Phenol extraction of DNA
A DNA solution is admixed with the same volume of phenol (Rotiphenol~, equilibrated with TE buffer, pH 7.6, Roth, Karlsruhe, Germany), shaken for 5 min and centrifuged at 5000 rpm. Most of the now denatured proteins accumulate in the interface. The upper, aqueous phase contains the DNA
and is carefully removed by suction, and then mixed with a chloroform/isoamyl alcohol mixture (24:1) in order to remove phenol residues. This is followed by another centrifugation, after which the aqueous supernatant is removed and the DNA is isolated from the solution by alcohol precipitation.
Purification of amplified DNA molecules DNA amplicons are purified using a PCR purification kit (Qiagen). This removes the starter molecules, nucleotides (dNTPs), polymerases and salts. For this purpose, the PCR reaction mixture is admixed with five times the volume of PB buffer, mixed well and applied to the Qiaquick column.
The amplified DNA is then selectively bound to the column material, and the dNPTs are removed by washing twice with 750 p.1 of PE buffer. The amplified DNA is then eluted with the desired volume of water, with the best volume being the same as that of the PCR reaction mixture starting material.
DNA cleavage with restriction enzymes Mix: 3 p1 of DNA, 2 p1 of 10 x cleavage buffer, 2.5-5 U of restriction enzyme (e.g. EcoRl, BamHl, Sall, Xbal, Xhol etc.), add distilled water to a volume of 20 p,1.
Depending on the restriction enzyme, the cleavage reaction runs at 25-55°C for 1-2 h. For analysis, the fragments are electrophoretically fractionated in an agarose or polyacrylamide gel in parallel with a length standard. If the reaction is a double cleavage, then first one enzyme is added to the mixture. After 1 hour, an aliquot is applied to an appropriate gel, and, if the cleavage has occurred, the second enzyme can be added. If the second enzyme does not cleave in the same cleavage buffer, then an alcohol precipitation is required first.
Agarose gel electrophoresis of DNA
The agarose (Roth) is dissolved in 1 x agarose buffer at the desired concentration and boiled in a microwave oven, until the agarose has completely dissolved. The solution is then poured into a sealed Plexiglass flat bed gel chamber.
The DNA samples are admixed with 1/10 volume of loading blue (50% v/v glycerol; 50 mM EDTA; 0.005% w/v BPB [Merck, Darmstadt, Germany] and 0.005% xylene cyanol) and pipetted into the gel pockets which are generated by means of a comb.
The electrophoresis is carried out horizontally in 1 x agarose buffer as running buffer at a constant voltage of 80-140 V, depending on the size of the gel and the distance between the electrodes.
1 x agarose buffer: 40 mM Tris-HCI (pH 7.8), 5 mM sodium acetate, 1 mM
EDTA.
Polyacrylamide gel electrophoresis of DNA
7.5% polyacrylamide gel solution; 0.94 ml of 40% strength acrylamide-bisacrylamide stock solution, 0.5 ml of 10 x TBE buffer (400 mM Tris-HCI, pH 8.3; 200 mM sodium acetate, 20 mM EDTA), 0.25 ml of 1 % AMPS, 10 u1 of TEMED, 3.33 ml of distilled water.
This mixture is poured between well-cleaned, vertical glass plates mounted in vertical apparatuses for polymerization (approx. 10-20 min). The gel is run in 1 x TBE buffer at a constant voltage of 140 V.
DNA sequencing 1-2 ~g of DNA are to be dissolved in 81 p1 of distilled H20 and 9 p1 of NaOH (2 N) is to be added for denaturation. After incubation at room temperature for 10 minutes, the mixture is precipitated, with thorough washing of the resulting DNA sediment with ice-cold 80% strength ethanol being important for the subsequent sequencing reactions. 2 p1 of 5 x Sequenase buffer (200 mM Tris-CI pH 7.5/100 mM MgCl2/250 mM NaCI), 1 ~,I of oligonucleotide (1 pM/~I) and, finally, distilled H20 are to be added to the sediment to a total volume of 10 p,1. During the subsequent incubation in a 37°C water bath for 30 minutes, the starter oligonucleotide hybridizes to the D NA.
Reagents added to the hybridization mixture for the sequencing reaction:
1.0 p,1 of DTT (0.1 M), 2.0 ~I of labeling mixture (diluted 1:5), 0.5 p,1 of [a-35S]dATP, 2 p1 of Sequenase~" (13 U/p,l, United States Biochemical), (diluted 1:8 with enzyme dilution buffer).
During the subsequent incubation at room temperature for 5 minutes, the counter strand is synthesized, with the synthetic DNA being tabled by incorporation of the radiolabeled dATP. This is followed by adding in each case 3.5 pt of the labeling mixture to 2.5 ~I of the four different termination mixtures. Another incubation at 37°C for 5 minutes results in the randomly distributed termination reactions of counter stand synthesis. The reactions are stopped by adding 4 ~I of stop buffer, after which the mixtures are denatured at 80-90°C and then applied to a 6% strength denatured sequencing gel. After loading the samples, the main run is carried out at 30-50 W and, respectively, 1300-1600 V for 2-5 h. The gel is then fixed in a 10% strength acetic acid bath (15 min), freed of urea residues under running water and then dried (for 45 min, using a heat gun, or for 2 h, in a 70°C incubator). The subsequent autoradiography is carried out at 4°C for 16-24 h (Fuji Medical X-ray-Film RX, 30 x 40; Kodak Scientific Imaging Film X-omat AR).
Labeling-mixture stock solution: in each case 7.5 pM dATP, dTTP, dGTP, dCTP
Termination mixtures: in each case 80 ~M dATP, dTTP, dGTP, dCTP and in each case 8 ~M of the respective ddNTP
Sequenase dilution buffer: 10 mM Tris/HCI; pH 7.5, 5 mM DTT, 0.5 mg/ml BSA
Stop buffer: 95% formamide, 20 mM EDTA, 0.005% (w/v) xylene cyanol FF
Automated DNA sequencing Mix: 1 ~g of plasmid DNA (in the case of PCR fragments, for example, 100ng/500 nucleotides), 3-5 pmol of starter molecule (PCR primer, Tm of 55°C, if possible), 4 ~I of Dye Terminator ready-mix (FddNTPs-Ampli-TaqFS mixture), add distilled water to a volume of 20 ~,I.
