US20030190639A1 - Genes involved in intestinal inflamatory diseases and use thereof - Google Patents

Genes involved in intestinal inflamatory diseases and use thereof Download PDF

Info

Publication number
US20030190639A1
US20030190639A1 US10/240,046 US24004603A US2003190639A1 US 20030190639 A1 US20030190639 A1 US 20030190639A1 US 24004603 A US24004603 A US 24004603A US 2003190639 A1 US2003190639 A1 US 2003190639A1
Authority
US
United States
Prior art keywords
leu
seq
ala
nucleic acid
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/240,046
Other versions
US7592437B2 (en
Inventor
Jean-Pierre Hugot
Gilles Thomas
Mohammed Zouali
Suzanne Lesage
Mathias Chamaillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fondation Jean Dausset-CEPH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to FONDATION JEAN DAUSSET-CEPH reassignment FONDATION JEAN DAUSSET-CEPH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAMAILLARD, MATHIAS, HUGOT, JEAN-PIERRE, LESAGE, SUZANNE, THOMAS, GILLES, ZOUALI, MOHAMED
Publication of US20030190639A1 publication Critical patent/US20030190639A1/en
Priority to US12/370,543 priority Critical patent/US8137915B2/en
Application granted granted Critical
Publication of US7592437B2 publication Critical patent/US7592437B2/en
Priority to US13/406,487 priority patent/US20130035260A1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • Cryptogenetic inflammatory bowel diseases are diseases characterized by an inflammation of the digestive tract, the cause of which is unknown.
  • IBDs ulcerative colitis
  • CD Crohn's disease
  • IBDs are chronic diseases which evolve throughout life and which affect approximately 1 to 2 individuals per 1000 inhabitants in western countries, which represents between 60 000 and 100 000 individuals suffering from these diseases in France. They are diseases which appear in young individuals (peak instance is in the third decade), progressing via attacks interspersed with remissions, with frequent complications such as undernutrition, retarded growth in children, bone demineralization and, in the end, malignant degeneration to colon cancer. No specific treatment exists.
  • Conventional therapeutics make use of anti-inflammatories, of immunosuppressors and of surgery. All these therapeutic means are, themselves, a source of considerable iatrogenic morbidity. For all these reasons, IBDs appear to be a considerable public health problem.
  • IBDs are more common in the Caucasian population, and in particular in the Jewish population of central Europe. Familial forms represent from 6 to 20% of IBD cases. They are particularly common when the disease begins early. However, it is studies in twins which have made it possible to confirm the genetic nature of these diseases. In fact, the concordance rate between twins for these diseases is greater in monozygous twins than in dizygous twins, which pleads strongly in favor of a hereditary component to IBDs, in particular to CD. In all probability, IBDs are complex genetic diseases involving several different genes, interacting with one another and with environmental factors. IBDs can therefore be classified within the context of multifactor diseases.
  • IBD-susceptibility genes Two major strategies have been developed in order to demonstrate the IBD-susceptibility genes. The first is based on the analysis of genes which are candidates for physiopathological reasons. Thus, many genes have been proposed as potentially important for IBDs. They are often genes which have a role in inflammation and the immune response. Mention may be made of the HLA, TAP, TNF and MICA genes, lymphocyte T receptor, ICAM1, interleukin 1, CCR5, etc. Other genes participate in diverse functions, such as GAI2, motilin, MRAMP, HMLH1, etc. In reality, none of the various candidate genes studied has currently definitively proved itself to have a role in the occurrence of IBDs.
  • the present invention relates to the demonstration of the nucleic acid sequence of genes involved in IBDs, and other inflammatory diseases, and also the use of these nucleic acid sequences.
  • CD-susceptibility gene is located in the pericentromeric region of chromosome 16 (FIG. 1). It was the first gene for susceptibility to a complex genetic disease located by positional cloning and satisfying the strict criteria proposed in the literature (Lander and Kruglyak, 1995). This gene was named IBD1 (for inflammatory bowel disease 1).
  • the present invention provides not only the sequence of IBD1 gene, but also the partial sequence of another gene, called IBD1prox due to it being located in proximity to IBD, and demonstrated as reported in the examples below.
  • IBD1prox due to it being located in proximity to IBD, and demonstrated as reported in the examples below.
  • the peptide sequence expressed by the IBD1 and IBD1prox genes is represented by SEQ ID No. 2 and SEQ ID No. 5, respectively; the genomic sequence of these genes is represented by SEQ ID No. 3 and SEQ ID No. 6, respectively.
  • a subject of the present invention is a purified or isolated nucleic acid, characterized in that it comprises a nucleic acid sequence chosen from the following group of sequences:
  • nucleic acid sequence which hybridizes, under high stringency conditions, with a nucleic acid sequence defined in a) or b);
  • nucleic acid sequence according to the invention defined in c) has a percentage identity of at least 80%, after optimal alignment, with a sequence as defined in a) or b) above, preferably 90%o, most preferably 98%.
  • nucleic acid refers to any suitable nucleic acid sequence
  • polynucleotide refers to any suitable nucleic acid sequence
  • oligonucleotide refers to any suitable nucleotide sequence
  • polynucleotide sequence refers to any suitable sequence of nucleic acids, which may or may not be modified, making it possible to define a fragment or a region of a nucleic acid, which may or may not comprise unnatural nucleotides, and which may correspond equally to a double-stranded DNA, a single-stranded DNA and transcription products of said DNAs.
  • the nucleic acid sequences according to the invention also encompass PNAs (Peptide Nucleic Acids), or the like.
  • nucleotide sequences in their natural chromosomal environment, that is to say in the natural state. They are sequences which have been isolated and/or purified, that is to say they have been taken directly or indirectly, for example by copying, their environment having been at least partially modified.
  • nucleic acids obtained by chemical synthesis are also intended to be denoted.
  • the term “percentage identity” between two nucleic acid or amino acid sequences is intended to denote a percentage of nucleotides or of amino acid residues which are identical between the two sequences to be compared, obtained after the best alignment, this percentage being purely statistical and the differences between the two sequences being distributed randomly and over their entire length.
  • the term “best alignment” or “optimal alignment” is intended to denote the alignment for which the percentage identity determined as below is highest. Sequence comparisons between two nucleic acid or amino acid sequences are conventionally carried out by comparing these sequences after having aligned them optimally, said comparison being carried out by segment or by “window of comparison” so as to identify and compare local regions of sequence similarity.
  • the optimal alignment of the sequences for the comparison may be carried out, besides manually, by means of the local homology algorithm of Smith and Waterman (1981), by means of the local homology algorithm of Neddleman and Wunsch (1970), by means of the similarity search method of Pearson and Lipman (1988), by means of computer programs using these algorithms (GAP, BESTFIT, BLAST P, BLAST N, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.).
  • the BLAST program is preferably used, with the BLOSUM 62 matrix.
  • the PAN or PAM250 matrices may also be used.
  • the percentage identity between two nucleic acid or amino acid sequences is determined by comparing these two sequences aligned optimally, the nucleic acid or amino acid sequence to be compared possibly comprising additions or deletions with respect to the reference sequence for optimal alignment between these two sequences.
  • the percentage identity is calculated by determining the number of identical positions for which the nucleotide or the amino acid residue is identical between the two sequences, dividing this number of identical positions by the total number of positions compared and multiplying the resultant number by 100 so as to obtain the percentage identity between these two sequences.
  • nucleic acid sequences having a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment with a reference sequence is intended to denote the nucleic acid sequences which, compared to the reference nucleic acid sequence, have certain modifications, such as in particular a deletion, a truncation, an extension, a chimeric fusion and/or a substitution, in particular of the point type, and the nucleic acid sequence of which exhibits at least 80%, preferably 90%, more preferably 98%, identity, after optimal alignment, with the reference nucleic acid sequence.
  • They are preferably sequences whose complementary sequences are capable of hybridizing specifically with the sequence SEQ ID No 1 or SEQ ID No. 4 of the invention.
  • the specific or high stringency hybridization conditions will be such that they ensure at least 80%, preferably 90%, more preferably 98%, identity, after optimal alignment, between one of the two sequences and the sequence complementary to the other.
  • Hybridization under high stringency conditions means that the conditions of temperature and of ionic strength are chosen such that they allow the hybridization between two complementary DNA fragments to be maintained.
  • high stringency conditions for the hybridization step for the purposes of defining the polynucleotide fragments described above are advantageously as follows.
  • the DNA-DNA or DNA-RNA hybridization is carried out in two steps: (1) prehybridization at 42° C. for 3 hours in phosphate buffer (20 mM, pH 7.5) containing 5 ⁇ SSC (1 ⁇ SSC corresponds to a solution of 0.15 M NaCl+0.015 M sodium citrate), 50% of formamide, 7% of sodium dodecyl sulfate (SDS), 10 ⁇ Denhardt's, 5% of dextran sulfate and 1% of salmon sperm DNA; (2) hybridization per se for 20 hours at a temperature which depends on the length of the probe (i.e.: 42° C. for a probe >100 nucleotides in length), followed by 2 washes of 20 minutes at 20° C.
  • nucleic acid sequences having a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment, with the sequence according to the invention preference is also given to the variant nucleic acid sequences of SEQ ID No. 1 or of SEQ ID No. 4, or of fragments thereof, that is to say all the nucleic acid sequences corresponding to allelic variants, that is to say individual variations of the sequence SEQ ID No. 1 or SEQ ID No. 4.
  • These natural mutated sequences correspond to polymorphisms present in mammals, in particular in humans and, in particular, to polymorphisms which may lead to the occurrence of a pathological condition.
  • the present invention relates to the variant nucleic acid sequences in which the mutations lead to a modification of the amino acid sequence of the polypeptide, or of fragments thereof, encoded by the normal sequence of SEQ ID No. 1 or SEQ ID No. 4.
  • variant nucleic acid sequence is also intended to denote any RNA or cDNA resulting from a mutation and/or variation of a splice site of the genomic nucleic acid sequence the cDNA of which has the sequence SEQ ID No. 1 or SEQ ID No. 4.
  • the invention preferably relates to a purified or isolated nucleic acid according to the present invention, characterized in that it comprises or consists of one of the sequences SEQ ID No. 1 or SEQ ID No. 4, of the sequences complementary thereto, or of the RNA sequences corresponding to SEQ ID No. 1 or SEQ ID No. 4.
  • probes or primers characterized in that they comprise a sequence of a nucleic acid according to the invention, are also part of the invention.
  • the present invention also relates to the primers or the probes according to the invention which may make it possible in particular to demonstrate or to distinguish the variant nucleic acid sequences, or to identify the genomic sequence of the genes the cDNA of which is represented by SEQ ID No. 1 or SEQ ID No. 4, in particular using an amplification method such as the PCR method or a related method.
  • the invention also relates to the use of a nucleic acid sequence according to the invention, as a probe or primer, for detecting, identifying, assaying or amplifying a nucleic acid sequence.
  • the polynucleotides which can be used as a probe or as a primer in methods for detecting, identifying, assaying or amplifying a nucleic acid sequence are a minimum of 15 bases, preferably 20 bases, or better still 25 to 30 bases in length.
  • the probes and primers according to the invention may be labeled directly or indirectly with a radioactive or nonradioactive compound using methods well known to those skilled in the art, in order to obtain a detectable and/or quantifiable signal.
  • polynucleotide sequences according to the invention which are unlabeled can be used directly as a probe or primer.
  • sequences are generally labeled so as to obtain sequences which can be used in many applications.
  • the primers or the probes according to the invention are labeled with radioactive elements or with nonradioactive molecules.
  • the nonradioactive entities are selected from ligands such as biotin, avidin, streptavidin or dioxygenin, haptens, dyes and luminescent agents, such as radioluminescent, chemiluminescent, bioluminescent, fluorescent or phosphorescent agents.
  • the polynucleotides according to the invention may thus be used as a primer and/or probe in methods using in particular the PCR (polymerase chain reaction) technique (Rolfs et al., 1991).
  • This technique requires choosing pairs of oligonucleotide primers bordering the fragment which must be amplified.
  • the amplified fragments can be identified, for example after agarose or polyacrylamide gel electrophoresis, or after a chromatographic technique such as gel filtration or ion exchange chromatography, and then sequenced.
  • the specificity of the amplification can be controlled using, as primers, the nucleotide sequences of polynucleotides of the invention and, as matrices, plasmids containing these sequences or else the derived amplification products.
  • the amplified nucleotide fragments may be used as reagents in hybridization reactions in order to demonstrate the presence, in a biological sample, of a target nucleic acid of sequence complementary to that of said amplified nucleotide fragments.
  • the invention is also directed toward the nucleic acids which can be obtained by amplification using primers according to the invention.
  • PCR-like is intended to denote all the methods using direct or indirect reproductions of nucleic acid sequences, or else in which the labeling systems have been amplified; these techniques are, of course, known. In general, they involve amplifying the DNA with a polymerase; when the sample of origin is an RNA a reverse transcription should be carried out beforehand.
  • the target polynucleotide to be detected is an mRNA
  • an enzyme of the reverse transcriptase type is advantageously used, prior to carrying out an amplification reaction using the primers according to the invention or to carrying out a method of detection using the probes of the invention, in order to obtain a cDNA from the mRNA contained in the biological sample.
  • the cDNA obtained will then serve as a target for the primers or the probes used in the amplification or detection method according to the invention.
  • the probe hybridization technique may be carried out in many ways (Matthews et al., 1988).
  • the most general method consists in immobilizing the nucleic acid extracted from the cells of various tissues or from cells in culture, on a support (such as nitrocellulose, nylon or polystyrene), and in incubating the immobilized target nucleic acid with the probe, under well-defined conditions. After hybridization, the excess probe is removed and the hybrid molecules formed are detected using the appropriate method (measuring the radioactivity, the fluorescence or the enzymatic activity linked to the probe).
  • the latter may be used as capture probes.
  • a probe termed “capture probe”
  • capture probe is immobilized on a support and is used to capture, by specific hybridization, the target nucleic acid obtained from the biological sample to be tested, and the target nucleic acid is then detected using a second probe, termed “detection probe”, labeled with a readily detectable element.
  • antisense oligonucleotides i.e. oligonucleotides
  • the structure of which ensures, by hybridization with the target sequence, inhibition of expression of the corresponding product Mention should also be made of sense oligonucleotides, which, by interacting with proteins involved in regulating the expression of the corresponding product, will induce either inhibition or activation of this expression.
  • the oligonucleotides of the invention may be used in vitro and in vivo.
  • the present invention also relates to an isolated polypeptide, characterized in that it comprises a polypeptide chosen from:
  • polypeptide is intended to denote proteins or peptides.
  • biologically active fragment is intended to mean a fragment having the same biological activity as the peptide fragment from which it is deduced, preferably within the same order of magnitude (to within a factor of 10).
  • the examples show that the IBD1 protein (SEQ ID No. 2) has a potential role in apoptosis phenomena.
  • a biologically active fragment of the IBD1 protein therefore consists of a polypeptide derived from SEQ ID No. 2, also having a role in apoptosis.
  • the examples below propose biological functions for the IBD1 and IBD1prox proteins, as a function of the peptide domains of these proteins, and thus allow those skilled in the art to identify the biologically active fragments.
  • polypeptide the amino acid sequence of which has a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment, with a reference sequence
  • polypeptides having certain modifications compared to the reference polypeptide such as in particular one or more deletions and/or truncations, an extension, a chimeric fusion and/or one or more substitutions.
  • polypeptides the amino acid sequence of which has a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment, with the sequence SEQ ID No. 2 or SEQ ID No. 5 or with a fragment thereof according to the invention
  • the present invention also relates to the cloning and/or expression vectors comprising a nucleic acid or encoding a polypeptide according to the invention.
  • a vector may also contain the elements required for the expression and, optionally, the secretion of the polypeptide in a host cell.
  • a host cell is also a subject of the invention.
  • vectors characterized in that they comprise a promoter and/or regulator sequence according to the invention are also part of the invention.
  • Said vectors preferably comprise a promoter, translation initiation and termination signals, and also regions suitable for regulating transcription. It must be possible for them to be maintained stably in the cell and they may optionally contain particular signals specifying secretion of the translated protein.
  • nucleic acid sequences according to the invention may be inserted into vectors which replicate autonomously in the chosen host, or vectors which integrate in the chosen host.
  • viral vectors possibly being in particular adenoviruses (Perricaudet et al., 1992), retroviruses, lentiviruses, poxyiruses or herpesviruses (Epstein et al., 1992).
  • adenoviruses Perricaudet et al., 1992
  • retroviruses retroviruses
  • lentiviruses lentiviruses
  • poxyiruses poxyiruses
  • herpesviruses Epstein et al.
  • nonviral vectors preference is given to naked polynucleotides such as naked DNA or naked RNA according to the technology developed by the company VICAL, bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs) for expression in yeast, mouse artificial chromosomes (MACs) for expression in murine cells and, preferably, human artificial chromosomes (HACs) for expression in human cells.
  • naked polynucleotides such as naked DNA or naked RNA according to the technology developed by the company VICAL, bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs) for expression in yeast, mouse artificial chromosomes (MACs) for expression in murine cells and, preferably, human artificial chromosomes (HACs) for expression in human cells.
  • BACs bacterial artificial chromosomes
  • YACs yeast artificial chromosomes
  • MACs mouse artificial chromosomes
  • HACs human artificial chromosomes
  • Such vectors are prepared according to the methods commonly used by those skilled in the art, and the clones resulting therefrom can be introduced into a suitable host using standard methods, such as, for example, lipofection, electroporation, heat shock, transformation after chemical permeabilization of the membrane, or cell fusion.
  • the invention also comprises host cells, in particular the eukaryotic and prokaryotic cells, transformed with the vectors according to the invention, and also the transgenic animals, preferably the mammals, except humans, comprising one of said transformed cells according to the invention.
  • These animals may be used as models, for studying the etiology of inflammatory and/or immune diseases, in particular of the inflammatory diseases of the digestive tract, or for studying cancers.
  • bacterial cells which can be used for the purpose of the present invention
  • yeast cells Buckholz, 1993
  • animal cells in particular mammalian cell cultures (Edwards and Aruffo, 1993), and especially Chinese hamster ovary (CHO) cells.
  • insect cells in which it is possible to use methods employing, for example, baculo viruses (Luckow, 1993).
  • a preferred cellular host for expressing the proteins of the invention consists of COS cells.
  • mammals according to the invention animals such as rodents, in particular mice, rats or rabbits, expressing a polypeptide according to the invention are preferred.
  • mammals according to the invention preference is also given to animals such as mice, rats or rabbits, characterized in that the gene encoding the protein of sequence SEQ ID No. 2 or SEQ ID No. 5, or the sequence of which is encoded by the homologous gene in these animals, is not functional, has been knocked out or has at least one mutation.
  • transgenic animals are obtained, for example, by homologous recombination on embryonic stem cells, transfer of these stem cells to embryos, selection of the chimeras affected in the reproductive lines, and growth of said chimeras.
  • the transgenic animals according to the invention may thus overexpress the gene encoding the protein according to the invention, or their homologous gene, or express said gene into which a mutation is introduced.
  • These transgenic animals in particular mice, are obtained, for example, by transfection of a copy of this gene under the control of a promoter which is strong and ubiquitous, or selective for a tissue type, or after viral transcription.
  • the transgenic animals according to the invention may be made deficient for the gene encoding one of the polypeptides of sequence SEQ ID No. 2 or SEQ ID No. 5, or their homologous genes, by inactivation using the LOXP/CRE recombinase system (Rohlmann et al., 1996) or any other system for inactivating the expression of this gene.
  • the cells and mammals according to the invention can be used in a method for producing a polypeptide according to the invention, as described below, and may also be used as a model for analysis.
  • the cells or mammals transformed as described above can also be used as models in order to study the interactions between the polypeptides according to the invention, and the chemical or protein compounds involved directly or indirectly in the activities of the polypeptides according to the invention, this being in order to study the various mechanisms and interactions involved.
  • polypeptides according to the invention may in particular be used for selecting products which interact with the polypeptides according to the invention, in particular the protein of sequence SEQ ID No. 2 or SEQ ID No. 5 or variants thereof according to the invention, as a cofactor or as an inhibitor, in particular a competitive inhibitor, or which have an agonist or antagonist activity with respect to the activity of the polypeptides according to the invention.
  • said transformed cells or transgenic animals are used as a model in particular for selecting products for combating pathological conditions associated with abnormal expression of this gene.
  • the invention also relates to the use of a cell, of a mammal or of a polypeptide according to the invention, for screening chemical or biochemical compounds which may interact directly or indirectly with the polypeptides according to the invention, and/or which are capable of modulating the expression or the activity of these polypeptides.
  • the invention also relates to a method for screening compounds capable of interacting, in vitro or in vivo, with a nucleic acid according to the invention, using a nucleic acid, a cell or a mammal according to the invention, and detecting the formation of a complex between the candidate compounds and the nucleic acid according to the invention.
  • the invention also relates to the use of a nucleic acid sequence according to the invention, for synthesizing recombinant polypeptides.
  • the method for producing a polypeptide of the invention in recombinant form is characterized in that the transformed cells, in particular the cells or mammals of the present invention, are cultured under conditions which allow the expression of a recombinant polypeptide encoded by a nucleic acid sequence according to the invention, and in that said recombinant polypeptide is recovered.
  • the recombinant polypeptides characterized in that they can be obtained using said method of production, are also part of the invention.
  • the recombinant polypeptides obtained as indicated above can be in both glycosylated and nonglycosylated form, and may or may not have the natural tertiary structure.
  • sequences of the recombinant polypeptides may also be modified in order to improve their solubility, in particular in aqueous solvents.
  • polypeptides may be produced using the nucleic acid sequences defined above, according to the techniques for producing recombinant polypeptides known to those skilled in the art.
  • the nucleic acid sequence used is placed under the control of signals which allow its expression in a cellular host
  • An effective system for producing a recombinant polypeptide requires having a vector and a host cell according to the invention.
  • These cells can be obtained by introducing into host cells a nucleotide sequence inserted into a vector as defined above, and then culturing said cells under conditions which allow the replication and/or expression of the transfected nucleotide sequence.
  • the methods used for purifying a recombinant polypeptide are known to those skilled in the art.
  • the recombinant polypeptide may be purified from cell lysates and extracts or from the culture medium supernatant, by methods used individually or in combination, such as fractionation, chromatography methods, immunoaffinity techniques using specific monoclonal or polyclonal antibodies, etc.
  • polypeptides according to the present invention can also be obtained by chemical synthesis using one of the many known forms of peptide synthesis, for example techniques using solid phases (see in particular Stewart et al., 1984) or techniques using partial solid phases, by fragment condensation or by conventional synthesis in solution.
  • polypeptides obtained by chemical synthesis and which may comprise corresponding unnatural amino acids are also included in the invention.
  • the mono- or polyclonal antibodies, or fragments thereof, chimeric antibodies or immunoconjugates, characterized in that they are capable of specifically recognizing a polypeptide according to the invention, are part of the invention.
  • polyclonal antibodies may be obtained from a serum of an animal immunized against the polypeptides according to the invention, in particular produced by genetic recombination or by peptide synthesis, according to the usual procedures.
  • the mono- or polyclonal antibodies, or fragments thereof, chimeric antibodies or immunoconjugates characterized in that they are capable of specifically recognizing the polypeptides of sequence SEQ ID No. 2 or SEQ ID No. 5 are particularly preferred.
  • the specific monoclonal antibodies may be obtained according to the conventional method of hybridoma culture described by Köhler and Milstein (1975).
  • the antibodies according to the invention are, for example, chimeric antibodies, humanized antibodies, or Fab or F(ab′) 2 fragments. They may also be in the form of immunoconjugates or of labeled antibodies, in order to obtain a detectable and/or quantifiable signal.
  • the invention also relates to methods for detecting and/or purifying a polypeptide according to the invention, characterized in that they use an antibody according to the invention.
  • the invention also comprises purified polypeptides, characterized in that they are obtained using a method according to the invention.
  • the antibodies of the invention in particular the monoclonal antibodies, may also he used for detecting these polypeptides in a biological sample.
  • polypeptides according to the invention in particular the polypeptides of sequence SEQ ID No. 2 or SEQ TD No. 5, or a variant thereof, on specific tissue sections, for example using immunofluorescence, gold labeling and/or enzymatic immunoconjugates.
  • the antibodies of the invention may advantageously be used in any situation where the expression of a polypeptide according to the invention, normal or mutated, must be observed.
  • a method for detecting a polypeptide according to the invention, in a biological sample comprising the steps of bringing the biological sample into contact with an antibody according to the invention and demonstrating the antigen-antibody complex formed, is also a subject of the invention, as is a kit for carrying out such a method.
  • a kit for carrying out such a method in particular contains:
  • the antibodies according to the invention may also be used in the treatment of an inflammatory and/or immune disease, or of a cancer, in humans, when abnormal expression of the IBD1 gene or of the IBD1prox gene is observed.
  • Abnormal expression means overexpression or the expression of a mutated protein.
  • antibodies may be obtained directly from human serum, or may be obtained from animals immunized with polypeptides according to the invention, and then “humanized”, and may be used as such or in the preparation of a medicinal product intended for the treatment of the abovementioned diseases.
  • the invention in fact provides the sequence of the IBD1 and IBD1prox genes involved in inflammatory and/or immune diseases, and in particular IBDs.
  • One of the teachings of the invention is to specify the mutations, in these nucleic acid or polypeptide sequences, which are associated with a phenotype corresponding to one of these inflammatory and/or immune diseases.
  • mutations can be detected directly by analysis of the nucleic acid and of the sequences according to the invention (genomic DNA, RNA or cDNA), but also via the polypeptides according to the invention.
  • the use of an antibody according to the invention which recognizes an epitope bearing a mutation makes it possible to distinguish between a “healthy” protein and a protein “associated with a pathological condition”.
  • IBD1 has an important role in a large number of inflammatory and/or immune diseases.
  • IBD1 can be associated with granulomatous inflammatory diseases.
  • Blau's syndrome and CD are in fact diseases which are part of this family. It is therefore hoped that variations in the IBD1 gene will be found for the other diseases of the same family (sarcoidosis, Behcet's disease, etc.).
  • IBD1 in part explain this susceptibility to cancer and define new carcinogenic pathways.
  • the molecular diagnosis of inflammatory diseases should also make it possible to improve the nosological classification of these diseases and to more clearly define subgroups of particular diseases by their clinical characteristics, the progressive nature of the disease or the response to certain treatments.
  • the dismantling of the existing mutations may thus make it possible to classify the currently undetermined forms of colitis which represent more than 10% of inflammatory bowel diseases.
  • Such an approach will make it possible to propose an early treatment suitable for each patient.
  • such an approach makes it possible to hope that it will eventually be possible to define an individualized treatment for the disease, depending on the genetic area of each disease, including curative and preventive measures.
  • a method of diagnosis and/or of prognostic assessment of an inflammatory disease or of a cancer characterized in that the presence of at least one mutation and/or a deleterious modification of expression of the gene corresponding to SEQ ID No. 1 or SEQ ID No. 4 is determined, using a biological specimen from a patient, by analyzing all or part of a nucleic acid sequence corresponding to said gene.
  • the genes SEQ ID No. 3 or SEQ ID No. 6 may also be studied.
  • This method of diagnosis and/or of prognostic assessment may be used preventively (a study of predisposition to inflammatory diseases or to cancer), or in order to serve in establishing and/or confirming a clinical condition in a patient.
  • the inflammatory disease is an inflammatory disease of the digestive tract
  • the cancer is a cancer of the digestive tract (small intestine or colon).
  • the analysis may be carried out by sequencing all or part of the gene, or by other methods known to those skilled in the art. Methods based on PCR, for example PCR-SSCP, which makes it possible to detect point mutations, may in particular be used.
  • the analysis may also be carried out by attaching a probe according to the invention, corresponding to one of the sequences SEQ ID No. 1, 3, 4 or 6, to a DNA chip, and hybridization on these microplates.
  • a DNA chip containing a sequence according to the invention is also one of the subjects of the invention.
  • a protein chip containing an amino acid sequence according to the invention is also a subject of the invention.
  • Such a protein chip makes it possible to study the interactions between the polypeptides according to the invention and other proteins or chemical compounds, and may thus be useful for screening compounds which interact with the polypeptides according to the invention.
  • the protein chips according to the invention may also be used to detect the presence of antibodies directed against the polypeptides according to the invention in the serum of patients.
  • a protein chip containing an antibody according to the invention may also be used.
  • the gene tested is preferably the gene of sequence SEQ ID No. 1, the inflammatory disease for which the intention is to predict susceptibility being a disease of the digestive tract, in particular Crohn's disease or ulcerative colitis. If the intention is to detect a cancer, it is preferably colon cancer.
  • the invention also relates to methods for obtaining an allele of the IBD1 gene, associated with a detectable phenotype, comprising the following steps:
  • Such a method may be followed by a step of sequencing all or part of the nucleic acid encoding the IBD1 protein, which makes it possible to predict susceptibility to inflammatory disease or of a cancer.
  • the agent capable of specifically detecting a nucleic acid encoding the IBD1 protein is advantageously an oligonucleotide probe according to the invention, which may be made up of DNA, RNA or PNA, which may or may not be modified.
  • the modifications may include radioactive or fluorescent labeling, or may be due to modifications in the bonds between the bases (phosphorothioates or methyl phosphonates, for example).
  • Step b) of the method described above may also be an amplification step as described above.
  • the invention also relates to a method for detecting and/or assaying a nucleic acid according to the invention, in a biological sample, comprising the following steps of bringing a probe according to the invention into contact with a biological sample, and detecting and/or assaying the hybrid formed between said polynucleotide and the nucleic acid of the biological sample.
  • kit of reagents comprising:
  • Such a kit may also contain positive or negative controls in order to ensure the quality of the results obtained.
  • the invention also relates to the compounds chosen from a nucleic acid, a polypeptide, a vector, a cell or an antibody according to the invention, or the compounds obtained using the screening methods according to the invention, as a medicinal product, in particular for preventing and/or treating an inflammatory and/or immune disease, or a cancer, associated with the presence of at least one mutation of the gene corresponding to SEQ ID No. 1 or SEQ ID No. 4, preferably an inflammatory disease of the digestive tract, in particular Crohn's disease or ulcerative colitis.
  • FIG. 1 Nonparametric genetic linkage tests for Crohn's disease in the pericentromeric region of chromosome 16 (according to Hugot et al., 1996). Multipoint linkage analysis based on identity by decendance for the markers of the pericentromeric region of chromosome 16. The genetic distances between markers were estimated using the CRIMAP program. The lod score (MAPMAKER/SIBS) is indicated on the left-hand figure. Two pseudoprobability tests were developed and reported on the right-hand figure. The first (Tz) is analogous to the test of the means. The second (Tz2) is analogous to the test of the proportion of affected pairs sharing two alleles.
  • FIG. 3 Diagrammatic representation of the protein encoded by IBD1.
  • the protein encoded by IBD1 is represented horizontally.
  • the various domains of which it is composed are indicated on the figure with the amino acid reference number corresponding to the start and to the end of each domain.
  • the protein consists of a CARD domain, a nucleotide-binding domain (NBD) and leucine-rich motifs (LRR).
  • FIG. 4 Diagrammatic representation of the IBD1/NOD2 protein in three variants associated with CD.
  • A The translation produced deduced from the cDNA sequence of the IBD1 candidate gene is identical to that of NOD2 (Ogura et al., 2000).
  • the polypeptide contains 2 CARD domains (CAspase Recruitment Domains), a nucleotide-binding domain (NBD) and 10 repeats of 27 amino acids, leucine-rich motifs (LRR).
  • the consensus sequence of the ATP/GTP-binding site of the motif A (P loop) of the NBD is indicated with a black circle.
  • the sequence changes encoded by the three main variants associated with CD are SNP 8 (R675W), SNP 12 (G881R) and SNP 13 (frame shift 980).
  • the frame shift changes a leucine codon to a proline codon at position 980, which is immediately followed by a stop codon.
  • B Rare missense variants of NOD2 in 457 CD patients, 159 UC patients and 103 unaffected, unrelated individuals.
  • the positions of the rare missense variants are indicated for the three groups.
  • the scale on the left indicates the number of each variant identified in the groups under investigation and that on the right measures the frequency of the mutation.
  • the allelic frequencies of the polymorphism V9281 was not significantly different (0.92:0.08) in the three groups and the corresponding genotypes were in Hardy-Weinberg equilibrium.
  • the first step toward identifying the IBD1 gene was to reduce the size of the genetic region of interest, initially centered on the marker D16S411 located between D16S409 and D16S419 (Hugot et al., 1996 and FIG. 1).
  • a group of close markers was used in order to more clearly specify the genetic region, and made it possible to complete the genetic linkage analyses and to search for a genetic linkage disequilibrium with the disease.
  • the families comprising sick individuals suffering from UC were excluded from the study.
  • Each marker is listed according to international nomenclature and mostly by the name proposed by the laboratory of origin. The markers appear according to their order on the chromosome (from 16p to 16q). The genetic distance between the markers (in Kosambi centiMorgans, calculated from the experimental data using the Crimap program) is indicated in the second column. The first polymorphic marker is taken randomly as a reference point. The oligonucleotides which were used for the polymerase chain reaction (PCR) are indicated in the third column.
  • PCR fluorescent polymerase chain reaction
  • the size of the alleles for each individual was deduced using the Genescan R and Genotyper R software. The data were then kept on an integrated computer base containing the genealogical, phenotypic and genetic data. They were then used for the genetic linkage analyses.
  • the chromosomal DNA segments were identified based on certain polymorphism markers used in fine genetic mapping (D16S411, D16S416, D16S541, D16S770, D16S2623, D16S3035, D16S3117 and D16S3136).
  • BAC bacterial artificial chromosome
  • the average size of the BACs is 136 kb.
  • the markers tested are, as expected, in linkage disequilibrium with respect to one another.
  • the EST hs135201 (UniGene) made it possible to identify a cDNA not appearing on the available genetic databases (Genbank). It therefore corresponds to a new human gene. Comparison of the sequence of the cDNA and of the genomic DNA showed that this gene consists of 11 exons and 10 introns. An additional exon, positioned 5′ to the cDNA identified, is predicted by analysis of the sequence with the Grail program. These exons are very homologous to the first exons of the CARD4/NOD1 gene. Taking into consideration all of the exons identified and the putative additional exon, this new gene appears to have a genomic structure very close to that of CARD4/NOD1.
  • the protein sequence deduced from the nucleotide sequence comprises 1041 amino acids (SEQ ID No. 2). This sequence has not been found on the biological databases either (Genpept, pir, swissprot).
  • the IBD1 gene therefore effectively comprises only 11 exons and 10 introns and encodes a protein of 1013 amino acids (i.e. 28 amino acids less than initially determined).
  • a CARD domain (Caspase Recruitment Domain) known to be involved in the interaction between proteins regulating apoptosis and activation of the NFkappa B pathway.
  • the CARD domain makes it possible to classify this new protein in the CARD protein family, the most longstanding members of which are CED4, APAF1 and RICK.
  • NBD domain Nucleotide-Binding Domain
  • the protein should therefore very probably have kinase activity.
  • LRR domain (Leucine-Rich Domain) presumed to participate in the interaction between proteins, by analogy with other described protein domains.
  • the LRR domain of the protein makes it possible to affiliate the protein to a family of proteins involved in intracellular signaling and present both in plants and in animals.
  • NF-kB plays a pivotal role in inflammatory bowel diseases and is activated in lamina intestinal mononuclear cells in Crohn's disease (Schreiber et al., 1998).
  • the treatment of Crohn's disease is based on the use of sulfasalazine and glucocorticoids, which are both known to be NF-kB inhibitors (Auphan et al., 1995 and Wahl et al., 1998).
  • the IBD1 candidate gene encodes a protein very similar to NOD2, a member of the CED4/APAF1 superfamily (Ogura et al., 2000).
  • the nucleotide and protein sequences of IBD1 and NOD2 in reality only diverge for a small portion right at the start of the two reported sequences.
  • the tissue expressions of Nod2 and IBD1 can, in addition, be superimposed.
  • These two genes (proteins) can therefore be considered to be identical.
  • LRR domain of Nod2 has binding activity for bacterial lipopolysaccharides (LPS) (Inohara et al., 2000) and that deletion thereof stimulates the NFkB pathway. This result confirms the data of the invention.
  • LPS bacterial lipopolysaccharides
  • the promoter of the IBD1 gene has not currently been identified with precision. It is, however, reasonable to think, by analogy with a very large number of genes, that this promoter lies, at least partly, immediately upstream of the gene, in the 5′ portion thereof.
  • This genetic region contains transcribed sequences, as witnessed by the presence of ESTs (HUMGS01037, AA835524, hs.105242, SHGC17274, hs.146128, hs.122983, hs.87280).
  • the ATCC clones containing these sequences were sequenced and analyzed in the laboratory, making it possible to demonstrate an exon and intron organization with possible alternative splicings. These data suggest the existence of another gene (named IBD1prox due to its proximity to IBD1).
  • the partial sequence of the complementary DNA of IBD1prox is reported (SEQ ID No. 4), as is its intron-exon structure, on SEQ ID No. 6.
  • IBD1prox corresponds to the anonymous EST HUMGS01037, the RNA of which is expressed more strongly in differentiated leukocytic lines than in undifferentiated lines.
  • this gene may have a role in inflammation and cell differentiation. It may therefore also, itself, be considered to be a good candidate for susceptibility to IBD.
  • the association between CD and the polymorphism ctg35ExC located on the coding sequence of IBD1prox supports this hypothesis even though this polymorphism does not cause any sequence variation at the protein level.
  • the coding sequence and the intron-exon junctions of the gene were sequenced from exon 2 to exon 12 inclusive, in 70 independent individuals, namely: 50 sick individuals suffering from CD, 10 sick individuals suffering from UC, 1 sick individual suffering from Blau's syndrome and 9 healthy controls.
  • the sick individuals studied were mostly familial forms of the disease and were often carriers of the susceptibility haplotype defined by the transmission disequilibrium studies.
  • the healthy controls were of Caucasian origin.
  • Snp3-2931 nucleotide variant T805C, protein variant S269P
  • SNP1 nucleotide variant C2107T, protein variant R703W.
  • V9561 is a conservative sequence variation (aliphatic amino acids).
  • sequence variant S269P corresponds to a variation in amino acid class (hydroxylated to immuno acid) at the beginning of the nucleotide-binding domain.
  • This sequence variant and CD are in transmission disequilibrium. It is in fact the polymorphism Snp3 (cf. above).
  • R703W results in a modification of the amino acid class (aromatic instead of basic). This modification occurs in the intermediate region between the NBD and LRR domains, which is a region conserved between IBD1 and CARD4/NOD1. A functional role may therefore be suspected for this polymorphism.
  • This sequence variation (corresponding to the polymorphic site Snp1) is transmitted to sick individuals suffering from CD more often than at random (cf. above), confirming that this polymorphism is associated with CD. It is possible that the presence of this mutant in healthy individuals reflects incomplete penetration of the mutation as is expected for complex genetic diseases such as chronic inflammatory bowel diseases.
  • the variant R704C located immediately next to R703W, could be identified in both CD and UC. It also, itself, corresponds to a nonconservative variation of the protein (sulfur-containing amino acid instead of basic amino acid) on the same protein region, suggesting a functional effect for R704C which is as important as that for R703W.
  • the mutation G909R occurs on the last amino acid of the sixth LRR motif. It replaces an aliphatic amino acid with a basic amino acid. This variation is potentially important given the usually neutral or polar nature of the amino acids in the terminal position of the leucine-rich motifs (both for IBD1 and for NOD1/CARD4) and the conserved nature of this amino acid on the IBD1 and NOD1/CARD4 proteins.
  • the promoter of the gene is not currently determined. In all probability, however, it is likely to be located in the 5′ region upstream of the gene. According to this hypothesis, the sequence variants observed in this region may have a functional effect. This may explain the very strong association between CD and certain polymorphic loci, such as ctg35ExC or Ctg25Ex1.
  • the invention thus provides the first description of mutations in the family of genes containing a CARD domain in humans.
  • the frequency of these mutations in various inflammatory diseases shows that the IBD1 gene has an essential role in normal and pathological inflammatory processes.
  • This invention provides new paths of understanding and of research in the field of the physiopathology of normal and pathological inflammatory processes. As a result, it makes it possible to envision the development of new pharmaceutical molecules which regulate the effector pathways controlled by IBD1 and which are useful in the treatment of inflammatory diseases and in the regulation of inflammatory processes in general.
  • V928I (formerly V956I) is not significantly associated with one or the other of the inflammatory bowel diseases, and does not therefore appear to have an important role in the disease.
  • the mutation S241P (formerly S269P) is in linkage disequilibrium with the other main mutations and does not appear to play an important role, by itself, in susceptibility to inflammatory bowel diseases (data not shown).
  • [0252] 1) defines the mutations, the frequency of which is greater than 0.001 in a mixed Caucasian population
  • [0253] 2 defines the frequency of the mutations observed and makes it possible to define 3 main mutations associated with Crohn's disease.
  • a strategy for studying the gene in order to search for morbid variants namely: firstly, typing the 3 main mutations; secondly, searching for mutations in the last 7 exons; thirdly, searching for other sequence variants;
  • the IBD1prox gene located in the promoter region of IBD1, and the partial sequence of which is disclosed in the present invention, may also, itself, have an important role in the regulation of cellular apoptosis and of the inflammatory process, as suggested by its differential expression in mature cells of the immune system.
  • the strong association reported in this work between the polymorphism marker ctg35ExC (located in the transcribed region of the gene) and Crohn's disease also pleads very strongly in favor of this hypothesis.
  • Inflammatory bowel diseases are complex genetic diseases for which, until now, no susceptibility gene had been identified with certainty.
  • the invention has made it possible to identify the first gene for susceptibility to Crohn's disease, using a positional cloning (or reverse genetics) approach. This is the first genetic location obtained using such an approach for a complex genetic disease, which demonstrates its usefulness and its feasibility, at least in certain cases in complex genetic diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention concerns genes involved in inflammatory and/or immune diseases and some cancers, in particular intestinal cryptogenic inflammatory diseases, and proteins coded by said genes. The invention also concerns methods for diagnosing inflammatory diseases.

Description

  • The present invention relates to genes involved in inflammatory and/or immune diseases and certain cancers, in particularly cryptogenetic inflammatory bowel diseases, and also to the proteins encoded by these genes. The present invention also relates to methods for diagnosing inflammatory diseases. [0001]
  • Cryptogenetic inflammatory bowel diseases (IBDs) are diseases characterized by an inflammation of the digestive tract, the cause of which is unknown. Depending on the location and the characteristics of the inflammation, two different nosological entities are distinguished: ulcerative colitis (UC) and Crohn's disease (CD). UC was described by S Wilkes in 1865, whereas the first case of regional ileitis was reported by Crohn in 1932. In reality, it is possible that these two diseases go back much further. [0002]
  • IBDs are chronic diseases which evolve throughout life and which affect approximately 1 to 2 individuals per 1000 inhabitants in western countries, which represents between 60 000 and 100 000 individuals suffering from these diseases in France. They are diseases which appear in young individuals (peak instance is in the third decade), progressing via attacks interspersed with remissions, with frequent complications such as undernutrition, retarded growth in children, bone demineralization and, in the end, malignant degeneration to colon cancer. No specific treatment exists. Conventional therapeutics make use of anti-inflammatories, of immunosuppressors and of surgery. All these therapeutic means are, themselves, a source of considerable iatrogenic morbidity. For all these reasons, IBDs appear to be a considerable public health problem. [0003]
  • The etiology of IBDs is currently unknown. Environmental factors are involved in the occurrence of the disease, as witnessed by the secular increase in incidence of the disease and the incomplete concordance in monozygous twins. The only environmental risk factors currently known are 1) tobacco, the role of which is harmful in CD and beneficial in UC, and 2) appendectomy which has a protective role for UC. [0004]
  • Genetic predisposition has been suspected for a long time due to the existence of ethnic and familial aggregation of these diseases. In fact, IBDs are more common in the Caucasian population, and in particular in the Jewish population of central Europe. Familial forms represent from 6 to 20% of IBD cases. They are particularly common when the disease begins early. However, it is studies in twins which have made it possible to confirm the genetic nature of these diseases. In fact, the concordance rate between twins for these diseases is greater in monozygous twins than in dizygous twins, which pleads strongly in favor of a hereditary component to IBDs, in particular to CD. In all probability, IBDs are complex genetic diseases involving several different genes, interacting with one another and with environmental factors. IBDs can therefore be classified within the context of multifactor diseases. [0005]
  • Two major strategies have been developed in order to demonstrate the IBD-susceptibility genes. The first is based on the analysis of genes which are candidates for physiopathological reasons. Thus, many genes have been proposed as potentially important for IBDs. They are often genes which have a role in inflammation and the immune response. Mention may be made of the HLA, TAP, TNF and MICA genes, lymphocyte T receptor, ICAM1, [0006] interleukin 1, CCR5, etc. Other genes participate in diverse functions, such as GAI2, motilin, MRAMP, HMLH1, etc. In reality, none of the various candidate genes studied has currently definitively proved itself to have a role in the occurrence of IBDs.
  • The recent development of human genome maps using highly polymorphic genetic markers has enabled geneticists to develop a nontargeted approach over the entire genome. This approach, also called reverse genetics or positional cloning, makes no hypothesis regarding the genes involved in the disease and attempts to discover them through systematic screening of the genome. The method most used for complex genetic diseases is based on studying identity by decendance of the affected individuals of the same family. This value is calculated for a large number (300-400) of polymorphism markers distributed evenly (every 10 cM) over the genome). In the case of excess identity between affected individuals, the marker(s) tested indicate(s) a region supposed to contain a gene for susceptibility to the disease. In the case of complex genetic diseases, since the model underlying the genetic predisposition (number of genes and relative importance of each of them) is unknown, the statistical methods to be used will have to be adjusted. [0007]
  • The present invention relates to the demonstration of the nucleic acid sequence of genes involved in IBDs, and other inflammatory diseases, and also the use of these nucleic acid sequences. [0008]
  • In the context of the present invention, preliminary studies by the inventors have already made it possible to locate a CD-susceptibility gene. Specifically, the inventors (Hugot et al., 1996) have shown that a CD-susceptibility gene is located in the pericentromeric region of chromosome 16 (FIG. 1). It was the first gene for susceptibility to a complex genetic disease located by positional cloning and satisfying the strict criteria proposed in the literature (Lander and Kruglyak, 1995). This gene was named IBD1 (for inflammatory bowel disease 1). Since then, other locations have been proposed by other authors, in particular on [0009] chromosomes 12, 1, 3, 6 and 7 (Satsangi et al., 1996; Cho et al., 1998). Although they have been located, it has currently not been possible to identify any of these IBD-susceptibility genes.
  • Some authors have not been able to replicate this location (Pioux et al., 1998). This is not, however, surprising in the case of complex genetic diseases in which genetic heterogeneity is probable. [0010]
  • It is interesting to note that, according to the same approach of positional cloning, locations have also been proposed on [0011] chromosome 16 for several immune and inflammatory diseases, such as ankylosing spondylarthritis, Blau's syndrome, psoriasis, etc. (Becker et al., 1998; Tromp et al., 1996). All these diseases may then share the same gene (or the same group of genes) located on chromosome 16.
  • A maximum of genetic linkage tests is virtually always located at the same position, in the region of D16S409 or D16S411, separated only by 2 cM. This result contradicts the considerable size (usually greater than 20 cM) of the confidence interval which can be attributed to the genetic location according to an approach using nonparametric linkage analyses. [0012]
  • Comparison of the statistical tests used in the studies by the inventors shows that the tests based on complete identity by decendance (Tz2) are better than the tests based on the mean of identity by decendance (Tz) (FIG. 1). Such a difference can be explained by a recessive effect of IBD1. [0013]
  • Several genes known to be in the pericentromeric region of [0014] chromosome 16, such as the interleukin 4 receptor, CD19, CD43 or CD11, appear to be good potential candidates for CD. Preliminary results do not however plead in favor of these genes being involved in CD.
  • In particular, the present invention provides not only the sequence of IBD1 gene, but also the partial sequence of another gene, called IBD1prox due to it being located in proximity to IBD, and demonstrated as reported in the examples below. These genes, the cDNA sequence of which corresponds, respectively, to SEQ ID No. 1 and SEQ ID No. 4, are therefore potentially involved in many inflammatory and/or immune diseases and also in cancers. [0015]
  • The peptide sequence expressed by the IBD1 and IBD1prox genes is represented by SEQ ID No. 2 and SEQ ID No. 5, respectively; the genomic sequence of these genes is represented by SEQ ID No. 3 and SEQ ID No. 6, respectively. [0016]
  • Thus, a subject of the present invention is a purified or isolated nucleic acid, characterized in that it comprises a nucleic acid sequence chosen from the following group of sequences: [0017]
  • a) SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 4 and SEQ ID No. 6; [0018]
  • b) the sequence of a fragment of at least 15 consecutive nucleotides of a sequence chosen from SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 4 or SEQ ID No. 6; [0019]
  • c) a nucleic acid sequence having a percentage identity of at least 80°, after optimal alignment, with a sequence defined in a) or b); [0020]
  • d) a nucleic acid sequence which hybridizes, under high stringency conditions, with a nucleic acid sequence defined in a) or b); [0021]
  • e) the complementary sequence or the RNA sequence corresponding to a sequence as defined in a), b), c) or d). [0022]
  • The nucleic acid sequence according to the invention defined in c) has a percentage identity of at least 80%, after optimal alignment, with a sequence as defined in a) or b) above, preferably 90%o, most preferably 98%. [0023]
  • The terms “nucleic acid”, “nucleic acid sequence”, “polynucleotide”, “oligonucleotide”, “polynucleotide sequence” and “nucleotide sequence”, terms which will he employed indifferently in the present description, are intended to denote a precise series of nucleotides, which may or may not be modified, making it possible to define a fragment or a region of a nucleic acid, which may or may not comprise unnatural nucleotides, and which may correspond equally to a double-stranded DNA, a single-stranded DNA and transcription products of said DNAs. Thus, the nucleic acid sequences according to the invention also encompass PNAs (Peptide Nucleic Acids), or the like. [0024]
  • It should be understood that the present invention does not relate to the nucleotide sequences in their natural chromosomal environment, that is to say in the natural state. They are sequences which have been isolated and/or purified, that is to say they have been taken directly or indirectly, for example by copying, their environment having been at least partially modified. Thus, nucleic acids obtained by chemical synthesis are also intended to be denoted. [0025]
  • For the purpose of the present invention, the term “percentage identity” between two nucleic acid or amino acid sequences is intended to denote a percentage of nucleotides or of amino acid residues which are identical between the two sequences to be compared, obtained after the best alignment, this percentage being purely statistical and the differences between the two sequences being distributed randomly and over their entire length. The term “best alignment” or “optimal alignment” is intended to denote the alignment for which the percentage identity determined as below is highest. Sequence comparisons between two nucleic acid or amino acid sequences are conventionally carried out by comparing these sequences after having aligned them optimally, said comparison being carried out by segment or by “window of comparison” so as to identify and compare local regions of sequence similarity. The optimal alignment of the sequences for the comparison may be carried out, besides manually, by means of the local homology algorithm of Smith and Waterman (1981), by means of the local homology algorithm of Neddleman and Wunsch (1970), by means of the similarity search method of Pearson and Lipman (1988), by means of computer programs using these algorithms (GAP, BESTFIT, BLAST P, BLAST N, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.). In order to obtain the optimal alignment, the BLAST program is preferably used, with the BLOSUM 62 matrix. The PAN or PAM250 matrices may also be used. [0026]
  • The percentage identity between two nucleic acid or amino acid sequences is determined by comparing these two sequences aligned optimally, the nucleic acid or amino acid sequence to be compared possibly comprising additions or deletions with respect to the reference sequence for optimal alignment between these two sequences. The percentage identity is calculated by determining the number of identical positions for which the nucleotide or the amino acid residue is identical between the two sequences, dividing this number of identical positions by the total number of positions compared and multiplying the resultant number by 100 so as to obtain the percentage identity between these two sequences. [0027]
  • The expression “nucleic acid sequences having a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment with a reference sequence” is intended to denote the nucleic acid sequences which, compared to the reference nucleic acid sequence, have certain modifications, such as in particular a deletion, a truncation, an extension, a chimeric fusion and/or a substitution, in particular of the point type, and the nucleic acid sequence of which exhibits at least 80%, preferably 90%, more preferably 98%, identity, after optimal alignment, with the reference nucleic acid sequence. They are preferably sequences whose complementary sequences are capable of hybridizing specifically with the sequence [0028] SEQ ID No 1 or SEQ ID No. 4 of the invention. Preferably, the specific or high stringency hybridization conditions will be such that they ensure at least 80%, preferably 90%, more preferably 98%, identity, after optimal alignment, between one of the two sequences and the sequence complementary to the other.
  • Hybridization under high stringency conditions means that the conditions of temperature and of ionic strength are chosen such that they allow the hybridization between two complementary DNA fragments to be maintained. By way of illustration, high stringency conditions for the hybridization step for the purposes of defining the polynucleotide fragments described above are advantageously as follows. [0029]
  • The DNA-DNA or DNA-RNA hybridization is carried out in two steps: (1) prehybridization at 42° C. for 3 hours in phosphate buffer (20 mM, pH 7.5) containing 5×SSC (1×SSC corresponds to a solution of 0.15 M NaCl+0.015 M sodium citrate), 50% of formamide, 7% of sodium dodecyl sulfate (SDS), 10× Denhardt's, 5% of dextran sulfate and 1% of salmon sperm DNA; (2) hybridization per se for 20 hours at a temperature which depends on the length of the probe (i.e.: 42° C. for a probe >100 nucleotides in length), followed by 2 washes of 20 minutes at 20° C. in 2×SSC+2% SDS and 1 wash of 20 minutes at 20° C. in 0.1×SSC+0.1% SDS. The final wash is carried out in 0.1×SSC+0.1% SDS for 30 minutes at 60° C. for a probe >100 nucleotides in length. The high stringency hybridization conditions described above for a polynucleotide of defined length may be adjusted by those skilled in the art for longer or shorter oligonucleotides, according to the teaching of Sambrook et al., 1989. [0030]
  • Among the nucleic acid sequences having a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment, with the sequence according to the invention, preference is also given to the variant nucleic acid sequences of SEQ ID No. 1 or of SEQ ID No. 4, or of fragments thereof, that is to say all the nucleic acid sequences corresponding to allelic variants, that is to say individual variations of the sequence SEQ ID No. 1 or SEQ ID No. 4. These natural mutated sequences correspond to polymorphisms present in mammals, in particular in humans and, in particular, to polymorphisms which may lead to the occurrence of a pathological condition. Preferably, the present invention relates to the variant nucleic acid sequences in which the mutations lead to a modification of the amino acid sequence of the polypeptide, or of fragments thereof, encoded by the normal sequence of SEQ ID No. 1 or SEQ ID No. 4. [0031]
  • The expression “variant nucleic acid sequence” is also intended to denote any RNA or cDNA resulting from a mutation and/or variation of a splice site of the genomic nucleic acid sequence the cDNA of which has the sequence SEQ ID No. 1 or SEQ ID No. 4. [0032]
  • The invention preferably relates to a purified or isolated nucleic acid according to the present invention, characterized in that it comprises or consists of one of the sequences SEQ ID No. 1 or SEQ ID No. 4, of the sequences complementary thereto, or of the RNA sequences corresponding to SEQ ID No. 1 or SEQ ID No. 4. [0033]
  • The probes or primers, characterized in that they comprise a sequence of a nucleic acid according to the invention, are also part of the invention. [0034]
  • Thus, the present invention also relates to the primers or the probes according to the invention which may make it possible in particular to demonstrate or to distinguish the variant nucleic acid sequences, or to identify the genomic sequence of the genes the cDNA of which is represented by SEQ ID No. 1 or SEQ ID No. 4, in particular using an amplification method such as the PCR method or a related method. [0035]
  • The invention also relates to the use of a nucleic acid sequence according to the invention, as a probe or primer, for detecting, identifying, assaying or amplifying a nucleic acid sequence. [0036]
  • According to the invention, the polynucleotides which can be used as a probe or as a primer in methods for detecting, identifying, assaying or amplifying a nucleic acid sequence are a minimum of 15 bases, preferably 20 bases, or better still 25 to 30 bases in length. [0037]
  • The probes and primers according to the invention may be labeled directly or indirectly with a radioactive or nonradioactive compound using methods well known to those skilled in the art, in order to obtain a detectable and/or quantifiable signal. [0038]
  • The polynucleotide sequences according to the invention which are unlabeled can be used directly as a probe or primer. [0039]
  • The sequences are generally labeled so as to obtain sequences which can be used in many applications. The primers or the probes according to the invention are labeled with radioactive elements or with nonradioactive molecules. [0040]
  • Among the radioactive isotopes used, mention may be made of [0041] 32P, 33P, 35S, 3H or 125I. The nonradioactive entities are selected from ligands such as biotin, avidin, streptavidin or dioxygenin, haptens, dyes and luminescent agents, such as radioluminescent, chemiluminescent, bioluminescent, fluorescent or phosphorescent agents.
  • The polynucleotides according to the invention may thus be used as a primer and/or probe in methods using in particular the PCR (polymerase chain reaction) technique (Rolfs et al., 1991). This technique requires choosing pairs of oligonucleotide primers bordering the fragment which must be amplified. Reference may, for example, be made to the technique described in U.S. Pat. No. 4,683,202. The amplified fragments can be identified, for example after agarose or polyacrylamide gel electrophoresis, or after a chromatographic technique such as gel filtration or ion exchange chromatography, and then sequenced. The specificity of the amplification can be controlled using, as primers, the nucleotide sequences of polynucleotides of the invention and, as matrices, plasmids containing these sequences or else the derived amplification products. The amplified nucleotide fragments may be used as reagents in hybridization reactions in order to demonstrate the presence, in a biological sample, of a target nucleic acid of sequence complementary to that of said amplified nucleotide fragments. [0042]
  • The invention is also directed toward the nucleic acids which can be obtained by amplification using primers according to the invention. [0043]
  • Other techniques for amplifying the target nucleic acid may advantageously be employed as an alternative to PCR (PCR-like) using a pair of primers of nucleotide sequences according to the invention. The term “PCR-like” is intended to denote all the methods using direct or indirect reproductions of nucleic acid sequences, or else in which the labeling systems have been amplified; these techniques are, of course, known. In general, they involve amplifying the DNA with a polymerase; when the sample of origin is an RNA a reverse transcription should be carried out beforehand. A large number of methods currently exist for this amplification, such as, for example, the SDA (strand displacement amplification) technique (Walker et al., 1992), the TAS (transcription-based amplification system) technique described by Kwoh et al. (1989), the 3SR (self-sustained sequence replication) technique described by Guatelli et al. (1990), the NASBA (nucleic acid sequence based amplification) technique described by Kievitis et al. (1991), the TMA (transcription mediated amplification) technique, the LCR (ligase chain reaction) technique described by Landegren et al. (1988), the RCR (repair chain reaction) technique described by Segev (1992), the CPR (cycling probe reaction) technique described by Duck et al. (1990), and the Q-beta-replicase amplification technique described by Miele et al. (1983). Some of these techniques have since been improved. [0044]
  • When the target polynucleotide to be detected is an mRNA, an enzyme of the reverse transcriptase type is advantageously used, prior to carrying out an amplification reaction using the primers according to the invention or to carrying out a method of detection using the probes of the invention, in order to obtain a cDNA from the mRNA contained in the biological sample. The cDNA obtained will then serve as a target for the primers or the probes used in the amplification or detection method according to the invention. [0045]
  • The probe hybridization technique may be carried out in many ways (Matthews et al., 1988). The most general method consists in immobilizing the nucleic acid extracted from the cells of various tissues or from cells in culture, on a support (such as nitrocellulose, nylon or polystyrene), and in incubating the immobilized target nucleic acid with the probe, under well-defined conditions. After hybridization, the excess probe is removed and the hybrid molecules formed are detected using the appropriate method (measuring the radioactivity, the fluorescence or the enzymatic activity linked to the probe). [0046]
  • According to another embodiment of the nucleic acid probes according to the invention, the latter may be used as capture probes. In this case, a probe, termed “capture probe”, is immobilized on a support and is used to capture, by specific hybridization, the target nucleic acid obtained from the biological sample to be tested, and the target nucleic acid is then detected using a second probe, termed “detection probe”, labeled with a readily detectable element. [0047]
  • Among the advantageous nucleic acid fragments, mention should thus be made in particular of antisense oligonucleotides, i.e. oligonucleotides, the structure of which ensures, by hybridization with the target sequence, inhibition of expression of the corresponding product. Mention should also be made of sense oligonucleotides, which, by interacting with proteins involved in regulating the expression of the corresponding product, will induce either inhibition or activation of this expression. [0048]
  • In both cases (sense and antisense), the oligonucleotides of the invention may be used in vitro and in vivo. [0049]
  • The present invention also relates to an isolated polypeptide, characterized in that it comprises a polypeptide chosen from: [0050]
  • a) a polypeptide of sequence SEQ ID No. 2 or SEQ ID No. 5; [0051]
  • b) a variant polypeptide of a polypeptide of sequence defined in a); [0052]
  • c) a polypeptide homologous to a polypeptide defined in a) or b), comprising at least 80% identity with said polypeptide of a); [0053]
  • d) a fragment of at least 15 consecutive amino acids of a polypeptide defined in a), b) or c); [0054]
  • e) a biologically active fragment of a polypeptide defined in a), b) or c). [0055]
  • For the purpose of the present invention, the term “polypeptide” is intended to denote proteins or peptides. [0056]
  • The expression “biologically active fragment” is intended to mean a fragment having the same biological activity as the peptide fragment from which it is deduced, preferably within the same order of magnitude (to within a factor of 10). Thus, the examples show that the IBD1 protein (SEQ ID No. 2) has a potential role in apoptosis phenomena. A biologically active fragment of the IBD1 protein therefore consists of a polypeptide derived from SEQ ID No. 2, also having a role in apoptosis. The examples below propose biological functions for the IBD1 and IBD1prox proteins, as a function of the peptide domains of these proteins, and thus allow those skilled in the art to identify the biologically active fragments. [0057]
  • Preferably, a polypeptide according to the invention is a polypeptide consisting of the sequence SEQ ID No. 2 (corresponding to the protein encoded by the IBD1 gene) or of the sequence SEQ ID No. 5 (corresponding to the protein encoded by IBD1prox) or of a sequence having at least 80% identity with SEQ ID No. 2 or SEQ ID No. 5 after optimal alignment. [0058]
  • The sequence of the polypeptide has a percentage identity of at least 80%, after optimal alignment, with the sequence SEQ ID No. 2 or SEQ ID No. 5, preferably 90%, more preferably 98%. [0059]
  • The expression “polypeptide, the amino acid sequence of which has a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment, with a reference sequence” is intended to denote the polypeptides having certain modifications compared to the reference polypeptide, such as in particular one or more deletions and/or truncations, an extension, a chimeric fusion and/or one or more substitutions. [0060]
  • Among the polypeptides, the amino acid sequence of which has a percentage identity of at least 80%, preferably 90%, more preferably 98%, after optimal alignment, with the sequence SEQ ID No. 2 or SEQ ID No. 5 or with a fragment thereof according to the invention, preference is given to the variant polypeptides encoded by the variant nucleic acid sequences as defined previously, in particular the polypeptides, the amino acid sequence of which has at least one mutation corresponding in particular to a truncation, deletion, substitution and/or addition of at least one amino acid residue compared with the sequence SEQ ID No. 2 or SEQ ID No. 5 or with a fragment thereof, more preferably the variant polypeptides having a mutation associated with the pathological condition. [0061]
  • The present invention also relates to the cloning and/or expression vectors comprising a nucleic acid or encoding a polypeptide according to the invention. Such a vector may also contain the elements required for the expression and, optionally, the secretion of the polypeptide in a host cell. Such a host cell is also a subject of the invention. [0062]
  • The vectors characterized in that they comprise a promoter and/or regulator sequence according to the invention are also part of the invention. [0063]
  • Said vectors preferably comprise a promoter, translation initiation and termination signals, and also regions suitable for regulating transcription. It must be possible for them to be maintained stably in the cell and they may optionally contain particular signals specifying secretion of the translated protein. [0064]
  • These various control signals are chosen as a function of the cellular host used. To this effect, the nucleic acid sequences according to the invention may be inserted into vectors which replicate autonomously in the chosen host, or vectors which integrate in the chosen host. [0065]
  • Among the systems which replicate autonomously, use is preferably made, depending on the host cell, of systems of the plasmid or viral type, the viral vectors possibly being in particular adenoviruses (Perricaudet et al., 1992), retroviruses, lentiviruses, poxyiruses or herpesviruses (Epstein et al., 1992). Those skilled in the art are aware of the technology which can be used for each of these systems. [0066]
  • When integration of the sequence into the chromosomes of the host cell is desired, use may he made, for example, of systems of the plasmid or viral type; such viruses are, for example, retroviruses (Temin, 1986), or AAVs (Carter, 1993). [0067]
  • Among the nonviral vectors, preference is given to naked polynucleotides such as naked DNA or naked RNA according to the technology developed by the company VICAL, bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs) for expression in yeast, mouse artificial chromosomes (MACs) for expression in murine cells and, preferably, human artificial chromosomes (HACs) for expression in human cells. [0068]
  • Such vectors are prepared according to the methods commonly used by those skilled in the art, and the clones resulting therefrom can be introduced into a suitable host using standard methods, such as, for example, lipofection, electroporation, heat shock, transformation after chemical permeabilization of the membrane, or cell fusion. [0069]
  • The invention also comprises host cells, in particular the eukaryotic and prokaryotic cells, transformed with the vectors according to the invention, and also the transgenic animals, preferably the mammals, except humans, comprising one of said transformed cells according to the invention. These animals may be used as models, for studying the etiology of inflammatory and/or immune diseases, in particular of the inflammatory diseases of the digestive tract, or for studying cancers. [0070]
  • Among the cells which can be used for the purpose of the present invention, mention may be made of bacterial cells (Olins and Lee, 1993), but also yeast cells (Buckholz, 1993) as well as animal cells, in particular mammalian cell cultures (Edwards and Aruffo, 1993), and especially Chinese hamster ovary (CHO) cells. Mention may also be made of insect cells in which it is possible to use methods employing, for example, baculo viruses (Luckow, 1993). A preferred cellular host for expressing the proteins of the invention consists of COS cells. [0071]
  • Among the mammals according to the invention, animals such as rodents, in particular mice, rats or rabbits, expressing a polypeptide according to the invention are preferred. [0072]
  • Among the mammals according to the invention, preference is also given to animals such as mice, rats or rabbits, characterized in that the gene encoding the protein of sequence SEQ ID No. 2 or SEQ ID No. 5, or the sequence of which is encoded by the homologous gene in these animals, is not functional, has been knocked out or has at least one mutation. [0073]
  • These transgenic animals are obtained, for example, by homologous recombination on embryonic stem cells, transfer of these stem cells to embryos, selection of the chimeras affected in the reproductive lines, and growth of said chimeras. [0074]
  • The transgenic animals according to the invention may thus overexpress the gene encoding the protein according to the invention, or their homologous gene, or express said gene into which a mutation is introduced. These transgenic animals, in particular mice, are obtained, for example, by transfection of a copy of this gene under the control of a promoter which is strong and ubiquitous, or selective for a tissue type, or after viral transcription. [0075]
  • Alternatively, the transgenic animals according to the invention may be made deficient for the gene encoding one of the polypeptides of sequence SEQ ID No. 2 or SEQ ID No. 5, or their homologous genes, by inactivation using the LOXP/CRE recombinase system (Rohlmann et al., 1996) or any other system for inactivating the expression of this gene. [0076]
  • The cells and mammals according to the invention can be used in a method for producing a polypeptide according to the invention, as described below, and may also be used as a model for analysis. [0077]
  • The cells or mammals transformed as described above can also be used as models in order to study the interactions between the polypeptides according to the invention, and the chemical or protein compounds involved directly or indirectly in the activities of the polypeptides according to the invention, this being in order to study the various mechanisms and interactions involved. [0078]
  • They may in particular be used for selecting products which interact with the polypeptides according to the invention, in particular the protein of sequence SEQ ID No. 2 or SEQ ID No. 5 or variants thereof according to the invention, as a cofactor or as an inhibitor, in particular a competitive inhibitor, or which have an agonist or antagonist activity with respect to the activity of the polypeptides according to the invention. Preferably, said transformed cells or transgenic animals are used as a model in particular for selecting products for combating pathological conditions associated with abnormal expression of this gene. [0079]
  • The invention also relates to the use of a cell, of a mammal or of a polypeptide according to the invention, for screening chemical or biochemical compounds which may interact directly or indirectly with the polypeptides according to the invention, and/or which are capable of modulating the expression or the activity of these polypeptides. [0080]
  • Similarly, the invention also relates to a method for screening compounds capable of interacting, in vitro or in vivo, with a nucleic acid according to the invention, using a nucleic acid, a cell or a mammal according to the invention, and detecting the formation of a complex between the candidate compounds and the nucleic acid according to the invention. [0081]
  • The compounds thus selected are also subjects of the invention. [0082]
  • The invention also relates to the use of a nucleic acid sequence according to the invention, for synthesizing recombinant polypeptides. [0083]
  • The method for producing a polypeptide of the invention in recombinant form, which is itself included in the present invention, is characterized in that the transformed cells, in particular the cells or mammals of the present invention, are cultured under conditions which allow the expression of a recombinant polypeptide encoded by a nucleic acid sequence according to the invention, and in that said recombinant polypeptide is recovered. [0084]
  • The recombinant polypeptides, characterized in that they can be obtained using said method of production, are also part of the invention. [0085]
  • The recombinant polypeptides obtained as indicated above can be in both glycosylated and nonglycosylated form, and may or may not have the natural tertiary structure. [0086]
  • The sequences of the recombinant polypeptides may also be modified in order to improve their solubility, in particular in aqueous solvents. [0087]
  • Such modifications are known to those skilled in the art, such as, for example, deletion of hydrophobic domains or substitution of hydrophobic amino acids with hydrophilic amino acids. [0088]
  • These polypeptides may be produced using the nucleic acid sequences defined above, according to the techniques for producing recombinant polypeptides known to those skilled in the art. In this case, the nucleic acid sequence used is placed under the control of signals which allow its expression in a cellular host [0089]
  • An effective system for producing a recombinant polypeptide requires having a vector and a host cell according to the invention. [0090]
  • These cells can be obtained by introducing into host cells a nucleotide sequence inserted into a vector as defined above, and then culturing said cells under conditions which allow the replication and/or expression of the transfected nucleotide sequence. [0091]
  • The methods used for purifying a recombinant polypeptide are known to those skilled in the art. The recombinant polypeptide may be purified from cell lysates and extracts or from the culture medium supernatant, by methods used individually or in combination, such as fractionation, chromatography methods, immunoaffinity techniques using specific monoclonal or polyclonal antibodies, etc. [0092]
  • The polypeptides according to the present invention can also be obtained by chemical synthesis using one of the many known forms of peptide synthesis, for example techniques using solid phases (see in particular Stewart et al., 1984) or techniques using partial solid phases, by fragment condensation or by conventional synthesis in solution. [0093]