The PCR reaction [25 x (15 sec at 94°C, 15 sec. at 50°C, 4 min at 60°C] is precipitated with alcohol and taken up in 4 ~I of loading buffer. The samples are then denatured at 95°C for 3 min, removed by centrifugation and applied to a vertical polyacrylamide gel (34 cm in length, provided with 24 parallel lanes).
After excitation by an argon laser beam at 488 nm, the dyes emit light of different wavelengths of between 525 nm and 605 nm which is separated into its spectral colors via a grating, a "spectrograph". The spectral colors are subsequently detected simultaneously with the aid of the high-resolution pixel field of a CCD camera. The data are recorded with the aid of a computer (Macintosh Quadra/650 Macllcx Apple Share) and the corresponding data analysis software (PE Biosystems, Weiterstadt, Germany).
Sequencing gel: 30 g of urea (Sigma), 21.5 ml of distilled H20, 6 ml of 10 x TBE
The mixture is dissolved in a wide-necked flask on a heating block at 50°C, with the following being added: 9 ml of 40% bisacrylamide (filtered), 180 p1 of 10% APS, 24 ~.I of Temed.
Polymerase chain reaction (PCR reaction) The following DNA polymerases may be used:
Taq (Thermus aquaticus) DNA polymerase (recombinant, Gibco/BRL) and 5 10 x PCR buffer [200 mM Tris/HCI (pH 8.4), 500 mM KCIJ
Tfl (Thermus flavus) DNA polymerase (Master Amp', Biozym, Oldendorf, Germany) and 20 x PCR
Buffer [20 mM (NH2)S04, 1 M Tris/HCI (pH 9.0) PCR reaction mixture:
PCR com onents Amount DNA tem late 10-100 n Starter molecule 1 25 M
Starter molecule 2 25 M
Nucleotide mixture (dNTPs) 20 mM (from a mixturecontaining 10 mM of each dNTP
DNA polymerase buffer 1 x: 5.0 ~I in the case of Taq DNA
polymerase buffer 2.5 ~.I in the case of Tfl DNA
pol merase buffer M CIZ 75 mM
DNA polymerase 2 U in the case of Taq DNA
polymerase 1 U in the case of Tfl DNA
of merase Distilled H20 to 50 I total volume The following applies here: 1 U catalyses the conversion of 10 nM
deoxyribonucleoside triphosphates, at 74°C within 30 min, to an acid-insoluble DNA product .The PCR reaction usually commences with the "hot start": the mixture is incubated first without the polymerase at 94°C
in order to enable the DNA to be denatured for the first time. After the temperature has reached 80°C, the DNA polymerase is added to the mixture in order to avoid nonspecific amplification at a still low temperature. Thereafter, the actual PCR reaction is carried out over 25-35 cycles.
For each cycle, the following reaction conditions apply:
Reaction Tem erature Time Denaturation 94C 30-60 sec Hybridization Tm-5C 30-60 sec annealin Extension 72C 1 min/1 kb Finally and in addition, the chain extension is carried out at 72°C
for 10 min, finally followed by cooling.
Isolation of total RNA
All centrifugation steps are carried out at 13 000 rpm and 16°C.
Cells are lysed with 600 ~I of lysis buffer (100 RLT buffer:
1 mercaptoethanol). The cell lysate is applied to a QiaSchredder column and removed by centrifugation for 2 min.
The eluate is admixed with 600 ~I of 70% ethanol, mixed well, and the DNA
is applied to an RNAeasy mini spin column and centrifuged for 15 s (binding of RNA to the silica matrix). The column is washed three times (once with 700 ml of RW1 buffer and twice with 500 p,1 of RPE buffer). The column is then transferred to an autoclaved 1.5 ml Eppendorf tube and the RNA is eluated with 15 p1 of distilled H20_ The average concentration of total RNA obtained in this way is 1 pg/pl.
RNA fractionation via agarose gel electrophoresis Denaturing aragrose gel:
1 g of agraose, 37 ml of distilled water, 10 ml of 10 x MOPS (0.2 mM
MOPS, 10 mM EDTA, 100 mM NaAc), the mixture is boiled and cooled to 60°C
16 ml of 37% strength formaldehyde are added.
After it has solidified, the gel is inserted with RNA gel running buffer into the electrophoresis apparatus. The RNA is applied together with a special sample buffer.
RNA gel running buffer: 40 ml of 10 x MOPS, 65 ml of 37% strength formaldehyde, 295 ml of distilled water RNA sample buffer: 1-5 pg of RNA, 5 ~I of RNA-NEW buffer (7.5 p,1 37%
strength formaldehyde, 4.5 ~I of 10 x MOPS, 25.9 ~,I of formamide, 7.5 ~.I of distilled water), 2 p.1 of formamide dye marker [50% (v/v) glycerol, 1 mM
EDTA (pH 8.0), 0.25% (v/v) bromophenol blue, 0.25% (v/v) xylene cyanol].
The gel runs at 80 V for approx. 3 h. Since this work uses only eukaryotic RNA isolates, the dominant bands visible on the gel should be those of 28S
and 18S rRNA.
Reverse Transcriptase with MMLV-RT
(Moloney murine leukemia virus - Reverse Transcriptase) Reverse transcriptase mixture: 5 ~.g of RNA, 100 p,M of starter molecule The RNA preparation and the starter molecule are incubated at 75°C
for 10 min, in order to avoid possible formation of secondary structures in the RNA template as factors interfering with the transcriptase. However, even without this step, a transcription reaction usually takes place.
Reverse transcriptase reaction mixture: 28 U of Rnasin~ (Promega), 25 mM
dNTPS, 5 ~I of 10 x reverse transcriptase buffer [10 m Tris/HCI (pH 8.3), 75 mM KCI, 3 mM MgCl2], 50 U of reverse transcriptase (StrataScript~"~, Stratagene), to 50 p,1 with distilled water.
The reverse transcription is carried out by incubating the mixture at 42°C
for 15 min and at 37°C for 45 min. A longer incubation of 2 h at 42°C with a 30-sec interruption at 55°C is recommended for relatively long RNA
templates. Subsequent incubation of the mixture at 95°C for 5 minutes results in inactivation of said reverse transcriptase. Subsequently, 5-20 p1 of the reverse transcription mixture are used for a PCR reaction.