  • The polypeptides obtained by chemical synthesis and which may comprise corresponding unnatural amino acids are also included in the invention. [0094]
  • The mono- or polyclonal antibodies, or fragments thereof, chimeric antibodies or immunoconjugates, characterized in that they are capable of specifically recognizing a polypeptide according to the invention, are part of the invention. [0095]
  • Specific polyclonal antibodies may be obtained from a serum of an animal immunized against the polypeptides according to the invention, in particular produced by genetic recombination or by peptide synthesis, according to the usual procedures. [0096]
  • The advantage of antibodies which specifically recognize certain polypeptides, variants or immunogenic fragments thereof according to the invention is in particular noted. [0097]
  • The mono- or polyclonal antibodies, or fragments thereof, chimeric antibodies or immunoconjugates characterized in that they are capable of specifically recognizing the polypeptides of sequence SEQ ID No. 2 or SEQ ID No. 5 are particularly preferred. [0098]
  • The specific monoclonal antibodies may be obtained according to the conventional method of hybridoma culture described by Köhler and Milstein (1975). [0099]
  • The antibodies according to the invention are, for example, chimeric antibodies, humanized antibodies, or Fab or F(ab′)[0100] 2 fragments. They may also be in the form of immunoconjugates or of labeled antibodies, in order to obtain a detectable and/or quantifiable signal.
  • The invention also relates to methods for detecting and/or purifying a polypeptide according to the invention, characterized in that they use an antibody according to the invention. [0101]
  • The invention also comprises purified polypeptides, characterized in that they are obtained using a method according to the invention. [0102]
  • Moreover, besides their use for purifying the polypeptides, the antibodies of the invention, in particular the monoclonal antibodies, may also he used for detecting these polypeptides in a biological sample. [0103]
  • They thus constitute a means for the immunocytochemical or immunohistochemical analysis of the expression of the polypeptides according to the invention, in particular the polypeptides of sequence SEQ ID No. 2 or SEQ TD No. 5, or a variant thereof, on specific tissue sections, for example using immunofluorescence, gold labeling and/or enzymatic immunoconjugates. [0104]
  • They may in particular make it possible to demonstrate abnormal expression of these polypeptides in the biological specimens or tissues. [0105]
  • More generally, the antibodies of the invention may advantageously be used in any situation where the expression of a polypeptide according to the invention, normal or mutated, must be observed. [0106]
  • Thus, a method for detecting a polypeptide according to the invention, in a biological sample, comprising the steps of bringing the biological sample into contact with an antibody according to the invention and demonstrating the antigen-antibody complex formed, is also a subject of the invention, as is a kit for carrying out such a method. Such a kit in particular contains: [0107]
  • a) a monoclonal or polyclonal antibody according to the invention; [0108]
  • b) optionally, reagents for constituting a medium suitable for the immunoreaction; [0109]
  • c) the reagents for detecting the antigen-antibody complex produced during the immunoreaction. [0110]
  • The antibodies according to the invention may also be used in the treatment of an inflammatory and/or immune disease, or of a cancer, in humans, when abnormal expression of the IBD1 gene or of the IBD1prox gene is observed. Abnormal expression means overexpression or the expression of a mutated protein. [0111]
  • These antibodies may be obtained directly from human serum, or may be obtained from animals immunized with polypeptides according to the invention, and then “humanized”, and may be used as such or in the preparation of a medicinal product intended for the treatment of the abovementioned diseases. [0112]
  • The methods for determining an allelic variability, a mutation, a deletion, a loss of heterozygocity or any genetic abnormability of the gene according to the invention, characterized in that they use a nucleic acid sequence, a polypeptide or an antibody according to the invention, are also part of the invention. [0113]
  • The invention in fact provides the sequence of the IBD1 and IBD1prox genes involved in inflammatory and/or immune diseases, and in particular IBDs. One of the teachings of the invention is to specify the mutations, in these nucleic acid or polypeptide sequences, which are associated with a phenotype corresponding to one of these inflammatory and/or immune diseases. [0114]
  • These mutations can be detected directly by analysis of the nucleic acid and of the sequences according to the invention (genomic DNA, RNA or cDNA), but also via the polypeptides according to the invention. In particular, the use of an antibody according to the invention which recognizes an epitope bearing a mutation makes it possible to distinguish between a “healthy” protein and a protein “associated with a pathological condition”. [0115]
  • Thus, the study of the IBD1 gene in various inflammatory and/or immune human diseases thus shows that sequence variants of this gene exist in Crohn's disease, ulcerative colitis and Blau's syndrome, as demonstrated by the examples. These sequence variations result in considerable variations in the deduced protein sequence. In fact, they are either located on very conserved sites of the protein in important functional domains, or they result in the synthesis of a truncated protein. It is therefore extremely probable that these deleterious modifications lead to a modification of the function of the protein and therefore have a causal effect in the occurrence of these diseases. [0116]
  • The variety of diseases in which these mutations are observed suggests that the IBD1 gene is potentially important in many inflammatory and/or immune diseases. This result should be compared with the fact that the pericentromeric region of [0117] chromosome 16 has been described as containing genes for susceptibility to various human diseases, such as ankylosing spondylarthritis or psoriatic arthropathy. It may therefore be considered that IBD1 has an important role in a large number of inflammatory and/or immune diseases.
  • In particular, IBD1 can be associated with granulomatous inflammatory diseases. Blau's syndrome and CD are in fact diseases which are part of this family. It is therefore hoped that variations in the IBD1 gene will be found for the other diseases of the same family (sarcoidosis, Behcet's disease, etc.). [0118]
  • In addition, the involvement of IBD1 in the cellular pathways leading to apoptosis raises the question of its possible carcinogenic role. In fact, it is expected that a dysregulation of IBD1 may result in a predisposition to cancer. This hypothesis is supported by the fact that a predisposition to colon cancer exists in inflammatory bowel diseases. IBD1 may in part explain this susceptibility to cancer and define new carcinogenic pathways. [0119]
  • The precise description of the mutations which can be observed in the IBD1 gene thus makes it possible to lay down the foundations of a molecular diagnosis for the inflammatory or immune diseases in which this role is demonstrated. Such an approach, based on searching for mutations in the gene, will make it possible to contribute to the diagnosis of these diseases and possibly to reduce the extent of certain additional examinations which are invasive or expensive. The invention lays down the foundations of such a molecular diagnosis based on searching for mutations in IBD1. [0120]
  • The molecular diagnosis of inflammatory diseases should also make it possible to improve the nosological classification of these diseases and to more clearly define subgroups of particular diseases by their clinical characteristics, the progressive nature of the disease or the response to certain treatments. By way of example, the dismantling of the existing mutations may thus make it possible to classify the currently undetermined forms of colitis which represent more than 10% of inflammatory bowel diseases. Such an approach will make it possible to propose an early treatment suitable for each patient. In general, such an approach makes it possible to hope that it will eventually be possible to define an individualized treatment for the disease, depending on the genetic area of each disease, including curative and preventive measures. [0121]
  • In particular, preference is given to a method of diagnosis and/or of prognostic assessment of an inflammatory disease or of a cancer, characterized in that the presence of at least one mutation and/or a deleterious modification of expression of the gene corresponding to SEQ ID No. 1 or SEQ ID No. 4 is determined, using a biological specimen from a patient, by analyzing all or part of a nucleic acid sequence corresponding to said gene. The genes SEQ ID No. 3 or SEQ ID No. 6 may also be studied. [0122]
  • This method of diagnosis and/or of prognostic assessment may be used preventively (a study of predisposition to inflammatory diseases or to cancer), or in order to serve in establishing and/or confirming a clinical condition in a patient. [0123]
  • Preferably, the inflammatory disease is an inflammatory disease of the digestive tract, and the cancer is a cancer of the digestive tract (small intestine or colon). [0124]
  • The teaching of the invention in fact makes it possible to determine the mutations which exhibit a linkage disequilibrium with inflammatory diseases of the digestive tract, and which are therefore associated with such diseases. [0125]
  • The analysis may be carried out by sequencing all or part of the gene, or by other methods known to those skilled in the art. Methods based on PCR, for example PCR-SSCP, which makes it possible to detect point mutations, may in particular be used. [0126]
  • The analysis may also be carried out by attaching a probe according to the invention, corresponding to one of the sequences SEQ ID No. 1, 3, 4 or 6, to a DNA chip, and hybridization on these microplates. A DNA chip containing a sequence according to the invention is also one of the subjects of the invention. [0127]
  • Similarly, a protein chip containing an amino acid sequence according to the invention is also a subject of the invention. Such a protein chip makes it possible to study the interactions between the polypeptides according to the invention and other proteins or chemical compounds, and may thus be useful for screening compounds which interact with the polypeptides according to the invention. The protein chips according to the invention may also be used to detect the presence of antibodies directed against the polypeptides according to the invention in the serum of patients. A protein chip containing an antibody according to the invention may also be used. [0128]
  • Those skilled in the art are also able to carry out techniques for studying the deleterious modification of the expression of a gene, for example by studying the mRNA (in particular by Northern blotting or with RT-PCR experiments, with probes or primers according to the invention), or the protein expressed, in particular by Western blotting, using antibodies according to the invention. [0129]
  • The gene tested is preferably the gene of sequence SEQ ID No. 1, the inflammatory disease for which the intention is to predict susceptibility being a disease of the digestive tract, in particular Crohn's disease or ulcerative colitis. If the intention is to detect a cancer, it is preferably colon cancer. [0130]
  • The invention also relates to methods for obtaining an allele of the IBD1 gene, associated with a detectable phenotype, comprising the following steps: [0131]
  • a) obtaining a nucleic acid sample from an individual expressing said detectable phenotype; [0132]
  • b) bringing said nucleic acid sample into contact with an agent capable of specifically detecting a nucleic acid encoding the IBD1 protein; [0133]
  • c) isolating said nucleic acid encoding the IBD1 protein. [0134]
  • Such a method may be followed by a step of sequencing all or part of the nucleic acid encoding the IBD1 protein, which makes it possible to predict susceptibility to inflammatory disease or of a cancer. [0135]
  • The agent capable of specifically detecting a nucleic acid encoding the IBD1 protein is advantageously an oligonucleotide probe according to the invention, which may be made up of DNA, RNA or PNA, which may or may not be modified. The modifications may include radioactive or fluorescent labeling, or may be due to modifications in the bonds between the bases (phosphorothioates or methyl phosphonates, for example). Those skilled in the art are aware of the protocols for isolating a specific DNA sequence. Step b) of the method described above may also be an amplification step as described above. [0136]
  • The invention also relates to a method for detecting and/or assaying a nucleic acid according to the invention, in a biological sample, comprising the following steps of bringing a probe according to the invention into contact with a biological sample, and detecting and/or assaying the hybrid formed between said polynucleotide and the nucleic acid of the biological sample. [0137]
  • Those skilled in the art are capable of carrying out such a method, and may in particular use a kit of reagents, comprising: [0138]
  • a) a polynucleotide according to the invention, used as a probe; [0139]
  • b) the reagents required for carrying out a hybridization reaction between said probe and the nucleic acid of the biological sample; [0140]
  • c) the reagents required for detecting and/or assaying the hybrid formed between said probe and the nucleic acid of the biological sample; [0141]
  • which is also a subject of the invention. [0142]
  • Such a kit may also contain positive or negative controls in order to ensure the quality of the results obtained. [0143]
  • However, in order to detect and/or assay a nucleic acid according to the invention, those skilled in the art may also perform an amplification step using primers chosen from the sequences according to the invention. [0144]
  • Finally, the invention also relates to the compounds chosen from a nucleic acid, a polypeptide, a vector, a cell or an antibody according to the invention, or the compounds obtained using the screening methods according to the invention, as a medicinal product, in particular for preventing and/or treating an inflammatory and/or immune disease, or a cancer, associated with the presence of at least one mutation of the gene corresponding to SEQ ID No. 1 or SEQ ID No. 4, preferably an inflammatory disease of the digestive tract, in particular Crohn's disease or ulcerative colitis. [0145]
  • The following examples make it possible to understand more clearly the advantages of the invention, and should not be considered to limit the scope of the invention.[0146]
  • DESCRIPTION OF THE FIGURES
  • FIG. 1: Nonparametric genetic linkage tests for Crohn's disease in the pericentromeric region of chromosome 16 (according to Hugot et al., 1996). Multipoint linkage analysis based on identity by decendance for the markers of the pericentromeric region of [0147] chromosome 16. The genetic distances between markers were estimated using the CRIMAP program. The lod score (MAPMAKER/SIBS) is indicated on the left-hand figure. Two pseudoprobability tests were developed and reported on the right-hand figure. The first (Tz) is analogous to the test of the means. The second (Tz2) is analogous to the test of the proportion of affected pairs sharing two alleles.
  • FIG. 2: Multipoint nonparametric genetic linkage analysis. 78 families with several relatives suffering from Crohn's disease were genotyped for 26 polymorphism markers in the pericentromeric region of [0148] chromosome 16. The location of each marker is symbolized by an arrow. The order of the markers and the distance separating them derive from the analysis of the experimental data with the Crimap software. The arrows under the curve indicate the markers SPN, D16S409 and D16S411 used in the first study published (Hugot et al., 1996). The arrows located at the top of the figure correspond to the markers D16S3136, D16S541, D16S3117, D16S416 and D16S770 located at the maximum of the genetic linkage test. The typing data were analyzed using the multipoint nonparametric analysis program of the Genehunter software version 1.3. The maximum NPL score is 3.33 (p=0.0004)
  • FIG. 3: Diagrammatic representation of the protein encoded by IBD1. The protein encoded by IBD1 is represented horizontally. The various domains of which it is composed are indicated on the figure with the amino acid reference number corresponding to the start and to the end of each domain. The protein consists of a CARD domain, a nucleotide-binding domain (NBD) and leucine-rich motifs (LRR). [0149]
  • FIG. 4: Diagrammatic representation of the IBD1/NOD2 protein in three variants associated with CD.[0150]
  • A: The translation produced deduced from the cDNA sequence of the IBD1 candidate gene is identical to that of NOD2 (Ogura et al., 2000). The polypeptide contains 2 CARD domains (CAspase Recruitment Domains), a nucleotide-binding domain (NBD) and 10 repeats of 27 amino acids, leucine-rich motifs (LRR). The consensus sequence of the ATP/GTP-binding site of the motif A (P loop) of the NBD is indicated with a black circle. The sequence changes encoded by the three main variants associated with CD are SNP 8 (R675W), SNP 12 (G881R) and SNP 13 (frame shift 980). The frame shift changes a leucine codon to a proline codon at position 980, which is immediately followed by a stop codon. [0151]
  • B: Rare missense variants of NOD2 in 457 CD patients, 159 UC patients and 103 unaffected, unrelated individuals. The positions of the rare missense variants are indicated for the three groups. The scale on the left indicates the number of each variant identified in the groups under investigation and that on the right measures the frequency of the mutation. The allelic frequencies of the polymorphism V9281 was not significantly different (0.92:0.08) in the three groups and the corresponding genotypes were in Hardy-Weinberg equilibrium. [0152]
  • EXAMPLES Example 1 Fine Location of IBD1
  • The first step toward identifying the IBD1 gene was to reduce the size of the genetic region of interest, initially centered on the marker D16S411 located between D16S409 and D16S419 (Hugot et al., 1996 and FIG. 1). A group of close markers (high resolution genetic map) was used in order to more clearly specify the genetic region, and made it possible to complete the genetic linkage analyses and to search for a genetic linkage disequilibrium with the disease. [0153]
  • The study related to 78 families comprising at least 2 relatives suffering from CD, which corresponded to 119 affected pairs. The families comprising sick individuals suffering from UC were excluded from the study. [0154]
  • Twenty-six genetic polymorphism markers of the micro-satellite type were studied. These markers together made up a high resolution map with an average distance between markers of the order of 1 cM in the genetic region of interest. The characteristics of the markers studied are given in table 1. [0155]
    TABLE 1
    Polymorphic markers of the microsatellite type
    used for the fine location of IPD1
    Name of polymorphism Cumulative
    marker distance (cM) PCR primers
    D16S3120 0 SEQ ID No. 7
    (AFM326vc5) SEQ ID No. 8
    D16S298 2.9 SEQ ID No. 9
    (AFMa189wg5) SEQ ID No. 10
    D16S299 3.4 SEQ ID No. 11
    SEQ ID No. 12
    SPN 3.9 SEQ ID No. 13
    SEQ ID No. 14
    D16S383 4.3 SEQ ID No. 15
    SEQ ID No. 16
    D16S753 4.9 SEQ ID No. 17
    (GGAA3G05) SEQ ID No. 18
    D16S3044 5.8 SEQ ID No. 19
    (AFMa222za9) SEQ ID No. 20
    D16S409 5.8 SEQ ID No. 21
    (AFM161xa1) SEQ ID No. 22
    D16S3105 6.1 SEQ ID No. 23
    (AFMb341zc5) SEQ ID No. 24
    D16S261 6.8 SEQ ID No. 25
    (MFD24) SEQ ID No. 26
    D16S540 6.9 SEQ ID No. 27
    (GATA7B02) SEQ ID No. 28
    D16S3080 7 SEQ ID No. 29
    (AFMb068zb9) SEQ ID No. 30
    D16S517 7 SEQ ID No. 31
    (AFMa132we9) SEQ ID No. 32
    D16S411 8 SEQ ID No. 33
    (AFM186xa3) SEQ ID No. 34
    D16S3035 10.4 SEQ ID No. 35
    (AFMa189wg5) SEQ ID No. 36
    D16S3136 10.4 SEQ ID No. 37
    (AFMa061xe5) SEQ ID No. 38
    D16S541 11.4 SEQ ID No. 39
    (GATA7E02) SEQ ID No. 40
    D16S3117 11.5 SEQ ID No. 41
    (AFM288wb1) SEQ ID No. 42
    D16S416 12.4 SEQ ID No. 43
    (AFM210yg3) SEQ ID No. 44
    D16S770 13.2 SEQ ID No. 45
    (GGAA20G02) SEQ ID No. 46
    D16S2623 15 SEQ ID No. 47
    (GATA81B12) SEQ ID No. 48
    D16S390 16.5 SEQ ID No. 49
    SEQ ID No. 50
    D16S419 20.4 SEQ ID No. 51
    (AFM225zf2) SEQ ID No. 52
    D16S771 21.8 SEQ ID No. 53
    (GGAA23C09) SEQ ID No. 54
    D16S408 25.6 SEQ ID No. 55
    (AFM137xf8) SEQ ID No. 56
    D16S508 38.4 SEQ ID No. 57
    (AFM304xf1) SEQ ID No. 58
  • Each marker is listed according to international nomenclature and mostly by the name proposed by the laboratory of origin. The markers appear according to their order on the chromosome (from 16p to 16q). The genetic distance between the markers (in Kosambi centiMorgans, calculated from the experimental data using the Crimap program) is indicated in the second column. The first polymorphic marker is taken randomly as a reference point. The oligonucleotides which were used for the polymerase chain reaction (PCR) are indicated in the third column. [0156]
  • The genotyping of these microsatellite markers was based on automatic sequencer technology using fluorescent primers. Briefly, after amplification, the fluorescent polymerase chain reaction (PCR) products were loaded onto a polyacrylamide gel on an automatic sequencer according to the manufacturer's recommendations (Perkin Elmer). The size of the alleles for each individual was deduced using the Genescan[0157] R and GenotyperR software. The data were then kept on an integrated computer base containing the genealogical, phenotypic and genetic data. They were then used for the genetic linkage analyses.
  • Several quality controls were carried out throughout the genotyping procedure: [0158]
  • independent double reading of the genotyping data, [0159]
  • use of a standard DNA as an internal control for each electrophoretic migration, [0160]
  • control of the size range for each allele observed, [0161]
  • search for mendelian transmission errors, [0162]
  • calculation of the genetic distance between markers (CRIMAP program) and comparison of this distance with the data from the literature, [0163]
  • further typing of the markers for which recombination between close markers was observed. [0164]
  • The genotyping data were analyzed by multipoint nonparametric genetic linkage methods (GENEHUNTER program version 1.3). The informativeness of the marker system was greater than 80% for the region studied. The test maximum (NPL=3.33; P=0.0004) was obtained for the markers D16S541, D16S3117, D16S770 and D16S416 (FIG. 2). [0165]
  • The typing data for these 26 polymorphism markers were also analyzed so as to search for a transmission disequilibrium. Two groups of 108 and 76 families with one or more sick individuals suffering from CD were studied. The statistical test for transmission disequilibrium has been described by Spielman et al. (1993). In this study, only one sick individual per family was taken into account, and the value of p was corrected by the number of alleles tested for each marker studied. [0166]
  • A transmission disequilibrium was observed for [0167] alleles 4 and 5 (size 205 and 207 base pairs, respectively) (f the marker D16S3136 (p=0.05 and p=0.01, respectively).
  • These results, which suggest an association between the marker D16S3136 and CD, led to the construction of a physical map of the genetic region centered on D16S3136 and to establishment of the sequence of a large genomic DNA segment (BAC) containing this polymorphic site. It was then possible to identify and analyze a larger number of polymorphism markers in the region of D16S3136, and also to define and study the transcribed sequences present in the region. [0168]
  • Example 2 Physical Mapping of the IBD1 Region
  • A contig of genomic DNA fragments, centered on the markers D16S3136, D16S3117, D16S770 and D16S416, was generated from the human genomic DNA libraries of the Jean Dausset foundation/CEPH. The chromosomal DNA segments were identified based on certain polymorphism markers used in fine genetic mapping (D16S411, D16S416, D16S541, D16S770, D16S2623, D16S3035, D16S3117 and D16S3136). For each marker, a bacterial artificial chromosome (BAC) library was screened by PCR so as to search for clones containing the marker sequence. Depending on whether or not the sequences tested were present on the BAC clones, it was then possible to organize the clones among one another using the Segmap software version 3.35. [0169]
  • It was possible to establish, for the BACs, a continuous organization (contig) covering the genetic region of interest, according to a method known to those skilled in the art (Rouquier et al., 1994; Kim et al., 1996; Asakawa et al., 1997). To do this, the ends of the BACs identified were sequenced and these new sequence data were then used to repeatedly screen the BAC libraries. At each screening, the BAC contig then progressed by a step until a continuum of overlapping clones was obtained. The size of each BAC contributing to the contig was deduced from its migration profile on a pulsed field agarose gel. [0170]
  • A BAC contig containing 101 BACs and extending over an overall distance of more than 2.5 Mb, with an average redundancy of 5.5 BACs at each point of the contig, was thus constructed. The average size of the BACs is 136 kb. [0171]
  • Example 3 Sequencing of BAC hb87b10
  • The BAC of this contig containing the polymorphism marker D16S3136 (called hb87b10), the size of which was 163761 bp, was sequenced according to the “shotgun” method. Briefly, the BAC DNA was fragmented by sonication. The DNA fragments thus generated were subjected to agarose gel electrophoresis and those with a size greater than 1.5 kb were eluted in order to be analyzed. These fragments were then cloned into the m13 phage, which was itself introduced into bacteria made competent, by electroporation. After culturing, the DNA of the clones was recovered and sequenced by automatic sequencing methods using fluorescent primers of the m13 vector on an automatic sequencer. [0172]
  • 1526 different sequences with an average size of 600 bp were generated, which were organized with respect to one another using the Polyphredphrap[0173] R software, resulting in a sequence contig covering the entire BAC. The sequence thus generated had an average redundancy of 5.5 genomic equivalents. The rare (n=5) sequence gaps not represented in the m13 clone library were filled by generating specific PCR primers, on either side of these gaps, and analyzing the PCR product derived from the genomic DNA of a healthy individual.
  • Sequence homologies with sequences available in public genetic databases (Genbank) were sought No known gene could be identified in this region of 163 kb. Several ESTs were positioned, suggesting that unknown genes were contained in this sequence. These ESTs derived from the public genetic databases (Genbank, GDB, Unigene, dbEST) bore the following references: A1167910, A1011720, Rn24957, Mm30219, hs132289, AA236306, hs87296, AA055131, hs151708, AA417809, AA417810, hs61309, hs116424, HUMGS01037, AA835524, hs105242, SHGC17274, hs146128, hs122983, hs87280 and hs135201. The search for putative exons using the GRAIL computer program made it possible to identify several potential exons, polyadenylation sites and promoter sequences. [0174]
  • Example 4 Transmission Disequilibrium Studies
  • 12 biallelic polymorphism markers (SNPs) were identified in a region extending over approximately 250 kb and centered on the BAC hb87b10. These polymorphisms were generated by analyzing the sequence of ten or so independent sick individuals suffering from CD. The sequencing was mostly carried out at known ESTs positioned on the BAC or in the region thereof. Putative exons, predicted by the GRAIL computer program, were also analyzed. The characteristics of the polymorphic markers thus identified are given in table 2. [0175]
    TABLE 2
    Characteristics of biallelic polymorphism
    markers studied in the region of IBD1
    I II III IV V VI
    1 KIAA0849ex9 AS-PCR SEQ ID No. 88 to 90 116
    2 hb27G11F PCR-RFLP BsrI SEQ ID No. 86, 87 185
    116
     69
    3 Ctg22Ex1 PCR-RFLP RsaI SEQ ID No. 84, 85 381
    313
     69
    4 SNP1 AS-PCR SEQ ID No. 81 to 83 410
    5 ctg2931-3ac/ola LO SEQ ID No. 78 to 80  51
     49
    6 ctg2931-5ag/ola LO SEQ ID No. 75 to 77  44
     42
    7 SNP3-2931 AS-PCR SEQ ID No. 72 to 74 245
    8 Ctg25Ex1 PCR-RFLP BsteII SEQ ID No. 70, 71 207
    122
     85
    9 CTG35ExA AS-PCR SEQ ID No. 67 to 69 333
    10  ctg35ExC AS-PCR SEQ ID No. 64 to 66 198
    11  D1653136 SEQ ID No. 37, 38
    12  hb133D1f PCR-RFLP TaqI SEQ ID No. 62, 63 369
    295
     74
    13  D16S3035 SEQ ID No. 35, 36
    14  ADCY7int7 AS-PCR SEQ ID No. 59 to 61 140
  • The 12 biallelic polymorphism markers newly described in this study are listed in this table. For each one of them, the following are indicated: [0176]
  • the locus (column I) [0177]
  • the name (column II) [0178]
  • the genotyping technique used (column III) [0179]
  • the restriction enzyme possibly used (column IV) [0180]
  • the oligonucleotide primers used for the polymerase chain reaction or for the ligation (column V) [0181]
  • the size of the products expected during typing (column VI) [0182]
  • 199 families comprising 1 or more sick individuals suffering from CD were typed for these 12 polymorphism markers and also for the markers D16S3035 and D16S3136 located on the BAC hb87b10. The families comprising sick individuals suffering from UC were not taken into account. The methods for typing the polymorphisms studied were variable depending on the type of polymorphism, using: [0183]
  • the PCR-RFLP technique (amplification followed by enzymatic digestion of the PCR product) when the polymorphism was located on an enzymatic restriction site. [0184]
  • PCR with primers specific for the polymorphic site: differential amplification of two alleles using primers specific for each allele. [0185]
  • Oligoligation test: differential ligation using oligonucleotides specific for each allele, followed by polyacrylamide gel electrophoresis. [0186]
  • The typing data were then analyzed using a transmission disequilibrium test (TDT computer program of the GENEHUNTER software version 2). For the families comprising several affected relatives, a single sufferer was taken into account for the analysis. In fact, if several related sufferers are taken into account, this poses the problem of nonindependence of the data in the statistical calculations and can induce an inflation of the value of the test. The sufferer used for the analysis was drawn by lots, within each family, using an automatic randomization procedure. Given this randomization, the value of the statistical test obtained represented only one possible sample derived from the group of families studied. So as not to limit the analysis to this one possible sample, and in order to understand more clearly the soundness of the results obtained, for each test, about one hundred random samples were thus generated and analyzed. [0187]
  • The markers were studied separately and then grouped according to their order on the chromosomal segment (KIAA0849ex9 (locus 1), hb27G11F (locus 2), Ctg22Ex1 (locus 3), SNP1 (locus 4), ctg2931-3ac/ola (locus 5), ctg2931-5ag/ola (locus 6), SNP3-2931 (locus 7), Ctg25Ex1 (locus 8), CTG35ExA (locus 9), ctg35ExC (locus 10), d16s3136 (locus 11), hb133D1f (locus 12), D16S3035 (locus 13), ADCY7int7 (locus 14)) (table 2). The haplotypes comprising 2, 3 and 4 consecutive markers were thus analyzed still using the same strategy (100 random samples, taking a single affected individual for each family). [0188]
  • For each sample tested, only the genotypes (or haplotypes) carried by at least 10 parental chromosomes were taken into account. On average, 250 different tests were thus carried out for each sample. It was then possible to deduce the number of tests expected to be positive for each significance threshold and to compare this distribution to the distribution observed. For the healthy individuals, the distribution of the tests is not different from that expected on a random basis (χ[0189] 2=2.85, ddl=4, p=0.58). For the sick individuals, on the other hand, there is an excess of positive tests, reflecting the existence of a transmission disequilibrium in the region studied.
  • The results of the transmission disequilibrium test for each polymorphism marker taken separately or for the haplotypes showing the strongest transmission disequilibriums showed that the following markers and the disease are in linkage disequilibrium: Ctg22Ex1 (locus 3), SNP1 (locus 4), ctg2931-5ag/ola (locus 6), SNP3-2931 (locus 7), Ctg25Ex1 (locus 8) and ctg35ExC (locus 10). These markers extend over a region of approximately 50 kb (positions 74736 to 124285 on the sequence of hb87b10). [0190]
  • The haplotypes the most strongly associated with Crohn's disease themselves also extend over this region. Thus, for the majority of the random samples, the transmission test was positive (p<0.01) for haplotypes combining the following markers: [0191]
  • locus 5-6, locus 6-7, locus 7-8, locus 8-9, locus 9-10, locus 10-11 [0192]
  • locus 5-6-7, locus 6-7-8, locus 7-8-9, locus 8-9-10, locus 9-10-11 [0193]
  • locus 5-6-7-8, locus 6-7-8-9, locus 7-8-9-10. [0194]
  • The susceptibility haplotype most at risk is defined by the loci 7 to 10. This is the haplolype 1-2-1-2 (table 2). [0195]
  • The markers tested are, as expected, in linkage disequilibrium with respect to one another. [0196]
  • More recently, a new test, the Pedigree Disequilibrium Test (PDT), published in July 2000 (Martin et al., 2000), was used to understand more clearly the meaning of the results obtained with the TDT computer program. This new statistic in fact makes it possible to use all of the information available in a family, both from the sick individuals and from the healthy individuals, and to counterbalance the importance of each relative in an overall statistic for each family. The values of p corresponding to the PDT tests and obtained for an enlarged group of 235 families with one or more relatives suffering from Crohn's disease are given in table 3. This new analysis confirms that the region of the BAC hb87b10 is indeed associated with Crohn's disease. [0197]
    TABLE 3
    Results of the PDT tests carried out on 235
    families suffering from Crohn's disease (NS: not
    significant)
    LOCUS VALUE p OF THE PDT TEST
    KIAA0849ex9 NS
    hb27g11f 0.05
    ctg22ex1 0.01
    SNP1 0.001
    ctg2931-3ac/ola NS
    ctg2931-5ag/ola 0.0001
    SNP3-2931 0.0001
    ctg25ex1 0.0006
    ctg35exA NS
    ctg35exC 0.00002
    D16S3136 NS
    hb133d1f NS
    D16S3035 NS
  • Example 5 Identification of the IBD1 Gene
  • The published EST groups (Unigene references: Hs135201, Hs87280, Hs122983, Hs146128, Hs105242, Hs116424, Hs61309, Hs151708, Hs 87296 and Hs132289) present on the BAC hb87b10 were studied in the search for a more complete complementary DNA (cDNA) sequence. For IBD1prox, the clones available in public libraries were sequenced and the sequences were organized with respect to one another. For IBD1, a peripheral blood complementary DNA library (Stratagene human blood cDNA lambda zapexpress ref 938202) was screened with the PCR products generated from known ESTs according to the methods proposed by the manufacturer. The sequence of the cDNAs thus identified was then used for further screening of the cDNA library, and so on, until the presented cDNA was obtained. [0198]
  • The EST hs135201 (UniGene) made it possible to identify a cDNA not appearing on the available genetic databases (Genbank). It therefore corresponds to a new human gene. Comparison of the sequence of the cDNA and of the genomic DNA showed that this gene consists of 11 exons and 10 introns. An additional exon, positioned 5′ to the cDNA identified, is predicted by analysis of the sequence with the Grail program. These exons are very homologous to the first exons of the CARD4/NOD1 gene. Taking into consideration all of the exons identified and the putative additional exon, this new gene appears to have a genomic structure very close to that of CARD4/NOD1. Moreover, a transcription initiation site appears upstream of the first putative exon. For all of these reasons, the putative exon was considered to contribute to this new gene. The cDNA reproduced in the annex (SEQ ID No. 1) therefore comprises all of the identified sequence plus the sequence predicted by the computer modeling, the complementary DNA beginning randomly at the first ATG codon of the predicted coding sequence. On this basis, the gene would therefore comprise 12 exons and 11 introns. The intron-exon structure of the gene is reported on SEQ ID No. 3. [0199]
  • The protein sequence deduced from the nucleotide sequence comprises 1041 amino acids (SEQ ID No. 2). This sequence has not been found on the biological databases either (Genpept, pir, swissprot). [0200]
  • Now, more recently, it has not been possible to confirm the putative exon described above. The IBD1 gene therefore effectively comprises only 11 exons and 10 introns and encodes a protein of 1013 amino acids (i.e. 28 amino acids less than initially determined). [0201]
  • The study of the deduced protein sequence shows that this gene contains three different functional domains (FIG. 3): [0202]
  • A CARD domain (Caspase Recruitment Domain) known to be involved in the interaction between proteins regulating apoptosis and activation of the NFkappa B pathway. The CARD domain makes it possible to classify this new protein in the CARD protein family, the most longstanding members of which are CED4, APAF1 and RICK. [0203]
  • An NBD domain (Nucleotide-Binding Domain) comprising an ATP-recognition site and a magnesium-binding site. The protein should therefore very probably have kinase activity. [0204]
  • An LRR domain (Leucine-Rich Domain) presumed to participate in the interaction between proteins, by analogy with other described protein domains. [0205]
  • Moreover, the LRR domain of the protein makes it possible to affiliate the protein to a family of proteins involved in intracellular signaling and present both in plants and in animals. [0206]
  • Comparison of this new gene with previously identified genes available in the public databases shows that this gene is very homologous to CARD4/NOD1 (Bertin et al., 1999; Inohara et al., 1999). This homology relates to the sequence of the complementary DNA, the intron-exon structure of the gene and the protein sequence. The sequence identity of the two complementary DNAs is 58%. A similarity is also observed at the level of the intron-exon structure. The sequence homology at the protein level is of the order of 40%. [0207]
  • The similarity between this new gene and CARD4/NOD1 suggests that, like CARD4/NOD1, the IBD1 protein is involved in the regulation of apoptosis and of the activation of NF-kappa B (Bertin et al., 1999; Inohara et al., 1999). The regulation of cellular apoptosis and activation of NF-kappa B are intracellular signaling pathways which are essential in immune reactions. Specifically, these signal translation pathways are the effector pathways of the proteins of the TNF (Tumor Necrosis Factor) receptor family involved in cell-cell interactions and the cellular response to the various mediators of inflammation (cytokines) The new gene therefore appears to be potentially important in the inflammatory reaction in general. [0208]
  • Several bodies of proof support bacteria induced deregulation of NF-kB in Crohn's disease. First of all, spontaneous susceptibility to IBD in mice has been associated with mutations in Tlr4, a molecule known to bind to LPS via its LRR domain (Poltorak et al., 1998 and Sundberg et al., 1994) and to be a member of the activators of the NF-kB family. Second, treatment with antibiotics causes a provisional improvement in patients suffering from CD, giving credit to the hypothesis that enteric bacteria may play an etiological role in Crohn's disease (McKay, 1999). Third, NF-kB plays a pivotal role in inflammatory bowel diseases and is activated in lamina propria mononuclear cells in Crohn's disease (Schreiber et al., 1998). Fourth, the treatment of Crohn's disease is based on the use of sulfasalazine and glucocorticoids, which are both known to be NF-kB inhibitors (Auphan et al., 1995 and Wahl et al., 1998). [0209]
  • Even more recently, it has been shown that the IBD1 candidate gene encodes a protein very similar to NOD2, a member of the CED4/APAF1 superfamily (Ogura et al., 2000). The nucleotide and protein sequences of IBD1 and NOD2 in reality only diverge for a small portion right at the start of the two reported sequences. The tissue expressions of Nod2 and IBD1 can, in addition, be superimposed. These two genes (proteins) can therefore be considered to be identical. It has been demonstrated that the LRR domain of Nod2 has binding activity for bacterial lipopolysaccharides (LPS) (Inohara et al., 2000) and that deletion thereof stimulates the NFkB pathway. This result confirms the data of the invention. [0210]
  • The tissue expression of IBD1 was then studied by Northern blotting. A 4.5 kb transcript is visible in most human tissues. The size of the transcript is in accordance with the size predicted by the cDNA. The 4.5 kb transcript appears to be very poorly abundant in the small intestine and the colon. It is, on the other hand, very strongly expressed in white blood cells. This is in agreement with clinical data on transplants which suggest that Crohn's disease is potentially a disease associated with circulating immune cells. In fact, bowel transplantation does not prevent recurrence on the transplant in Crohn's disease, whereas bone marrow transplantation appears to have a beneficial effect on the progression of the disease. [0211]
  • Certain data also call to mind alternative splicing, which may prove to be an important element in the possibility of generating mutants which may play a role in the development of inflammatory diseases. [0212]
  • The promoter of the IBD1 gene has not currently been identified with precision. It is, however, reasonable to think, by analogy with a very large number of genes, that this promoter lies, at least partly, immediately upstream of the gene, in the 5′ portion thereof. This genetic region contains transcribed sequences, as witnessed by the presence of ESTs (HUMGS01037, AA835524, hs.105242, SHGC17274, hs.146128, hs.122983, hs.87280). The ATCC clones containing these sequences were sequenced and analyzed in the laboratory, making it possible to demonstrate an exon and intron organization with possible alternative splicings. These data suggest the existence of another gene (named IBD1prox due to its proximity to IBD1). The partial sequence of the complementary DNA of IBD1prox is reported (SEQ ID No. 4), as is its intron-exon structure, on SEQ ID No. 6. [0213]
  • Translation of the cDNAs corresponding to IBD1prox results in a protein containing a homeobox. Analysis of several cDNAs of the gene suggests, however, the existence of alternative splicings. IBD1prox, according to one of the possible alternative splicings, corresponds to the anonymous EST HUMGS01037, the RNA of which is expressed more strongly in differentiated leukocytic lines than in undifferentiated lines. [0214]
  • Thus, it is possible that this gene may have a role in inflammation and cell differentiation. It may therefore also, itself, be considered to be a good candidate for susceptibility to IBD. The association between CD and the polymorphism ctg35ExC located on the coding sequence of IBD1prox supports this hypothesis even though this polymorphism does not cause any sequence variation at the protein level. [0215]
  • Finally, more recently, the existence of a genetic linkage in families suffering from Crohn's disease and not comprising any mutation in the IBD1 gene also, itself, suggests that IBD1prox has a role in addition to IBD1 in genetic predisposition to the disease. [0216]
  • The functional relationship between IBD1 and IBD1prox is not currently established. However, the considerable proximity between the two genes may reflect an interaction between them. In this case, the “head-to-tail” location of these genes suggests that they may have common or interdependent methods of regulation. [0217]
  • Example 6 Identification of IBD1 Gene Mutations in Inflammatory Diseases
  • In order to confirm the role of IBD1 in inflammatory diseases, the coding sequence and the intron-exon junctions of the gene were sequenced from [0218] exon 2 to exon 12 inclusive, in 70 independent individuals, namely: 50 sick individuals suffering from CD, 10 sick individuals suffering from UC, 1 sick individual suffering from Blau's syndrome and 9 healthy controls. The sick individuals studied were mostly familial forms of the disease and were often carriers of the susceptibility haplotype defined by the transmission disequilibrium studies. The healthy controls were of Caucasian origin.
  • It was thus possible to identify 24 sequence variants on this group of 70 unrelated individuals (table 3). [0219]
  • The nomenclature of the mutations reported refers to the initial sequence of the protein comprising 1 041 amino acids. The more recently proposed nomenclature is easily deduced by removing 28 amino acids from the initial sequence, and therefore corresponds to a protein comprising 1 013 amino acids (cf. example 5). [0220]
    TABLE 4
    Mutations observed in the IBD1 gene
    Nucleotide Protein Crohn's Ulcerative Health
    Exon variant variant disease colitis controls
    1 Not tested
    2 G417A Silent
    2 C537G Silent
    3 None
    4 T805C S269P 48/100 6/20 3/18
    4 A869G N290S 0 0 1/18
    4 C905T A302V 1/100 0 0
    4 C1283T P428L 1/100 0 0
    4 C1284A Silent
    4 C1287T Silent
    4 T1380C Silent
    4 T1764G Silent
    4 G1837A A613T 1/100 0 0
    4 C2107T R703W 10/10 1/20 1/18
    4 C2110T R704C 4/10 1/20 0
    5 G2365A R792Q 1/100 0 0
    5 G2370A V794M 0 1/20 0
    5 G2530A E844K 1/10 0 0
    6 A2558G N853S 1/100 0 0
    6 A2590G M864V 1/100 0 0
    7 None
    8 G2725C G909R 7/100 0 0
    8 C2756A A919D 1/100 0 0
    9 G2866A V9561 2/100 1/20 3/18
    10  C2928T Silent
    11  3022insC Stop 20/100 0 0
    12  none
  • The mutations other than silent mutations observed in each exon are reported. They are indicated by the variation in the peptide chain. For each mutation and for each phenotype studied, the number of times where the mutation is observed, related to the number of chromosomes tested, is indicated. [0221]
  • No functional sequence variant was identified in [0222] exons 1 to 3 (corresponding to the CARD domain of the protein). Exons 7 and 12 did not show any sequence variation either. Certain variants corresponded to polymorphisms already identified and typed for transmission disequilibrium studies, namely:
  • Snp3-2931: nucleotide variant T805C, protein variant S269P [0223]
  • ctg2931-5ag/ola: nucleotide variant T1380C (silent) [0224]
  • ctg2931-3ac/ola: nucleotide variant T1746G (silent) [0225]
  • SNP1: nucleotide variant C2107T, protein variant R703W. [0226]
  • Several sequence variations were silent (G417A, C537G, C1284A, C1287T, T1380C, T1764G and C2928T) and did not lead to any modification of the protein sequence. They were not studied further here. [0227]
  • For the 16 non-silent sequence variations, protein sequence variants were observed in 43/50 CD versus 5/9 healthy controls, and 6/10 UC. The existence of one or more sequence variation(s) appeared to be associated with the CD phenotype. Several sequence variations often existed in the same individual suffering from CD, suggesting a sometimes recessive effect of the gene for CD. On the other hand, no composite heterozygote or homozygote was observed among the patients suffering from UC or among the healthy controls. [0228]
  • Some non-silent variants were present both in the sick individuals suffering from UC or from CD and in the healthy individuals. They were the variants S269P, N290S, R703W and V9561 located in [0229] exons 2, 4 and 9. Further information therefore appears to be necessary before selecting a possible functional role for these sequence variants.
  • V9561 is a conservative sequence variation (aliphatic amino acids). [0230]
  • The sequence variant S269P corresponds to a variation in amino acid class (hydroxylated to immuno acid) at the beginning of the nucleotide-binding domain. This sequence variant and CD are in transmission disequilibrium. It is in fact the polymorphism Snp3 (cf. above). [0231]
  • R703W results in a modification of the amino acid class (aromatic instead of basic). This modification occurs in the intermediate region between the NBD and LRR domains, which is a region conserved between IBD1 and CARD4/NOD1. A functional role may therefore be suspected for this polymorphism. This sequence variation (corresponding to the polymorphic site Snp1) is transmitted to sick individuals suffering from CD more often than at random (cf. above), confirming that this polymorphism is associated with CD. It is possible that the presence of this mutant in healthy individuals reflects incomplete penetration of the mutation as is expected for complex genetic diseases such as chronic inflammatory bowel diseases. [0232]
  • The variant R704C, located immediately next to R703W, could be identified in both CD and UC. It also, itself, corresponds to a nonconservative variation of the protein (sulfur-containing amino acid instead of basic amino acid) on the same protein region, suggesting a functional effect for R704C which is as important as that for R703W. [0233]
  • Other sequence variations are specific for CD, for UC or for Blau's syndrome. [0234]
  • Some sequence variations are, on the contrary, rare, present in one or a few sick individuals (A613T, R704C, E844K, N853S, M864V, A919D). They are always variations leading to nonconservative modifications of the protein in leucine-rich domains, at positions which are important within these domains. These various elements suggest that these variations have a functional role. [0235]
  • Two sequence variations (G909R and L1008P*) are found in quite a large number of Crohn's diseases (respectively 7/50 and 16/50) whereas they are not detected in the controls or in the individuals suffering from UC. [0236]
  • The deletion/insertion of a guanosine at codon 1008 results in transformation of the third leucine of the alpha helix of the last LRR to proline followed by a STOP codon (L1008P*). This sequence variation therefore leads to an important modification of the protein: decrease in size of the protein (protein having a truncated LRR domain) and modification of a very conserved amino acid (leucine). This sequence modification is associated with CD, as witnessed by a transmission disequilibrium study in 16 families carrying the mutation (P=0.008). [0237]
  • The mutation G909R occurs on the last amino acid of the sixth LRR motif. It replaces an aliphatic amino acid with a basic amino acid. This variation is potentially important given the usually neutral or polar nature of the amino acids in the terminal position of the leucine-rich motifs (both for IBD1 and for NOD1/CARD4) and the conserved nature of this amino acid on the IBD1 and NOD1/CARD4 proteins. [0238]
  • In Blau's syndrome, the sick individuals (n=2) of the family studied carried a specific sequence variation (L470F) located in [0239] exon 4 and corresponding to the NBD domain of the protein. In this series, this sequence variant was specific for Blau's syndrome.
  • In UC, several sequence variants not found in healthy individuals were also identified. The proportion of sick individuals carrying a mutation was smaller than for CD, as expected given the less strongly established linkage between IBD1 and UC, and the supposedly less genetic nature of the latter disease. Sequence variations were common to CD and to UC (R703W, R704C). Others, on the other hand, appeared to be specific for UC (V794M). This observation makes it possible to confirm that CD and UC are diseases which, at least partly, share the same genetic predisposition. It lays down the foundations of a nosological classification for IBDs. [0240]
  • The study of the sequence variants of the IBD1 gene has therefore made it possible to identify several variants having a very probable functional effect (for example: truncated protein) and associated with Crohn's disease, with UC and with Blau's syndrome. [0241]
  • The promoter of the gene is not currently determined. In all probability, however, it is likely to be located in the 5′ region upstream of the gene. According to this hypothesis, the sequence variants observed in this region may have a functional effect. This may explain the very strong association between CD and certain polymorphic loci, such as ctg35ExC or Ctg25Ex1. [0242]
  • The invention thus provides the first description of mutations in the family of genes containing a CARD domain in humans. The frequency of these mutations in various inflammatory diseases shows that the IBD1 gene has an essential role in normal and pathological inflammatory processes. This invention provides new paths of understanding and of research in the field of the physiopathology of normal and pathological inflammatory processes. As a result, it makes it possible to envision the development of new pharmaceutical molecules which regulate the effector pathways controlled by IBD1 and which are useful in the treatment of inflammatory diseases and in the regulation of inflammatory processes in general. [0243]
  • Example 7 Bases for a Biological Diagnosis of Susceptibility to Crohn's Disease
  • More recently, 457 independent patients suffering from Crohn's disease, 159 independent patients suffering from ulcerative colitis and 103 healthy controls were studied in the search for mutations. This study made it possible to confirm the mutations previously reported and to identify additional mutations, reported in FIG. 4. The main mutations were then genotyped in 235 families suffering from Crohn's disease. This more recent study is reported using, as reference, the shorter protein sequence (1 013 amino acids, see example 5), but the prior nomenclature for the mutations is easily deduced from the latter by adding 28 to the number indicating the position of the amino acids. [0244]
  • Among the 5 most common mutations, the conservative mutation V928I (formerly V956I) is not significantly associated with one or the other of the inflammatory bowel diseases, and does not therefore appear to have an important role in the disease. [0245]
  • The mutation S241P (formerly S269P) is in linkage disequilibrium with the other main mutations and does not appear to play an important role, by itself, in susceptibility to inflammatory bowel diseases (data not shown). [0246]
  • Conversely, the other 3 mutations, R675W (formerly R703W), G881R (formerly G909R) and 980fs (formerly L1008P), are significantly associated with Crohn's disease but not with ulcerative colitis (cf. below). The location in the LRR, or in its immediate proximity, of the 3 common mutations pleads very strongly in favor of a functional mechanism involving this protein domain, probably via a defect in negative regulation of NFkB by the mutated protein. The other mutations are more rare (FIG. 4). These cumulative mutations are present in 17% of the individuals suffering from Crohn's disease versus, respectively, 4% and 5% of the healthy individuals or individuals suffering from ulcerative colitis. A large number of rare mutations are also located in the LRR. [0247]
  • The intrafamily studies of the three polymorphisms most common in Crohn's disease show that all three are associated with the disease (table 5). As expected, for a mutation supposed to be very deleterious, the polymorphism most strongly associated is the truncating mutation. These three polymorphisms are independently associated with Crohn's disease, since it was not possible to identify, on 235 families, chromosomes carrying more than one of these three mutations. The independent nature of these associations considerably supports the hypothesis that the IBD1 gene is clearly involved in genetic predisposition to Crohn's disease. [0248]
    TABLE 5
    Study of the 3 common polymorphisms of IBD1 in
    235 families suffering from Crohn's disease
    MUTATION VALUE p OF THE PDT TEST
    R675W 0.001
    G881R 0.003
    980fs 0.000006
  • The case-control studies confirm this association (table 6). They show that the mutations most common in Crohn's disease are not common in ulcerative colitis. [0249]
    TABLE 6
    Case-control study of the 3 common poly-
    morphisms of IBD1 in inflammatory bowel diseases
    No. OF FREQUENCY FREQUENCY FREQUENCY
    CHROMO- OF THE OF THE OF THE TOTAL
    SOMES ALLELE AT ALLELE AT ALLELE AT ALLELES
    MUTATION STUDIED RISK R675W RISK G881R RISK 980fs AT RISK
    Healthy 206 0.04 0.01 0.02 0.07
    controls
    Ulcerative 318 0.03 0.00 0.01 0.05
    colitis
    Crohn's 936 0.11 0.06 0.12 0.29
    disease
  • The study of the dose-effect of these mutations shows that individuals carrying a mutation in the homozygous or composite heterozygous state exhibit a much greater risk of developing the disease than individuals who are not carrying or are heterozygous for these mutations (table 7). [0250]
    TABLE 7
    Relative and absolute risk of Crohn's disease
    attributable as a function of the genotype of IBD1
    In the general population, a risk of Crohn's disease of
    0.001 has been taken as a reference, and it has been
    presumed that the mutations are in Hardy-Weinberg
    equilibrium.
    GENOTYPE
    No SIMPLE COMPOSITE
    Distribution VARIANT HETEROZYGOTE HOMOZYGOTE HETEROZYGOTE
    Healthy 88 15 0 0
    Ulcerative 145 13 1 0
    colitis
    Crohn's 267 133 20 40
    disease
    Attributable
    risk of CD:
    Relative risk 1 3 38 44
    Absolute risk 0.0007 0.002 0.03 0.03
  • The studies mentioned above confirm the prior preliminary data and provide the detailed bases for a biological diagnosis of Crohn's disease by studying the IBD1 variants. In fact, this work: [0251]
  • 1) defines the mutations, the frequency of which is greater than 0.001 in a mixed Caucasian population; [0252]
  • 2) defines the frequency of the mutations observed and makes it possible to define 3 main mutations associated with Crohn's disease. Thus, it is possible, by virtue of this work, to define a strategy for studying the gene in order to search for morbid variants, namely: firstly, typing the 3 main mutations; secondly, searching for mutations in the last 7 exons; thirdly, searching for other sequence variants; [0253]
  • 3) defines the practical modalities for searching for these mutations by pointing out their position and their nature. In fact, it is then easy for those skilled in the art to develop typing and sequencing methods according to their personal expertise. Mention may in particular be made of the possibility of genotyping the three main mutations by PCR followed by enzymatic digestion and electrophoresis, study of the migration profiles by dHPLC, DGGE or SSCP, oligoligation, microsequencing, etc.; [0254]
  • 4) demonstrates the independence of the most common mutations which are not observed on the same chromosome in this extended and varied population. This information makes it possible to reliably classify the individuals who are composite heterozygotes (having two mutations) as carriers with a double dose of intragenic variations; [0255]
  • 5) demonstrates that the great majority of the mutations only lead to a null or minimal effect on the risk of ulcerative colitis. This result makes it possible to envision assisting the clinician in the differential diagnosis between these two diseases. In fact, in approximately 10% of cases, inflammatory bowel diseases remain unclassified despite biological, radiological and endoscopic examination; [0256]
  • 6) defines a relative and absolute risk of disease for the most common genotypes. This result lays down the foundations of a predictive diagnosis potentially useful in an approach of preventive monitoring and intervention in populations at risk, in particular the relatives of sick individuals; [0257]
  • 7) demonstrates the existence of a dose-effect for the IBD1 gene and confirms the partly recessive nature of genetic predisposition to Crohn's disease. It therefore makes it possible to lay the foundations for genetic counseling and for intra-familial preclinical diagnosis. [0258]
  • Finally, it should be noted that an additional mutation of the NBD domain was isolated in a second family carrying Blau's syndrome. The rareness of the two events in 2 different families is sufficient to confirm the involvement of this gene in Blau's syndrome and in granulomatous diseases in general. [0259]
  • All of these data provide a diagnostic tool which is directly applicable and of use to the practitioner in his or her daily practice. [0260]
  • The IBD1prox gene, located in the promoter region of IBD1, and the partial sequence of which is disclosed in the present invention, may also, itself, have an important role in the regulation of cellular apoptosis and of the inflammatory process, as suggested by its differential expression in mature cells of the immune system. The strong association reported in this work between the polymorphism marker ctg35ExC (located in the transcribed region of the gene) and Crohn's disease also pleads very strongly in favor of this hypothesis. [0261]
  • Inflammatory bowel diseases are complex genetic diseases for which, until now, no susceptibility gene had been identified with certainty. The invention has made it possible to identify the first gene for susceptibility to Crohn's disease, using a positional cloning (or reverse genetics) approach. This is the first genetic location obtained using such an approach for a complex genetic disease, which demonstrates its usefulness and its feasibility, at least in certain cases in complex genetic diseases. [0262]
  • The present invention also relates to a purified or isolated nucleic acid, characterized in that it encodes a polypeptide possessing a continuous fragment of at least 200 amino acids of a protein chosen from SEQ ID No. 2 and SEQ ID No. 5. [0263]
  • REFERENCES
  • Auphan et al. (1995), Science 270, 286-90. [0264]
  • Asakawa et al. (1997), Gene, 191, 69. [0265]
  • Becker et al. (1998), Proc. Natl. Acad. Sci. USA, 95, 9979. [0266]
  • Bertin et al. (1999), J. Biol. Chem., 274, 12955. [0267]
  • Buckholz (1993), Curr. Op. [0268] Biotechnology 4, 538.
  • Carter, (1993), Curr. Op. [0269] Biotechnology 3, 533.
  • Cho et al. (1998), Proc. Natl. Acad. Sci. USA, 95, 7502. [0270]
  • Duck et al. (1990), Biotechniques, 9, 142. [0271]
  • Edwards and Aruffo (1993), Curr. Op. Biotechnology, 4, 558. [0272]
  • Epstein (1992), Médecine/Sciences, 8, 902. [0273]
  • Guatelli et al. (1990), Proc. Natl. Acad. Sci. USA 87: 1874. [0274]
  • Hugot et al. (1996), Nature, 379, 821. [0275]
  • Inohara et al. (1999), J. Biol. Chem., 274, 14560. [0276]
  • Inohara et al. (2000), J. Biol. Chem. [0277]
  • Kievitis et al. (1991), J. Virol. Methods, 35, 273. [0278]
  • Kim et al. (1996), Genomics, 34, 213. [0279]
  • Köhler and Milstein (1975), Nature, 256, 495. [0280]
  • Kwoh et al. (1989), Proc. Natl. Acad. Sci. USA, 86, 1173. [0281]
  • Landegren et al. (1988), Science 241, 1077. [0282]
  • Lander and Kruglyak (1995), Nat. Genet., 11, 241. [0283]
  • Luckow (1993), Curr. Op. [0284] Biotechnology 4, 564.
  • Martin et al. (2000), Am. J. Hum. Genet. 67: 146-54. [0285]
  • Matthews et al. (1988), Anal. Biochem., 169, 1-25. [0286]
  • McKay (1999), Gastroenterol. 13, 509-516. [0287]
  • Miele et al. (1983), J. Mol. Biol., 171, 281. [0288]
  • Neddleman and Wunsch (1970), J. Mol. Biol. 48: 443. [0289]
  • Ogura et al. (2000), J. Biol. Chem. [0290]
  • Olins and Lee (1993), Curr. Op. Biotechnology 4: 520. [0291]
  • Perricaudet et al. (1992), La Recherche 23: 471. [0292]
  • Pearson and Lipman (1988), Proc. Natl. Acad. Sci. USA 85: 2444. [0293]
  • Poltorak et al. (1998), Sciences 282, 2085-8. [0294]
  • Rioux et al. (1998), Gastroenterology, 115: 1062. [0295]
  • Rohlmann et al. (1996), Nature Biotech. 14: 1562. [0296]
  • Rolfs, A. et al., (1991), Berlin: Springer-Verlag. [0297]
  • Rouquier et al. (1994), Anal. Biochem. 217, 205. [0298]
  • Sambrook et al. (1989), Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Lab., Cold Spring Harbor, N.Y. [0299]
  • Satsangi et al. (1996), Nat. Genet., 14: 199. [0300]
  • Schreiber et al. (1998), Gut 42, 477-84. [0301]
  • Segev (1992), Kessler C. Springer Verlag, Berlin, N.Y., 197-205. [0302]
  • Smith and Waterman (1981) Ad. App. Math. 2: 482. [0303]
  • Steward and Yound (1984), Solid phase peptides synthesis, Pierce Chem. Company, Rockford, 111, 2nd ed. (1984). [0304]
  • Spielman et al. (1993), Am. J. Hum. Genet., 52, 506. [0305]
  • Sundberg et al. (1994), Gastroenterology, 107, 1726-35. [0306]
  • Temin (1986), Retrovirus vectors for gene transfer. In Kucherlapati R., ed. Gene Transfer, New York, Plenum Press, 149-187. [0307]
  • Tromp et al. (1996), Am. J. Hum. Genet., 59: 1097. [0308]
  • Wahl et al. (1998), B. J. Clin. Invest 101, 1163-74. [0309]
  • Walker (1992), Nucleic Acids Res. 20: 1691. [0310]
  • 1 90 1 4322 DNA Homo sapiens CDS (1)..(3123) 1 atg gag aag aga agg ggt cta acc att gag tgc tgg ggc ccc caa agt 48 Met Glu Lys Arg Arg Gly Leu Thr Ile Glu Cys Trp Gly Pro Gln Ser 1 5 10 15 ccc tca ctg acc ttg ttc tcc tcc cca ggt tgt gaa atg tgc tcg cag 96 Pro Ser Leu Thr Leu Phe Ser Ser Pro Gly Cys Glu Met Cys Ser Gln 20 25 30 gag gct ttt cag gca cag agg agc cag ctg gtc gag ctg ctg gtc tca 144 Glu Ala Phe Gln Ala Gln Arg Ser Gln Leu Val Glu Leu Leu Val Ser 35 40 45 ggg tcc ctg gaa ggc ttc gag agt gtc ctg gac tgg ctg ctg tcc tgg 192 Gly Ser Leu Glu Gly Phe Glu Ser Val Leu Asp Trp Leu Leu Ser Trp 50 55 60 gag gtc ctc tcc tgg gag gac tac gag ggc ttc cac ctc ctg ggc cag 240 Glu Val Leu Ser Trp Glu Asp Tyr Glu Gly Phe His Leu Leu Gly Gln 65 70 75 80 cct ctc tcc cac ttg gcc agg cgc ctt ctg gac acc gtc tgg aat aag 288 Pro Leu Ser His Leu Ala Arg Arg Leu Leu Asp Thr Val Trp Asn Lys 85 90 95 ggt act tgg gcc tgt cag aag ctc atc gcg gct gcc caa gaa gcc cag 336 Gly Thr Trp Ala Cys Gln Lys Leu Ile Ala Ala Ala Gln Glu Ala Gln 100 105 110 gcc gac agc cag tcc ccc aag ctg cat ggc tgc tgg gac ccc cac tcg 384 Ala Asp Ser Gln Ser Pro Lys Leu His Gly Cys Trp Asp Pro His Ser 115 120 125 ctc cac cca gcc cga gac ctg cag agt cac cgg cca gcc att gtc agg 432 Leu His Pro Ala Arg Asp Leu Gln Ser His Arg Pro Ala Ile Val Arg 130 135 140 agg ctc cac agc cat gtg gag aac atg ctg gac ctg gca tgg gag cgg 480 Arg Leu His Ser His Val Glu Asn Met Leu Asp Leu Ala Trp Glu Arg 145 150 155 160 ggt ttc gtc agc cag tat gaa tgt gat gaa atc agg ttg ccg atc ttc 528 Gly Phe Val Ser Gln Tyr Glu Cys Asp Glu Ile Arg Leu Pro Ile Phe 165 170 175 aca ccg tcc cag agg gca aga agg ctg ctt gat ctt gcc acg gtg aaa 576 Thr Pro Ser Gln Arg Ala Arg Arg Leu Leu Asp Leu Ala Thr Val Lys 180 185 190 gcg aat gga ttg gct gcc ttc ctt cta caa cat gtt cag gaa tta cca 624 Ala Asn Gly Leu Ala Ala Phe Leu Leu Gln His Val Gln Glu Leu Pro 195 200 205 gtc cca ttg gcc ctg cct ttg gaa gct gcc aca tgc aag aag tat atg 672 Val Pro Leu Ala Leu Pro Leu Glu Ala Ala Thr Cys Lys Lys Tyr Met 210 215 220 gcc aag ctg agg acc acg gtg tct gct cag tct cgc ttc ctc agt acc 720 Ala Lys Leu Arg Thr Thr Val Ser Ala Gln Ser Arg Phe Leu Ser Thr 225 230 235 240 tat gat gga gca gag acg ctc tgc ctg gag gac ata tac aca gag aat 768 Tyr Asp Gly Ala Glu Thr Leu Cys Leu Glu Asp Ile Tyr Thr Glu Asn 245 250 255 gtc ctg gag gtc tgg gca gat gtg ggc atg gct gga tcc ccg cag aag 816 Val Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Ser Pro Gln Lys 260 265 270 agc cca gcc acc ctg ggc ctg gag gag ctc ttc agc acc cct ggc cac 864 Ser Pro Ala Thr Leu Gly Leu Glu Glu Leu Phe Ser Thr Pro Gly His 275 280 285 ctc aat gac gat gcg gac act gtg ctg gtg gtg ggt gag gcg ggc agt 912 Leu Asn Asp Asp Ala Asp Thr Val Leu Val Val Gly Glu Ala Gly Ser 290 295 300 ggc aag agc acg ctc ctg cag cgg ctg cac ttg ctg tgg gct gca ggg 960 Gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 305 310 315 320 caa gac ttc cag gaa ttt ctc ttt gtc ttc cca ttc agc tgc cgg cag 1008 Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 325 330 335 ctg cag tgc atg gcc aaa cca ctc tct gtg cgg act cta ctc ttt gag 1056 Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 340 345 350 cac tgc tgt tgg cct gat gtt ggt caa gaa gac atc ttc cag tta ctc 1104 His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu 355 360 365 ctt gac cac cct gac cgt gtc ctg tta acc ttt gat ggc ttt gac gag 1152 Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 375 380 ttc aag ttc agg ttc acg gat cgt gaa cgc cac tgc tcc ccg acc gac 1200 Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 385 390 395 400 ccc acc tct gtc cag acc ctg ctc ttc aac ctt ctg cag ggc aac ctg 1248 Pro Thr Ser Val Gln Thr Leu Leu Phe Asn Leu Leu Gln Gly Asn Leu 405 410 415 ctg aag aat gcc cgc aag gtg gtg acc agc cgt ccg gcc gct gtg tcg 1296 Leu Lys Asn Ala Arg Lys Val Val Thr Ser Arg Pro Ala Ala Val Ser 420 425 430 gcg ttc ctc agg aag tac atc cgc acc gag ttc aac ctc aag ggc ttc 1344 Ala Phe Leu Arg Lys Tyr Ile Arg Thr Glu Phe Asn Leu Lys Gly Phe 435 440 445 tct gaa cag ggc atc gag ctg tac ctg agg aag cgt cat cat gag ccc 1392 Ser Glu Gln Gly Ile Glu Leu Tyr Leu Arg Lys Arg His His Glu Pro 450 455 460 ggg gtg gcg gac cgc ctc atc cgc ctg ctc caa gag acc tca gcc ctg 1440 Gly Val Ala Asp Arg Leu Ile Arg Leu Leu Gln Glu Thr Ser Ala Leu 465 470 475 480 cac ggt ttg tgc cac ctg cct gtc ttc tca tgg atg gtg tcc aaa tgc 1488 His Gly Leu Cys His Leu Pro Val Phe Ser Trp Met Val Ser Lys Cys 485 490 495 cac cag gaa ctg ttg ctg cag gag ggg ggg tcc cca aag acc act aca 1536 His Gln Glu Leu Leu Leu Gln Glu Gly Gly Ser Pro Lys Thr Thr Thr 500 505 510 gat atg tac ctg ctg att ctg cag cat ttt ctg ctg cat gcc acc ccc 1584 Asp Met Tyr Leu Leu Ile Leu Gln His Phe Leu Leu His Ala Thr Pro 515 520 525 cca gac tca gct tcc caa ggt ctg gga ccc agt ctt ctt cgg ggc cgc 1632 Pro Asp Ser Ala Ser Gln Gly Leu Gly Pro Ser Leu Leu Arg Gly Arg 530 535 540 ctc ccc acc ctc ctg cac ctg ggc aga ctg gct ctg tgg ggc ctg ggc 1680 Leu Pro Thr Leu Leu His Leu Gly Arg Leu Ala Leu Trp Gly Leu Gly 545 550 555 560 atg tgc tgc tac gtg ttc tca gcc cag cag ctc cag gca gca cag gtc 1728 Met Cys Cys Tyr Val Phe Ser Ala Gln Gln Leu Gln Ala Ala Gln Val 565 570 575 agc cct gat gac att tct ctt ggc ttc ctg gtg cgt gcc aaa ggt gtc 1776 Ser Pro Asp Asp Ile Ser Leu Gly Phe Leu Val Arg Ala Lys Gly Val 580 585 590 gtg cca ggg agt acg gcg ccc ctg gaa ttc ctt cac atc act ttc cag 1824 Val Pro Gly Ser Thr Ala Pro Leu Glu Phe Leu His Ile Thr Phe Gln 595 600 605 tgc ttc ttt gcc gcg ttc tac ctg gca ctc agt gct gat gtg cca cca 1872 Cys Phe Phe Ala Ala Phe Tyr Leu Ala Leu Ser Ala Asp Val Pro Pro 610 615 620 gct ttg ctc aga cac ctc ttc aat tgt ggc agg cca ggc aac tca cca 1920 Ala Leu Leu Arg His Leu Phe Asn Cys Gly Arg Pro Gly Asn Ser Pro 625 630 635 640 atg gcc agg ctc ctg ccc acg atg tgc atc cag gcc tcg gag gga aag 1968 Met Ala Arg Leu Leu Pro Thr Met Cys Ile Gln Ala Ser Glu Gly Lys 645 650 655 gac agc agc gtg gca gct ttg ctg cag aag gcc gag ccg cac aac ctt 2016 Asp Ser Ser Val Ala Ala Leu Leu Gln Lys Ala Glu Pro His Asn Leu 660 665 670 cag atc aca gca gcc ttc ctg gca ggg ctg ttg tcc cgg gag cac tgg 2064 Gln Ile Thr Ala Ala Phe Leu Ala Gly Leu Leu Ser Arg Glu His Trp 675 680 685 ggc ctg ctg gct gag tgc cag aca tct gag aag gcc ctg ctc cgg cgc 2112 Gly Leu Leu Ala Glu Cys Gln Thr Ser Glu Lys Ala Leu Leu Arg Arg 690 695 700 cag gcc tgt gcc cgc tgg tgt ctg gcc cgc agc ctc cgc aag cac ttc 2160 Gln Ala Cys Ala Arg Trp Cys Leu Ala Arg Ser Leu Arg Lys His Phe 705 710 715 720 cac tcc atc ccg cca gct gca ccg ggt gag gcc aag agc gtg cat gcc 2208 His Ser Ile Pro Pro Ala Ala Pro Gly Glu Ala Lys Ser Val His Ala 725 730 735 atg ccc ggg ttc atc tgg ctc atc cgg agc ctg tac gag atg cag