Preparation of genomic DNA from tissue 100 mg of tissue are crushed in liquid nitrogen to give a powder. The tissue powder is introduced into a Falcon tube containing 6 ml of reaction buffer (30 p1 of proteinase K [20 mg/ml] are added freshly to the buffer) and incubated with careful shaking at 56°C overnight (12-18 hours). After incubation, 100 p,1 of RNase A (10 p,g/pl) are added and the mixture is incubated with further shaking at 37°C for one hour.
This is followed by adding 4 ml of phenol and turning the tube manually upside down and up again for approximately 5 min. 4 ml of CI
(chloroform/isoamyl alcohol) are added immediately and the tube is turned upside down and up again for another 5 minutes and then centrifuged for 15 min (3 000 rpm). The supernatant is carefully removed and transferred to 10 ml Falcon tubes. If the supernatant is still not clear, the phenol extraction must be repeated, otherwise another 4 ml of CI are added and the tube is manually turned upside down and up for 5 min and then centrifuged for 15 min (3 000 rpm). The supernatant is carefully removed and the CI extraction repeated. The final supernatant obtained is admixed with 1/10 volumes of sodium acetate solution (3 M, pH 6) and 2.5 volumes of ethanol (99.8%). The tube is carefully rotated, until the DNA precipitates as a tangle. This DNA tangle is transferred to approximately 25 ml of ethanol (70%) with the aid of a glass hook and left resting for 3 min. The washing was repeated twice. The DNA was then dried in air and dissolved in 0.5 ml of double-distilled water at room temperature.
Southern Blot DNA fractionation via an agarose gel Leave the gel on short-wave UV for approx. 5 min for strand breaks to occur in the larger DNA molecules (> 6kBp).
Continuously tilt the gel in denaturating solution for 30 min for DNA
denaturation.
Continuously tilt the gel in neutralizing solution for 30 min for neutralization.
Blot construction (from bottom to top): gel, nylon membrane, dry filter paper, blotting paper, plate, weight (approx. 1 kg).
Blotting with 20 x SSC overnight.
Wash membrane in 2 x SSC for 10 min Dry membrane on filter paper Fixing of nucleic acid by baking at 80°C for 1 h or UV crosslinking (e.g. in "Stratalinker", automatic position). The membrane may then be stored until hybridization.
Prehybridization of membrane in hybridization solution for approx. 1 - 2 h Covering of nonspecific binding sites on the membrane.
Hybridization solution: 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 100 ~g/ml herring sperm DNA
Denaturing solution: 0.5 M NaOH (20 g), 1 M NaCI
Neutralizing solution: 1.5 M NaCI/0.5 M Tris pH 7.4 20 x SSC is 3 M NaCI, 0.3 M Na-citrate: 175.3 g of NaCI, 88.2 g of sodium citrate X 2 H20, to 1 I with double-distilled water, adjust pH to 7.0 with HCI.
50 x Denhard's solution: 5 g of Ficoll 400, 5 g of PVP (polyvinyl pyrrolidone), 5 g of BSA, to 500 ml with double-distilled water Northern Blot RNA fractionation using a formaldehyde agarose gel Blot construction (from bottom to top): gel, nylon membrane, dry filter paper, blotting paper, plate, weight (appox. 1 kg).
Blotting with 20 x SSC overnight.
Fix RNA on filter by baking at 80°C (1 h) Introduce filter into boiling 20 mM Tris pH 8 for RNA deglyoxylation and let cool to RT.
Description of the Figures Fig. 1 Characteristics of study group Fig.2 Distribution of PAR1 variants T3090C and A3329C in 1362 individuals analyzed Fig.3 Association of PAR1 variants C3090C with atrial fibrillation and cardiomyopathy Fig. 4 Association of PAR1 variants C3329C with atrial fibrillation, acute coronary syndrome and unstable angina.
Fig. 5 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation. The sequence corresponds to the sequence made publicly 10 available by the NCBI Nucleotide Database under number NM-001992.
The prepared sequence is identical to SEQ ID NO: 1.
Fig. 6 15 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-001992, which polymorphism comprises a T to C substitution. The depicted sequence is identical to SEQ ID NO: 2.
20 Fig.7 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A to C substitution. The 25 depicted sequence is identical to SEQ ID NO: 3.
Fig. 8 Polynucleotide sequence of the cDNA of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-001992, which polymorphism comprises a T to C substitution, and with a simultaneous second polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A
to C substitution. The depicted sequence is identical to SEQ ID NO: 4.
Fig. 9 Polynucleotide sequence of a fragment of the human PAR1 gene in 5'/3' orientation. The depicted sequence is identical to SEQ ID NO: 5.
Fig. 10 Polynucleotide sequence of a fragment of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-01992, which polymorphism comprises a T to C substitution. The depicted sequence is identical to SEQ ID NO: 6.
Fig. 11 Polynucleotide sequence of a fragment of human PAR1 gene in 5'/3' orientation with a polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A to C substitution. The depicted sequence is identical to SEQ ID NO: 7.
Fig. 12 Polynucleotide sequence of a fragment of the human PAR1 gene in 5'/3' orientation with a polymorphism at position 3090 of the sequence according to NM-001992, which polymorphism comprises a T to C substitution, and with a simultaneous second polymorphism at position 3329 of the sequence according to NM-001992, which polymorphism comprises an A
to C substitution. The depicted sequence is identical to SEQ ID NO: 8.
Fig. 13 Polynucleotide sequence in 5'/3' orientation of the 5' end of the cDNA of the human PAR1 gene. The depicted sequence is identical to SEQ ID NO;
9.
Fig. 14 Polynucleotide sequence in 5'/3' orientation of the 3' end of the cDNA of the human PAR1 gene. The depicted sequence is identical to SEQ ID NO;
10.
Fig. 15 Polynucleotide sequence in 5'/3' orientation of the cDNA of the human PAR1 gene, relating to positions 2767 to 2789 according to NM-001992.
The depicted sequence is identical to SEQ ID N0; 11.
Fig. 16 Polynucleotide sequence in 5'/3' orientation of the Exon No. 1 of the human PAR1 gene. The depicted sequence is identical to SEQ ID NO; 12.
Fig. 17 Protein sequence of the human PAR1 receptor. The sequence corresponds to the sequence made publicly available by the NCBI Protein Database under number NP-001983. The depicted sequence is identical to SEQ ID NO: 13.
SEQUENCE LISPING
<110> Aventis Pharma Deutschland GmbH
<120> Analysis and use of PAR1 polymorphism for evaluating the risk of cardiovascular disorders <130> DEAV2003/0030 <140>
<141>
<lso> 13 <170> PatentIn Vez. 2.1 <210> 1 <211> 3592 <212> DNA
<213> Homo Sapiens <400> 1 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120_ ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgac ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagtcc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccatcgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tctgggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctacttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct atcattcgat gtcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtcctc ctgattgcgc attactcatt cctttetcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc aatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt catcaacagt gagagactcc 2100 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 216D
gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 2400 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc tacccatctt aaaaacaacg 264D
aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 270D
ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 2880 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacat tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt cacaaagtaa tttggaaatt aggttgaaac atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctcac gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca agactccatc tc 3592 <210> 2 <211> 3592 <212> DNA
<213> Homo Sapiens <400> 2 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120 ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgac ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagtcc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccattgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tc2gggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctatttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct'atcattcgat gtcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtccto ctgattgcgc attactcatt cetttctcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata'agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc gatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga ~gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt catcaacagt gagagactcc 21'00 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 2160 gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 2400 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag,aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc tacccatctt aaaaacaacg 2640 aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 2700 ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 2880 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacac tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt cacaaagtaa tttggaaatt aggttgaaac atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctcac gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca agactccatc tc 3592 <210> 3 <211> 3592 < 212 > DDTA
<213> Homo sapiras <400> 3 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120 ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgac ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa~gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagtcc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccatcgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat.cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg. gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tctgggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctacttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct atcattcgat gtcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtcctc ctgattgcgc attactcatt cctttctcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc gatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa.tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt ~catcaacagt gagagactcc 21D0 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 2160 gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 240-0 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc tacccatctt aaaaacaacg 2640 aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 2700 ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 2880 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacat tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt'cacaaagtaa tttggaaatt aggttgaaac~atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctccc gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca .agactccatc tc 3592 <210> 4 c211> 3592 <212> ANA
<213> Homo Sapiens <400> 4 ggcggggggc gcacagagcc agaggggctt gcgagcggcg gctgagggac cgcggggagg 60 gggcgccgag cggctccagc gcagagactc tcactgcacg ccggaggccc cttcctcgct 120 ccgcccgcgc gaccgcgcgc cccagtcccg ccccgccccg ctaaccgccc cagacacagc 180 gctcgccgag ggtcgcttgg accctgatct tacccgtggg caccctgcgc tctgcctgcc 240 gcgaagaccg gctccccgae ccgcagaagt caggagagag ggtgaagcgg agcagcccga 300 ggcggggcag cctcccggag cagcgccgcg cagagcccgg gacaatgggg ccgcggcggc 360 tgctgctggt ggccgcctgc ttcagtctgt gcggcccgct gttgtctgcc cgcacccggg 420 cccgcaggcc agaatcaaaa gcaacaaatg ccaccttaga tccccggtca tttcttctca 480 ggaaccccaa. tgataaatat gaaccatttt gggaggatga ggagaaaaat gaaagtgggt 540 taactgaata cagattagtc tccatcaata aaagcagt,,cc tcttcaaaaa caacttcctg 600 cattcatctc agaagatgcc tccggatatt tgaccagctc ctggctgaca ctctttgtcc 660 catctgtgta caccggagtg tttgtagtca gcctcccact aaacatcatg gccatcgttg 720 tgttcatcct gaaaatgaag