gag 2256 Met Pro Gly Phe Ile Trp Leu Ile Arg Ser Leu Tyr Glu Met Gln Glu 740 745 750 gag cgg ctg gct cgg aag gct gca cgt ggc ctg aat gtt ggg cac ctc 2304 Glu Arg Leu Ala Arg Lys Ala Ala Arg Gly Leu Asn Val Gly His Leu 755 760 765 aag ttg aca ttt tgc agt gtg ggc ccc act gag tgt gct gcc ctg gcc 2352 Lys Leu Thr Phe Cys Ser Val Gly Pro Thr Glu Cys Ala Ala Leu Ala 770 775 780 ttt gtg ctg cag cac ctt cgg cgg ccc gtg gcc ctg cag ctg gac tac 2400 Phe Val Leu Gln His Leu Arg Arg Pro Val Ala Leu Gln Leu Asp Tyr 785 790 795 800 aac tct gtg ggt gac att ggc gtg gag cag ctg ctg cct tgc ctt ggt 2448 Asn Ser Val Gly Asp Ile Gly Val Glu Gln Leu Leu Pro Cys Leu Gly 805 810 815 gtc tgc aag gct ctg tat ttg cgc gat aac aat atc tca gac cga ggc 2496 Val Cys Lys Ala Leu Tyr Leu Arg Asp Asn Asn Ile Ser Asp Arg Gly 820 825 830 atc tgc aag ctc att gaa tgt gct ctt cac tgc gag caa ttg cag aag 2544 Ile Cys Lys Leu Ile Glu Cys Ala Leu His Cys Glu Gln Leu Gln Lys 835 840 845 tta gct cta ttc aac aac aaa ttg act gac ggc tgt gca cac tcc atg 2592 Leu Ala Leu Phe Asn Asn Lys Leu Thr Asp Gly Cys Ala His Ser Met 850 855 860 gct aag ctc ctt gca tgc agg cag aac ttc ttg gca ttg agg ctg ggg 2640 Ala Lys Leu Leu Ala Cys Arg Gln Asn Phe Leu Ala Leu Arg Leu Gly 865 870 875 880 aat aac tac atc act gcc gcg gga gcc caa gtg ctg gcc gag ggg ctc 2688 Asn Asn Tyr Ile Thr Ala Ala Gly Ala Gln Val Leu Ala Glu Gly Leu 885 890 895 cga ggc aac acc tcc ttg cag ttc ctg gga ttc tgg ggc aac aga gtg 2736 Arg Gly Asn Thr Ser Leu Gln Phe Leu Gly Phe Trp Gly Asn Arg Val 900 905 910 ggt gac gag ggg gcc cag gcc ctg gct gaa gcc ttg ggt gat cac cag 2784 Gly Asp Glu Gly Ala Gln Ala Leu Ala Glu Ala Leu Gly Asp His Gln 915 920 925 agc ttg agg tgg ctc agc ctg gtg ggg aac aac att ggc agt gtg ggt 2832 Ser Leu Arg Trp Leu Ser Leu Val Gly Asn Asn Ile Gly Ser Val Gly 930 935 940 gcc caa gcc ttg gca ctg atg ctg gca aag aac gtc atg cta gaa gaa 2880 Ala Gln Ala Leu Ala Leu Met Leu Ala Lys Asn Val Met Leu Glu Glu 945 950 955 960 ctc tgc ctg gag gag aac cat ctc cag gat gaa ggt gta tgt tct ctc 2928 Leu Cys Leu Glu Glu Asn His Leu Gln Asp Glu Gly Val Cys Ser Leu 965 970 975 gca gaa gga ctg aag aaa aat tca agt ttg aaa atc ctg aag ttg tcc 2976 Ala Glu Gly Leu Lys Lys Asn Ser Ser Leu Lys Ile Leu Lys Leu Ser 980 985 990 aat aac tgc atc acc tac cta ggg gca gaa gcc ctc ctg cag gcc ctt 3024 Asn Asn Cys Ile Thr Tyr Leu Gly Ala Glu Ala Leu Leu Gln Ala Leu 995 1000 1005 gaa agg aat gac acc atc ctg gaa gtc tgg ctc cga ggg aac act ttc 3072 Glu Arg Asn Asp Thr Ile Leu Glu Val Trp Leu Arg Gly Asn Thr Phe 1010 1015 1020 tct cta gag gag gtt gac aag ctc ggc tgc agg gac acc aga ctc ttg 3120 Ser Leu Glu Glu Val Asp Lys Leu Gly Cys Arg Asp Thr Arg Leu Leu 1025 1030 1035 1040 ctt tgaagtctcc gggaggatgt tcgtctcagt ttgtttgtga caggctgtga 3173 Leu gtttgggccc cagaggctgg gtgacatgtg ttggcagcct cttcaaaatg agccctgtcc 3233 tgcctaaggc tgaacttgtt ttctgggaac accataggtc acctttattc tggcagagga 3293 gggagcatca gtgccctcca ggatagactt ttcccaagcc tacttttgcc attgacttct 3353 tcccaagatt caatcccagg atgtacaagg acagcccccc tccatagtat gggactggcc 3413 tctgctgatc ctcccaggct tccgtgtggg tcagtggggc ccatggatgt gcttgttaac 3473 tgagtgcctt ttggtggaga ggcccggccc acataattca ggaagcagct ttccccatgt 3533 ctcgactcat ccatccaggc cattccccgt ctctggttcc tcccctcctc ctggactcct 3593 gcacacgctc cttcctctga ggctgaaatt cagaatatta gtgacctcag ctttgatatt 3653 tcacttacag cacccccaac cctggcaccc agggtgggaa gggctacacc ttagcctgcc 3713 ctcctttccg gtgtttaaga catttttgga aggggacacg tgacagccgt ttgttcccca 3773 agacattcta ggtttgcaag aaaaatatga ccacactcca gctgggatca catgtggact 3833 tttatttcca gtgaaatcag ttactcttca gttaagcctt tggaaacagc tcgactttaa 3893 aaagctccaa atgcagcttt aaaaaattaa tctgggccag aatttcaaac ggcctcacta 3953 ggcttctggt tgatgcctgt gaactgaact ctgacaacag acttctgaaa tagacccaca 4013 agaggcagtt ccatttcatt tgtgccagaa tgctttagga tgtacagtta tggattgaaa 4073 gtttacagga aaaaaaatta ggccgttcct tcaaagcaaa tgtcttcctg gattattcaa 4133 aatgatgtat gttgaagcct ttgtaaattg tcagatgctg tgcaaatgtt attattttaa 4193 acattatgat gtgtgaaaac tggttaatat ttataggtca ctttgtttta ctgtcttaag 4253 tttatactct tatagacaac atggccgtga actttatgct gtaaataatc agaggggaat 4313 aaactgttg 4322 2 1041 PRT Homo sapiens 2 Met Glu Lys Arg Arg Gly Leu Thr Ile Glu Cys Trp Gly Pro Gln Ser 1 5 10 15 Pro Ser Leu Thr Leu Phe Ser Ser Pro Gly Cys Glu Met Cys Ser Gln 20 25 30 Glu Ala Phe Gln Ala Gln Arg Ser Gln Leu Val Glu Leu Leu Val Ser 35 40 45 Gly Ser Leu Glu Gly Phe Glu Ser Val Leu Asp Trp Leu Leu Ser Trp 50 55 60 Glu Val Leu Ser Trp Glu Asp Tyr Glu Gly Phe His Leu Leu Gly Gln 65 70 75 80 Pro Leu Ser His Leu Ala Arg Arg Leu Leu Asp Thr Val Trp Asn Lys 85 90 95 Gly Thr Trp Ala Cys Gln Lys Leu Ile Ala Ala Ala Gln Glu Ala Gln 100 105 110 Ala Asp Ser Gln Ser Pro Lys Leu His Gly Cys Trp Asp Pro His Ser 115 120 125 Leu His Pro Ala Arg Asp Leu Gln Ser His Arg Pro Ala Ile Val Arg 130 135 140 Arg Leu His Ser His Val Glu Asn Met Leu Asp Leu Ala Trp Glu Arg 145 150 155 160 Gly Phe Val Ser Gln Tyr Glu Cys Asp Glu Ile Arg Leu Pro Ile Phe 165 170 175 Thr Pro Ser Gln Arg Ala Arg Arg Leu Leu Asp Leu Ala Thr Val Lys 180 185 190 Ala Asn Gly Leu Ala Ala Phe Leu Leu Gln His Val Gln Glu Leu Pro 195 200 205 Val Pro Leu Ala Leu Pro Leu Glu Ala Ala Thr Cys Lys Lys Tyr Met 210 215 220 Ala Lys Leu Arg Thr Thr Val Ser Ala Gln Ser Arg Phe Leu Ser Thr 225 230 235 240 Tyr Asp Gly Ala Glu Thr Leu Cys Leu Glu Asp Ile Tyr Thr Glu Asn 245 250 255 Val Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Ser Pro Gln Lys 260 265 270 Ser Pro Ala Thr Leu Gly Leu Glu Glu Leu Phe Ser Thr Pro Gly His 275 280 285 Leu Asn Asp Asp Ala Asp Thr Val Leu Val Val Gly Glu Ala Gly Ser 290 295 300 Gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly 305 310 315 320 Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln 325 330 335 Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu 340 345 350 His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu 355 360 365 Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu 370 375 380 Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp 385 390 395 400 Pro Thr Ser Val Gln Thr Leu Leu Phe Asn Leu Leu Gln Gly Asn Leu 405 410 415 Leu Lys Asn Ala Arg Lys Val Val Thr Ser Arg Pro Ala Ala Val Ser 420 425 430 Ala Phe Leu Arg Lys Tyr Ile Arg Thr Glu Phe Asn Leu Lys Gly Phe 435 440 445 Ser Glu Gln Gly Ile Glu Leu Tyr Leu Arg Lys Arg His His Glu Pro 450 455 460 Gly Val Ala Asp Arg Leu Ile Arg Leu Leu Gln Glu Thr Ser Ala Leu 465 470 475 480 His Gly Leu Cys His Leu Pro Val Phe Ser Trp Met Val Ser Lys Cys 485 490 495 His Gln Glu Leu Leu Leu Gln Glu Gly Gly Ser Pro Lys Thr Thr Thr 500 505 510 Asp Met Tyr Leu Leu Ile Leu Gln His Phe Leu Leu His Ala Thr Pro 515 520 525 Pro Asp Ser Ala Ser Gln Gly Leu Gly Pro Ser Leu Leu Arg Gly Arg 530 535 540 Leu Pro Thr Leu Leu His Leu Gly Arg Leu Ala Leu Trp Gly Leu Gly 545 550 555 560 Met Cys Cys Tyr Val Phe Ser Ala Gln Gln Leu Gln Ala Ala Gln Val 565 570 575 Ser Pro Asp Asp Ile Ser Leu Gly Phe Leu Val Arg Ala Lys Gly Val 580 585 590 Val Pro Gly Ser Thr Ala Pro Leu Glu Phe Leu His Ile Thr Phe Gln 595 600 605 Cys Phe Phe Ala Ala Phe Tyr Leu Ala Leu Ser Ala Asp Val Pro Pro 610 615 620 Ala Leu Leu Arg His Leu Phe Asn Cys Gly Arg Pro Gly Asn Ser Pro 625 630 635 640 Met Ala Arg Leu Leu Pro Thr Met Cys Ile Gln Ala Ser Glu Gly Lys 645 650 655 Asp Ser Ser Val Ala Ala Leu Leu Gln Lys Ala Glu Pro His Asn Leu 660 665 670 Gln Ile Thr Ala Ala Phe Leu Ala Gly Leu Leu Ser Arg Glu His Trp 675 680 685 Gly Leu Leu Ala Glu Cys Gln Thr Ser Glu Lys Ala Leu Leu Arg Arg 690 695 700 Gln Ala Cys Ala Arg Trp Cys Leu Ala Arg Ser Leu Arg Lys His Phe 705 710 715 720 His Ser Ile Pro Pro Ala Ala Pro Gly Glu Ala Lys Ser Val His Ala 725 730 735 Met Pro Gly Phe Ile Trp Leu Ile Arg Ser Leu Tyr Glu Met Gln Glu 740 745 750 Glu Arg Leu Ala Arg Lys Ala Ala Arg Gly Leu Asn Val Gly His Leu 755 760 765 Lys Leu Thr Phe Cys Ser Val Gly Pro Thr Glu Cys Ala Ala Leu Ala 770 775 780 Phe Val Leu Gln His Leu Arg Arg Pro Val Ala Leu Gln Leu Asp Tyr 785 790 795 800 Asn Ser Val Gly Asp Ile Gly Val Glu Gln Leu Leu Pro Cys Leu Gly 805 810 815 Val Cys Lys Ala Leu Tyr Leu Arg Asp Asn Asn Ile Ser Asp Arg Gly 820 825 830 Ile Cys Lys Leu Ile Glu Cys Ala Leu His Cys Glu Gln Leu Gln Lys 835 840 845 Leu Ala Leu Phe Asn Asn Lys Leu Thr Asp Gly Cys Ala His Ser Met 850 855 860 Ala Lys Leu Leu Ala Cys Arg Gln Asn Phe Leu Ala Leu Arg Leu Gly 865 870 875 880 Asn Asn Tyr Ile Thr Ala Ala Gly Ala Gln Val Leu Ala Glu Gly Leu 885 890 895 Arg Gly Asn Thr Ser Leu Gln Phe Leu Gly Phe Trp Gly Asn Arg Val 900 905 910 Gly Asp Glu Gly Ala Gln Ala Leu Ala Glu Ala Leu Gly Asp His Gln 915 920 925 Ser Leu Arg Trp Leu Ser Leu Val Gly Asn Asn Ile Gly Ser Val Gly 930 935 940 Ala Gln Ala Leu Ala Leu Met Leu Ala Lys Asn Val Met Leu Glu Glu 945 950 955 960 Leu Cys Leu Glu Glu Asn His Leu Gln Asp Glu Gly Val Cys Ser Leu 965 970 975 Ala Glu Gly Leu Lys Lys Asn Ser Ser Leu Lys Ile Leu Lys Leu Ser 980 985 990 Asn Asn Cys Ile Thr Tyr Leu Gly Ala Glu Ala Leu Leu Gln Ala Leu 995 1000 1005 Glu Arg Asn Asp Thr Ile Leu Glu Val Trp Leu Arg Gly Asn Thr Phe 1010 1015 1020 Ser Leu Glu Glu Val Asp Lys Leu Gly Cys Arg Asp Thr Arg Leu Leu 1025 1030 1035 1040 Leu 3 37443 DNA Homo sapiens exon (63)..(106) exon (3908)..(4406) exon (12307)..(12412) exon (15010)..(16825) exon (21017)..(21100) exon (21321)..(21404) exon (24355)..(24438) exon (27052)..(27135) exon (27730)..(27813) exon (29917)..(30000) exon (34244)..(34327) exon (36123)..(37443) 3 tcaccatata actggtattt aaagccacaa gagcaggtgg gctcatctag ggatggagtg 60 atatggagaa gagaaggggt ctaaccattg agtgctgggg cccccagtgt taggaaccag 120 ccaagaagac agaaagagtg aaaatcagag agttggggtg tcctggagga aatgaagaaa 180 atgccccaaa gaggaaggag ggaacaaata tgaccaatgc ccctggcaga gcaagcaggc 240 tgagggctga ggattgagca atgggaggtc actggtgaca gtttcactgg agctggatgg 300 ggaactagag ggaatgggag gggatgggag gacttgggga cagcagtaca ggcaacagac 360 aagggggcct gctgtaaagg gagcagataa atgggattgg agccaaatga agaaggggag 420 tgtcaagaga gtgctttact tttacaatgg agaattagag tgcattgtgc actggtgggg 480 ggatttgatc tcttagggag agaacagtgt tagggaggga gaatgcagga tagctggggg 540 agggtggggg gcttggcccc agcagagact caggacactt gggaagttga gcttccctgg 600 gcttcccctc ctctcctgtc tgcaaggggt cagtgggctg agatttcagc acttaagcaa 660 agcatttgct cttggcccca gagaaaccgg gctggctgtg gtctcaggaa ggaaggaggt 720 gtccaggctc aggcctgggc ctgggtttca gggagggccc acgtgggtca ccccttgacc 780 ctctctttca gcaaggaagt gatcctttct ctacatgggc ctcaccttgg ggaggacaat 840 ggtgtctttg aagttgtagt aactgaagta gagatcaaaa ggcaatgcag atagactgac 900 agatttcgcc tgaagagggg aagcccgacc aggtaataaa ggagtaagag gaaggatgtt 960 aaggacaatt ttaggaaaca gataatgagt gaatattttt tctctctctt tcccaattta 1020 aactgaagca ggagaaactg aagctagaca taatgattaa cttcccaagc tggtgagctt 1080 cctgagctgg ttagtgagaa cagcactaag gccaggttct cctccccaga tgtttaagat 1140 gagacaggac aatgcctgct cagagacagg gcctggctga attggccctc aggattctct 1200 ctgctctgag gtttctggaa gaaggccagg gcagaggtgt ggtgatgtag ctgctgggag 1260 gacagagctc cgagtcacgt ggcttgggcg ggcctcccct tcctggtgtc cacagaagcc 1320 caacgtcact agctggggtg tgtatggctc acacgtaggc caggctgccc taggcttggt 1380 gtgcaaggga ggggccccta cttacttgtg gcctgtcccc tcgtgaatgt gtctcatgtc 1440 cccagtgggg tttttcagtg agggtcatgg tctccaggat gcacaaggct ttgtgccaga 1500 attgcttgga attgcctagt tctggaaggc tggttggcca actctggcct ccggcttttc 1560 ctttgggaat ttcccttgaa ggtggggttg gtagacagat ccaggctcac cagtcctgtg 1620 ccactgggct tttggcattc tgcacaaggc ctacccgcag atgccatgcc tgctccccca 1680 gcctaatggg ctttgatggg ggaagagggt ggttcagcct ctcacgatga ggaggaaaga 1740 gcaagtgtcc tcctcggaca ttctccgggt aagaggagca ggcattgtcc cgtcccagct 1800 tgatcctcag ccttctttca tccttggccg cgacatgctc ccaggcctgg ggtcagatgg 1860 ggagtgctga ctctgtttct gggctgtttt ctggggagaa tgggtcggcg ggtttttttc 1920 cccaggacct gggcagggtc aatggtgggg gccgctgtcg catccttggc tggtgtttcc 1980 acagctgaga accactccag ggccaagccc agagcttatt ctaccctttt ttgtcctctc 2040 ttcccctgtc ctcggccacc ccaccctctt ggctcctctg cttagatgtg ggcacaagga 2100 ggagaactcc ttggcctgag agaactacct tagatcctgg cttccagtgg cctctgcagg 2160 ggggtacacc ctctctccca agcagccaga cacacaagta acctcattgc ctcagtttcc 2220 ccatctgacc agcacagggc cccctgtgcc ccagcagcgt tctgagagat tggagctttc 2280 tccttttgct taccttggct accgtatgag gacggataca gagtgttccc cccaccccca 2340 gcccagggga tatttgattc atgaacattc cctcagtgtc tttgtggggg acaatgctgt 2400 gccaggctca gggatgccag gacgagtaag acccaggctc ccacgtggcc caggcaggga 2460 gagagacaca taaacaacca tcaggaaaga ggtaaaatcc ccaggccact tggcatctgc 2520 tcccttgagt gtctgggaat gtccctgatt tataaaaaga agctgacggc cctctttgtt 2580 gtccatgcct acaccctttc actttcgttt cttcggggca ctgcagcagc ccttgtccac 2640 agaccccatg acaatcgcag aactgaccat gctgagagat tttcttggct gctcagggac 2700 cctgccaggg cttgaagctc ctggagggtc acttgccctc aaattcccag aacgcacagc 2760 aggtcactga tgatagcagt ggcagcagtc tgtgcacggt ggtttcgagg gcgtgggagg 2820 gaggtgaggg ccctagggca agtgtgtgtg ggaagtgttg atgggggaca aggcaccaga 2880 acgctcggaa acaacttagt ttgcaccgta atttttcact tcgcctagga caggaccttt 2940 agagcaatat tctgagtcta ccccttggag tagcagtgtg caaaacacac agcacgggct 3000 tggggccccc gtggggaacc caaatgtaag agttagagac atgcattccg gagtcataca 3060 tggctcgtgt tgaaatcctg actctgcctg tctagctgtg acacatcgta caaatcactt 3120 agcttcttgg tgcctcagtg tcttcctctg tagaatgggt agatcatagg cactacttca 3180 gagtggctgg gagggttcag tgaattcctg caggagagca cttagaatgg cacttggtgt 3240 gtagtttatg cttaattaat attagccgtt actgaaactg ctgtagcctg aatccagcca 3300 gcatgaaaga gcccctctca ccctgcttcg aagagaatga attccctgat tgtttggaag 3360 atctctctct ctctctctgt cttttttttt tttttttgag aaacggtctt gctctcttgc 3420 ccaggctgga gcgcaatggt gccatcttgg ctcactgcaa cctctgcctc ccgggttcaa 3480 gtgattctcc tgtctcagcc tcctgagtag ctgggattac aggcgctcgc caccacgcct 3540 ggctaatttt tgtattttta gtagagacag cgtttcaccg tgttggccgg gctggtctag 3600 cgctcctgat ctcaagtgac cttgggagat ctcttgctcc taatattacc tcaagccttt 3660 ttaaacgttt taagccggag accaagcatg gatatgggag ttaggggtct tgatttaatt 3720 cttggttgct tcaaactctg tggaaccttg aggtgtttct tgccttctct gggtctcaat 3780 tttcacatct atatggtggg gagcttggat tgggtaatgt ctgaggctag aaccatggcc 3840 aactcgggtt ctgctggggc tgacttgccc tggccttccc tgaccaccct gcatctggct 3900 tctggagaag tccctcactg accttgttct cctccccagg ttgtgaaatg tgctcgcagg 3960 aggcttttca ggcacagagg agccagctgg tcgagctgct ggtctcaggg tccctggaag 4020 gcttcgagag tgtcctggac tggctgctgt cctgggaggt cctctcctgg gaggactacg 4080 agggcttcca cctcctgggc cagcctctct cccacttggc caggcgcctt ctggacaccg 4140 tctggaataa gggtacttgg gcctgtcaga agctcatcgc ggctgcccaa gaagcccagg 4200 ccgacagcca gtcccccaag ctgcatggct gctgggaccc ccactcgctc cacccagccc 4260 gagacctgca gagtcaccgg ccagccattg tcaggaggct ccacagccat gtggagaaca 4320 tgctggacct ggcatgggag cggggtttcg tcagccagta tgaatgtgat gaaatcaggt 4380 tgccgatctt cacaccgtcc cagagggtga ggcactcctg gtgtgcatca cagagttctc 4440 aggaaagggg tgcttagtca ccaagactga tttgtcctca tgaagtcagc ctgtggggta 4500 acttggtccg tgggatttcc cctaaaaagg tagccaggca ggtaaaattt gctcttgact 4560 cttggcagga aacatacaac tctttctttc ttcttttctt ttctttttct cactctgtta 4620 ccctggctag aatgcagtgg cacaatcata gctcactgta gccttgaatt cctgcgctca 4680 agtgatcttc tggccttaga gtagctggga ctacggctgc tgtaccacca tgaacagcta 4740 attttttttt tttcttttag agatggggtg ttgctatgtt gcccaggctg gtctccagct 4800 cctggcttta agcaatcctc ccgccttggc ctcccaaact gttgggattg caggcatgag 4860 ccactttgcc tggccaacag aacacttctg ccgagaggaa gtgtgtggtg gccaggaact 4920 cagattctgg agccagaatg gtgcaggctc aaggtcaacc ctgtgtgatc tcaggcttcc 4980 ctatggagcc tctccagcct cagtctccct tgtttcagtt tcctcatcta caaaacaatg 5040 ttaatagtca aatggtgcct atcctataag gctcttggga ggattcagtg agttaatttg 5100 agtaatgctt aggatagtgt ctattaccac tggctgctat ttattatttc tgttatgagt 5160 gatactctgt acttgtacac ttttatttct gtctgtttta aattaacagc acaacagacc 5220 ataacactgc agtatattga atttatttta taattaacat agcatattat aaactaatat 5280 agcttaaatg tttatgtagg atttctgaca tgaaattgca ttagatcata gatgttcaga 5340 gttggtatat aacagcccct gagaatgtag taactcagca gagaccagaa ggtcagagaa 5400 atgaccactg agtatttttg aaactctttt gttttcttcc aaatagtgat tcttagggct 5460 cctgagaggc agatggaaca atcattaaca ttccacttta taaatcggga agttgagacc 5520 aaggaaagta gtttgaataa gctcacagta gttaatgagg gggccagtgc tggaccaatt 5580 ggccagcact ggtcattgac ttattcatcc atcattcatt tattcagcca gaatctatta 5640 ggtgcttcat acatatttgc ttaaagtttg ttgtgttcat agagctttgc acacggtagg 5700 tactccataa acatttgttg atgaaataag tgagttactg aatgaatgat tgaattagaa 5760 tgacactgca gtgttaaaat gggctgggtt ggggaacatt ttagtttttg tttttgtctg 5820 ttttccaaaa atgtatgtgt tgttcacatg agtctggata accctagatt gagattgatg 5880 acataaataa atttgtcttc aaggctgcac taaagctggc tcacatggct aggtatttac 5940 agagcagaag tggtgcagtc ctctctgatt agttgcacgt acagaagaca tattcgttat 6000 tggactgacc ttagtttctc ttataatttg ttaggggaat tgaatcagcc catctgagaa 6060 gttacaagat tgtgtcttgt catctttaaa agttcagcaa tgtgatgtgg tacagatggt 6120 ctgaggggtt tggagaaggt agcctagatc cctagggccc agagaagaca ggatgtgaac 6180 agaggaagta catggattgg tgaagaaaag aaatgggata actcatgggt caaagaagaa 6240 atcatgatgg aaatcagaaa atattcagaa ccatacaata atgagaatat tatttatcaa 6300 aatctattgg atgcagctaa agcaggacat agggggaaat ttacaacctt aggtgcctag 6360 attaggaaag aaggaaggca tttgtttatt tatttgttta tttatttatt tgagatgggg 6420 gtctcactgt gtcacccagg ctgctggagt gcagtagcac gatcataaat cactgaagtc 6480 tcgaacttct gggctgaagt gatcctcccg cctcagcctt ccaagtaggt gggacacagg 6540 ctagcaccac cataccaggc taattttttt tttgtagaca cagggtcttg ctatgttgag 6600 gtctcaaact cctgggctca agtaatcctc ctccctcggc ttcccaaagt gctgggatta 6660 caggcatgag ccactgcgcc catctaaggc tgaattttaa tgagctaaga attcatctta 6720 agaaagggct aaatagacag caaaagcaaa cattgaaggt tgggactgag ctgagtgggt 6780 agcagggatg ggagacaaca gatctgagga gagcaggaga ttttgaaagg attgcactgc 6840 ctgaggttta agcctttaga atccagctct ctctgagctc cctttgagct ctgacattct 6900 gtgactctga tttggtggcc ttcccttagt ggccttactg atttcatttg gatggtgctt 6960 gtggtatatc caaccaacat gtcttcccaa atggcctttt aatttcctat aaagaagtag 7020 ttgtcattga ttgcaggtta gggacagaaa atgctgtgga atgaaacaaa atgcaagtta 7080 aagaactaaa ttccaaaaat acccattgct actattgact gagtgaattc ctactgtgtg 7140 ccagacactg tacccagtcc attccctgta ttgttttatt taagcctcac aagggtatag 7200 tgtgactaca ctgtttctta acaatgaaga aactgcccaa atcgcccatc tgggaagcgg 7260 cccagctaga atttgaatcc aggcctgttt tcctccagag cttgtgctat tctctgtctg 7320 tcataaaatg tgggggcttt gtgtggtaaa cttgctcagt tgggcatagc agttgttagg 7380 aaacctgagg ctggtaacac cagctgtaat accagctgtc cgtctgactc atgcaactgt 7440 taaagttgat agggctgagg tgtcagactg agctctgaat tgcctgattc ctataacaat 7500 attaacttaa acatttttta aattgggaaa tgcaccatgc atacagaaga gtgtgtatat 7560 ttcatatgta tagtgtaaac tgttcccatc acccaggtta aaaaacagga tgttgccagt 7620 acctggggcc ttctttaact gcaactgcta gaggtaaaca ctggcttgac ttttgtgtaa 7680 atcatctctt tgcctttctt taatgtttta gcatctttta aaataaatcc ccaaataatg 7740 tattgttcta ttttgaaaaa ctgagtagca agccaaaaat agctgtgtaa agaaaggtca 7800 cttaaattag gctgggtgca gtggctcaag cctttaatcc cagtactttg ggaggctgag 7860 gcaggtggat cacaaggtca ggagatcgag accatcctgg ccaacatgga gaaaccccgt 7920 ctctactaaa aatacaaaaa attagccaag aatagtggca tgtgcctgta gtcccagcta 7980 ctcgggaggc tgaggcagga gaatcgcttg aacccgggag gcagatgttg cagtgagctg 8040 agatcgcact gcttgaaccc gggaggcaga ggttgcagtg agccaagatc gcaccactgc 8100 actctagcct gggtcacaga gcaagactct gtctcaaaaa aaaaaaaaaa aaaaagaaag 8160 gttactattg ccttttctta gatgaaggtt cccaaggcag ggaaagctaa gtggagtctc 8220 agggacttgg tctggctttt ccttccctgg gaatttataa ggacctcttc tgggaagtca 8280 gtcggcaatg ccatgaatga gtctggggaa atattgggct cattgcaact ggagggtctg 8340 gtaggactga tgtgaattag gtgctgtgtc cggaggaaaa tggccagagg aagtgggctg 8400 ctttgtacag tcagtggtaa agttgccaaa ggctattata gctcacagga atgggccaag 8460 gctaaacact cctgtggagt gaaatgaatg tcctcagctg actgaggcag cgggagttga 8520 gaagaaacga tattagttca tggtgaagac aagtcaaata tagataaagg ttagggtcag 8580 gcttgcctgg acatctagga gataactgcc ctcaacttgt ttgaatcttg agtcactgct 8640 ccattttgtt tgaactggtg gccatctact tatagtatac agccatcaac ctgagatttc 8700 cctacatggt cttcctgcct tggtctcctg tatcctgaat cctatggcct cttcttccct 8760 ggtttactac attttgctag accgtatcct ccagtcaatt ccttagaatg aatgtatgaa 8820 agttaaaatt tctgaggtct cacatgtctt aaagttccct catactggat tgatagtttg 8880 gctgggtata aaattctggg ctggccatca ttttccttca gaattttgat tgcattattc 8940 cattatcctc tcttttcaat attgcttcta agaattccaa aacctttttt tttttttctt 9000 tttgagacag tgtctcactc tgtcacccag gctggaatgc agtagtgtga tctcagctca 9060 ctgcaacctc cacctcctgg gtttaagcga ttcttcttcc tcagcctcct gagcagctgg 9120 gattacaggc acccaccacc acacccttta gtagagatgg ggttttgcta tgttggccag 9180 gctggtcttg aacttctgac tttaggtgat ctgcctactt cggcctccca aagtgctggg 9240 attaaaggcg tgagccacca cacccagcct ccaaaaccat tttaaaactc tttctggaag 9300 cttttaaaat tttcttttag tccccagaat tttaaaattt caattatgtg ccttggtgtt 9360 cttccattat attagtcacc caagaggtac tttcaatctg gaaacttctc tatgttttgg 9420 gaaatgttct tgattagttt acaggtgatt tcttcctctc cattttatct cttctctttt 9480 catgaaacta ctattaattc aatgttagaa ttccttgact gatcatttaa ttttcttcta 9540 ttttccatct ctgtgtcttt ttgctctact tttctatgat agtcacagct ctatctttaa 9600 actcttgagt ttttcatttt tgatgtcatg attttaattt gcaagaggta ggtttgactg 9660 attctttttt gtagtatctt actcttgttt tatggatgca acatcttctt tgacttaagg 9720 atcataagat aggtgggttc tttgtttgtt tgtttgactg tttttcaccc tatgtaaact 9780 ttttctacaa gtttctttcc ccttcccccc tttttggctt ctatctccca cattagatgc 9840 tttctctggg ctcatgatac tctttggttt tctttctcaa gattgacagg taggacttta 9900 aaacttgttg agcatgcggg tgaaacttgt ctaccatgaa tttcactgta gatattttgg 9960 agattgacag tgtttatatc tttagatctc acctcctggg ttgatcaagt tatctgagta 10020 caccacagac cttttgcctg gggataaacc agaaatctgt ttcagaaacc actttgattc 10080 agtcttcctt gttttagtca tttccttcag ttccggaggt ccgtcatgct gatcattcca 10140 gagcccttta cagatcctag ggtacacact gcatggtttt caactttctt gttttggggt 10200 taagatttgg ctttcaggag tctcctcagt ccgttactat tcattcaatc agcaagtcct 10260 tgagcacctg atttgtgcca gacattcttc taggtgttag ggatacctca gtgaacaaaa 10320 cagacaaaaa tctttgtctt ggaaatacac acactccagt caggggagag ggacaataag 10380 ccaaaggaag gaaattacag cgtgtgctag aaggtgataa gtgctgtaga aagtaagtaa 10440 agtgggtttg ggagttgaga gtttgggaag gggataaatg atggcaattg taaatagagt 10500 agtcagagtt ctcacttaga aggtgaaatt caagtaaaga cttgaaggag gacagggaat 10560 tagccacatg gatggctagg ggaaggcttc caagctgaga ggacagccag agccaaggcc 10620 cagaggcagg agcatacctg gtagttttag gaaacaggag gccaggatgc tgagtggagt 10680 aagagggggc atgaaaggag aaacttgggt ccacgtggtt ctagacaggt atttttgtct 10740 gttttgggcc ctgaaggtta ctattggact tggactctta ctctgaggaa atagggacgc 10800 tattgggacg tttgtacagg agcaatgtga cctgagtttt gtttgtaaag gattagactc 10860 tggctgtggc attaaggcta ggctgtgggg gcaggaacag aagcaggggg accagttttg 10920 cagcctgtgc agctttccag ataagcaggg attgtggctt ggaggaggat ggtatagagg 10980 aggtgacaag aaatgactct atgtctggta tgtagatatt ggccacagat ggcatttgag 11040 cactagagac ctggctggtc cacatggagt ttccataagc acataataca catcagattt 11100 caaagactta atatgaaaaa aaaaatttaa cgggccccgg gaattttttt cttttttttt 11160 ttttttgaga cccagtcttg ctctgtcacc caggctggag tgcagtggtg tgatctcggc 11220 tcactgcaac ctccgcctcc caggttcaag tgattctcct gcctcagcct cctgagtacc 11280 tgggactaca ggcacctgcc accacgcctg gctaattttt tgtattttta gtagtgatgg 11340 ggtttcacca tgttgtccag gctggtctgg aactccggac cttaggggat ctacccgcct 11400 tggcctccca aattgctggg attacaggca tgagccacca tgctcagcca tatcttgcta 11460 ttttctacat ggattacatg ttgaaatggt aatgttttgg ctattgtgga ttaaatagaa 11520 tatatgatta aagttgattt catctatttc ttttaacttt aaaaaatatg tctgttagag 11580 gatttgaaat tccacatgcg gcttgcattt gtgacctgca tttcatttct gtggaacagt 11640 gccctttttg ggacatgctt tgaaggtgga gtcaacagga tttggcagat tacagacgag 11700 aggcttcaag ggtgactcca agacttcggg gcagagcacc tggaagaaag gggttaatat 11760 tagccaagat gaggaaggct gtcggtttgg caggtgcatg ggcaggttag gagtttagtt 11820 ttgaatatgt tggaggtgtt tatgaaactt ttaagtggag atggaaaata ggcagttgga 11880 tgtgcaagtc cagggttcag ggagacagtt caggctggag atgaagatgt gggagtctga 11940 ggagagattg tattcaaata ttcaatccat gagacttgat gaaatcactt ctcttccaaa 12000 tgatttacag cctgcagaat cattttccct atctttgtag gtttatgtct tcattttgtt 12060 tcatttattt ttcagttatt cactgtttta gtgagttttg agtaggagcc agattggatg 12120 catgcgttca attcaccatc caacactgta ttaactactt gaaactcatg tggttgttcg 12180 gttgtttttt tgacctttta ttctggatgg aagagagatg cttatgaagt tgcagtaatc 12240 agtaagcctt cccacattgc tccatcagcc ttcctggaag aataatgtct tctgcctttc 12300 ctgtaggcaa gaaggctgct tgatcttgcc acggtgaaag cgaatggatt ggctgccttc 12360 cttctacaac atgttcagga attaccagtc ccattggccc tgcctttgga aggtaggtgt 12420 atgttctcag ttaatcagaa agggaagggc agtcagtgca gatccatggt taagagcaga 12480 acacacctcg gttaacatcc catatgctgg cagtatagcc tccctatgac tcaatttcct 12540 tgttttaagg ctagcaccac cccgtctcat tgggattttg ggagcattaa aaggacaaaa 12600 gcgtgtaatg ttagctatta gctttcatta tctcccacac agtatactga caattgggct 12660 accatatatt gagggctaac taaaggtgtt acttaccatc caaactctca ttatctgtac 12720 cgaaaagata tggacacatg ttttgagtta gggctggtat ctcttgatct ctgaaattta 12780 gcagctcaca atgggaaact caagaaccaa gtggatctag agactctggt atccctcagt 12840 gcccagggtc accacccaaa ctcaggaaca ggaggggctt ggaccgcacc acttgaacat 12900 accaggcatc ctgccaggtg ctttatggac aatgtctacc ctttgcaaca accctgagaa 12960 gtaggtggtg tttttttcca ccttatagat gtggaaactg ggcagggagg ttaagtgacg 13020 agggagggga agatgggtct gattgtaaat tgtccccacc tacactttct cttttcttgg 13080 gagaagaaat gtcagttgta aagagagagt gcaagcctgg cactctttag ggcttgttcc 13140 tacaccactg tagggaaagc tcattggcac tgaagccccc tgagctgtgt gtggtgctgg 13200 cagatgggtc tatcaccctg gactgtgtcc tctgggcagc aagcaagcct gtgggcgggg 13260 tggctggaag tctgtgcctg gcactcgcga gtgcaccgtc tcattgaaga acaggatcta 13320 aacatcagtg cgccacagca gggtgcgcgg cacggagtgc aggccctggt ttggcccttg 13380 gttgaggttt gctgttgaca tcatcaagca cagctagtca ctgtaagacc aggccagggt 13440 gcaagattcc ccacacttct aaaggtgaca attggtgtat ttatttctct ataaaatgac 13500 attttttttt tctggagaat tttagtatca ttggtgatga ctggaaaacc tgcatcagaa 13560 atcaggtcgg aagaggaaga tatatatctg atatgtactg gagaggaaga tatctatctt 13620 atggtctaag ttcagggatc ctggtatatt cagagggcag aaagctcagc aataatcatc 13680 aactctggga acagaggtga cataaacaca gggcgtcccc tttgtgtgac tgcagatagt 13740 catcagtgag ctcagagctc tatgaaaatt acttgctagt ttttgggttg aaaatagtgg 13800 gccagtgttt ggttgggggc agtgaggctg tgatggcggg ggaccatgcc aagctcctac 13860 cagcctggga cgctaaacca gcacttcccc atttcctgaa aggggaacta aactctgaca 13920 caggaaatgg tttgcttgca ttactttcag gatgagaaag gaagagcact ggccttccaa 13980 acacaccccg tgcatgaaaa ctctccctgc atggggtgca tggggaggat ggggaagtgg 14040 aggcaggatc acagactctt gttcgagtgc tcagctgggg caccccggtg accccgaggc 14100 cttcccttgc taggtccacc cagatcaatc aggatcatct ccccatctcg aagtttaact 14160 ttatcacatc tcagagttcc ttttgccacg taaggtaaca tattcacagg ttctgagaat 14220 ccggacatgg acatctttga gggtctattg ttgtgcctac tatatccatg aataataatg 14280 ataataagca ccattttttg agagtttgcc atgtcagata ttcttttaaa ctgtatttta 14340 tctcgctgcc tcctgaaaaa atccttccag gtgtatattg tccccatttt tacagatgag 14400 agaactgagg cccagaaagg ctaaatggct tgcccaagtg tatggtggac ccaggttttc 14460 aaactcaggt gtgtctggct tcagagactg ggctcctgag cccttaagcc ctttgttccc 14520 ctttagaaaa agtcacctga ggctgagtgg tgaagggatt tatccaaagc cacccggcca 14580 ctatggcagg acagatatca gaatacaggt cttccgatcc cagcccagag ccccttcccg 14640 tcatctagaa ctcctcctgg tgtcagtaat gataacggca gtcactgatg tcttttgagc 14700 acttactttg tgttgagcac ttacactgtg ctaagcactt gacataggtc atcttagttg 14760 atccgtgtaa aactctgtga ggtagtgacc aacatttctc ccaccttaca gaggtggaaa 14820 ctgagggtta ggaagtttcc ttgactgtcc tcaaagtgca cagcttgtga atggaggagc 14880 caggatgggc gcccgctggc tctcctatcc cttcagttat gtcagcgtcc cccgcagcag 14940 cccattgtct ggttaggtcc cgtcttcacc atggtgccac cttcatctgc ctcttcttct 15000 gccttccagc tgccacatgc aagaagtata tggccaagct gaggaccacg gtgtctgctc 15060 agtctcgctt cctcagtacc tatgatggag cagagacgct ctgcctggag gacatataca 15120 cagagaatgt cctggaggtc tgggcagatg tgggcatggc tggatccccg cagaagagcc 15180 cagccaccct gggcctggag gagctcttca gcacccctgg ccacctcaat gacgatgcgg 15240 acactgtgct ggtggtgggt gaggcgggca gtggcaagag cacgctcctg cagcggctgc 15300 acttgctgtg ggctgcaggg caagacttcc aggaatttct ctttgtcttc ccattcagct 15360 gccggcagct gcagtgcatg gccaaaccac tctctgtgcg gactctactc tttgagcact 15420 gctgttggcc tgatgttggt caagaagaca tcttccagtt actccttgac caccctgacc 15480 gtgtcctgtt aacctttgat ggctttgacg agttcaagtt caggttcacg gatcgtgaac 15540 gccactgctc cccgaccgac cccacctctg tccagaccct gctcttcaac cttctgcagg 15600 gcaacctgct gaagaatgcc cgcaaggtgg tgaccagccg tccggccgct gtgtcggcgt 15660 tcctcaggaa gtacatccgc accgagttca acctcaaggg cttctctgaa cagggcatcg 15720 agctgtacct gaggaagcgt catcatgagc ccggggtggc ggaccgcctc atccgcctgc 15780 tccaagagac ctcagccctg cacggtttgt gccacctgcc tgtcttctca tggatggtgt 15840 ccaaatgcca ccaggaactg ttgctgcagg agggggggtc cccaaagacc actacagata 15900 tgtacctgct gattctgcag cattttctgc tgcatgccac ccccccagac tcagcttccc 15960 aaggtctggg acccagtctt cttcggggcc gcctccccac cctcctgcac ctgggcagac 16020 tggctctgtg gggcctgggc atgtgctgct acgtgttctc agcccagcag ctccaggcag 16080 cacaggtcag ccctgatgac atttctcttg gcttcctggt gcgtgccaaa ggtgtcgtgc 16140 cagggagtac ggcgcccctg gaattccttc acatcacttt ccagtgcttc tttgccgcgt 16200 tctacctggc actcagtgct gatgtgccac cagctttgct cagacacctc ttcaattgtg 16260 gcaggccagg caactcacca atggccaggc tcctgcccac gatgtgcatc caggcctcgg 16320 agggaaagga cagcagcgtg gcagctttgc tgcagaaggc cgagccgcac aaccttcaga 16380 tcacagcagc cttcctggca gggctgttgt cccgggagca ctggggcctg ctggctgagt 16440 gccagacatc tgagaaggcc ctgctctggc gccaggcctg tgcccgctgg tgtctggccc 16500 gcagcctccg caagcacttc cactccatcc cgccagctgc accgggtgag gccaagagcg 16560 tgcatgccat gcccgggttc atctggctca tccggagcct gtacgagatg caggaggagc 16620 ggctggctcg gaaggctgca cgtggcctga atgttgggca cctcaagttg acattttgca 16680 gtgtgggccc cactgagtgt gctgccctgg cctttgtgct gcagcacctt cggcggcccg 16740 tggccctgca gctggactac aactctgtgg gtgacattgg cgtggagcag ctgctgcctt 16800 gccttggtgt ctgcaaggct ctgtagtgag tgttactggg cattgctgtt caggtatggg 16860 ggagcaccat caaggctaag tgtgggagca ccgagctggg ctctagaagt ctgggcccag 16920 cttcgcctct gccaccctgc tttgcaacac tgcccagatc ccttcccttc tgggccttaa 16980 tttcaatatg tgatgatgac agccacactt tattgactgg cctatgtgct gggtctggtg 17040 ctatgctttc cggaatgacc tcatctaatc tctacaacca ccctgggggg taggcaggaa 17100 tgttattatc tccattatcc ttgacttgag gctcagagaa gtgaagtaac ttgtccagga 17160 aatggcagag ctggggttca caaattgcat cattctgatt acaggttttc tgcctcccac 17220 cagtctatgg atacacttca gaggctccct gaaaaccttg aggtcacttg cagaaagttt 17280 tgtgtagtat gtgtccgtat caggaacaac accaaatcag aggtgacttg tgccccatca 17340 gagactttaa caccccaacc agatgggaat ttcaggaccc aagaaataga aagtggctgc 17400 agggttacaa ctactgttgg attcctgagg tagcacagtg tccaaacagg atttcagcac 17460 tacccgtatt gcttagagcc ccagccaaag atgtgaggtt ttgccctttg gagaatctgt 17520 gcccctgaac tcgggggcct ctttccacat cttgggggca ggcaagggca gagggtgtgc 17580 ctaggcctgc ggatcagcat gcgacagatt ccccaacatc cttccagctt gaaaggggat 17640 tgccctgctt ctatttagaa cctataggaa agcagaagtt ctagattgaa gttaaaattg 17700 attcccagcc tccaggggct ttgggctaca cctggatgac cttaattgac cctaagcatg 17760 ggacaaacca cttcctgaga gtattaggat ggtatacatc ttctctgggg gcaaagcaac 17820 aagatttatt tttcatcatg gaccaaacac atggataccc actagaaact gtgtagtgaa 17880 ttttgttaac cctgacatag ggaccatggt ctttaggtta aagcataata acaacataat 17940 acataacata tatagcgaat atatatatgt attatatgca atgaatgtaa atatgattat 18000 acccatcatg gtcttggagg aaacagatga cacacttaaa atgggtgttt tgaggagagt 18060 ttgaaaaaca gattgtttac aagccatggg caggagttag gaagagtgag agggttggtg 18120 caggggcctg gggttagtaa cagctggggg agggtagact tgaaggggga aggggaggga 18180 gactaattag ctggggggaa ggtatggaga cggctgcctg agcttctgca aagtggaaga 18240 atactgcttg gccctaactc ctcaccccaa ctcttgctcg tggccagcgc cttccaccag 18300 ctggacccat cagggaggcc gagtgggctg tctgctggag tagtccccag gcatcagcct 18360 cccaggagcc agggacgggt agagaagggg gagagtggat ctggccaggc aaatggaaaa 18420 cagccagcac caaactctat ttccctagga gggaggatca tgatactttg agtgggaatt 18480 tggaaacctg tctgttggag caatttccct gatagaaata agaatgtgca ttttcctggg 18540 tagtagactc agtttttacc ccaagaggcc aggcatcact ggcctgtgtg atcctcatag 18600 gccagtccat ctctggaatt cttgaatgga tcatccatcc ttgattaggg atgtccccgt 18660 gattaccagg gtgtgcagaa gggctctggg aaacctgtgg gtctgtctct gtgttcagag 18720 aaaggtgagg gtggcctggt tctagctcat ggtgctcaga ctgtggtgtg taaaggcact 18780 cgtggcaatg cagattcctg ggcctgcctc tagtgattcc cattcagtag gtttggggtg 18840 gggcccagga aatctatatt tttcacagac acccctggtg attctgatac aagtggtctc 18900 gccctgggag aactactggt ctgcagcaac cagcttggtt ttccattagc aattactgtc 18960 cttgagcgag ttttactgct cttcacctta cacacactaa aactgccaag gccgtagggg 19020 aggggaagca accatgaggt tgctgtgagt gcactgtgtg tgtgtgtgtg tgtgtgtgtg 19080 tgtgtgtgtg tgtatgagag agagagagag attgagaaag agaggaaggg aggaaggggg 19140 agggcacagg ctcctctccc acagtgccaa cctgcctctc tcccacttga agcgtttcca 19200 tgccaactga aatcctcagc ctctaggaaa ccctatatac acagtgcccc tatataggtt 19260 tctttagact ctggctctct cagactctag agtgatggct ttaaaagttt tatgttaccc 19320 acagagagag agcacgcacc accatgtaaa catggaacct aagtttcaca aaatgacttc 19380 gctttatgaa ctctgagaca ctctgctctc ttctgttctg ttctatttcc attttagaaa 19440 tgctgctcag gaccttcaaa atgatttgca tgacctgcaa cctgcagtct gaaaaatcac 19500 tgcactacag aagtggccat aagaggccct gagggagaag ctgcacaatg tcatggttaa 19560 gagtggggtt tggagccaag ccgcctaggc tcaaagcctt tatgtgccgt acaaccttgg 19620 caaagtcact tcgcttgtct gtgcctcagt ttctttctca cgaatgctca taataatggt 19680 tcccatttca ctggcttgtt gtgaggatga aatagtgtta ttattgagaa gtggtaaggg 19740 tagtgatcag tgctagcgat catgattcta ggtgactttt actgtgtacc gggtgctcac 19800 aaggctttat gtgcacagcc tggtgaggct gataatacta ttgttccctc tttttttttt 19860 ttggaaacgg agtctcgttc tgttgcccag gctgggggta cagtggcaca atctcggctc 19920 atgcaatctc tgcctcccgg gttcacgcca ttctcctgcc tcagcctccc aagtagctgg 19980 gactacaggc gcctgccacc acgcccggct aatttttttg tatttttggt agcgacaggg 20040 tttcactgtg ttaaccagga tggtctcgat ctcctgacct cgtgatccgc ccgcctcggc 20100 ctcccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcctgttc cctcttttat 20160 agatgaagag accagcaaat aactagtaag tcgctgatca ggatcacaat atccagctga 20220 ggcactccag agcctgagct gttaaccatt cagtcagggc ctcccaagtt tgcctaaaga 20280 taaagaatca tgtgcacagt tgttaaaata tacagattcc tgggccccac cccgcagata 20340 cttgattgcc agctccaggg tatgggcctg agaatctgtc ttttagggaa gctttcagat 20400 gatgttgtga tcaggtgagt tttgggaatg gtgccccaag aggagtggca gacagggctt 20460 gctcggcagg gactagcctg ttggagtggt gccattgggg ttaaggactg ggcagcaggg 20520 cctcactaac cacagcctat atgcctgttt ctgaagtttt ggccactctc atccagctgg 20580 tctactgtct gctgacctag atgatggtaa attgtcccca ggggtagcct gtctagttca 20640 ggctgcacct ttcgcatata tcagctcctt tccaccatca tcccctttgt gaggctgctg 20700 tgattatcat gttccttttg cagagatgga aacattgcct caaattagct ctgtcatttc 20760 ctaaggattc cagggttctt tagtaggggg tctggatcct acgtcctggg ccatccccat 20820 catagtgcac cacgtcacct ccctggccag ggaccgtggg gtctccactt ttttggggtg 20880 ctccatctat gcagggtttc ctggaagcac agatgctggc acttcaggga tgaatgaaag 20940 tctttttggg ggatttgtag atttttttct tgtcttacta gctccatttt caaatgtatt 21000 tattttgtct ctttagtttg cgcgataaca atatctcaga ccgaggcatc tgcaagctca 21060 ttgaatgtgc tcttcactgc gagcaattgc agaagttagc gtaagtcagc ctgggctgtg 21120 gacaatgggc tccaagtgcc ctggtctcac cccaggtcgt gcagcctggg aagctgtgag 21180 tgatgggctg gggcaggggc tgtttgcatg atggggggtg caggtgattc ctgcccagag 21240 gggaagggca accctgggat ttggtgctca ctgtccaatg tgctttgctt ctgtgtctcc 21300 tctcttctgg aactgaacag tctattcaac aacaaattga ctgacggctg tgcacactcc 21360 atggctaagc tccttgcatg caggcagaac ttcttggcat tgaggtgagc ccaggttttc 21420 cttattccct ggaaactatt ttttgcccca ttcctgagtc agtctgatct ggtcttggcc 21480 tggcactgcc cacactggct cctgacctcc tgattgaatg cagggacagt gtctcatttt 21540 aagcaggggt tctctaatgc tgtgatctcc ccagtaaact ctggactagc tctgctgagg 21600 acttcctgtc ttttgacctt tagcccgtag ggcaagaaag cttttctagg cccctttcct 21660 tttctgtgtc taagagtgtc acagctttct ggggttactg agttccacga tgcatgttga 21720 gctcgtcctg gtgggggagg catacacagt tacttgccac cccagctgtg gcagcgagtt 21780 gctgcaacac tcccaggagg tcctttcacc actcagagca tgcaaggttt gcagtccatc 21840 tggttctgca tttctgctac tccagtgtct cccagtttca acaggagtct ctctctctcc 21900 tacctgatgc ctttaaattg cccctctagc tggccgctgg gttggcctgg cttctctctc 21960 cttctctctc tctcagatat tcttgcctcc tgtgatttgt gaggcagtaa aaaaagacaa 22020 agtaaagaat tgcttccatc tattctttta cctcttgggc tgggtttgtg gatgggagcc 22080 gccattttaa aatggcgggc cacatagctc agtctcggca agggctactg agatcagaac 22140 cacaggtgcc aatttgtaca aaggactcag tcctgctacc actgcctgat ccctcagact 22200 cacaagcctg gaataggctg tggccagacc tggctggccc atccctgaga agggtgctag 22260 tttcagaaat ggaggctgag tttgtggcca acacagtagt cctccggtat gtgcaggaga 22320 gatgttctaa gaccccagtg gatgcctgaa accatggaga gtatcaagcc ctacacatac 22380 catgcttttc ccaataccta cacacctgca ataaagtgta gtttataaat taggctcagt 22440 aagagagtaa tagcaactca taataaaata gaacaattat aacaatcaat atactataat 22500 aacactatgt gaatgtggac tctctccatc tccctcaaaa tatcttcttg tactgtactc 22560 acccttcttc ttgggaagat gtgtggtggt aaaatgcctg tgtgatggga ggaagtgagg 22620 tggatgacgc atgcagcact gtgctctagc gctgggctgc tgttgacctg accacacttc 22680 agaaggagaa tcatctgctc ccagagatcc ctaatctttg agcaacaatg aggtcggcag 22740 ctggatgtca ggagcagacg atcttgatga ttaccaaatg ggagcgtata gagcgtggat 22800 gcgctggacg gggggctgat tcacgtcctg ggtgggatgg agctggatgg cacgtgatca 22860 gaatagcatg caatttaaaa tgtatgaatt gtttatctct agaattttcc atttaatatt 22920 tttggactgc agttgatttc agataactga aaccatagaa ggcgaagctg cggataagca 22980 gggggcaggg attaccgtat atcattgtaa tagagagcac aggctctgga gccagactgc 23040 ccgaggtttg aaccctcatt agctgcgtga cctcaggtca gcccaatgtc tgtgtgcctc 23100 cgtttcccct tctgtagaat ggaggtaata accctggcta cctcacaggc tgtagtgatg 23160 agcaagcaag ttaatccaca tgaagggctg caccgtctgg caggggcttt atatagtaag 23220 cgagtggctg aaagatgatg ggtaaatcac acaagcactc agcttgtttc tccttatgtg 23280 agtccggtcc tccaagcagg gattcaatgt gccacccatt tattggggaa aagtcctaaa 23340 aggggaagtg gggaagggag ctgggggagg ctgggaggtg tgtccctgag tgaaggagag 23400 agggaaggaa ggaaggttga gactgggcac cttggacttc agtgcagtcc taagacatct 23460 tggcaaggct gatgaggagt tcttgaacca aattcaccag gcaggggagc ctgatgtctc 23520 aggcaggggc tggcaagtgc agatgcgagg atgttagatt ttggagcaca gcagctgggg 23580 cccttggcta cctccaagga gctgaggctg gagacctgaa aggcgagttc tcctagctgc 23640 cacacccctt ctccaaggat acaataatat ctgccttata ggattgttgt gagctgagtg 23700 gcttgacgtt ccttgaaaga atgaaagcgt atagttatcc caggaagcct agggttgcag 23760 gtgagagctc tggggcttct ccgaagctct ccgaggtgtc tggattcagt tgcagcagga 23820 gccttccttg ctgggatctt cccccacccc tagccttggc cctccctctc tccttccttt 23880 ctggaaggct cagtgggccc cacccctccc tccagccacc tggacctgcc cagcgctctt 23940 gtgcaacagg taaagcctac ctgtagcaac aacagatctg ggaaggctgc agagggcacg 24000 atggggtctg gatcgagggc ggctgagacc agagggaaag gtgtgaccct gagtcaccct 24060 cgctgtcccg gggaaaccac ctcccaggac agctgcctac tgtggctcct gcctggaatt 24120 gtcacactgc tgtgcaaaca gcgtcccgct gcccctttcc ctttgctggg ggaaaatgaa 24180 gttgtgggag ccgctgagta aactagacct agcagcgagg gcacctgatg tggctgctgc 24240 ctcccgggca ggtcttcaat gctttcttcc tgtgtttccc tggccagggc acagacggcc 24300 ctccttttct gcctgccgct gtgttctctc agcctcctct gtcttccctt ccaggctggg 24360 gaataactac atcactgccg cgggagccca agtgctggcc gaggggctcc gaggcaacac 24420 ctccttgcag ttcctggggt aggttggatt ccaggaagag ggacctgcat ggaggggctt 24480 gggacttttg aggatttagg ggcaggtgaa actcttcagc caggaggccc cagaggcagc 24540 ccagctccag tggggaggac aagccaggga gagagtgggc ggcccttgac tgccaccttc 24600 atacttggtc tatgcctgac aaacaggaag tttgggatgt tggggctagg ggaggacagt 24660 gcccacgagc tggtgacagg aagccctctg atcctcaggg ggcgctaggg ctgtacttta 24720 gctgcatatt aaaaccacct ggaagcttct aaacactatt gccaggcctc ccaccccaga 24780 ctgatgaaat gcaaatatct aggtgcaagg cccaggtatc aggagtttta aaaagcttcc 24840 caggggatgt acagccaggg gtgaggaccc ctgacctaag aaagagaagg aaatggggaa 24900 ggataggaag gcacccagga taagaggggc tgtgctaggt ccctcggagc tcttgctccc 24960 tgtaggacca tgctagggcc tgccagggag gggagtaccc caacctgcag ccccagggtg 25020 ggcttcctct gtttgctagg cacccaggct tgcacctgtg ctgtttccag cagcctctct 25080 cctatcctgt catgccctag tgtgaactgg agtccatttg acaagaactg ggagttttag 25140 aacctgggac tgtaggaaga gagaataacc ttagggccta ggtgttccag cccatttcac 25200 agggaggcaa gttgccccca agctcagttt tttgttttgt tttgttttgt ttgagatgta 25260 gtctcactct gttgcccagg ctagagtgca gtggcacgat cttggctcac tgcaacctcc 25320 gcctccttgg ttcaagcgat tcacctgcct cagcttctca agtagctggg attataggca 25380 cccaccacca cgcccagcta atttttgtat ttttagtaga gacagggttt caccatgttg 25440 gcccggctgg tcttgaactc ctgatctcag atgatccgcc cgcctcggcc tcccaaagtg 25500 ctgggattac aggtgtgagc caccgcaccc ggcccccaag ctcagtttga gccacaaatg 25560 ggactatgtt gctctagaaa tcaacatctt ttccacactg cattagtagc aacagagtct 25620 agaacaaagg aggccacagc cccactgaac tctcttctgc ttgaggtcac atctgccaca 25680 tcaggggtat ttacctcttt caacacatat ttattagggc acctgtctgg gccaggcgtt 25740 gtgctaaaac ccccaaacgc tgtcatatga tacaaagtgt tctgtaactt gcttggtttt 25800 tttttttgtt tgtttgtttg ttttgttttg tttttgttgt tgtttttttt tgcttcgcca 25860 tatattatag gaattttttt aggtcattat gacctcttta tttacttaat tatctattta 25920 tttattttac taatatttac agaaagggtc tcactctgtc acccaggctg gagtgcagtg 25980 gttgcaatca tagctcattg tagccttgaa ctcctgagct caagtgatct tcctacctcg 26040 gcctcctgag tagctgggac tacaggcaca agccaccatg cctggccgat atttttatgt 26100 tttgtagaga cggggtctca ctatgttgcc caggctggtc tcaaactcct gggctcaggt 26160 gatcctccct cctttgcctc ccaaagtatt gggattacac aagtgagcca ccttgctcag 26220 cctgacctca tttttcaaag agctgcagag tgttacataa tgtatttaac tggtcacttt 26280 ttgatgacta ttaagttgtt ttcaggtttt ttgttattac agtgtcatat ccctggggca 26340 cagagcagtg ctggcacata gccagagctc aatcgataca tacctaatga atgaaagtac 26400 agtggacatc ctaattcagc cattctttgc taacttgtgt acatacctgt ccagggtagg 26460 tccctagaat acagtcaata agtcagaagg tgtgagttgg gatctacctt ttggaaaggg 26520 atgttttcaa actacagtga gtcagaggag gatggcccag aagctggggg agttgaagct 26580 gatggcgtga aggaattagg ggtgttagga agaagcagga gataaagagc tagcttgcag 26640 aagaagtgtt agacttgtta tgggcaggta ctggagggta gctaaggact tgtgggtggc 26700 agttaccagg aagcgtatct gaactaagtg tcagaaaaag tgtcacaact gtaaattact 26760 cttgtcagtg agttcctgtc cttaagggtt agggctgggt agccctctac tattctctaa 26820 gtctgtaatg taaagccact gaaaactctt gggttaagtt tggccatccc acccaaaaga 26880 tggaggcagg tccactttgc tgggaccagg agccccagtg aggccactct gggattgagt 26940 ggtcctgccc ctctggctgg gactgcagag ggaggaggac tgttagttca tgtctagaac 27000 acatatcagg tactcactga cactgtctgt tgactctttt ggccttttca gattctgggg 27060 caacagagtg ggtgacgagg gggcccaggc cctggctgaa gccttgggtg atcaccagag 27120 cttgaggtgg ctcaggtaag cttcagagtc tatcctgcag ttttcttggg gagatcaggt 27180 gaagagggag gagctggggc cagttctgaa ggtctttgaa ctttatttct accccacaat 27240 gttaggcaat ggagtaagga aaaaagacca ttggatttca agagaggaca cttgagtctt 27300 tctgggtgac ttggaaatgt cccttgtcct ctcagggttt tgatacagta tctgtaaatt 27360 gaagatattg ggctggatca ggtacatttt atcttaaggg ccaattccaa tccattggta 27420 gtgggtgccc agtgcaccac attaaaaaga attctaaggc tgcacctggg cttaaagaag 27480 agcactataa tcaattagtg atgtctaaaa aagctaaaaa aaaaaaaaaa gagcactgca 27540 ttcaattagt gatgtctaaa aagggtagaa aaaaaaaaaa aaagaaaaaa gaaagagcac 27600 cgcaatcaat tagtgatgtc tgaaatggag cagaccagga gagcaccacg aattttgccc 27660 tccataggtt agctcatctc tgaggtcttt ccctgctctg acatactttt gttccatgat 27720 tacctccagc ctggtgggga acaacattgg cagtgtgggt gcccaagcct tggcactgat 27780 gctggcaaag aacgtcatgc tagaagaact ctggtgagtt tgggggattc tctgctctgg 27840 ggaagtggat cacaatctct gttgatcccc tggcctcatc cataggagcg gttgtgtgga 27900 cagacaaagg tggatgattg agtgattgac tgattgattg attgtgtttg tctttatatg 27960 tactgagtgg tatgaagctt atagagcctg gtatgtacat gctaattttt ttatttaata 28020 aaatatatgg gtttgctggt ttggtgactg cctccacatg gcataagtgt taagagcaca 28080 gactctgtaa tcaagcaggc cgtgatctta ggcaagttaa ataacaattt cagaatctca 28140 agtttcatgt ctgtaaaatg agggtaagaa tacttccaac cataaaggat ttttgcaaga 28200 attagataaa gtagtgcctg tgaagacctt aatatagtgc ctggcatatt tgtaagtgct 28260 ccataaatgt taaattagaa taatggcagg gttactacta ctattactgc tgctgctgct 28320 gctgctgctg ctacaactac tatagtactg tgactactac tactaataaa gttttgttat 28380 tttaaagtga ttttgagttc ctaggagcac tgggtattca agtcttaggt cattttggaa 28440 ggtgtaatgg agttttgata gttgaaagag gaaccatgaa tcatgcttat actgttgacc 28500 tgaagcagat tctaagtttc tcatccttta gatgccacta gtatagtttt ctgacatgtt 28560 ctgggcagct tcagattatg tcagggagat aaaatactga atgtttgatt ttcccgggaa 28620 gcagaaaggc actgcaacat atgggcattg ccataaacag attttatgga tggaccttgg 28680 ctgttgcagg gcttactagc tctactcaag tatgattgat tctatcctga ctggattttg 28740 ccacttggaa tttcttagta gaggagaacc ttgttatgag agcatcagtt atgattactg 28800 ttaaaagaaa aactttaggc aaattaaatt tagcagaact ggtttgaaca tacagcaatt 28860 tatgaattgg gcagcattca gaactgggag tgctccaccc agcaaggtag gcaagcagta 28920 tctatagaca ggaaaaggaa gtgatgtaca aaacagcttg attggttgca gctgggcatt 28980 tgccttatat gggcatggtg tgatgaggca ttttctttat atggatatag actgatcagc 29040 tggtagactg tgactgactg aagcctggct gctgtgattg gctaagactt agctgtttgt 29100 tataaggata tgttgttagg ttgcagtttg ctacatagga actcaaagta cagaggcagt 29160 ctcaggccaa atttagttta actatatgtt aagctgcagg tgacagaata cctccatcta 29220 tagaggttta aacaaggaaa gggtttattt tttcctgtat aggcagctgg atgtaggcag 29280 tgtagggttt gtacagtggc tacaagaggc caggaggggt ctcagctctg tctcattctc 29340 ttcctgttcc atcatcctta gcctgtaact tcattcacat ggttggttgt ctcatgatca 29400 caggatggct gctccaggtg cagcactact tctgtattcc cggattcgat ctatataccc 29460 aggaaagcca tctgggttct ctcctttaaa aagcattcct ggaagcccca cctgtcgact 29520 tccccttatg tatcaaccat gtgtatgtca cttgaccaac ccacttgtat gttgtttgac 29580 cagccctggc tgcaatggag agtgggaaat acagtttttt caccaagtgc atggctgtcc 29640 aaatgaaatg agacttccat taataaggaa gaaaggaaag atggagatca ggaagctggg 29700 ggatcaggga acttattaca ttgagagccc ttggagtgaa ttctcttgca aatatgtccc 29760 tggaattgag aatccccaca acgtctttat ctgttctttc tttatccatg agtttgggtt 29820 ttcagatgtt ggatttccta tatggggggc atgtgagttc atcatcttcc ataatcaatg 29880 ttgtatcaac tggattttct ctcttcttct caccagcctg gaggagaacc atctccagga 29940 tgaaggtgta tgttctctcg cagaaggact gaagaaaaat tcaagtttga aaatcctgaa 30000 gtaaggaacc cataagcagg aaacaggaca ataattgctg gcctttggaa ggggcatttc 30060 tgattaagat ctgggccgct ctccgctggg ctaactcatg tgaggtggcc tggtagaaca 30120 gcttgccttg gtctaggtgg acaaggattc cagtgcaagt tgtttatctg ggaggtggtc 30180 ccagtaaatg ctgataggag agtggtgaag tgagatgggg aagtgaaggt aaccaataaa 30240 ggggagttat caagccagtt atcaatgagg gaaattggag ctcagtactc tggggcactc 30300 ctggagccag tgcagaacac acatggtcac ctacccaacc aatgggcaag aaagccatgg 30360 catttatcca ccaaccctct gtccttccta tgttgatgtg cgctcatggg gcactgattc 30420 tccagcactt ccagctcacc ctcacccagc tgaacatgct tctggggtca ggagaatggc 30480 ctcaggcaga gagtggcagg tcttctctgc aagcagtggc tggggaggtg atgtgatggg 30540 gagtactgtg gcctcctcca gtggctgact cagtggcttg ggacttgtgc cacaaagaga 30600 tggacagctc aggtgaacat gaacccacct agtgaccatc atgggtttgt cagggtgctc 30660 tctgaggctg atgccaaaat tcttatttca agtagacctc aggaacccca tcagatggct 30720 ccttttgctg gaggaaagtg gcatctgcct aggcaaatgt ggtcctagga aaacgcttgc 30780 ctttagagac agacagacag acagctgcct ctgtgagtgc cagctttgct gccaggctgc 30840 tacccactct ggcgacactc atttgtgttg ctttcacaag ctaggaagtt tccaaatatt 30900 tggagaaaac acttccacta attatttggg tggaaatggg ctgggaagtt ggggtgaagc 30960 ccggatgtgt ctgagccaga tgccagcttt gcactgaggg tcggcctttg ggaataccaa 31020 gcccattatc aaccaggtgt ggatatggca ggtttgtctt ccctccttgt cacagcctta 31080 ctccacttga ctcccatgga tgccaggcaa tgaggctggg gttggtccca tgccaccctg 31140 tcatcagcct tatttttcag catcctaaac tatatcatcc cccacaaaaa ttgaacttct 31200 gatatatctt ttataaaaaa gagaaatgcc tacatctttc ttttccagga ttagtttctg 31260 ccaagagttg gttgagagcc caggcttgct gggtgcagtg gctcacacct gtaatcccag 31320 cactttggga ggctgaggcg ggtggatcac ctgaggtggg gagttccata ccagcctgac 31380 caacatggag aaaccccatc tctactaaaa atacaaaatt agccgggcgt ggtggcatac 31440 acctgtaatc ccatctactc aggaagctga ggcaggagaa tcacttgaac ctgggaggtg 31500 gaggttgcca tgagccaaga tcacaccatt gcaccctaga ctggacaaga gagaaacttc 31560 catctcaaaa aaaaaaaaaa ggatgagaaa aataataatt taaaaaaaag agtccaggct 31620 ctggaaccag acagcctggg tcttacccct gctccaccat taccagccag ttcttcttgg 31680 atgagtgcct cagttgcctc aagtgtaaat ggagataatg gctggacctt cattataggc 31740 catgagcatt cactgagaga atgtagctaa caaaagtgag ttgtaggttg gagcaaaagt 31800 aattgtggtt tcagaccatg aactttaaat tattataact aggctaaaat acatctttat 31860 taatcaaaat aggaaccatt aaaatcaaca catttttgcc aataagaaat aagtttgttt 31920 attcctgtag cataaaaatt catgcttcgg gattcaacaa actcttggaa agcattttct 31980 gcatcctcct ggttgtggaa gcatttttcc tgcagaaagt tgtcaagatt cttgaagaaa 32040 tggtagtcag ttggctagag gtcaggtaaa tatggcggat gaggcaaaac ttcatagtcc 32100 aattcattca acttttgaag ctttggttgt gtgacatgca gtccggttgt tgtcgcggag 32160 aattggaccc tttctgttga cgaatgccgg ttgcaggtgt tgcagttttc agtgcatctc 32220 attgacttgc cgagcatact tctcatatgt aatggtttcg cagggattca gaaagctgta 32280 ggggatcaga ctagcagcag accaccagtg accatgacct tttttttttg gtgcgaattt 32340 gcctttggga agtgctttgg agcttcttct cggtccaacc actgagctag tcattgccag 32400 ttgtataaaa tccacttttc atcgcacgtc acaatcagat caagaaatgg ttcgctgttg 32460 ttgtgtagaa taagagaaga tgacacttca aaatgacgat tttcttggtt ttcactcagc 32520 tcatgaggca cacacttatc gaggtttttc acctttccaa tttgcttcaa atgctgaatg 32580 accatggaat ggtcgatgtt gagttctcaa gtagttgtaa gaaaatcagc tttgatgatt 32640 gctctcaatt ggtcattgtc agcttctgat ggcctgccag tacactcctc atcttcaagg 32700 ctcttatctc cttcgcaaaa cttcttgaac caccactgca ctatacgtta gttagcagtt 32760 cctgggccaa atgcattgct gatgttgtga gttgtctccg ctgctttaca acccattttg 32820 aattcaaata agaaaattgc ttgaatttgc tttttgtcta acatcatttt catagtctaa 32880 aataaatata aaataaacag aaagtattaa gtcattagca aaaaatcata aagtgagaat 32940 tgtgcattaa aatgatgtat agcataacca catttattta agaatgtatt ccaatatcaa 33000 atggcaaatt tcaacaatgc aaaaactgca attacttttg caccaatcta atagaagttc 33060 aataaatact ggcaattaca attggcattg ccttagggtc aacttgtaag acattcctga 33120 aattgtggga aagggggagg acctggagtg gacattattg gaaggcaaag ctgtaaccaa 33180 aagagcaacc tgggaaacac atgactcctc tgttgctgtc cctggcccta tcctgtctcc 33240 cctccctgtt gtcagctacc tcatatgttc tctaatctct gtctctgtgc cctcaaagac 33300 ccccctgaaa atagaaatat tactgctcat tggttatttt ctatcaatta agtactgtat 33360 tagtccgttt tcatgctgat gataaagata tacccaagac tgggcacttt atgaaagaaa 33420 gagttttatt gaacttacag ttccacgtgg ctggggaggt ctcacaatca tggctgaagg 33480 tgaaaggcac atctcacatg gcagcagaca ggagaagagg gcttgttcag ggaaactccc 33540 ctttttaaaa ccatcagata tcatgaaact tatttactgt aatgagaaca ggatgggatt 33600 caattacctt ccactgggtc gctcccacaa cacgtgggaa ttcaagagat ttgggtgggg 33660 acacagccaa accatatcaa gtactgtgca agtgttttag gcatgcagag agtggtgggt 33720 cttcccagca agcagagtgt ggggaggtaa tgggggactg gtggctgact taatggccca 33780 ggacccatgc cacaaggaga tggatggtgg atgtgaatag gagcctgctt acacccatca 33840 caatttagat tcttatgctc gatggcacgg gtactctttt aggcccattt taccaatgag 33900 gagattggga ctaatttgct cgagatcaaa aaagaagtgg tgtaggtggg atttaaaccc 33960 aggatgtcta gcactaaaat gcaggtactt aaccactatc ctaagggagt ggctacttaa 34020 tttgataaac tcatctagtg aatggaagag agacggttac atttcactga tggtactgag 34080 cctttgttga tgagctcatt gggaatctca gacatgagca ggatgtgtct aagggacagg 34140 tgggcttcag tagactggct aactcctgca gtctctttaa ctggacagtt tcaagaggaa 34200 aaccaagaat ccttgaagct caccattgta tcttcttttc caggttgtcc aataactgca 34260 tcacctacct aggggcagaa gccctcctgc aggcccttga aaggaatgac accatcctgg 34320 aagtctggta aggcccctgg gcaggcctgt tttagctctc cgaacctcag tttttctatc 34380 tgtaaaatgg ggtgacggga gagaggaatg gcagaatttt gaggatccct tctgattctg 34440 acattcagtg agaatgattc tgcatgtgaa ggatctgatt ctctgtctaa gaaagaagtc 34500 tttacctctt taagtaggga gcaatgattt catttttaaa ccttgactat ttattcagca 34560 acttctctgc tctatgagat agtgtaggaa tggggatgtg gttgaagaat gaaaagaaaa 34620 gtcagctccc gccctcctag aaattgcatc tgccttcaca ggtcaaggat attggatcag 34680 accttctgcg gttctgaatg gagattacac aggttaggag caggttgcac agtgtttcca 34740 attctctata attaaagcca tagactttca tgtattgaaa aaagcaagaa ttgcattctt 34800 gacagattct ttcattgcct taaaaagaat gactagcctt gggagtctgg gcagctgggt 34860 ccagtgttgt agactttctc tctgctgagc cacagcttca aagatttgtc cttcttgttt 34920 ccagggatct atttctcaga caataagtaa aggctttccc tggcctaatg tgctgtaagt 34980 gaatgctact atatatgttc caggcactgg gctagagact aatatttaaa agccaggaaa 35040 tttcctatag aaaatctata tctcagggtt ttctcaaaag agctgggaac tctggatgcc 35100 cattcatgat tccagtagtt aaccagagta caagaagggc tgagtcttct cagatgggca 35160 aacccactct ggctgactgc agatccacca agcctattgt cttagaccag gaccctttgg 35220 caactcattc ccataagcct gtgacccttg ctttaaatat gcaggccttg tcttctctca 35280 aaaagcacat caaggctgca gcgaatgcag atatcaaatg atgaagttaa aaacaaaagc 35340 tttgctgggc gtggcagctc acacctgtaa tcctagcact ttgggaggct gaggcaggag 35400 gatcacttta ggccagaggt tcaacaccag accttgtctc tcaaaaaata aaaaattcag 35460 ctgggtgcgg tgtagttcct agccacttgg gaggctggga tggaaggatc ccttgaaccc 35520 aggagttcaa ggctgcagtg ggccatgatt gcatcactgc acaggcgaca gaattagatc 35580 ccatctctta aaaaaataaa aaatttaaaa gtgacttcaa aaatctatgc tgtgatggag 35640 agatttttcc ttctgtatga ttgtgatagc tctgtggcct atgacgtcat caggttctgg 35700 gcaaagtgta ggttttctgt ttctttgttt ttgaaaccat tgcacagtcc taagaaacat 35760 cacattctgg gtcctgggca ccagccaaca tgaggtgagg gcaccagggt ttgctcattg 35820 cattcttgac agattctctt attgccttaa aaagaatcac tggccttggg gagtctgtgg 35880 ctggctgggt gcagtgttgt ggactctctc tgcagagtca tggagccttg ttcagaatgc 35940 ttcctgagct gccctggttg gccaagggta aaaacagccc tgacttccct gcaagaaaca 36000 ctgcagctgg gccagagagt cagcccatcc caggcatggg tttaaaaagt ggaggctttt 36060 gtttgaaagc cctgctctaa ttttgtcctc actcaaacct ctgttcactt gatctgcttt 36120 aggctccgag ggaacacttt ctctctagag gaggttgaca agctcggctg cagggacacc 36180 agactcttgc tttgaagtct ccgggaggat gttcgtctca gtttgtttgt gagcaggctg 36240 tgagtttggg ccccagaggc tgggtgacat gtgttggcag cctcttcaaa atgagccctg 36300 tcctgcctaa ggctgaactt gttttctggg aacaccatag gtcaccttta ttctggcaga 36360 ggagggagca tcagtgccct ccaggataga cttttcccaa gcctactttt gccattgact 36420 tcttcccaag attcaatccc aggatgtaca aggacagccc ctcctccata gtatgggact 36480 ggcctctgct gatcctccca ggcttccgtg tgggtcagtg gggcccatgg atgtgcttgt 36540 taactgagtg ccttttggtg gagaggcccg gcctctcaca aaagacccct taccactgct 36600 ctgatgaaga ggagtacaca gaacacataa ttcaggaagc agctttcccc atgtctcgac 36660 tcatccatcc aggccattcc ccgtctctgg ttcctcccct cctcctggac tcctgcacac 36720 gctccttcct ctgaggctga aattcagaat attagtgacc tcagctttga tatttcactt 36780 acagcacccc caaccctggc acccagggtg ggaagggcta caccttagcc tgccctcctt 36840 tccggtgttt aagacatttt tggaagggga cacgtgacag ccgtttgttc cccaagacat 36900 tctaggtttg caagaaaaat atgaccacac tccagctggg atcacatgtg gacttttatt 36960 tccagtgaaa tcagttactc ttcagttaag cctttggaaa cagctcgact ttaaaaagct 37020 ccaaatgcag ctttaaaaaa ttaatctggg ccagaatttc aaacggcctc actaggcttc 37080 tggttgatgc ctgtgaactg aactctgaca acagacttct gaaatagacc cacaagaggc 37140 agttccattt catttgtgcc agaatgcttt aggatgtaca gttatggatt gaaagtttac 37200 aggaaaaaaa attaggccgt tccttcaaag caaatgtctt cctggattat tcaaaatgat 37260 gtatgttgaa gcctttgtaa attgtcagat gctgtgcaaa tgttattatt ttaaacatta 37320 tgatgtgtga aaactggtta atatttatag gtcactttgt tttactgtct taagtttata 37380 ctcttataga caacatggcc gtgaacttta tgctgtaaat aatcagaggg gaataaactg 37440 ttg 37443 4 1315 DNA Homo sapiens CDS (117)..(1118) 4 cgatcagaag caggtcacac agcctgtttc ctgttttcaa acggggaact tagaaagtgg 60 cagcccctcg gcttgtcgcc ggagctgaga accaagagct cgaaggggcc atatga cac 119 His 1 tcc tcc cgg acc cct gga cac aca cag ccc tgg aga ctg gag cct tgg 167 Ser Ser Arg Thr Pro Gly His Thr Gln Pro Trp Arg Leu Glu Pro Trp 5 10 15 agc atg gca agt cca gag cac cct ggg agc cct ggc tgc atg gga ccc 215 Ser Met Ala Ser Pro Glu His Pro Gly Ser Pro Gly Cys Met Gly Pro 20 25 30 ata acc cag tgc acg gca agg acc cag cag gaa gca cca gcc act ggc 263 Ile Thr Gln Cys Thr Ala Arg Thr Gln Gln Glu Ala Pro Ala Thr Gly 35 40 45 ccc gac ctc ccg cac cca gga cct gac ggg cac tta gac aca cac agt 311 Pro Asp Leu Pro His Pro Gly Pro Asp Gly His Leu Asp Thr His Ser 50 55 60 65 ggc ctg agc tcc aac tcc agc atg acc acg cgg gag ctt cag cag tac 359 Gly Leu Ser Ser Asn Ser Ser Met Thr Thr Arg Glu Leu Gln Gln Tyr 70 75 80 tgg cag aac cag aaa tgc cgc tgg aag cac gtc aaa ctg ctc ttt gag 407 Trp Gln Asn Gln Lys Cys Arg Trp Lys His Val Lys Leu Leu Phe Glu 85 90 95 att gct tca gct cgc atc gag gag aga aaa gtc tct aag ttt gtg gtg 455 Ile Ala Ser Ala Arg Ile Glu Glu Arg Lys Val Ser Lys Phe Val Val 100 105 110 tac caa atc atc gtc atc cag act ggg agc ttt gac aac aac aag gcc 503 Tyr Gln Ile Ile Val Ile Gln Thr Gly Ser Phe Asp Asn Asn Lys Ala 115 120 125 gtc ctg gaa cgg cgc tat tcc gac ttc gcg aag ctc cag aaa gcg ctg 551 Val Leu Glu Arg Arg Tyr Ser Asp Phe Ala Lys Leu Gln Lys Ala Leu 130 135 140 145 ctg aag acg ttc agg gag gag atc gaa gac gtg gag ttt ccc agg aag 599 Leu Lys Thr Phe Arg Glu Glu Ile Glu Asp Val Glu Phe Pro Arg Lys 150 155 160 cac ctg act ggg aac ttc gct gag gag atg atc tgt gag cgt cgg cgc 647 His Leu Thr Gly Asn Phe Ala Glu Glu Met Ile Cys Glu Arg Arg Arg 165 170 175 gcc ctg cag gag tac ctg ggc ctg ctc tac gcc atc cgc tgc gtg cgc 695 Ala Leu Gln Glu Tyr Leu Gly Leu Leu Tyr Ala Ile Arg Cys Val Arg 180 185 190 cgc tcc cgg gag ttc ctg gac ttc ctc acg cgg ccg gag ctg cgc gag 743 Arg Ser Arg Glu Phe Leu Asp Phe Leu Thr Arg Pro Glu Leu Arg Glu 195 200 205 gct ttc ggc tgc ctg cgg gcc ggc cag tac ccg cgc gcc ctg gag ctg 791 Ala Phe Gly Cys Leu Arg Ala Gly Gln Tyr Pro Arg Ala Leu Glu Leu 210 215 220 225 ctg ctg cgc gtg ctg ccg ctg cag gag aag ctc acc gcc cac tgc cct 839 Leu Leu Arg Val Leu Pro Leu Gln Glu Lys Leu Thr Ala His Cys Pro 230 235 240 gcg gcc gcc gtc ccg gcc ctg tgc gcc gtg ctg ctg tgc cac cgc gac 887 Ala Ala Ala Val Pro Ala Leu Cys Ala Val Leu Leu Cys His Arg Asp 245 250 255 ctc gac cgc ccc gcc gag gcc ttc gcg gcc gga gag agg gcc ctg cag 935 Leu Asp Arg Pro Ala Glu Ala Phe Ala Ala Gly Glu Arg Ala Leu Gln 260 265 270 cgc ctg cag gcc cgg gag ggc cat cgc tac tat gcg cct ctg ctg gac 983 Arg Leu Gln Ala Arg Glu Gly His Arg Tyr Tyr Ala Pro Leu Leu Asp 275 280 285 gcc atg gtc cgc ctg gcc tac gcg ctg ggc aag gac ttc gtg act ctg 1031 Ala Met Val Arg Leu Ala Tyr Ala Leu Gly Lys Asp Phe Val Thr Leu 290 295 300 305 cag gag agg ctg gag gag agc cag ctc cgg agg ccc acg ccc cga ggc 1079 Gln Glu Arg Leu Glu Glu Ser Gln Leu Arg Arg Pro Thr Pro Arg Gly 310 315 320 atc acc ctg aag gag ctc act gtg cga gaa tac ctg cac tgagccggcc 1128 Ile Thr Leu Lys Glu Leu Thr Val Arg Glu Tyr Leu His 325 330 tgggaccccg cagggacgct ggagatttgg ggtcaccatg gctcacagtg ggctgtttgg 1188 ggttcttttt ttttattttt ccttttcttt tttgttattt gagacagtct tgctctgtca 1248 cccagactga agtgcagtgg ctcaattatg tctcactgca gcctcaaact cctgggcaca 1308 agcaatc 1315 5 334 PRT Homo sapiens 5 His Ser Ser Arg Thr Pro Gly His Thr Gln Pro Trp Arg Leu Glu Pro 1 5 10 15 Trp Ser Met Ala Ser Pro Glu His Pro Gly Ser Pro Gly Cys Met Gly 20 25 30 Pro Ile Thr Gln Cys Thr Ala Arg Thr Gln Gln Glu Ala Pro Ala Thr 35 40 45 Gly Pro Asp Leu Pro His Pro Gly Pro Asp Gly His Leu Asp Thr His 50 55 60 Ser Gly Leu Ser Ser Asn Ser Ser Met Thr Thr Arg Glu Leu Gln Gln 65 70 75 80 Tyr Trp Gln Asn Gln Lys Cys Arg Trp Lys His Val Lys Leu Leu Phe 85 90 95 Glu Ile Ala Ser Ala Arg Ile Glu Glu Arg Lys Val Ser Lys Phe Val 100 105 110 Val Tyr Gln Ile Ile Val Ile Gln Thr Gly Ser Phe Asp Asn Asn Lys 115 120 125 Ala Val Leu Glu Arg Arg Tyr Ser Asp Phe Ala Lys Leu Gln Lys Ala 130 135 140 Leu Leu Lys Thr Phe Arg Glu Glu Ile Glu Asp Val Glu Phe Pro Arg 145 150 155 160 Lys His Leu Thr Gly Asn Phe Ala Glu Glu Met Ile Cys Glu Arg Arg 165 170 175 Arg Ala Leu Gln Glu Tyr Leu Gly Leu Leu Tyr Ala Ile Arg Cys Val 180 185 190 Arg Arg Ser Arg Glu Phe Leu Asp Phe Leu Thr Arg Pro Glu Leu Arg 195 200 205 Glu Ala Phe Gly Cys Leu Arg Ala Gly Gln Tyr Pro Arg Ala Leu Glu 210 215 220 Leu Leu Leu Arg Val Leu Pro Leu Gln Glu Lys Leu Thr Ala His Cys 225 230 235 240 Pro Ala Ala Ala Val Pro Ala Leu Cys Ala Val Leu Leu Cys His Arg 245 250 255 Asp Leu Asp Arg Pro Ala Glu Ala Phe Ala Ala Gly Glu Arg Ala Leu 260 265 270 Gln Arg Leu Gln Ala Arg Glu Gly His Arg Tyr Tyr Ala Pro Leu Leu 275 280 285 Asp Ala Met Val Arg Leu Ala Tyr Ala Leu Gly Lys Asp Phe Val Thr 290 295 300 Leu Gln Glu Arg Leu Glu Glu Ser Gln Leu Arg Arg Pro Thr Pro Arg 305 310 315 320 Gly Ile Thr Leu Lys Glu Leu Thr Val Arg Glu Tyr Leu His 325 330 6 8135 DNA Homo sapiens exon (1)..(161) exon (3812)..(3950) exon (5426)..(5577) exon (7273)..(8135) 6 cgatcagaag caggtcacac agcctgtttc ctgttttcaa acggggaact tagaaagtgg 60 cagcccctcg gcttgtcgcc ggagctgaga accaagagct cgaaggggcc atatgacact 120 cctcccggac ccctggacac acacagccct ggagactgga ggtcagtatt tgatcccaag 180 ctcagctgtc ctctgcctgc tgtggcctga gtccccttct cctggggccc tgcctggcac 240 ctgctggggg cagggtggga gggggaagag ttagtgacag ccgctgtgtc tggagctctc 300 cttagcacac tgaggcagag gaagggacag ctcctggacc ttccatcacc tccattcctt 360 ttgaaatgct aggcgcttgt acaacccatc ttgggcctgg agaataagtc accacacctg 420 tgtttctcaa aagaacagtg tcagggaacc cctgcctcag cacagcctta gaggactcat 480 ggaaaatgca gaatccaggc ctgttcaatg gcaccttcct atgttagcag ccaggaaacc 540 tgctcttgga caagcccctg ggatcccacc cccaccccac caggggattc ttacacacac 600 tgggttggga gcccctggct ttggcaaggc ttctcaggtg agcgtccagt tgttggaggg 660 tacccaccct ttccccaaga gaggcagcca cacatccaac atcctgggat ctctgtctcc 720 cagcgtgggc catgtgcttt atttcacccc ctagaggctc atcccccatg aaaagtcctc 780 cgcaggccct cagaaagata gtgtggcctc tgtgtgccca gcagaagaag gactggactt 840 ggcagtcagc tcttggagag ggggtggtta ggacacctgg ggacaggagg aggagaatga 900 ctgtctgtgc acacacggct ggaaggtaca ggaggctggg aagctgctct gtcccctggg 960 ccaactacag gcccccaggc caacagcaac aacactttta gtattttgtt ataaagtcaa 1020 gaaatctttg ctacagaggg tgaggagagg gaaggaaagg gccatggaac cgtctatgtg 1080 gctatcccca gagagctttt agagtgacag gattgctttc ccatttcaca gatgaggaaa 1140 ctgaggcctg gagagggatg ggaagctacc caaggcccca tggatacacc agtgcacaac 1200 tctttccttc cccctcctct ttaaatgggt gattcccaat gaaacctgta agagacaacc 1260 ataagggagc tgactgtggc tgctgaattt gattttattc taaggcctgg ttttataatc 1320 agctttctca gtctttactg gagtgtcaag ccgaggcatc atttctaggg tcttacaggg 1380 tctctgggcc aatagtgccc tgcttctgac ctggagccag ctgcctggtc atgaaagcag 1440 atctgcaaag gctggggccc ctgaggccaa ggccactcgc catcacccat tttacagaag 1500 tgctgagcat aggagtgccc tgggccccca agaatcccag ccaccaagaa tcacgtaaac 1560 catccactgt ctcacttagg caccagtcag aatgtaggga acccacccct agtcatccat 1620 catcttatca acaggacggg gcttgtagcc acatttatca ggtagggaaa ctgaagccta 1680 gagatattaa agcacttgct taaggacaca cggttggtca ggatggaagg cgatgtctcc 1740 tgactccctg acaggcacaa gagacaagcg agaggtgccc gtgacggcat gctcaagaac 1800 gtgcagccct gggccagcca ggcccctgct ccgtgcctct gtttgcccat ctgtaaaagg 1860 tgaggttgga tcgagggtcc ctgagggccg cccactggat ggctgtgcag agccaaacgg 1920 agaaggcccc agggttcctt tcacccgaca cagcaagcac ttccccctga agtgcaggct 1980 ccaggcccca gctgacctcc cctctcccag gccagcggct ctcacccctg gagcaaggga 2040 caggcgctgg ctgtgctcag ggacatgcat gactcccgcc cccatctgtg ctcagggggt 2100 gccagggagg cactggctct atctttctct aggccgtagt cagcccaggg gttcagacca 2160 agagcccaga atccaacaga tcagagttca agtcccagct ctacctctat gttccactgg 2220 cagcttcctc aggtcatttg caccttcctt gtcttgaatt tccatgccta accagtatac 2280 cagctactcc ctccagccga tctaatgttt taattgtccc tttctctaag ttgtctcaaa 2340 catttgtaat tctattccaa tccaccttaa tttagtcatt tatttcacaa atatttctgg 2400 aaacatctag cacttaacag acactaaaag cgggggtact acacagtccc tgggatggac 2460 agggccctga gctgaggctt cagagtctgc ctgactgaat cctcacccca gccttgtgaa 2520 cgtgggttct gttattatcc ccaatttata ggaaacagaa gcacagagaa gttgagtcac 2580 ttgccagcta ccaggtcatc ccttccactt atccgggtca cagacagagt tattatgtaa 2640 accagatccc agctgcctgt tctccctccc tgagtaaggt ggagagaatt ctgaagtcag 2700 cccagcctgg gtctgtatcc tgcccaccac tcaccagctc ctcatctttg gcaactctaa 2760 gtctcagttc ccttatcata aaagggagat gtaaacagtc ctgagtgcag acagtgttca 2820 ggttagtgca agagtgtgtg ctgggtgtga agtgcacagc cagcacgtca caagcactgg 2880 agacaaattc agctttgctt gttgcgcaca ctcaccagct gcgtgacttt agacctcagt 2940 tttctcatct gttatgtggt ggtaatgata gacttttgtg agcattaaac tagattaggg 3000 gctatggaga acctagatgg gtatgaagtg ggtataataa gctatcagtt aattttgctg 3060 atagatagat tattgattga ttgatcgata gaagattcat accagtatct acctgctctg 3120 aacactgacc tttctttttt tctttttgag atggtcttgt tctgtcaccc agactggagt 3180 gcagtggcat catcatagct cactgcagcc tcagtctctt gggcttaagg gatcctcctg 3240 tctcagcctc ccaagtagct gggaccacag gcgtgcatcc tggataattt ttttttattt 3300 tttctagaga cggggtctca ctacattggc caggctggtc tcaaattcct gggctcaagt 3360 gatccttcta acccagcctc ccaaagcgct gggattacag gcatgagtgg ccatgttcaa 3420 cttgaacact gagacttcat tcgcatgtgt aacataaaac tgagtatcta gacaagccag 3480 catctttctt tcaagtaatc actaaagcca atacttttac ttgaaatcat ctcatttaaa 3540 actctgagca atacgtaagg atcacctcaa taacatatgg atcatcgcaa taggtgaagg 3600 gtcttctctg ccttggagta acctgcccag caaaggggca gacccagatt tgggatctgg 3660 cagctgggag agtggggaag gttgagccgt ggggcccttg tcattccctc tgcctgccag 3720 gagggggcat gacacagctc ctaggcaccc caggagccac cgggaacccc aactggagtg 3780 ggtcctcact gttctctttt tcctctggca gccttggagc atggcaagtc cagagcaccc 3840 tgggagccct ggctgcatgg gacccataac ccagtgcacg gcaaggaccc agcaggaagc 3900 accagccact ggccccgacc tcccgcaccc aggacctgac gggcacttag gtgggcttga 3960 ggcttgagac tcggtctggg ggagaggtct gaagacattc aaagtacaaa tgtgggtcac 4020 tttgggggat gcagcaagag gcccgggcag ctcttgtaac ttgggttatc ccaaaacaga 4080 cactgagaca cagatctagt gcaagctgtt tatccgggag acggtcctag gagtcatggc 4140 aggggagtgg gaatggaagg aaagggcaag aggccagggc aggacatcag tgaacagata 4200 ggcacggtag gtggctgaag ctcaacccca gcgggggtct tctgggagac cctggaacat 4260 atctctgggt tgtcctatcc taggggtgag gaagccgggc tgttatctac cagtcctgcc 4320 ctgcatagga gaagggacgc tcctgggcct gctgctatgg ccctagaaag ccctcaggga 4380 agccagtggc atgttctgga aaagtgggtg ccaagagggc acggtccagc ctggggcatg 4440 gacagcatct gctgtagtgc catctcctgg aacagatctt ttcttacagt ccttcgagat 4500 gccctattca atacctgctc tgttcctggc cctatgcagg gcactggaga aacagaaaca 4560 ggaagaaatc aaacactgca ctagtcctga ggtttggtag agaaacagat cagtgagaaa 4620 cagttacacg tgccacgaga aataaataaa taaaatgaaa aacctgtagg aacaaggtgg 4680 gaagctctta ctctaatgcc aaggggcatt tgcagtgatg tgggggctgg gtcttgaagg 4740 gtagactgga aaagggctgg gacccatgcc ctttgcaata aaatgcacaa ttatttgtgc 4800 ttcttaagaa cctcagagtg gcgcagggct caagtggggt ttaagaaaca ctgtgttcgt 4860 tttccaggcg tggaaataga gggttggatg caaggcagag cagtgcacgt ccgagaagag 4920 cccggcatgt gggcagttag atgagaaggt taggaagggc cagcccgctg aggctggaac 4980 ataacatcct cctcactgcc tcccctgccc actgatgtgt gctcaaggag tcgtggcaac 5040 agtcacgaag tcagggctgc agggagcaca gaaacacaca agccaccgtc tctgcttgtc 5100 cagagcaggg atttcaccat ggccaatcta cagaccagaa gtggacgatg caaagtgccc 5160 gcaccgcatt ccaaagctgt gaaaccactt gggggtgatg ggctatttgg gattgtcggt 5220 ggtagggtgg attctgccag gctgggcaca gaggtctgtc tgatgcccca attgggccta 5280 taaatggcgg ggtgggagag agggatattc aatactcttc aggagttctg atatgccatc 5340 tcagatagac ccagccatct ccccaagccc atgcctcgga agtgcactga cagggtgcag 5400 atccttaagg gtgttgtcct tccagacaca cacagtggcc tgagctccaa ctccagcatg 5460 accacgcggg agcttcagca gtactggcag aaccagaaat gccgctggaa gcacgtcaaa 5520 ctgctctttg agatcgcttc agctcgcatc gaggagagaa aagtctctaa gtttgtggta 5580 agcagagatt gggaaatggt ggagcctctt tcactctgct tccttcctgg ccctgaataa 5640 gtcttgtaga gcctcaggtt tcccaactat gaaatgggtc aacacactaa ctcacagctt 5700 tcttctggag aaaatggcca aagagcaaga tttcaggctc agcacctgct agggtctgtg 5760 aggattcgaa ccatataagt catatttctt ggtcccaaga aggaaatagc ccagtttaat 5820 cccatcttat caggtgtcag tcacctgtgt cctttcttca ccaattttgc catatcactg 5880 tatctgttct aattattatt acttattttt ttctttaaat tggatcactt tttaaaaaca 5940 tgaagcacat ttatttcaaa gagaaatacc ttaaatggaa aaccaatatc acatggcaca 6000 aagcaaaagt aacatactag aaaagtcgat acaaggaaag tcaatacaag gaaagctatg 6060 tgctgttatt aaattctagc tggttactgt ggcttcggga aagccctgtg cctgggagct 6120 gctcctctcc ctgttagaat ggaattttag cttgtgttaa gggatgttaa agactgccta 6180 agagccacac ttcatccttc tccttcactt acctgggacc gggataaata acatagctac 6240 cactgaatgc caatggcatg ccgggcacag ctccatgtgg tttcagtgca ttaactcatt 6300 taatcctcac tgggtgaggt aggcactatg cctatccttg ttttatgaat gagaaaagtg 6360 agactcggag aggttaaatt actcatctaa aaccacacag ctagaccatg gtagggctat 6420 aattacaacc catgcaatct ggctctggag tcagatgcat gggttataat tgcccttaat 6480 atataattgc ccgtaatcag gattctcttg aaagatgatt gaaaaggatt gattttctta 6540 ccatataacg gcatcaccag tgtacctaaa tgatgttata ttgtacgtaa aactaattcc 6600 caagtgtgaa acatttggaa aacacagcat ctcagttcag aaaacagagg cccagtttta 6660 gcaagtaaag ccaagaggga ccccagcagc ctgcagggca ggaccctctg ccctttctcc 6720 tcccagatgt ccccaccttg ctgtgttgtt gttccagggt tgactcagct gatgccaata 6780 gcaatttaaa acagaattgg gccaggtgca gtggctcatg cctgtaatcc cagcactttg 6840 ggaggcccag gtaggaggat cgcttgagcc caggagttgg agaccagcct gggcaacaca 6900 gccagacccc atcttttaaa aagaatcaaa aaatctgcca ggtagtgggt gtgcctgtag 6960 tcccagctac tcaggaggct caggtgggca ggtcaattga gcccataagt tcaaggttgc 7020 agtgaggtat gatcgcatca ctgtactcca gcctgggtaa cagtgcgaga ccctgtctct 7080 aaaaataaat aaataaataa ataaataaat aaataaacaa acaaacaaac aaacaaacaa 7140 tcaattgcat ataaggatcg cccgttttca gggcatgctt tacaccggcc tggttaactt 7200 tactctgggt gtgctccgtc cgccgcagcc cccgccggga ggtggccaca gctctctctg 7260 gttgcgccct aggtgtacca aatcatcgtc atccagactg ggagctttga caacaacaag 7320 gccgtcctgg aacggcgcta ttccgacttc gcgaagctcc agaaagcgct gctgaagacg 7380 ttcagggagg agatcgaaga cgtggagttt cccaggaagc acctgactgg gaacttcgct 7440 gaggagatga tctgtgagcg tcggcgcgcc ctgcaggagt acctgggcct gctctacgcc 7500 atccgctgcg tgcgccgctc ccgggagttc ctggacttcc tcacgcggcc ggagctgcgc 7560 gaggctttcg gctgcctgcg ggccggccag tacccgcgcg ccctggagct gctgctgcgc 7620 gtgctgccgc tgcaggagaa gctcaccgcc cactgccctg cggccgccgt cccggccctg 7680 tgcgccgtgc tgctgtgcca ccgcgacctc gaccgccccg ccgaggcctt cgcggccgga 7740 gagagggccc tgcagcgcct gcaggcccgg gagggccatc gctactatgc gcctctgctg 7800 gacgccatgg tccgcctggc ctacgcgctg ggcaaggact tcgtgactct gcaggagagg 7860 ctggaggaga gccagctccg gaggcccacg ccccgaggca tcaccctgaa ggagctcact 7920 gtgcgagaat acctgcactg agccggcctg ggaccccgca gggacgctgg agatttgggg 7980 tcaccatggc tcacagtggg ctgtttgggg ttcttttttt ttatttttcc ttttcttttt 8040 tgttatttga gacagtcttg ctctgtcacc cagactgaag tgcagtggct caattatgtc 8100 tcactgcagc ctcaaactcc tgggcacaag caatc 8135 7 16 DNA Homo sapiens 7 ctgggtgcga ttgctc 16 8 16 DNA Homo sapiens 8 ccaggcccca tgacag 16 9 25 DNA Homo sapiens 9 tggtcccggc ccaatcccaa tgctt 25 10 28 DNA Homo sapiens 10 ttcctcatgt ataaattggg tgtggcca 28 11 25 DNA Homo sapiens 11 acagagtgag gaccccatct ctatc 25 12 25 DNA Homo sapiens 12 tccaactgct gggattacag gcaca 25 13 22 DNA Homo sapiens 13 agtccccgag accagggcaa ac 22 14 23 DNA Homo sapiens 14 tccatttctg cagtacacat gca 23 15 20 DNA Homo sapiens 15 ctctccccat agaaggcatc 20 16 20 DNA Homo sapiens 16 ggatagagac gttctcttaa 20 17 20 DNA Homo sapiens 17 caggctgaat gacagaacaa 20 18 20 DNA Homo sapiens 18 attgaaaaca actccgtcca 20 19 25 DNA Homo sapiens 19 atactcactt ttagacagtt caggg 25 20 21 DNA Homo sapiens 20 ggctcagttc ctaaccagtt c 21 21 20 DNA Homo sapiens 21 agtcagtctg tccagaggtg 20 22 20 DNA Homo sapiens 22 tgaatcttac atcccatccc 20 23 17 DNA Homo sapiens 23 gatcttccca aagcgcc 17 24 17 DNA Homo sapiens 24 tcccgtcagc caagcta 17 25 20 DNA Homo sapiens 25 aagcttgtat ctttctcagg 20 26 20 DNA Homo sapiens 26 atctaccttg gctgtcattg 20 27 20 DNA Homo sapiens 27 cctccataat catgtgagcc 20 28 20 DNA Homo sapiens 28 aatctcccca actcaagacc 20 29 20 DNA Homo sapiens 29 ggatgcctgc tctaaatacc 20 30 19 DNA Homo sapiens 30 cccaggggtc aaacttaat 19 31 21 DNA Homo sapiens 31 ggtttgaaag tatctccagg g 21 32 21 DNA Homo sapiens 32 ggtttgaaag tatctccagg g 21 33 20 DNA Homo sapiens 33 gtgcatgtgt tcgtatcaac 20 34 20 DNA Homo sapiens 34 tcatctccaa aggagtttct 20 35 18 DNA Homo sapiens 35 aaagccaacc ttgcttca 18 36 20 DNA Homo sapiens 36 tcttggaaac aggtaagtgc 20 37 18 DNA Homo sapiens 37 attgccctca agaacagc 18 38 17 DNA Homo sapiens 38 gtgctatgcc atcccag 17 39 20 DNA Homo sapiens 39 ccacaccagc gtttttctaa 20 40 24 DNA Homo sapiens 40 cacactttac acacacctat accc 24 41 22 DNA Homo sapiens 41 aagccatatt aggtctgtcc at 22 42 19 DNA Homo sapiens 42 gcttgggtta aatgcgtgt 19 43 20 DNA Homo sapiens 43 agcagtttgg gtaaacattg 20 44 20 DNA Homo sapiens 44 aaatatgcct tctggaggtg 20 45 20 DNA Homo sapiens 45 ggaggatcag gggagtttat 20 46 24 DNA Homo sapiens 46 caaagtaaat gaatgtctac tgcc 24 47 23 DNA Homo sapiens 47 ccaactctgt agtttcaaag agc 23 48 20 DNA Homo sapiens 48 tcacagccta cttgcttggt 20 49 25 DNA Homo sapiens 49 gacagcctca aatgaaatat aacac 25 50 25 DNA Homo sapiens 50 gctctcagct agggtagttg tttat 25 51 25 DNA Homo sapiens modified_base (20) a, t, c, g, other or unknown 51 atttttaagg aatgtaaagn acaca 25 52 20 DNA Homo sapiens 52 gaccaggagt cagtaaaagg 20 53 20 DNA Homo sapiens 53 gtccaaaaca ccaccctcta 20 54 24 DNA Homo sapiens 54 gaagtagatc agtcatcttg ctgc 24 55 19 DNA Homo sapiens 55 tcctctgggg gattcactc 19 56 20 DNA Homo sapiens 56 gggacatcac caagcacaag 20 57 25 DNA Homo sapiens 57 caggaaaata aatctaacac acata 25 58 20 DNA Homo sapiens 58 cctgtgggca ctgataaata 20 59 19 DNA Homo sapiens 59 cccagccccc atctcaccg 19 60 19 DNA Homo sapiens 60 cccagccccc atctcacca 19 61 19 DNA Homo sapiens 61 ctgcggagga ggctgctgg 19 62 19 DNA Homo sapiens 62 tcactcccac caccctttc 19 63 20 DNA Homo sapiens 63 agaagtttag tgtggcgtgg 20 64 17 DNA Homo sapiens 64 gccatctccc caagccc 17 65 18 DNA Homo sapiens 65 tcgatgcgag ctgaagcg 18 66 18 DNA Homo sapiens 66 tcgatgcgag ctgaagca 18 67 20 DNA Homo sapiens 67 tgaatgttaa agggctctgg 20 68 19 DNA Homo sapiens 68 ttggttctca gctccggcg 19 69 19 DNA Homo sapiens 69 ttggttctca gctccggca 19 70 19 DNA Homo sapiens 70 agaaaccggg ctggctgtg 19 71 21 DNA Homo sapiens 71 gcattgcctt ttgatctcta c 21 72 18 DNA Homo sapiens 72 tgggctcttc tgcgggga 18 73 18 DNA Homo sapiens 73 tgggctcttc tgcggggg 18 74 20 DNA Homo sapiens 74 tgcctcttct tctgccttcc 20 75 22 DNA Homo sapiens 75 cgagctgtac ctgaggaagc gt 22 76 24 DNA Homo sapiens 76 cctgagctgt acctgaggaa gcgc 24 77 20 DNA Homo sapiens 77 catcatgagc ccggggtggc 20 78 23 DNA Homo sapiens 78 tttctcttgg cttcctggtg cgt 23 79 25 DNA Homo sapiens 79 accttctctt ggcttcctgg tgcgg 25 80 26 DNA Homo sapiens 80 gccaaaggtg tcgtgccagg gctcca 26 81 20 DNA Homo sapiens 81 atctgagaag gccctgctct 20 82 20 DNA Homo sapiens 82 atctgagaag gccctgctcc 20 83 19 DNA Homo sapiens 83 cccacactta gccttgatg 19 84 19 DNA Homo sapiens 84 atgagttagc ccagcggag 19 85 19 DNA Homo sapiens 85 attgagagcc cttggagtg 19 86 19 DNA Homo sapiens 86 tgatttcgta agacaagtg 19 87 20 DNA Homo sapiens 87 agcaaattct aggagttatg 20 88 19 DNA Homo sapiens 88 agctgagatg tccggatcg 19 89 18 DNA Homo sapiens 89 agctgagatt ccggatca 18 90 20 DNA Homo sapiens 90 gtcctcttaa cttcccttcc 20