gtcaagaagc cggcggtggt gtacatgctg cacctggcca 780 cggcagatgt gctgtttgtg tctgtgctcc cctttaagat cagctattac ttttccggca 840 gtgattggca gtttgggtct gaattgtgtc gcttcgtcac tgcagcattt tactgtaaca 900 tgtacgcctc tatcttgctc atgacagtca taagcattga ccggtttctg gctgtggtgt 960 atcccatgca gtccctctcc tggcgtactc tgggaagggc ttccttcact tgtctggcca 1020 tctgggcttt ggccatcgca ggggtagtgc ctctcgtcct caaggagcaa accatccagg 1080 tgcccgggct caacatcact acctgtcatg atgtgctcaa tgaaaccctg ctcgaaggct 1140 actatgccta ctacttctca gccttctctg ctgtcttctt ttttgtgccg ctgatcattt 1200 ccacggtctg ttatgtgtct atcattcgat 9tcttagctc ttccgcagtt gccaaccgca 1260 gcaagaagtc ccgggctttg ttcctgtcag ctgctgtttt ctgcatcttc atcatttgct 1320 tcggacccac aaacgtcctc ctgattgcgc attactcatt cctttctcac acttccacca 1380 cagaggctgc ctactttgcc tacctcctct gtgtctgtgt cagcagcata agctcgtgca 1440 tcgaccccct aatttactat tacgcttcct ctgagtgcca gaggtacgtc tacagtatct 1500 tatgctgcaa agaaagttcc gatcccagca gttataacag cagtgggcag ttgatggcaa 1560 gtaaaatgga tacctgctct agtaacctga ataacagcat atacaaaaag ctgttaactt 1620 aggaaaaggg actgctggga ggttaaaaag aaaagtttat aaaagtgaat aacctgagga 1680 ttctattagt ccccacccaa actttattga ttcacctcct aaaacaacag atgtacgact 1740 tgcatacctg ctttttatgg gagctgtcaa gcatgtattt ttgtcaatta ccagaaagat 1800 aacaggacga gatgacggtg ttattccaag ggaatattgc caatgctaca gtaataaatg 1860 aatgtcactt ctggatatag ctaggtgaca tatacatact tacatgtgtg tatatgtaga 1920 tgtatgcaca cacatatatt atttgcagtg cagtatagaa taggcacttt aaaacactct 1980 ttccccgcac cccagcaatt atgaaaataa tctctgattc cctgatttaa tatgcaaagt 2040 ctaggttggt agagtttagc cctgaacatt tcatggtgtt catcaacagt gagagactcc 2100 atagtttggg cttgtaccac ttttgcaaat aagtgtattt tgaaattgtt tgacggcaag 2160 gtttaagtta ttaagaggta agacttagta ctatctgtgc gtagaagttc tagtgttttc 2220 aattttaaac atatccaagt ttgaattcct aaaattatgg aaacagatga aaagcctctg 2280 ttttgatatg ggtagtattt tttacatttt acacactgta cacataagcc aaaactgagc 2340 ataagtcctc tagtgaatgt aggctggctt tcagagtagg ctattcctga gagctgcatg 2400 tgtccgcccc cgatggagga ctccaggcag cagacacatg ccagggccat gtcagacaca 2460 gattggccag aaaccttcct gctgagcctc acagcagtga gactggggcc actacatttg 2520 ctccatcctc ctgggattgg ctgtgaactg atcatgttta tgagaaactg gcaaagcaga 2580 atgtgatatc ctaggaggta atgaccatga aagacttctc~tacccatctt aaaaacaacg 2640 aaagaaggca tggacttctg gatgcccatc cactgggtgt aaacacatct agtagttgtt 2700 ctgaaatgtc agttctgata tggaagcacc cattatgcgc tgtggccact ccaataggtg 2760 ctgagtgtac agagtggaat aagacagaga cctgccctca agagcaaagt agatcatgca 2820 tagagtgtga tgtatgtgta ataaatatgt ttcacacaaa caaggcctgt cagctaaaga 288'0 agtttgaaca tttgggttac tatttcttgt ggttataact taatgaaaac aatgcagtac 2940 aggacatata ttttttaaaa taagtctgat ttaattgggc actatttatt,tacaaatgtt 3000 ttgctcaata gattgctcaa atcaggtttt cttttaagaa tcaatcatgt cagtctgctt 3060 agaaataaca gaagaaaata gaattgacac tgaaatctag gaaaattatt ctataatttc 3120 catttactta agacttaatg agactttaaa agcatttttt aacctcctaa gtatcaagta 3180 tagaaaatct tcatggaatt cacaaagtaa tttggaaatt aggttgaaac atatctctta 3240 tcttacgaaa aaatggtagc attttaaaca aaatagaaag ttgcaaggca aatgtttatt 3300 taaaagagca ggccaggcgc ggtggctccc gcctgtaatc ccagcacttt gggaggctga 3360 ggcgggtgga tcacgaggtc aggagatcga gaccatcctg gctaacacgg tgaaacccgt 3420 ctctactaaa aatgcaaaaa aaattagccg ggcgtggtgg caggcacctg tagtcccagc 3480 .
tactcgggag gctgaggcag gagactggcg tgaacccagg aggcggacct tgtagtgagc 3540 cgagatcgcg ccactgtgct ccagcctggg caacagagca agactccatc tc 3592 <210> s <211> 939 <212> DNA
<213> Homo Sapiens <400> 5 acagagtgga ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt acaggacata 180 tattttttaa aataagtctg atttaattgg gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt.ttcttttaag aatcaatcat gtcagtctgc ttagaaataa 300 .czgaagaaaa tagaattgac attgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat-420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc acgcctgtaa tcccagcact ttgggaggct gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta~660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa 840 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg 939 <210> 6 <211> 939 <212> DNA
<213> Homo Sapiens <400> 6 acagagtgga.ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt acaggacata 180 tattttttaa aataagtctg atttaattgg gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt ttcttttaag aatcaatcat gtcagtctgc ttagaaataa 300 cagaagaaaa tagaattgac actgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat 420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc acgcctgtaa tcccagcact ttgggaggct gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta 660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa B40 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg ~ 93g <zlo> 7 <211> 939 <212 > DNA
<213> Homo Sapiens <40b> 7 acagagtgga ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt~acaggacata 180 tattttttaa aataagtctg atttaattgg gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt ttcttttaag aatcaatcat gtcagtctgc ttagaaataa 300 cagaagaaaa tagaattgac attgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat 420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa-caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc ccgcctgtaa tcccagcact ttgggaggct.gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta 660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa~840 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg 939 <210> 8 <211> 939 <212> DNA
<213> Homo Sapiens <400> 8 acagagtgga ataagacaga gacctgccct caagagcaaa gtagatcatg catagagtgt 60 gatgtatgtg taataaatat gtttcacaca aacaaggcct gtcagctaaa gaagtttgaa 120 catttgggtt actatttctt gtggttataa cttaatgaaa acaatgcagt acaggacata 180 tattttttaa aataagtctg atttaattgg'gcactattta tttacaaatg ttttgctcaa 240 tagattgctc aaatcaggtt ttcttttaag aatcaatcat~gtcagtctgc ttagaaataa 300 cagaagaaaa tagaattgac actgaaatct aggaaaatta ttctataatt tccatttact 360 taagacttaa tgagacttta aaagcatttt ttaacctcct aagtatcaag tatagaaaat 420 cttcatggaa ttcacaaagt aatttggaaa ttaggttgaa acatatctct tatcttacga 480 aaaaatggta gcattttaaa caaaatagaa agttgcaagg caaatgttta tttaaaagag 540 caggccaggc gcggtggctc ccgcctgtaa tcccagcact ttgggaggct gaggcgggtg 600 gatcacgagg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc gtctctacta 660 aaaatgcaaa aaaaattagc cgggcgtggt ggcaggcacc tgtagtccca gctactcggg 720 aggctgaggc aggagactgg cgtgaaccca ggaggcggac cttgtagtga gccgagatcg 780 cgccactgtg ctccagcctg ggcaacagag caagactcca tctcaaaaaa taaaaataaa 840 taaaaaataa aaaaataaaa gagcaaacta tttccaaata ccatagaata acttacataa 900 aagtaatata actgtattgt aagtagaagc tagcactgg 939 <210> s <211> 20 <212> DNA
c213> Homo Sapiens <400> 9 ggcggggggc gcacagagcc 20 <210> 10 <211> 22 c212> DNA
<213> Homo Sapiens <400> 10 gagatggagt cttgctctgt tg 22 <210> 11 <211> 21 <212> DNA
<213> Homo Sapiens <400> 11 acagagtgga ataagacaga g 21 <210> 12 <211> 21 <212> DNA
<213> Homo Sapiens <400> 12 ccagtgctag cttctactta c 21 <210> 13 <211> 425 <212> PRT
<213> Homo Sapiens <400> 13 Met Gly Pro Arg Arg Leu Leu Leu Val Ala Ala Cys Phe Ser Leu Cys 1 . 5 10 15 Gly Pro Leu Leu Ser Ala Arg Thr Arg Ala Arg Arg Pro Glu Ser Lys Ala Thr Asn A1a Thr Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr Glu Pro Phe Trp Glu Asp Glu Glu Lys Asn Glu Ser Gly Leu Thr Glu Tyr Arg Leu Val Ser Ile Asn Lys Ser Ser Pro Leu 65 70 75 . 80 Gln Lys Gln Leu Pro Ala Phe Ile Ser Glu Asp Ala Ser Gly Tyr Leu Thr Ser Ser Trp Leu Thr Leu Phe Val Pro Ser Val Tyr Thr Gly Val Phe Val Val Ser Leu Pro Leu Asn Ile Met Ala Ile Val Val Phe Ile Leu Lys Met Lys Val Lys Lys Pro Ala Val Val Tyr Met Leu His Leu Ala Thr Ala Asp Val Leu Phe Val Ser Val Leu Pro Phe.Lys Ile Ser Tyr Tyr Phe Ser Gly Ser Asp Trp Gln Phe Gly Ser Glu Leu Cys Arg 165 ~ 170 175 Phe Val Thr Ala Ala Phe Tyr Cys Asn Met Tyr Ala Ser Ile Leu Leu Met Thr Val Ile Ser Ile Asp Arg Phe Leu Ala Val Val Tyr Pro Met Gln Ser Leu Ser Trp Arg Thr Leu Gly Arg Ala Ser Phe Thr Cys Leu Ala Ile Trp Ala Leu Ala Ile Ala Gly Val Val Pro Leu Val Leu Lys Glu Gln Thr Ile Gln Val Pro Gly Leu Asn Ile Thr Thr Cys His Asp Val Leu Asn Glu Thr Leu Leu Glu Gly Tyr Tyr Ala Tyr Tyr Phe Ser Ala Phe Ser Ala Val Phe Phe Phe Val Pro Leu Ile Ile Ser Thr Val Cys Tyr Val Ser Ile Ile Arg Cps Leu Ser 5er Ser Ala Val Ala Asn Arg Ser Lys Lys Ser Arg Ala Leu Phe Leu Ser Ala Ala Val Phe Cps Ile Phe Ile Ile Cys Phe Gly Pro Thr Asn Val Leu Leu Ile Ala His Tyr Ser Phe Leu Ser His Thr Ser Thr Thr Glu Ala Ala Tyr Phe Ala Tyr Leu Leu Cys Val Cys Val Ser Ser Ile Ser Ser Cys Ile Asp Pro Leu Ile Tyr Tyr Tyr Ala Ser Ser Glu Cys Gla Arg Tyr Val Tyr Ser Ile Leu Cys Cys Lys Glu Ser 5er Asp Pro Ser 5er Tyr Asn Ser Ser Gly Gln Leu Met Ala Ser Lys Met Asp Thr.Cys Ser Ser Rsn Leu Asn Asn 5er Ile Tyr Lys Lys Leu Leu Thr
Claims (28)
1. An isolated polynucleotide sequence of the PAR1 gene, which comprises a C for T substitution at position 3090 of the sequence according to NM-001992.
2. The isolated polynucleotide sequence as claimed in claim 1, wherein the polynucleotide sequence of the PAR1 gene encompasses a sequence according to SEQ ID NO: 2.
3. The isolated polynucleotide sequence as claimed in claim 1, wherein the polynucleotide sequence of the PAR1 gene comprises a sequence according to SEQ ID NO: 2.
4. An isolated polynucleotide sequence of the PAR1 gene, which comprises a C for A substitution at position 3329 of the sequence according to NM-001992.
5. The isolated polynucleotide sequence as claimed in claim 4, wherein the polynucleotide sequence of the PAR1 gene encompasses a sequence according to SEQ ID NO: 3.
6. The isolated polynucleotide sequence as claimed in claim 4, wherein the polynucleotide sequence of the PAR1 gene comprises a sequence according to SEQ ID NO: 3.
7. An isolated polynucleotide sequence of the PAR1 gene, which comprises a C for T substitution at position 3090 and a C for A
substitution at position 3329, in each case based on NM-001992.
substitution at position 3329, in each case based on NM-001992.
8. The isolated polynucleotide sequence as claimed in claim 7, wherein the polynucleotide sequence of the PAR1 gene encompasses a sequence according to SEQ ID NO: 4.
9. The isolated polynucleotide sequence as claimed in claim 7, wherein the polynucleotide sequence of the PAR1 gene comprises a sequence according to SEQ ID NO: 4.
10. An isolated part of the polynucleotide sequence of the PAR1 gene, comprising a sequence according to SEQ ID NO: 5.
11. An isolated part of the polynucleotide sequence of the PAR1 gene, comprising a sequence according to SEQ ID NO: 6.
12. An isolated part of the polynucleotide sequence of the PAR1 gene, comprising a sequence according to SEQ ID NO: 7.
13. An isolated part of the polynucleotide sequence of the PAR1 gene, comprising a sequence according to SEQ ID NO: 8.
14. A method for preparing a polynucleotide sequence as claimed in any of claims 1 to 9 by means of the following method steps:
a] Providing human cDNA comprising a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID NO: 4, b] Providing a primer pair according to SEQ ID NO: 9 and SEQ
ID NO: 10.
c] Amplifying the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the 3.56 kb fragment obtained from c], e] Sequencing the fragment from d].
a] Providing human cDNA comprising a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID NO: 4, b] Providing a primer pair according to SEQ ID NO: 9 and SEQ
ID NO: 10.
c] Amplifying the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the 3.56 kb fragment obtained from c], e] Sequencing the fragment from d].
15. A method for preparing a polynucleotide sequence as claimed in any of claims 10 to 13 by means of the following method steps:
a] Providing human genomic DNA comprising a PAR1 sequence according to SEQ ID NO: 1 and/or a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID NO: 4 b] Providing a primer pair according to SEQ ID NO: 11 and SEQ
ID NO: 12 c] Amplifying the fragment of the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the fragment obtained from c], e] Sequencing the fragment from d].
a] Providing human genomic DNA comprising a PAR1 sequence according to SEQ ID NO: 1 and/or a PAR1 sequence according to SEQ ID NO: 2 and/or a PAR1 sequence according to SEQ ID NO: 3 and/or a PAR1 sequence according to SEQ ID NO: 4 b] Providing a primer pair according to SEQ ID NO: 11 and SEQ
ID NO: 12 c] Amplifying the fragment of the PAR1 polynucleotide sequence by the polymerase chain extension reaction (PCR), d] Isolating and/or purifying the fragment obtained from c], e] Sequencing the fragment from d].
16. A method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 11 and SEQ ID NO: 12, using a PCR reaction, d] Sequencing the polynucleotide fragment from c].
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 11 and SEQ ID NO: 12, using a PCR reaction, d] Sequencing the polynucleotide fragment from c].
17. A method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Transcribing said RNA into cDNA by means of reverse transcriptase, d] Possibly amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 10 and SEQ ID NO: 11, using the PCR reaction, e] Sequencing the cDNA from c] and/or the polynucleotide fragment from d].
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Transcribing said RNA into cDNA by means of reverse transcriptase, d] Possibly amplifying a polynucleotide fragment by means of the primers according to SEQ ID NO: 10 and SEQ ID NO: 11, using the PCR reaction, e] Sequencing the cDNA from c] and/or the polynucleotide fragment from d].
18. A method for detecting whether or not there is in a PAR1 gene a T to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Southern blotting the chromosomal DNA from b], d] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID
NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Southern blot from c] with the probe from d]
under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization from a].
a] Providing biological material comprising human cells, b] Obtaining chromosomal DNA from the material of a], c] Southern blotting the chromosomal DNA from b], d] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID
NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Southern blot from c] with the probe from d]
under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization from a].
19. A method for detecting, whether or not there is in a PAR1 gene a T
to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID
NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Northern blot form c] with the probe from d]
under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization.
to C substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992, which method comprises the following method steps:
a] Providing biological material comprising human cells, b] Obtaining RNA from the material of a], c] Providing a probe according to SEQ ID NO: 5 and/or SEQ ID
NO: 6 and/or SEQ ID NO: 7 and/or SEQ ID NO: 8, e] Hybridizing the Northern blot form c] with the probe from d]
under stringent hybridization conditions, f] Determining the presence or absence of a genetic variation in the PAR1 gene at position 3090 and/or 3329 according to NM-001992 by comparing the results of the hybridization.
20. An isolated polynucleotide sequence having from 21 to 50 nucleotides, which comprises a sequence according to SEQ ID NO:
11.
11.
21. An isolated polynucleotide sequence comprising SEQ ID NO: 11.
22. An isolated polynucleotide sequence having from 21 to 50 nucleotides, which comprises a sequence according to SEQ ID NO:
12.
12.
23. An isolated polynucleotide sequence comprising SEQ ID NO: 12.
24. The use of an isolated polynucleotide sequence as claimed in claim 20 or 21 in combination with an isolated polynucleotide sequence as claimed in claim 22 or 23 for amplifying a fragment of the PAR1 gene by means of the PCR reaction.
25. The use as claimed in 24, wherein the PAR1 gene has a T to C
substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992.
substitution at position 3090 of the sequence according to NM-001992 and/or an A to C substitution at position 3329 of the sequence according to NM-001992.
26. A kit of parts, comprising a] a polynucleotide sequence as claimed in claim 20 or 21, b] a polynucleotide sequence as claimed in claim 22 or 23, c] at least one enzyme for carrying out the PCR reaction d] and possibly substances and/or solutions for carrying out the polymerase chain extension reaction (PCR), e] and possibly furthermore polynucleotide sequences as claimed in one or more of claims 1 to 17 f] and possibly reagents for carrying out a sequencing.
27. A method for preparing the kit of parts as claimed in claim 26, which method comprises a] preparing a polynucleotide sequence as claimed in claim 20 or 21, b] providing a polynucleotide sequence as claimed in claim 22 or 23, c] providing an enzyme for carrying out the PCR reaction, d] providing, where appropriate, reagents for carrying out a sequencing e] possibly providing substances and/or solutions for carrying out the polymerase chain extension reaction (PCR), f] possibly providing polynucleotide sequences as claimed in one or more of claims 1 to 13, g] introducing the components from a] to e] in each case separately into suitable containers, h] combining, where appropriate, the containers from g] in one or more pack-units.
28. The use of the kit of parts as claimed in claim 26 or 27 for amplifying a fragment of the PAR1 gene and possibly for the further analysis, as to whether genetic variations are present in the PAR1 gene at positions 3090 and/or 3329 according to NM-001992.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10318496.1 | 2003-04-24 | ||
DE10318496A DE10318496A1 (en) | 2003-04-24 | 2003-04-24 | Analysis and use of PAR 1 polymorphisms for risk assessment for cardiovascular diseases |
PCT/EP2004/004035 WO2004094470A1 (en) | 2003-04-24 | 2004-04-16 | Analysis and use of par 1 polymorphisms for the risk estimation of cardiovascular diseases |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2522815A1 true CA2522815A1 (en) | 2004-11-04 |
Family
ID=33304897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002522815A Withdrawn CA2522815A1 (en) | 2003-04-24 | 2004-04-16 | Analysis and use of par 1 polymorphisms for the risk estimation of cardiovascular diseases |
Country Status (16)
Country | Link |
---|---|
EP (1) | EP1622940B1 (en) |
JP (1) | JP4728949B2 (en) |
KR (1) | KR20060006939A (en) |
CN (1) | CN1791613A (en) |
AT (1) | ATE407145T1 (en) |
AU (1) | AU2004232459B2 (en) |
BR (1) | BRPI0409688A (en) |
CA (1) | CA2522815A1 (en) |
DE (2) | DE10318496A1 (en) |
DK (1) | DK1622940T3 (en) |
ES (1) | ES2312990T3 (en) |
IL (1) | IL171477A (en) |
MX (1) | MXPA05011464A (en) |
NO (1) | NO20055538L (en) |
RU (1) | RU2380422C2 (en) |
WO (1) | WO2004094470A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2453606C2 (en) * | 2010-07-16 | 2012-06-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" | Method for extended screening of predisposition to cardiovascular diseases and biochip for implementing such method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUP0101828A3 (en) * | 1998-05-04 | 2005-08-29 | Fraunhofer Ges Forschung | Electrical integrated nucleic acid isolation, purification and detection |
DE19819889A1 (en) * | 1998-05-04 | 1999-11-11 | Fraunhofer Ges Forschung | Isolating nucleic acid from samples by binding to array of immobilized, random capture probes |
US6322980B1 (en) * | 1999-04-30 | 2001-11-27 | Aclara Biosciences, Inc. | Single nucleotide detection using degradation of a fluorescent sequence |
-
2003
- 2003-04-24 DE DE10318496A patent/DE10318496A1/en not_active Withdrawn
-
2004
- 2004-04-16 MX MXPA05011464A patent/MXPA05011464A/en active IP Right Grant
- 2004-04-16 WO PCT/EP2004/004035 patent/WO2004094470A1/en active IP Right Grant
- 2004-04-16 CA CA002522815A patent/CA2522815A1/en not_active Withdrawn
- 2004-04-16 DE DE502004007990T patent/DE502004007990D1/en not_active Expired - Lifetime
- 2004-04-16 ES ES04727840T patent/ES2312990T3/en not_active Expired - Lifetime
- 2004-04-16 BR BRPI0409688-6A patent/BRPI0409688A/en not_active Application Discontinuation
- 2004-04-16 JP JP2006505159A patent/JP4728949B2/en not_active Expired - Fee Related
- 2004-04-16 KR KR1020057020199A patent/KR20060006939A/en not_active Application Discontinuation
- 2004-04-16 EP EP04727840A patent/EP1622940B1/en not_active Expired - Lifetime
- 2004-04-16 RU RU2005136430/13A patent/RU2380422C2/en not_active IP Right Cessation
- 2004-04-16 DK DK04727840T patent/DK1622940T3/en active
- 2004-04-16 AT AT04727840T patent/ATE407145T1/en not_active IP Right Cessation
- 2004-04-16 CN CN200480013663.1A patent/CN1791613A/en active Pending
- 2004-04-16 AU AU2004232459A patent/AU2004232459B2/en not_active Ceased
-
2005
- 2005-10-19 IL IL171477A patent/IL171477A/en not_active IP Right Cessation
- 2005-11-23 NO NO20055538A patent/NO20055538L/en unknown
Also Published As
Publication number | Publication date |
---|---|
MXPA05011464A (en) | 2006-03-08 |
JP4728949B2 (en) | 2011-07-20 |
BRPI0409688A (en) | 2006-04-18 |
NO20055538L (en) | 2005-11-23 |
EP1622940B1 (en) | 2008-09-03 |
DE502004007990D1 (en) | 2008-10-16 |
JP2007534293A (en) | 2007-11-29 |
EP1622940A1 (en) | 2006-02-08 |
KR20060006939A (en) | 2006-01-20 |
ATE407145T1 (en) | 2008-09-15 |
ES2312990T3 (en) | 2009-03-01 |
DE10318496A1 (en) | 2004-11-25 |
IL171477A (en) | 2010-11-30 |
DK1622940T3 (en) | 2009-01-12 |
AU2004232459A1 (en) | 2004-11-04 |
CN1791613A (en) | 2006-06-21 |
WO2004094470A1 (en) | 2004-11-04 |
AU2004232459B2 (en) | 2010-11-11 |
RU2380422C2 (en) | 2010-01-27 |
RU2005136430A (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hansson et al. | Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome | |
Lee et al. | Chromosomal mapping, tissue distribution and cDNA sequence of four-and-a-half LIM domain protein 1 (FHL1) | |
US20030190639A1 (en) | Genes involved in intestinal inflamatory diseases and use thereof | |
KR20070048645A (en) | Polymorphisms in the epidermal growth factor receptor gene promoter | |
Eerola et al. | Identification of eight novel 5′-exons in cerebral capillary malformation gene-1 (CCM1) encoding KRIT1 | |
US20040091912A1 (en) | Diagnostic method | |
US20080113346A1 (en) | Marker Gene for Arthrorheumatism Test | |
WO1995015334A1 (en) | cDNA PROBE FOR BREAST CANCER DIAGNOSIS AND TREATMENT | |
US20100003673A1 (en) | Gene and methods for diagnosing neuropsychiatric disorders and treating such disorders | |
WO2007086342A1 (en) | METHOD OF DETECTING CANCER USING SPLICING VARIANT OF c-myc GENE TRANSCRIPTIONAL REGULATOR FIR OR FOUR-BASE REPETITIVE SEQUENCE IN INTRON 2 | |
CA2522815A1 (en) | Analysis and use of par 1 polymorphisms for the risk estimation of cardiovascular diseases | |
Sakimoto et al. | A novel nonsense mutation with a compound heterozygous mutation in TGFBI gene in lattice corneal dystrophy type I | |
US7892744B2 (en) | Analysis and use of PAR1 polymorphisms for evaluating the risk of cardiovascular disorders | |
Afzal et al. | Novel mutations in the 3'region of the polycystic kidney disease 1 (PKD1) gene | |
Costa et al. | Identification and expression analysis of novel Jakmip1 transcripts | |
Suzuki et al. | Structures and chromosome locations of the human MEF2A gene and a pseudogene MEF2AP | |
Piña et al. | A three base pair deletion encoding the amino acid (lysine-270) in the alpha-cone transducin gene | |
Forlino et al. | Severe (type III) osteogenesis imperfecta due to glycine substitutions in the central domain of the collagen triple helix | |
Nykänen et al. | Genomic organization and promoter analysis of the human heat shock factor 2 gene | |
JP2001516592A (en) | Genetic polymorphism in microsomal triglyceride transfer protein promoter and its use | |
JP4662929B2 (en) | Bovine major histocompatibility complex (BoLA) class IIDQA allele determination method | |
JP2001518311A (en) | Linking Diseases by Hierarchical Loci | |
JP2002526090A (en) | Polymorphisms in the human beta1 integrin subunit gene suitable for diagnosis and treatment of integrin ligand-mediated diseases | |
US20020042057A1 (en) | MLP-gene, nucleic acids, polypeptides and use thereof | |
WO2002097093A1 (en) | Nucleic acids isolated in neuroblastoma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
AZWI | Withdrawn application |