Claims (25)

1. A purified or isolated nucleic acid, characterized in that it comprises a nucleic acid sequence chosen from the following group of sequences:
a) SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 4 and SEQ ID No. 6;
b) the complementary sequence or the RNA sequence corresponding to a sequence as defined in a).
2. The purified or isolated nucleic acid as claimed in claim 1, characterized in that it comprises or consists of a sequence chosen from SEQ ID No. 1 and SEQ ID No. 4, or the complementary sequence or the RNA sequence corresponding to one of these sequences.
3. A purified or isolated nucleic acid, characterized in that it encodes a polypeptide possessing a continuous fragment of at least 200 amino acids of a protein chosen from SEQ ID No. 2 and SEQ ID No. 5.
4. An isolated polypeptide, characterized in that it comprises a polypeptide chosen from:
a) a polypeptide corresponding to SEQ ID No. 2 or SEQ ID No. 5;
b) a fragment of at least 15 consecutive amino acids of a polypeptide defined in a);
c) a biologically active fragment of a polypeptide defined in a) or b).
5. The polypeptide as claimed in claim 4, characterized in that it consists of a sequence chosen from SEQ ID No. 2 and SEQ ID No. 5.
6. A cloning and/or expression vector, comprising a nucleic acid as claimed in one of claims 1 to 3 or encoding a polypeptide as claimed in either of claims 4 and 5.
7. A host cell, characterized in that it is transformed with a vector as claimed in claim 6.
8. An animal, except a human, characterized in that it comprises a cell as claimed in claim 7.
9. The use of a nucleic acid sequence as claimed in one of claims 1 to 3, as a probe or primer, for detecting and/or amplifying nucleic acid sequences.
10. The use, in vitro, of a nucleic acid as claimed in one of claims 1 to 3, as a sense or antisense oligonucleotide.
11. The use of a nucleic acid sequence as claimed in one of claims 1 to 3, for producing a recombinant polypeptide.
12. A method for obtaining a recombinant polypeptide, characterized in that a cell as claimed in claim 7 is cultured under conditions which allow the expression of said polypeptide, and in that said recombinant polypeptide is recovered.
13. A recombinant polypeptide, characterized in that it is obtained using a method as claimed in claim 12.
14. A monoclonal or polyclonal antibody, characterized in that it selectively binds a polypeptide as claimed in one of claims 4, 5 or 13.
15. A method for detecting a polypeptide as claimed in one of claims 4, 5 or 13, characterized in that it comprises the following steps:
a) bringing a biological sample into contact with an antibody as claimed in claim 14;
b) demonstrating the antigen-antibody complex formed.
16. A kit of reagents for carrying out a method as claimed in claim 15, characterized in that it comprises:
a) a monoclonal or polyclonal antibody as claimed in claim 14;
b) optionally, reagents for constituting a medium suitable for the immunoreaction;
c) the reagents for detecting the antigen-antibody complex produced during the immunoreaction.
17. A method of diagnosis and/or of prognostic assessment of an inflammatory and/or immune disease or of a cancer, characterized in that the presence of at least one mutation and/or a deleterious modification of expression of the gene corresponding to SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 4 or SEQ ID No. 6 is determined, using a biological specimen from a patient, by analyzing all or part of a nucleic acid sequence corresponding to said gene.
18. A DNA chip, characterized in that it contains a nucleic acid sequence as claimed in one of claims 1 to 3.
19. A protein chip, characterized in that it contains a polypeptide of one of claims 4, 5 or 13, or an antibody as claimed in claim 14.
20. A method for detecting and/or assaying a nucleic acid as claimed in one of claims 1 to 3, in a biological sample, characterized in that it comprises the following steps:
a) bringing a polynucleotide as claimed in one of claims 1 to 3, labeled, into contact;
b) detecting and/or assaying the hybrid formed between said polynucleotide and the nucleic acid of the biological sample.
21. A method for detecting and/or assaying a nucleic acid as claimed in one of claims 1 to 3, in a biological sample, characterized in that it comprises a step of amplification of the nucleic acids of said biological sample, using primers chosen from the nucleic acids as claimed in either of claims 1 and 2.
22. A method for screening compounds capable of attaching to a polypeptide of sequence SEQ ID No. 2 or SEQ ID No. 5, characterized in that it comprises the steps of bringing a polypeptide as claimed in one of claims 4, 5 or 13, a cell as claimed in claim 7 or a mammal as claimed in claim 8 into contact with a candidate compound, and detecting the formation of a complex between said candidate compound and said polypeptide.
23. A method for screening compounds capable of interacting, in vitro or in vivo, with a nucleic acid as claimed in one of claims 1 to 3, characterized in that it comprises the steps of bringing a nucleic acid as claimed in one of claims 1 to 3, a cell as claimed in claim 7 or a mammal as claimed in claim 8 into contact with a candidate compound, and detecting the formation of a complex between said candidate compound and said nucleic acid.
24. A compound, characterized in that it is chosen from
a) a nucleic acid as claimed in one of claims 1 to 3;
b) a polypeptide as claimed in one of claims 4, 5 or 13;
c) a vector as claimed in claim 6;
d) a cell as claimed in claim 7; and
e) an antibody as claimed in claim 14,
as a medicinal product.
25. A compound as claimed in claim 24, for preventing and/or treating an inflammatory and/or immune disease, or a cancer, associated with the presence of at least one mutation of the gene corresponding to SEQ ID No. 1 or SEQ ID No. 4.
US10/240,046 2000-03-27 2001-03-27 Genes involved in intestinal inflammatory diseases and use thereof Expired - Lifetime US7592437B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/370,543 US8137915B2 (en) 2000-03-27 2009-02-12 Genes involved in intestinal inflammatory diseases and use thereof
US13/406,487 US20130035260A1 (en) 2000-03-27 2012-02-27 Genes involved in inflammatory bowel diseases and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0003832A FR2806739B1 (en) 2000-03-27 2000-03-27 GENES INVOLVED IN INFLAMMATORY BOWEL DISEASES AND THEIR USE
FR0003832 2000-03-27
PCT/FR2001/000935 WO2001072822A2 (en) 2000-03-27 2001-03-27 Genes involved in intestinal inflammatory diseases and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/370,543 Continuation US8137915B2 (en) 2000-03-27 2009-02-12 Genes involved in intestinal inflammatory diseases and use thereof

Publications (2)

Publication Number Publication Date
US20030190639A1 true US20030190639A1 (en) 2003-10-09
US7592437B2 US7592437B2 (en) 2009-09-22

Family

ID=8848516

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/240,046 Expired - Lifetime US7592437B2 (en) 2000-03-27 2001-03-27 Genes involved in intestinal inflammatory diseases and use thereof
US12/370,543 Expired - Fee Related US8137915B2 (en) 2000-03-27 2009-02-12 Genes involved in intestinal inflammatory diseases and use thereof
US13/406,487 Abandoned US20130035260A1 (en) 2000-03-27 2012-02-27 Genes involved in inflammatory bowel diseases and use thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/370,543 Expired - Fee Related US8137915B2 (en) 2000-03-27 2009-02-12 Genes involved in intestinal inflammatory diseases and use thereof
US13/406,487 Abandoned US20130035260A1 (en) 2000-03-27 2012-02-27 Genes involved in inflammatory bowel diseases and use thereof

Country Status (11)

Country Link
US (3) US7592437B2 (en)
EP (1) EP1268784B1 (en)
JP (1) JP5150997B2 (en)
AT (1) ATE291086T1 (en)
AU (2) AU2001287272B2 (en)
CA (1) CA2404448C (en)
DE (1) DE60109430T2 (en)
FR (1) FR2806739B1 (en)
NZ (1) NZ522011A (en)
WO (1) WO2001072822A2 (en)
ZA (1) ZA200207821B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239105A1 (en) * 2000-10-30 2005-10-27 Gabriel Nunez NOD2 nucleic acids and proteins
WO2007064964A2 (en) 2005-12-01 2007-06-07 Prometheus Laboratories, Inc. Methods of diagnosing inflammatory bowel disease
US20080280367A1 (en) * 2000-10-30 2008-11-13 The Regents Of The University Of Michigan Modulators Of NOD2 Signalling
WO2010056682A2 (en) 2008-11-11 2010-05-20 Prometheus Laboratories Inc. Methods for prediction of inflammatory bowel disease (ibd) using serologic markers
WO2011060098A1 (en) 2009-11-10 2011-05-19 Prometheus Laboratories Inc. Methods for predicting post-surgery risk associated with ileal pouch-anal anastomosis
WO2012054532A1 (en) 2010-10-18 2012-04-26 Prometheus Laboratories Inc. Methods for determining anti-drug antibody isotypes
WO2012154987A1 (en) 2011-05-10 2012-11-15 Nestec Sa Methods of disease activity profiling for personalized therapy management
WO2012154253A1 (en) 2011-02-17 2012-11-15 Prometheus Laboratories Inc. ASSAYS FOR DETECTING AUTOANTIBODIES TO ANTI-TNFα DRUGS
WO2013059732A1 (en) 2011-10-21 2013-04-25 Nestec S.A. Methods for improving inflammatory bowel disease diagnosis
EP2778685A1 (en) 2009-06-25 2014-09-17 Nestec S.A. Methods for diagnosing irritable bowel syndrome
EP2960342A1 (en) 2009-04-14 2015-12-30 Nestec S.A. Inflammatory bowel disease prognostics

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163801B2 (en) 1999-09-01 2007-01-16 The Burnham Institute Methods for determining the prognosis for cancer patients using tucan
US6818750B2 (en) 1999-09-01 2004-11-16 The Burnham Institute Card proteins involved in cell death regulation
FR2806739B1 (en) * 2000-03-27 2005-02-18 Fond Jean Dausset Ceph GENES INVOLVED IN INFLAMMATORY BOWEL DISEASES AND THEIR USE
US7196182B2 (en) 2000-05-24 2007-03-27 The Burnham Institute Card domain containing polypeptides, encoding nucleic acids, and methods of use
JP2003533997A (en) * 2000-05-24 2003-11-18 ザ バーナム インスティチュート CARD domain containing polypeptides, encoding nucleic acids and methods of use
CA2427471C (en) * 2000-10-30 2010-12-21 The Regents Of The University Of Michigan Nod2 nucleic acids and proteins
US11268149B2 (en) 2004-12-08 2022-03-08 Cedars-Sinai Medical Center Diagnosis and treatment of inflammatory bowel disease
US12110555B2 (en) 2004-12-08 2024-10-08 Cedars-Sinai Medical Center Diagnosis and treatment of inflammatory bowel disease

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
US6835815B2 (en) * 2000-10-30 2004-12-28 Regents Of The University Of Michigan Nod2 nucleic acids and proteins
US6858391B2 (en) * 2000-10-30 2005-02-22 Regents Of The University Of Michigan Nod2 nucleic acids and proteins

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582908B2 (en) * 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US6060246A (en) * 1996-11-15 2000-05-09 Avi Biopharma, Inc. Reagent and method for isolation and detection of selected nucleic acid sequences
AU1288499A (en) * 1997-10-31 1999-05-24 Cedars-Sinai Medical Center Methods of identifying and diagnosing inflammatory bowel disease or subtypes with the nramp locus
US6469140B1 (en) * 1998-02-06 2002-10-22 Millennium Pharmaceuticals, Inc. Molecules of the card-related protein family and uses thereof
US6262333B1 (en) * 1998-06-10 2001-07-17 Bayer Corporation Human genes and gene expression products
US6117986A (en) * 1998-06-10 2000-09-12 Intergen Company, L.P. Pyrimidines linked to a quencher
WO2000058473A2 (en) * 1999-03-31 2000-10-05 Curagen Corporation Nucleic acids including open reading frames encoding polypeptides; 'orfx'
EP1074617A3 (en) * 1999-07-29 2004-04-21 Research Association for Biotechnology Primers for synthesising full-length cDNA and their use
MXPA02009271A (en) 2000-03-24 2003-03-12 Genetics Inst A novel p selectin glycoprotein ligand (psgl 1) binding protein and uses therefor.
FR2806739B1 (en) * 2000-03-27 2005-02-18 Fond Jean Dausset Ceph GENES INVOLVED IN INFLAMMATORY BOWEL DISEASES AND THEIR USE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
US6835815B2 (en) * 2000-10-30 2004-12-28 Regents Of The University Of Michigan Nod2 nucleic acids and proteins
US6858391B2 (en) * 2000-10-30 2005-02-22 Regents Of The University Of Michigan Nod2 nucleic acids and proteins

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060493B2 (en) * 2000-10-30 2006-06-13 Regents Of The University Of Michigan Nod2 nucleic acids and proteins
US20080280367A1 (en) * 2000-10-30 2008-11-13 The Regents Of The University Of Michigan Modulators Of NOD2 Signalling
US20050239105A1 (en) * 2000-10-30 2005-10-27 Gabriel Nunez NOD2 nucleic acids and proteins
WO2007064964A2 (en) 2005-12-01 2007-06-07 Prometheus Laboratories, Inc. Methods of diagnosing inflammatory bowel disease
WO2010056682A2 (en) 2008-11-11 2010-05-20 Prometheus Laboratories Inc. Methods for prediction of inflammatory bowel disease (ibd) using serologic markers
EP2960342A1 (en) 2009-04-14 2015-12-30 Nestec S.A. Inflammatory bowel disease prognostics
EP2778685A1 (en) 2009-06-25 2014-09-17 Nestec S.A. Methods for diagnosing irritable bowel syndrome
EP3309556A1 (en) 2009-06-25 2018-04-18 Nestec S.A. Methods for diagnosing irritable bowel syndrome
WO2011060098A1 (en) 2009-11-10 2011-05-19 Prometheus Laboratories Inc. Methods for predicting post-surgery risk associated with ileal pouch-anal anastomosis
WO2012054532A1 (en) 2010-10-18 2012-04-26 Prometheus Laboratories Inc. Methods for determining anti-drug antibody isotypes
WO2012154253A1 (en) 2011-02-17 2012-11-15 Prometheus Laboratories Inc. ASSAYS FOR DETECTING AUTOANTIBODIES TO ANTI-TNFα DRUGS
WO2012154987A1 (en) 2011-05-10 2012-11-15 Nestec Sa Methods of disease activity profiling for personalized therapy management
WO2013059732A1 (en) 2011-10-21 2013-04-25 Nestec S.A. Methods for improving inflammatory bowel disease diagnosis

Also Published As

Publication number Publication date
FR2806739B1 (en) 2005-02-18
CA2404448C (en) 2014-03-25
EP1268784A2 (en) 2003-01-02
WO2001072822A3 (en) 2002-07-18
DE60109430T2 (en) 2006-04-06
DE60109430D1 (en) 2005-04-21
US7592437B2 (en) 2009-09-22
FR2806739A1 (en) 2001-09-28
US8137915B2 (en) 2012-03-20
ATE291086T1 (en) 2005-04-15
EP1268784B1 (en) 2005-03-16
JP5150997B2 (en) 2013-02-27
CA2404448A1 (en) 2001-10-04
AU8727201A (en) 2001-10-08
ZA200207821B (en) 2003-06-12
US20100159453A1 (en) 2010-06-24
JP2003528631A (en) 2003-09-30
US20130035260A1 (en) 2013-02-07
NZ522011A (en) 2005-11-25
WO2001072822B1 (en) 2002-09-06
WO2001072822A2 (en) 2001-10-04
AU2001287272B2 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US8137915B2 (en) Genes involved in intestinal inflammatory diseases and use thereof
US6228594B1 (en) Method for determining the presence or absence of a hereditary hemochromatosis gene mutation
CN101874120B (en) Inherited variants of chr2 and chr16 as markers for breast cancer risk assessment, diagnosis, prognosis and treatment
US7033752B1 (en) Spinal muscular atrophy diagnostic methods
AU4386299A (en) A nucleic acid encoding a retinoblastoma binding protein (RBP-7) and polymorphic markers associated with said nucleic acid
JPH07143884A (en) Tumor suppressor gene merlin and its use
US6566061B1 (en) Identification of polymorphisms in the PCTG4 region of Xq13
US20080199480A1 (en) Methods for Identifying Risk of Type II Diabetes and Treatments Thereof
US6368794B1 (en) Detection of altered expression of genes regulating cell proliferation
JP2003235573A (en) Diabetic nephropathy marker and its use
CA2158791C (en) Dna sequences encoding the machado-joseph disease gene and uses thereof
JP2006506988A (en) Human type II diabetes gene located on chromosome 5q35-SLIT-3
JPH07289297A (en) Cancer-suppressing gene
US6472517B1 (en) Nucleic acids encoding human CIDE-B protein and polymorphic markers thereof
US20030165826A1 (en) PG-3 and biallelic markers thereof
EP1352092B1 (en) Mutations in the ferroportin 1 gene associated with hereditary haemochromatosis
US20070128645A1 (en) Use of KIAA0172 gene in treatment and diagnosis of diseases as well as in pharmaceutical development
US20030104404A1 (en) Genetic markers for autoimmune disorder
US20040163137A1 (en) PG-3 and biallelic markers thereof
CN1368510A (en) Human protein with suppression to cancer cell growth and its coding sequence
US20030165844A1 (en) Haplotypes of the TNFRSF1A gene
EP0833947A1 (en) Variant presenilin-2 genes
WO2001029266A2 (en) Identification of arsacs mutations and methods of use therefor
WO1999032643A2 (en) Mood disorder gene
JP2003135080A (en) Novel gene and encoded protein

Legal Events

Date Code Title Description
AS Assignment

Owner name: FONDATION JEAN DAUSSET-CEPH, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUGOT, JEAN-PIERRE;THOMAS, GILLES;ZOUALI, MOHAMED;AND OTHERS;REEL/FRAME:014088/0228

Effective date: 20021220

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210922

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES DISMISSED (ORIGINAL EVENT CODE: PMFS); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: M1558); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20230531

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE